Theory Square_Integrable
section‹Square integrable functions over the reals›
theory Square_Integrable
imports Lspace
begin
subsection‹Basic definitions›
definition square_integrable:: "(real ⇒ real) ⇒ real set ⇒ bool" (infixr ‹square'_integrable› 46)
where "f square_integrable S ≡ S ∈ sets lebesgue ∧ f ∈ borel_measurable (lebesgue_on S) ∧ integrable (lebesgue_on S) (λx. f x ^ 2)"
lemma square_integrable_imp_measurable:
"f square_integrable S ⟹ f ∈ borel_measurable (lebesgue_on S)"
by (simp add: square_integrable_def)
lemma square_integrable_imp_lebesgue:
"f square_integrable S ⟹ S ∈ sets lebesgue"
by (simp add: square_integrable_def)
lemma square_integrable_imp_lspace:
assumes "f square_integrable S" shows "f ∈ lspace (lebesgue_on S) 2"
proof -
have "(λx. (f x)⇧2) absolutely_integrable_on S"
by (metis assms integrable_on_lebesgue_on nonnegative_absolutely_integrable_1 square_integrable_def zero_le_power2)
moreover have "S ∈ sets lebesgue"
using assms square_integrable_def by blast
ultimately show ?thesis
by (simp add: assms Lp_space_numeral integrable_restrict_space set_integrable_def square_integrable_imp_measurable)
qed
lemma square_integrable_iff_lspace:
assumes "S ∈ sets lebesgue"
shows "f square_integrable S ⟷ f ∈ lspace (lebesgue_on S) 2" (is "?lhs = ?rhs")
proof
assume L: ?lhs
then show ?rhs
using square_integrable_imp_lspace by blast
next
assume ?rhs then show ?lhs
using assms by (auto simp: Lp_space_numeral square_integrable_def integrable_on_lebesgue_on)
qed
lemma square_integrable_0 [simp]:
"S ∈ sets lebesgue ⟹ (λx. 0) square_integrable S"
by (simp add: square_integrable_def power2_eq_square integrable_0)
lemma square_integrable_neg_eq [simp]:
"(λx. -(f x)) square_integrable S ⟷ f square_integrable S"
by (auto simp: square_integrable_def)
lemma square_integrable_lmult [simp]:
assumes "f square_integrable S"
shows "(λx. c * f x) square_integrable S"
proof (simp add: square_integrable_def, intro conjI)
have f: "f ∈ borel_measurable (lebesgue_on S)" "integrable (lebesgue_on S) (λx. f x ^ 2)"
using assms by (simp_all add: square_integrable_def)
then show "(λx. c * f x) ∈ borel_measurable (lebesgue_on S)"
using borel_measurable_scaleR [of "λx. c" "lebesgue_on S" f] by simp
have "integrable (lebesgue_on S) (λx. c⇧2 * (f x)⇧2)"
by (cases "c=0") (auto simp: f integrable_0)
then show "integrable (lebesgue_on S) (λx. (c * f x)⇧2)"
by (simp add: power2_eq_square mult_ac)
show "S ∈ sets lebesgue"
using assms square_integrable_def by blast
qed
lemma square_integrable_rmult [simp]:
"f square_integrable S ⟹ (λx. f x * c) square_integrable S"
using square_integrable_lmult [of f S c] by (simp add: mult.commute)
lemma square_integrable_imp_absolutely_integrable_product:
assumes f: "f square_integrable S" and g: "g square_integrable S"
shows "(λx. f x * g x) absolutely_integrable_on S"
proof -
have fS: "integrable (lebesgue_on S) (λr. (f r)⇧2)" "integrable (lebesgue_on S) (λr. (g r)⇧2)"
using assms square_integrable_def by blast+
have "integrable (lebesgue_on S) (λx. ¦f x * g x¦)"
proof (intro integrable_abs Holder_inequality [of 2 2])
show "f ∈ borel_measurable (lebesgue_on S)" "g ∈ borel_measurable (lebesgue_on S)"
using f g square_integrable_def by blast+
show "integrable (lebesgue_on S) (λx. ¦f x¦ powr 2)" "integrable (lebesgue_on S) (λx. ¦g x¦ powr 2)"
using nonnegative_absolutely_integrable_1 [of "(λx. (f x)⇧2)"] nonnegative_absolutely_integrable_1 [of "(λx. (g x)⇧2)"]
by (simp_all add: fS integrable_restrict_space set_integrable_def)
qed auto
then show ?thesis
using assms
by (simp add: absolutely_integrable_measurable_real borel_measurable_times square_integrable_def)
qed
lemma square_integrable_imp_integrable_product:
assumes "f square_integrable S" "g square_integrable S"
shows "integrable (lebesgue_on S) (λx. f x * g x)"
using absolutely_integrable_measurable assms integrable_abs_iff
by (metis (full_types) absolutely_integrable_measurable_real square_integrable_def square_integrable_imp_absolutely_integrable_product)
lemma square_integrable_add [simp]:
assumes f: "f square_integrable S" and g: "g square_integrable S"
shows "(λx. f x + g x) square_integrable S"
unfolding square_integrable_def
proof (intro conjI)
show "S ∈ sets lebesgue"
using assms square_integrable_def by blast
show "(λx. f x + g x) ∈ borel_measurable (lebesgue_on S)"
by (simp add: f g borel_measurable_add square_integrable_imp_measurable)
show "integrable (lebesgue_on S) (λx. (f x + g x)⇧2)"
unfolding power2_eq_square distrib_right distrib_left
proof (intro Bochner_Integration.integrable_add)
show "integrable (lebesgue_on S) (λx. f x * f x)" "integrable (lebesgue_on S) (λx. g x * g x)"
using f g square_integrable_imp_integrable_product by blast+
show "integrable (lebesgue_on S) (λx. f x * g x)" "integrable (lebesgue_on S) (λx. g x * f x)"
using f g square_integrable_imp_integrable_product by blast+
qed
qed
lemma square_integrable_diff [simp]:
"⟦f square_integrable S; g square_integrable S⟧ ⟹ (λx. f x - g x) square_integrable S"
using square_integrable_neg_eq square_integrable_add [of f S "λx. - (g x)"] by auto
lemma square_integrable_abs [simp]:
"f square_integrable S ⟹ (λx. ¦f x¦) square_integrable S"
by (simp add: square_integrable_def borel_measurable_abs)
lemma square_integrable_sum [simp]:
assumes I: "finite I" "⋀i. i ∈ I ⟹ f i square_integrable S" and S: "S ∈ sets lebesgue"
shows "(λx. ∑i∈I. f i x) square_integrable S"
using I by induction (simp_all add: S)
lemma continuous_imp_square_integrable [simp]:
"continuous_on {a..b} f ⟹ f square_integrable {a..b}"
using continuous_imp_integrable [of a b "(λx. (f x)⇧2)"]
by (simp add: square_integrable_def continuous_on_power continuous_imp_measurable_on_sets_lebesgue)
lemma square_integrable_imp_absolutely_integrable:
assumes f: "f square_integrable S" and S: "S ∈ lmeasurable"
shows "f absolutely_integrable_on S"
proof -
have "f ∈ lspace (lebesgue_on S) 2"
using f S square_integrable_iff_lspace by blast
then have "f ∈ lspace (lebesgue_on S) 1"
by (rule lspace_mono) (use S in auto)
then show ?thesis
using S by (simp flip: lspace_1)
qed
lemma square_integrable_imp_integrable:
assumes f: "f square_integrable S" and S: "S ∈ lmeasurable"
shows "integrable (lebesgue_on S) f"
by (meson S absolutely_integrable_measurable_real f fmeasurableD integrable_abs_iff square_integrable_imp_absolutely_integrable)
subsection‹ The norm and inner product in L2›
definition l2product :: "'a::euclidean_space set ⇒ ('a ⇒ real) ⇒ ('a ⇒ real) ⇒ real"
where "l2product S f g ≡ (∫x. f x * g x ∂(lebesgue_on S))"
definition l2norm :: "['a::euclidean_space set, 'a ⇒ real] ⇒ real"
where "l2norm S f ≡ sqrt (l2product S f f)"
definition lnorm :: "['a measure, real, 'a ⇒ real] ⇒ real"
where "lnorm M p f ≡ (∫x. ¦f x¦ powr p ∂M) powr (1/p)"
corollary Holder_inequality_lnorm:
assumes "p > (0::real)" "q > 0" "1/p+1/q = 1"
and "f ∈ borel_measurable M" "g ∈ borel_measurable M"
"integrable M (λx. ¦f x¦ powr p)"
"integrable M (λx. ¦g x¦ powr q)"
shows "(∫x. ¦f x * g x¦ ∂M) ≤ lnorm M p f * lnorm M q g"
"¦∫x. f x * g x ∂M ¦ ≤ lnorm M p f * lnorm M q g"
by (simp_all add: Holder_inequality assms lnorm_def)
lemma l2norm_lnorm: "l2norm S f = lnorm (lebesgue_on S) 2 f"
proof -
have "(LINT x|lebesgue_on S. (f x)⇧2) ≥ 0"
by simp
then show ?thesis
by (auto simp: lnorm_def l2norm_def l2product_def power2_eq_square powr_half_sqrt)
qed
lemma lnorm_nonneg: "lnorm M p f ≥ 0"
by (simp add: lnorm_def)
lemma lnorm_minus_commute: "lnorm M p (g - f) = lnorm M p (f - g)"
by (simp add: lnorm_def abs_minus_commute)
text‹ Extending a continuous function in a periodic way›
proposition continuous_on_compose_frac:
fixes f:: "real ⇒ real"
assumes contf: "continuous_on {0..1} f" and f10: "f 1 = f 0"
shows "continuous_on UNIV (f ∘ frac)"
proof -
have *: "isCont (f ∘ frac) x"
if caf: "⋀x. ⟦0 ≤ x; x ≤ 1⟧ ⟹ continuous (at x within {0..1}) f" for x
proof (cases "x ∈ ℤ")
case True
then have [simp]: "frac x = 0"
by simp
show ?thesis
proof (clarsimp simp add: continuous_at_eps_delta dist_real_def)
have f0: "continuous (at 0 within {0..1}) f" and f1: "continuous (at 1 within {0..1}) f"
by (auto intro: caf)
show "∃d>0. ∀x'. ¦x'-x¦ < d ⟶ ¦f(frac x') - f 0¦ < e"
if "0 < e" for e
proof -
obtain d0 where "d0 > 0" and d0: "⋀x'. ⟦x'∈{0..1}; ¦x'¦ < d0⟧ ⟹ ¦f x' - f 0¦ < e"
using ‹e > 0› caf [of 0] dist_not_less_zero
by (auto simp: continuous_within_eps_delta dist_real_def)
obtain d1 where "d1 > 0" and d1: "⋀x'. ⟦x'∈{0..1}; ¦x' - 1¦ < d1⟧ ⟹ ¦f x' - f 0¦ < e"
using ‹e > 0› caf [of 1] dist_not_less_zero f10
by (auto simp: continuous_within_eps_delta dist_real_def)
show ?thesis
proof (intro exI conjI allI impI)
show "0 < min 1 (min d0 d1)"
by (auto simp: ‹d0 > 0› ‹d1 > 0›)
show "¦f(frac x') - f 0¦ < e"
if "¦x'-x¦ < min 1 (min d0 d1)" for x'
proof (cases "x ≤ x'")
case True
with ‹x ∈ ℤ› that have "frac x' = x' - x"
by (simp add: frac_unique_iff)
then show ?thesis
using True d0 that by auto
next
case False
then have [simp]: "frac x' = 1 - (x - x')"
using that ‹x ∈ ℤ› by (simp add: not_le frac_unique_iff)
show ?thesis
using False d1 that by auto
qed
qed
qed
qed
next
case False
show ?thesis
proof (rule continuous_at_compose)
show "isCont frac x"
by (simp add: False continuous_frac)
have "frac x ∈ {0<..<1}"
by (simp add: False frac_lt_1)
then show "isCont f(frac x)"
by (metis at_within_Icc_at greaterThanLessThan_iff le_cases not_le that)
qed
qed
then show ?thesis
using contf by (simp add: o_def continuous_on_eq_continuous_within)
qed
proposition Tietze_periodic_interval:
fixes f:: "real ⇒ real"
assumes contf: "continuous_on {a..b} f" and fab: "f a = f b"
obtains g where "continuous_on UNIV g" "⋀x. x ∈ {a..b} ⟹ g x = f x"
"⋀x. g(x + (b-a)) = g x"
proof (cases "a < b")
case True
let ?g = "f ∘ (λy. a + (b-a) * y) ∘ frac ∘
(λx. (x - a) / (b-a))"
show ?thesis
proof
have "a + (b - a) * y ≤ b" if "a < b" "0 ≤ y" "y ≤ 1" for y
using that affine_ineq by (force simp: field_simps)
then have *: "continuous_on (range (λx. (x - a) / (b - a))) (f ∘ (λy. a + (b - a) * y) ∘ frac)"
apply (intro continuous_on_subset [OF continuous_on_compose_frac] continuous_on_subset [OF contf]
continuous_intros)
using ‹a < b›
by (auto simp: fab)
show "continuous_on UNIV ?g"
by (intro * continuous_on_compose continuous_intros) (use True in auto)
show "?g x = f x" if "x ∈ {a..b}" for x :: real
proof (cases "x=b")
case True
then show ?thesis
by (auto simp: frac_def intro: fab)
next
case False
with ‹a < b› that have "frac ((x - a) / (b - a)) = (x - a) / (b - a)"
by (subst frac_eq) (auto simp: divide_simps)
with ‹a < b› show ?thesis
by auto
qed
have "a + (b-a) * frac ((x + b - 2 * a) / (b-a)) = a + (b-a) * frac ((x - a) / (b-a))" for x
using True frac_1_eq [of "(x - a) / (b-a)"] by (auto simp: divide_simps)
then show "?g (x + (b-a)) = (?g x::real)" for x
by force
qed
next
case False
show ?thesis
proof
show "f a = f x" if "x ∈ {a..b}" for x
using that False order_trans by fastforce
qed auto
qed
subsection‹Lspace stuff›
lemma eNorm_triangle_eps:
assumes "eNorm N (x' - x) < a" "defect N = 1"
obtains e where "e > 0" "⋀y. eNorm N (y - x') < e ⟹ eNorm N (y - x) < a"
proof -
let ?d = "a - Norm N (x' - x)"
have nt: "eNorm N (x' - x) < ⊤"
using assms top.not_eq_extremum by fastforce
with assms have d: "?d > 0"
by (simp add: Norm_def diff_gr0_ennreal)
have [simp]: "ennreal (1 - Norm N (x' - x)) = 1 - eNorm N (x' - x)"
using that nt unfolding Norm_def by (metis enn2real_nonneg ennreal_1 ennreal_enn2real ennreal_minus)
show ?thesis
proof
show "(0::ennreal) < ?d"
using d ennreal_less_zero_iff by blast
show "eNorm N (y - x) < a"
if "eNorm N (y - x') < ?d" for y
using that assms eNorm_triangular_ineq [of N "y - x'" "x' - x"] le_less_trans less_diff_eq_ennreal
by (simp add: Norm_def nt)
qed
qed
lemma topspace_topology⇩N [simp]:
assumes "defect N = 1" shows "topspace (topology⇩N N) = UNIV"
proof -
have "x ∈ topspace (topology⇩N N)" for x
proof -
have "∃e>0. ∀y. eNorm N (y - x') < e ⟶ eNorm N (y - x) < 1"
if "eNorm N (x' - x) < 1" for x'
using eNorm_triangle_eps
by (metis assms that)
then show ?thesis
unfolding topspace_def
by (rule_tac X="{y. eNorm N (y - x) < 1}" in UnionI) (auto intro: openin_topology⇩N_I)
qed
then show ?thesis
by auto
qed
lemma tendsto_ine⇩N_iff_limitin:
assumes "defect N = 1"
shows "tendsto_ine⇩N N u x = limitin (topology⇩N N) u x sequentially"
proof -
have "∀⇩F x in sequentially. u x ∈ U"
if 0: "(λn. eNorm N (u n - x)) ⇢ 0" and U: "openin (topology⇩N N) U" "x ∈ U" for U
proof -
obtain e where "e > 0" and e: "⋀y. eNorm N (y-x) < e ⟹ y ∈ U"
using openin_topology⇩N_D U by metis
then show ?thesis
using eventually_mono order_tendstoD(2)[OF 0] by force
qed
moreover have "(λn. eNorm N (u n - x)) ⇢ 0"
if x: "x ∈ topspace (topology⇩N N)"
and *: "⋀U. ⟦openin (topology⇩N N) U; x ∈ U⟧ ⟹ (∀⇩F x in sequentially. u x ∈ U)"
proof (rule order_tendstoI)
show "∀⇩F n in sequentially. eNorm N (u n - x) < a" if "a > 0" for a
apply (rule * [OF openin_topology⇩N_I, of "{v. eNorm N (v - x) < a}", simplified])
using assms eNorm_triangle_eps that apply blast+
done
qed simp
ultimately show ?thesis
by (auto simp: tendsto_ine⇩N_def limitin_def assms)
qed
corollary tendsto_ine⇩N_iff_limitin_ge1:
fixes p :: ennreal
assumes "p ≥ 1"
shows "tendsto_ine⇩N (𝔏 p M) u x = limitin (topology⇩N (𝔏 p M)) u x sequentially"
proof (rule tendsto_ine⇩N_iff_limitin)
show "defect (𝔏 p M) = 1"
by (metis (full_types) L_infinity(2) L_zero(2) Lp(2) Lp_cases assms ennreal_ge_1)
qed
corollary tendsto_in⇩N_iff_limitin:
assumes "defect N = 1" "x ∈ space⇩N N" "⋀n. u n ∈ space⇩N N"
shows "tendsto_in⇩N N u x = limitin (topology⇩N N) u x sequentially"
using assms tendsto_ine⇩N_iff_limitin tendsto_ine_in by blast
corollary tendsto_in⇩N_iff_limitin_ge1:
fixes p :: ennreal
assumes "p ≥ 1" "x ∈ lspace M p" "⋀n. u n ∈ lspace M p"
shows "tendsto_in⇩N (𝔏 p M) u x = limitin (topology⇩N (𝔏 p M)) u x sequentially"
proof (rule tendsto_in⇩N_iff_limitin)
show "defect (𝔏 p M) = 1"
by (metis (full_types) L_infinity(2) L_zero(2) Lp(2) Lp_cases ‹p ≥ 1› ennreal_ge_1)
qed (auto simp: assms)
lemma l2product_sym: "l2product S f g = l2product S g f"
by (simp add: l2product_def mult.commute)
lemma l2product_pos_le:
"f square_integrable S ⟹ 0 ≤ l2product S f f"
by (simp add: square_integrable_def l2product_def flip: power2_eq_square)
lemma l2norm_pow_2:
"f square_integrable S ⟹ (l2norm S f) ^ 2 = l2product S f f"
by (simp add: l2norm_def l2product_pos_le)
lemma l2norm_pos_le:
"f square_integrable S ⟹ 0 ≤ l2norm S f"
by (simp add: l2norm_def l2product_pos_le)
lemma l2norm_le: "(l2norm S f ≤ l2norm S g ⟷ l2product S f f ≤ l2product S g g)"
by (simp add: l2norm_def)
lemma l2norm_eq:
"(l2norm S f = l2norm S g ⟷ l2product S f f = l2product S g g)"
by (simp add: l2norm_def)
lemma Schwartz_inequality_strong:
assumes "f square_integrable S" "g square_integrable S"
shows "l2product S (λx. ¦f x¦) (λx. ¦g x¦) ≤ l2norm S f * l2norm S g"
using Holder_inequality_lnorm [of 2 2 f "lebesgue_on S" g] assms
by (simp add: square_integrable_def l2product_def abs_mult flip: l2norm_lnorm)
lemma Schwartz_inequality_abs:
assumes "f square_integrable S" "g square_integrable S"
shows "¦l2product S f g¦ ≤ l2norm S f * l2norm S g"
proof -
have "¦l2product S f g¦ ≤ l2product S (λx. ¦f x¦) (λx. ¦g x¦)"
unfolding l2product_def
proof (rule integral_abs_bound_integral)
show "integrable (lebesgue_on S) (λx. f x * g x)" "integrable (lebesgue_on S) (λx. ¦f x¦ * ¦g x¦)"
by (simp_all add: assms square_integrable_imp_integrable_product)
qed (simp add: abs_mult)
also have "… ≤ l2norm S f * l2norm S g"
by (simp add: Schwartz_inequality_strong assms)
finally show ?thesis .
qed
lemma Schwartz_inequality:
assumes "f square_integrable S" "g square_integrable S"
shows "l2product S f g ≤ l2norm S f * l2norm S g"
using Schwartz_inequality_abs assms by fastforce
lemma lnorm_triangle:
assumes f: "f ∈ lspace M p" and g: "g ∈ lspace M p" and "p ≥ 1"
shows "lnorm M p (λx. f x + g x) ≤ lnorm M p f + lnorm M p g"
proof -
have "p > 0"
using assms by linarith
then have "integrable M (λx. ¦f x¦ powr p)" "integrable M (λx. ¦g x¦ powr p)"
by (simp_all add: Lp_D(2) assms)
moreover have "f ∈ borel_measurable M" "g ∈ borel_measurable M"
using Lp_measurable f g by blast+
ultimately show ?thesis
unfolding lnorm_def using Minkowski_inequality(2) ‹p ≥ 1› by blast
qed
lemma lnorm_triangle_fun:
assumes f: "f ∈ lspace M p" and g: "g ∈ lspace M p" and "p ≥ 1"
shows "lnorm M p (f + g) ≤ lnorm M p f + lnorm M p g"
using lnorm_triangle [OF assms] by (simp add: plus_fun_def)
lemma l2norm_triangle:
assumes "f square_integrable S" "g square_integrable S"
shows "l2norm S (λx. f x + g x) ≤ l2norm S f + l2norm S g"
proof -
have "f ∈ lspace (lebesgue_on S) 2" "g ∈ lspace (lebesgue_on S) 2"
using assms by (simp_all add: square_integrable_imp_lspace)
then show ?thesis
using lnorm_triangle [of f 2 "lebesgue_on S"]
by (simp add: l2norm_lnorm)
qed
lemma l2product_ladd:
"⟦f square_integrable S; g square_integrable S; h square_integrable S⟧
⟹ l2product S (λx. f x + g x) h = l2product S f h + l2product S g h"
by (simp add: l2product_def algebra_simps square_integrable_imp_integrable_product)
lemma l2product_radd:
"⟦f square_integrable S; g square_integrable S; h square_integrable S⟧
⟹ l2product S f(λx. g x + h x) = l2product S f g + l2product S f h"
by (simp add: l2product_def algebra_simps square_integrable_imp_integrable_product)
lemma l2product_ldiff:
"⟦f square_integrable S; g square_integrable S; h square_integrable S⟧
⟹ l2product S (λx. f x - g x) h = l2product S f h - l2product S g h"
by (simp add: l2product_def algebra_simps square_integrable_imp_integrable_product)
lemma l2product_rdiff:
"⟦f square_integrable S; g square_integrable S; h square_integrable S⟧
⟹ l2product S f(λx. g x - h x) = l2product S f g - l2product S f h"
by (simp add: l2product_def algebra_simps square_integrable_imp_integrable_product)
lemma l2product_lmult:
"⟦f square_integrable S; g square_integrable S⟧
⟹ l2product S (λx. c * f x) g = c * l2product S f g"
by (simp add: l2product_def algebra_simps)
lemma l2product_rmult:
"⟦f square_integrable S; g square_integrable S⟧
⟹ l2product S f(λx. c * g x) = c * l2product S f g"
by (simp add: l2product_def algebra_simps)
lemma l2product_lzero [simp]: "l2product S (λx. 0) f = 0"
by (simp add: l2product_def)
lemma l2product_rzero [simp]: "l2product S f(λx. 0) = 0"
by (simp add: l2product_def)
lemma l2product_lsum:
assumes I: "finite I" "⋀i. i ∈ I ⟹ (f i) square_integrable S" and S: "g square_integrable S"
shows "l2product S (λx. ∑i∈I. f i x) g = (∑i∈I. l2product S (f i) g)"
using I
proof induction
case (insert i I)
with S show ?case
by (simp add: l2product_ladd square_integrable_imp_lebesgue)
qed auto
lemma l2product_rsum:
assumes I: "finite I" "⋀i. i ∈ I ⟹ (f i) square_integrable S" and S: "g square_integrable S"
shows "l2product S g (λx. ∑i∈I. f i x) = (∑i∈I. l2product S g (f i))"
using l2product_lsum [OF assms] by (simp add: l2product_sym)
lemma l2norm_lmult:
"f square_integrable S ⟹ l2norm S (λx. c * f x) = ¦c¦ * l2norm S f"
by (simp add: l2norm_def l2product_rmult l2product_sym real_sqrt_mult)
lemma l2norm_rmult:
"f square_integrable S ⟹ l2norm S (λx. f x * c) = l2norm S f * ¦c¦"
using l2norm_lmult by (simp add: mult.commute)
lemma l2norm_neg:
"f square_integrable S ⟹ l2norm S (λx. - f x) = l2norm S f"
using l2norm_lmult [of f S "-1"] by simp
lemma l2norm_diff:
assumes "f square_integrable S" "g square_integrable S"
shows "l2norm S (λx. f x - g x) = l2norm S (λx. g x - f x)"
proof -
have "(λx. f x - g x) square_integrable S"
using assms square_integrable_diff by blast
then show ?thesis
using l2norm_neg [of "λx. f x - g x" S] by (simp add: algebra_simps)
qed
subsection‹Completeness (Riesz-Fischer)›
lemma eNorm_eq_lnorm: "⟦f ∈ lspace M p; p > 0⟧ ⟹ eNorm (𝔏 (ennreal p) M) f = ennreal (lnorm M p f)"
by (simp add: Lp_D(4) lnorm_def)
lemma Norm_eq_lnorm: "⟦f ∈ lspace M p; p > 0⟧ ⟹ Norm (𝔏 (ennreal p) M) f = lnorm M p f"
by (simp add: Lp_D(3) lnorm_def)
lemma eNorm_ge1_triangular_ineq:
assumes "p ≥ (1::real)"
shows "eNorm (𝔏 p M) (x + y) ≤ eNorm (𝔏 p M) x + eNorm (𝔏 p M) y"
using eNorm_triangular_ineq [of "(𝔏 p M)"] assms
by (simp add: Lp(2))
text‹A mere repackaging of the theorem @{thm Lp_complete}, but nearly as much work again.›
proposition l2_complete:
assumes f: "⋀i::nat. f i square_integrable S"
and cauchy: "⋀e. 0 < e ⟹ ∃N. ∀m≥N. ∀n≥N. l2norm S (λx. f m x - f n x) < e"
obtains g where "g square_integrable S" "((λn. l2norm S (λx. f n x - g x)) ⇢ 0)"
proof -
have finite: "eNorm (𝔏 2 (lebesgue_on S)) (f n - f m) < ⊤" for m n
by (metis f infinity_ennreal_def spaceN_diff spaceN_iff square_integrable_imp_lspace)
have *: "cauchy_ine⇩N (𝔏 2 (lebesgue_on S)) f"
proof (clarsimp simp: cauchy_ine⇩N_def)
show "∃M. ∀n≥M. ∀m≥M. eNorm (𝔏 2 (lebesgue_on S)) (f n - f m) < e"
if "e > 0" for e
proof (cases e)
case (real r)
then have "r > 0"
using that by auto
with cauchy obtain N::nat where N: "⋀m n. ⟦m ≥ N; n ≥ N⟧ ⟹ l2norm S (λx. f n x - f m x) < r"
by blast
show ?thesis
proof (intro exI allI impI)
show "eNorm (𝔏 2 (lebesgue_on S)) (f n - f m) < e"
if "N ≤ m" "N ≤ n" for m n
proof -
have fnm: "(f n - f m) ∈ borel_measurable (lebesgue_on S)"
using f unfolding square_integrable_def by (blast intro: borel_measurable_diff')
have "l2norm S (λx. f n x - f m x) = lnorm (lebesgue_on S) 2 (λx. f n x - f m x)"
by (metis l2norm_lnorm)
also have "… = Norm (𝔏 2 (lebesgue_on S)) (f n - f m)"
using Lp_Norm [OF _ fnm, of 2] by (simp add: lnorm_def)
finally show ?thesis
using N [OF that] real finite
by (simp add: Norm_def)
qed
qed
qed (simp add: finite)
qed
then obtain g where g: "tendsto_ine⇩N (𝔏 2 (lebesgue_on S)) f g"
using Lp_complete complete⇩N_def by blast
show ?thesis
proof
have fng_to_0: "(λn. eNorm (𝔏 2 (lebesgue_on S)) (λx. f n x - g x)) ⇢ 0"
using g Lp_D(4) [of 2 _ "lebesgue_on S"]
by (simp add: tendsto_ine⇩N_def minus_fun_def)
then obtain M where "⋀n . n ≥ M ⟹ eNorm (𝔏 2 (lebesgue_on S)) (λx. f n x - g x) < ⊤"
apply (simp add: lim_explicit)
by (metis (full_types) open_lessThan diff_self eNorm_zero lessThan_iff local.finite)
then have "eNorm (𝔏 2 (lebesgue_on S)) (λx. g x - f M x) < ⊤"
using eNorm_uminus [of _ "λx. g x - f _ x"] by (simp add: uminus_fun_def)
moreover have "eNorm (𝔏 2 (lebesgue_on S)) (λx. f M x) < ⊤"
using f square_integrable_imp_lspace by (simp add: spaceN_iff)
ultimately have "eNorm (𝔏 2 (lebesgue_on S)) g < ⊤"
using eNorm_ge1_triangular_ineq [of 2 "lebesgue_on S" "g - f M" "f M", simplified] not_le top.not_eq_extremum
by (fastforce simp add: minus_fun_def)
then have g_space: "g ∈ space⇩N (𝔏 2 (lebesgue_on S))"
by (simp add: spaceN_iff)
show "g square_integrable S"
unfolding square_integrable_def
proof (intro conjI)
show "g ∈ borel_measurable (lebesgue_on S)"
using Lp_measurable g_space by blast
show "S ∈ sets lebesgue"
using f square_integrable_def by blast
then show "integrable (lebesgue_on S) (λx. (g x)⇧2)"
using g_space square_integrable_def square_integrable_iff_lspace by blast
qed
then have "f n - g ∈ lspace (lebesgue_on S) 2" for n
using f spaceN_diff square_integrable_imp_lspace by blast
with fng_to_0 have "(λn. ennreal (lnorm (lebesgue_on S) 2 (λx. f n x - g x))) ⇢ 0"
by (simp add: minus_fun_def flip: eNorm_eq_lnorm)
then have "(λn. lnorm (lebesgue_on S) 2 (λx. f n x - g x)) ⇢ 0"
by (simp add: ennreal_tendsto_0_iff lnorm_def)
then show "(λn. l2norm S (λx. f n x - g x)) ⇢ 0"
using g by (simp add: l2norm_lnorm lnorm_def)
qed
qed
subsection‹Approximation of functions in Lp by bounded and continuous ones›
lemma lspace_bounded_measurable:
fixes p::real
assumes f: "f ∈ borel_measurable (lebesgue_on S)" and g: "g ∈ lspace (lebesgue_on S) p" and "p > 0"
and le: " AE x in lebesgue_on S. norm (¦f x¦ powr p) ≤ norm (¦g x¦ powr p)"
shows "f ∈ lspace (lebesgue_on S) p"
using assms by (auto simp: lspace_ennreal_iff intro: Bochner_Integration.integrable_bound)
lemma lspace_approximate_bounded:
assumes f: "f ∈ lspace (lebesgue_on S) p" and S: "S ∈ lmeasurable" and "p > 0" "e > 0"
obtains g where "g ∈ lspace (lebesgue_on S) p" "bounded (g ` S)"
"lnorm (lebesgue_on S) p (f - g) < e"
proof -
have f_bm: "f ∈ borel_measurable (lebesgue_on S)"
using Lp_measurable f by blast
let ?f = "λn::nat. λx. max (- n) (min n (f x))"
have "tendsto_in⇩N (𝔏 p (lebesgue_on S)) ?f f"
proof (rule Lp_domination_limit)
show "⋀n::nat. ?f n ∈ borel_measurable (lebesgue_on S)"
by (intro f_bm borel_measurable_max borel_measurable_min borel_measurable_const)
show "abs ∘ f ∈ lspace (lebesgue_on S) p"
using Lp_Banach_lattice [OF f] by (simp add: o_def)
have *: "∀⇩F n in sequentially. dist (?f n x) (f x) < e"
if x: "x ∈ space (lebesgue_on S)" and "e > 0" for x e
proof
show "dist (?f n x) (f x) < e"
if "nat ⌈¦f x¦⌉ ≤ n" for n :: nat
using that ‹0 < e› by (simp add: dist_real_def max_def min_def abs_if split: if_split_asm)
qed
then show "AE x in lebesgue_on S. (λn::nat. max (- n) (min n (f x))) ⇢ f x"
by (blast intro: tendstoI)
qed (auto simp: f_bm)
moreover
have lspace: "?f n ∈ lspace (lebesgue_on S) p" for n::nat
by (intro f lspace_const lspace_min lspace_max ‹p > 0› S)
ultimately have "(λn. lnorm (lebesgue_on S) p (?f n - f)) ⇢ 0"
by (simp add: tendsto_in⇩N_def Norm_eq_lnorm ‹p > 0› f)
with ‹e > 0› obtain N where N: "¦lnorm (lebesgue_on S) p (?f N - f)¦ < e"
by (auto simp: LIMSEQ_iff)
show ?thesis
proof
have "∀x∈S. ¦max (- real N) (min (real N) (f x))¦ ≤ N"
by auto
then show "bounded (?f N ` S::real set)"
by (force simp: bounded_iff)
show "lnorm (lebesgue_on S) p (f - ?f N) < e"
using N by (simp add: lnorm_minus_commute)
qed (auto simp: lspace)
qed
lemma borel_measurable_imp_continuous_limit:
fixes h :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes h: "h ∈ borel_measurable (lebesgue_on S)" and S: "S ∈ sets lebesgue"
obtains g where "⋀n. continuous_on UNIV (g n)" "AE x in lebesgue_on S. (λn::nat. g n x) ⇢ h x"
proof -
have "h measurable_on S"
using S h measurable_on_iff_borel_measurable by blast
then obtain N g where N: "N ∈ null_sets lebesgue" and g: "⋀n. continuous_on UNIV (g n)"
and tends: "⋀x. x ∉ N ⟹ (λn. g n x) ⇢ (if x ∈ S then h x else 0)"
by (auto simp: measurable_on_def negligible_iff_null_sets)
moreover have "AE x in lebesgue_on S. (λn::nat. g n x) ⇢ h x"
proof (rule AE_I')
show "N ∩ S ∈ null_sets (lebesgue_on S)"
by (simp add: S N null_set_Int2 null_sets_restrict_space)
show "{x ∈ space (lebesgue_on S). ¬ (λn. g n x) ⇢ h x} ⊆ N ∩ S"
using tends by force
qed
ultimately show thesis
using that by blast
qed
proposition lspace_approximate_continuous:
assumes f: "f ∈ lspace (lebesgue_on S) p" and S: "S ∈ lmeasurable" and "1 ≤ p" "e > 0"
obtains g where "continuous_on UNIV g" "g ∈ lspace (lebesgue_on S) p" "lnorm (lebesgue_on S) p (f - g) < e"
proof -
have "p > 0"
using assms by simp
obtain h where h: "h ∈ lspace (lebesgue_on S) p" and "bounded (h ` S)"
and lesse2: "lnorm (lebesgue_on S) p (f - h) < e/2"
by (rule lspace_approximate_bounded [of f p S "e/2"]) (use assms in auto)
then obtain B where "B > 0" and B: "⋀x. x ∈ S ⟹ ¦h x¦ ≤ B"
by (auto simp: bounded_pos)
have bmh: "h ∈ borel_measurable (lebesgue_on S)"
using h lspace_ennreal_iff [of p] ‹p ≥ 1› by auto
obtain g where contg: "⋀n. continuous_on UNIV (g n)"
and gle: "⋀n x. x ∈ S ⟹ ¦g n x¦ ≤ B"
and tends: "AE x in lebesgue_on S. (λn::nat. g n x) ⇢ h x"
proof -
obtain γ where cont: "⋀n. continuous_on UNIV (γ n)"
and tends: "AE x in lebesgue_on S. (λn::nat. γ n x) ⇢ h x"
using borel_measurable_imp_continuous_limit S bmh by blast
let ?g = "λn::nat. λx. max (- B) (min B (γ n x))"
show thesis
proof
show "continuous_on UNIV (?g n)" for n
by (intro continuous_intros cont)
show "¦?g n x¦ ≤ B" if "x ∈ S" for n x
using that ‹B > 0› by (auto simp: max_def min_def)
have "(λn. max (- B) (min B (γ n x))) ⇢ h x"
if "(λn. γ n x) ⇢ h x" "x ∈ S" for x
using that ‹B > 0› B [OF ‹x ∈ S›]
unfolding LIMSEQ_def by (fastforce simp: min_def max_def dist_real_def)
then show "AE x in lebesgue_on S. (λn. ?g n x) ⇢ h x"
using tends by auto
qed
qed
have lspace_B: "(λx. B) ∈ lspace (lebesgue_on S) p"
by (simp add: S ‹0 < p› lspace_const)
have lspace_g: "g n ∈ lspace (lebesgue_on S) p" for n
proof (rule lspace_bounded_measurable)
show "g n ∈ borel_measurable (lebesgue_on S)"
by (simp add: borel_measurable_continuous_onI contg measurable_completion measurable_restrict_space1)
show "AE x in lebesgue_on S. norm (¦g n x¦ powr p) ≤ norm (¦B¦ powr p)"
using ‹B > 0› gle S ‹0 < p› powr_mono2 by auto
qed (use ‹p > 0› lspace_B in auto)
have "tendsto_in⇩N (𝔏 p (lebesgue_on S)) g h"
proof (rule Lp_domination_limit [OF bmh _ lspace_B tends])
show "⋀n::nat. g n ∈ borel_measurable (lebesgue_on S)"
using Lp_measurable lspace_g by blast
show "⋀n. AE x in lebesgue_on S. ¦g n x¦ ≤ B"
using S gle by auto
qed
then have 0: "(λn. Norm (𝔏 p (lebesgue_on S)) (g n - h)) ⇢ 0"
by (simp add: tendsto_in⇩N_def)
have "⋀e. 0 < e ⟹ ∃N. ∀n≥N. lnorm (lebesgue_on S) p (g n - h) < e"
using LIMSEQ_D [OF 0] ‹e > 0›
by (force simp: Norm_eq_lnorm ‹0 < p› h lspace_g)
then obtain N where N: "lnorm (lebesgue_on S) p (g N - h) < e/2"
unfolding minus_fun_def by (meson ‹e>0› half_gt_zero order_refl)
show ?thesis
proof
show "continuous_on UNIV (g N)"
by (simp add: contg)
show "g N ∈ lspace (lebesgue_on S) (ennreal p)"
by (simp add: lspace_g)
have "lnorm (lebesgue_on S) p (f - h + - (g N - h)) ≤ lnorm (lebesgue_on S) p (f - h) + lnorm (lebesgue_on S) p (- (g N - h))"
by (rule lnorm_triangle_fun) (auto simp: lspace_g h assms)
also have "… < e/2 + e/2"
using lesse2 N by (simp add: lnorm_minus_commute)
finally show "lnorm (lebesgue_on S) p (f - g N) < e"
by simp
qed
qed
proposition square_integrable_approximate_continuous:
assumes f: "f square_integrable S" and S: "S ∈ lmeasurable" and "e > 0"
obtains g where "continuous_on UNIV g" "g square_integrable S" "l2norm S (λx. f x - g x) < e"
proof -
have f2: "f ∈ lspace (lebesgue_on S) 2"
by (simp add: f square_integrable_imp_lspace)
then obtain g where contg: "continuous_on UNIV g"
and g2: "g ∈ lspace (lebesgue_on S) 2"
and less_e: "lnorm (lebesgue_on S) 2 (λx. f x - g x) < e"
using lspace_approximate_continuous [of f 2 S e] S ‹0 < e› by (auto simp: minus_fun_def)
show thesis
proof
show "g square_integrable S"
using g2 by (simp add: S fmeasurableD square_integrable_iff_lspace)
show "l2norm S (λx. f x - g x) < e"
using less_e by (simp add: l2norm_lnorm)
qed (simp add: contg)
qed
lemma absolutely_integrable_approximate_continuous:
fixes f :: "real ⇒ real"
assumes f: "f absolutely_integrable_on S" and S: "S ∈ lmeasurable" and "0 < e"
obtains g where "continuous_on UNIV g" "g absolutely_integrable_on S" "integral⇧L (lebesgue_on S) (λx. ¦f x - g x¦) < e"
proof -
obtain g where "continuous_on UNIV g" "g ∈ lspace (lebesgue_on S) 1"
and lnorm: "lnorm (lebesgue_on S) 1 (f - g) < e"
proof (rule lspace_approximate_continuous)
show "f ∈ lspace (lebesgue_on S) (ennreal 1)"
by (simp add: S f fmeasurableD lspace_1)
qed (auto simp: assms)
show thesis
proof
show "continuous_on UNIV g"
by fact
show "g absolutely_integrable_on S"
using S ‹g ∈ lspace (lebesgue_on S) 1› lspace_1 by blast
have *: "(λx. f x - g x) absolutely_integrable_on S"
by (simp add: ‹g absolutely_integrable_on S› f)
moreover have "integrable (lebesgue_on S) (λx. ¦f x - g x¦)"
by (simp add: L1_D(2) S * fmeasurableD lspace_1)
ultimately show "integral⇧L (lebesgue_on S) (λx. ¦f x - g x¦) < e"
using lnorm S unfolding lnorm_def absolutely_integrable_on_def
by simp
qed
qed
end