Theory Transcendental

(*  Title:      HOL/Transcendental.thy
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
    Author:     Lawrence C Paulson
    Author:     Jeremy Avigad
*)

section ‹Power Series, Transcendental Functions etc.›

theory Transcendental
imports Series Deriv NthRoot
begin

text ‹A theorem about the factcorial function on the reals.›

lemma square_fact_le_2_fact: "fact n * fact n  (fact (2 * n) :: real)"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
    by (simp add: field_simps)
  also have "  of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
    by (rule mult_left_mono [OF Suc]) simp
  also have "  of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
    by (rule mult_right_mono)+ (auto simp: field_simps)
  also have " = fact (2 * Suc n)" by (simp add: field_simps)
  finally show ?case .
qed

lemma fact_in_Reals: "fact n  "
  by (induction n) auto

lemma of_real_fact [simp]: "of_real (fact n) = fact n"
  by (metis of_nat_fact of_real_of_nat_eq)

lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
  by (simp add: pochhammer_prod)

lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
proof -
  have "(fact n :: 'a) = of_real (fact n)"
    by simp
  also have "norm  = fact n"
    by (subst norm_of_real) simp
  finally show ?thesis .
qed

lemma root_test_convergence:
  fixes f :: "nat  'a::banach"
  assumes f: "(λn. root n (norm (f n)))  x" ― ‹could be weakened to lim sup›
    and "x < 1"
  shows "summable f"
proof -
  have "0  x"
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
  from x < 1 obtain z where z: "x < z" "z < 1"
    by (metis dense)
  from f x < z have "eventually (λn. root n (norm (f n)) < z) sequentially"
    by (rule order_tendstoD)
  then have "eventually (λn. norm (f n)  z^n) sequentially"
    using eventually_ge_at_top
  proof eventually_elim
    fix n
    assume less: "root n (norm (f n)) < z" and n: "1  n"
    from power_strict_mono[OF less, of n] n show "norm (f n)  z ^ n"
      by simp
  qed
  then show "summable f"
    unfolding eventually_sequentially
    using z 0  x by (auto intro!: summable_comparison_test[OF _  summable_geometric])
qed

subsection ‹More facts about binomial coefficients›

text ‹
  These facts could have been proven before, but having real numbers
  makes the proofs a lot easier.
›

lemma central_binomial_odd:
  "odd n  n choose (Suc (n div 2)) = n choose (n div 2)"
proof -
  assume "odd n"
  hence "Suc (n div 2)  n" by presburger
  hence "n choose (Suc (n div 2)) = n choose (n - Suc (n div 2))"
    by (rule binomial_symmetric)
  also from odd n have "n - Suc (n div 2) = n div 2" by presburger
  finally show ?thesis .
qed

lemma binomial_less_binomial_Suc:
  assumes k: "k < n div 2"
  shows   "n choose k < n choose (Suc k)"
proof -
  from k have k': "k  n" "Suc k  n" by simp_all
  from k' have "real (n choose k) = fact n / (fact k * fact (n - k))"
    by (simp add: binomial_fact)
  also from k' have "n - k = Suc (n - Suc k)" by simp
  also from k' have "fact  = (real n - real k) * fact (n - Suc k)"
    by (subst fact_Suc) (simp_all add: of_nat_diff)
  also from k have "fact k = fact (Suc k) / (real k + 1)" by (simp add: field_simps)
  also have "fact n / (fact (Suc k) / (real k + 1) * ((real n - real k) * fact (n - Suc k))) =
               (n choose (Suc k)) * ((real k + 1) / (real n - real k))"
    using k by (simp add: field_split_simps binomial_fact)
  also from assms have "(real k + 1) / (real n - real k) < 1" by simp
  finally show ?thesis using k by (simp add: mult_less_cancel_left)
qed

lemma binomial_strict_mono:
  assumes "k < k'" "2*k'  n"
  shows   "n choose k < n choose k'"
proof -
  from assms have "k  k' - 1" by simp
  thus ?thesis
  proof (induction rule: inc_induct)
    case base
    with assms binomial_less_binomial_Suc[of "k' - 1" n]
      show ?case by simp
  next
    case (step k)
    from step.prems step.hyps assms have "n choose k < n choose (Suc k)"
      by (intro binomial_less_binomial_Suc) simp_all
    also have " < n choose k'" by (rule step.IH)
    finally show ?case .
  qed
qed

lemma binomial_mono:
  assumes "k  k'" "2*k'  n"
  shows   "n choose k  n choose k'"
  using assms binomial_strict_mono[of k k' n] by (cases "k = k'") simp_all

lemma binomial_strict_antimono:
  assumes "k < k'" "2 * k  n" "k'  n"
  shows   "n choose k > n choose k'"
proof -
  from assms have "n choose (n - k) > n choose (n - k')"
    by (intro binomial_strict_mono) (simp_all add: algebra_simps)
  with assms show ?thesis by (simp add: binomial_symmetric [symmetric])
qed

lemma binomial_antimono:
  assumes "k  k'" "k  n div 2" "k'  n"
  shows   "n choose k  n choose k'"
proof (cases "k = k'")
  case False
  note not_eq = False
  show ?thesis
  proof (cases "k = n div 2  odd n")
    case False
    with assms(2) have "2*k  n" by presburger
    with not_eq assms binomial_strict_antimono[of k k' n]
      show ?thesis by simp
  next
    case True
    have "n choose k'  n choose (Suc (n div 2))"
    proof (cases "k' = Suc (n div 2)")
      case False
      with assms True not_eq have "Suc (n div 2) < k'" by simp
      with assms binomial_strict_antimono[of "Suc (n div 2)" k' n] True
        show ?thesis by auto
    qed simp_all
    also from True have " = n choose k" by (simp add: central_binomial_odd)
    finally show ?thesis .
  qed
qed simp_all

lemma binomial_maximum: "n choose k  n choose (n div 2)"
proof -
  have "k  n div 2  2*k  n" by linarith
  consider "2*k  n" | "2*k  n" "k  n" | "k > n" by linarith
  thus ?thesis
  proof cases
    case 1
    thus ?thesis by (intro binomial_mono) linarith+
  next
    case 2
    thus ?thesis by (intro binomial_antimono) simp_all
  qed (simp_all add: binomial_eq_0)
qed

lemma binomial_maximum': "(2*n) choose k  (2*n) choose n"
  using binomial_maximum[of "2*n"] by simp

lemma central_binomial_lower_bound:
  assumes "n > 0"
  shows   "4^n / (2*real n)  real ((2*n) choose n)"
proof -
  from binomial[of 1 1 "2*n"]
    have "4 ^ n = (k2*n. (2*n) choose k)"
    by (simp add: power_mult power2_eq_square One_nat_def [symmetric] del: One_nat_def)
  also have "{..2*n} = {0<..<2*n}  {0,2*n}" by auto
  also have "(k. (2*n) choose k) =
             (k{0<..<2*n}. (2*n) choose k) + (k{0,2*n}. (2*n) choose k)"
    by (subst sum.union_disjoint) auto
  also have "(k{0,2*n}. (2*n) choose k)  (k1. (n choose k)2)"
    by (cases n) simp_all
  also from assms have "  (kn. (n choose k)2)"
    by (intro sum_mono2) auto
  also have " = (2*n) choose n" by (rule choose_square_sum)
  also have "(k{0<..<2*n}. (2*n) choose k)  (k{0<..<2*n}. (2*n) choose n)"
    by (intro sum_mono binomial_maximum')
  also have " = card {0<..<2*n} * ((2*n) choose n)" by simp
  also have "card {0<..<2*n}  2*n - 1" by (cases n) simp_all
  also have "(2 * n - 1) * (2 * n choose n) + (2 * n choose n) = ((2*n) choose n) * (2*n)"
    using assms by (simp add: algebra_simps)
  finally have "4 ^ n  (2 * n choose n) * (2 * n)" by simp_all
  hence "real (4 ^ n)  real ((2 * n choose n) * (2 * n))"
    by (subst of_nat_le_iff)
  with assms show ?thesis by (simp add: field_simps)
qed


subsection ‹Properties of Power Series›

lemma powser_zero [simp]: "(n. f n * 0 ^ n) = f 0"
  for f :: "nat  'a::real_normed_algebra_1"
proof -
  have "(n<1. f n * 0 ^ n) = (n. f n * 0 ^ n)"
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
  then show ?thesis by simp
qed

lemma powser_sums_zero: "(λn. a n * 0^n) sums a 0"
  for a :: "nat  'a::real_normed_div_algebra"
  using sums_finite [of "{0}" "λn. a n * 0 ^ n"]
  by simp

lemma powser_sums_zero_iff [simp]: "(λn. a n * 0^n) sums x  a 0 = x"
  for a :: "nat  'a::real_normed_div_algebra"
  using powser_sums_zero sums_unique2 by blast

text ‹
  Power series has a circle or radius of convergence: if it sums for x›,
  then it sums absolutely for z› with term¦z¦ < ¦x¦.›

lemma powser_insidea:
  fixes x z :: "'a::real_normed_div_algebra"
  assumes 1: "summable (λn. f n * x^n)"
    and 2: "norm z < norm x"
  shows "summable (λn. norm (f n * z ^ n))"
proof -
  from 2 have x_neq_0: "x  0" by clarsimp
  from 1 have "(λn. f n * x^n)  0"
    by (rule summable_LIMSEQ_zero)
  then have "convergent (λn. f n * x^n)"
    by (rule convergentI)
  then have "Cauchy (λn. f n * x^n)"
    by (rule convergent_Cauchy)
  then have "Bseq (λn. f n * x^n)"
    by (rule Cauchy_Bseq)
  then obtain K where 3: "0 < K" and 4: "n. norm (f n * x^n)  K"
    by (auto simp: Bseq_def)
  have "N. nN. norm (norm (f n * z ^ n))  K * norm (z ^ n) * inverse (norm (x^n))"
  proof (intro exI allI impI)
    fix n :: nat
    assume "0  n"
    have "norm (norm (f n * z ^ n)) * norm (x^n) =
          norm (f n * x^n) * norm (z ^ n)"
      by (simp add: norm_mult abs_mult)
    also have "  K * norm (z ^ n)"
      by (simp only: mult_right_mono 4 norm_ge_zero)
    also have " = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
      by (simp add: x_neq_0)
    also have " = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
      by (simp only: mult.assoc)
    finally show "norm (norm (f n * z ^ n))  K * norm (z ^ n) * inverse (norm (x^n))"
      by (simp add: mult_le_cancel_right x_neq_0)
  qed
  moreover have "summable (λn. K * norm (z ^ n) * inverse (norm (x^n)))"
  proof -
    from 2 have "norm (norm (z * inverse x)) < 1"
      using x_neq_0
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
    then have "summable (λn. norm (z * inverse x) ^ n)"
      by (rule summable_geometric)
    then have "summable (λn. K * norm (z * inverse x) ^ n)"
      by (rule summable_mult)
    then show "summable (λn. K * norm (z ^ n) * inverse (norm (x^n)))"
      using x_neq_0
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
          power_inverse norm_power mult.assoc)
  qed
  ultimately show "summable (λn. norm (f n * z ^ n))"
    by (rule summable_comparison_test)
qed

lemma powser_inside:
  fixes f :: "nat  'a::{real_normed_div_algebra,banach}"
  shows
    "summable (λn. f n * (x^n))  norm z < norm x 
      summable (λn. f n * (z ^ n))"
  by (rule powser_insidea [THEN summable_norm_cancel])

lemma powser_times_n_limit_0:
  fixes x :: "'a::{real_normed_div_algebra,banach}"
  assumes "norm x < 1"
    shows "(λn. of_nat n * x ^ n)  0"
proof -
  have "norm x / (1 - norm x)  0"
    using assms by (auto simp: field_split_simps)
  moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
    using ex_le_of_int by (meson ex_less_of_int)
  ultimately have N0: "N>0"
    by auto
  then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
    using N assms by (auto simp: field_simps)
  have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) 
      real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N  int n" for n :: nat
  proof -
    from that have "real_of_int N * real_of_nat (Suc n)  real_of_nat n * real_of_int (1 + N)"
      by (simp add: algebra_simps)
    then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) 
        (real_of_nat n *  (1 + N)) * (norm x * norm (x ^ n))"
      using N0 mult_mono by fastforce
    then show ?thesis
      by (simp add: algebra_simps)
  qed
  show ?thesis using *
    by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
      (simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
qed

corollary lim_n_over_pown:
  fixes x :: "'a::{real_normed_field,banach}"
  shows "1 < norm x  ((λn. of_nat n / x^n)  0) sequentially"
  using powser_times_n_limit_0 [of "inverse x"]
  by (simp add: norm_divide field_split_simps)

lemma sum_split_even_odd:
  fixes f :: "nat  real"
  shows "(i<2 * n. if even i then f i else g i) = (i<n. f (2 * i)) + (i<n. g (2 * i + 1))"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have "(i<2 * Suc n. if even i then f i else g i) =
    (i<n. f (2 * i)) + (i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
    using Suc.hyps unfolding One_nat_def by auto
  also have " = (i<Suc n. f (2 * i)) + (i<Suc n. g (2 * i + 1))"
    by auto
  finally show ?case .
qed

lemma sums_if':
  fixes g :: "nat  real"
  assumes "g sums x"
  shows "(λ n. if even n then 0 else g ((n - 1) div 2)) sums x"
  unfolding sums_def
proof (rule LIMSEQ_I)
  fix r :: real
  assume "0 < r"
  from g sums x[unfolded sums_def, THEN LIMSEQ_D, OF this]
  obtain no where no_eq: "n. n  no  (norm (sum g {..<n} - x) < r)"
    by blast

  let ?SUM = "λ m. i<m. if even i then 0 else g ((i - 1) div 2)"
  have "(norm (?SUM m - x) < r)" if "m  2 * no" for m
  proof -
    from that have "m div 2  no" by auto
    have sum_eq: "?SUM (2 * (m div 2)) = sum g {..< m div 2}"
      using sum_split_even_odd by auto
    then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
      using no_eq unfolding sum_eq using m div 2  no by auto
    moreover
    have "?SUM (2 * (m div 2)) = ?SUM m"
    proof (cases "even m")
      case True
      then show ?thesis
        by (auto simp: even_two_times_div_two)
    next
      case False
      then have eq: "Suc (2 * (m div 2)) = m" by simp
      then have "even (2 * (m div 2))" using odd m by auto
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
      also have " = ?SUM (2 * (m div 2))" using even (2 * (m div 2)) by auto
      finally show ?thesis by auto
    qed
    ultimately show ?thesis by auto
  qed
  then show "no.  m  no. norm (?SUM m - x) < r"
    by blast
qed

lemma sums_if:
  fixes g :: "nat  real"
  assumes "g sums x" and "f sums y"
  shows "(λ n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
proof -
  let ?s = "λ n. if even n then 0 else f ((n - 1) div 2)"
  have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
    for B T E
    by (cases B) auto
  have g_sums: "(λ n. if even n then 0 else g ((n - 1) div 2)) sums x"
    using sums_if'[OF g sums x] .
  have if_eq: "B T E. (if ¬ B then T else E) = (if B then E else T)"
    by auto
  have "?s sums y" using sums_if'[OF f sums y] .
  from this[unfolded sums_def, THEN LIMSEQ_Suc]
  have "(λn. if even n then f (n div 2) else 0) sums y"
    by (simp add: lessThan_Suc_eq_insert_0 sum.atLeast1_atMost_eq image_Suc_lessThan
        if_eq sums_def cong del: if_weak_cong)
  from sums_add[OF g_sums this] show ?thesis
    by (simp only: if_sum)
qed

subsection ‹Alternating series test / Leibniz formula›
(* FIXME: generalise these results from the reals via type classes? *)

lemma sums_alternating_upper_lower:
  fixes a :: "nat  real"
  assumes mono: "n. a (Suc n)  a n"
    and a_pos: "n. 0  a n"
    and "a  0"
  shows "l. ((n. (i<2*n. (- 1)^i*a i)  l)  (λ n. i<2*n. (- 1)^i*a i)  l) 
             ((n. l  (i<2*n + 1. (- 1)^i*a i))  (λ n. i<2*n + 1. (- 1)^i*a i)  l)"
  (is "l. ((n. ?f n  l)  _)  ((n. l  ?g n)  _)")
proof (rule nested_sequence_unique)
  have fg_diff: "n. ?f n - ?g n = - a (2 * n)" by auto

  show "n. ?f n  ?f (Suc n)"
  proof
    show "?f n  ?f (Suc n)" for n
      using mono[of "2*n"] by auto
  qed
  show "n. ?g (Suc n)  ?g n"
  proof
    show "?g (Suc n)  ?g n" for n
      using mono[of "Suc (2*n)"] by auto
  qed
  show "n. ?f n  ?g n"
  proof
    show "?f n  ?g n" for n
      using fg_diff a_pos by auto
  qed
  show "(λn. ?f n - ?g n)  0"
    unfolding fg_diff
  proof (rule LIMSEQ_I)
    fix r :: real
    assume "0 < r"
    with a  0[THEN LIMSEQ_D] obtain N where " n. n  N  norm (a n - 0) < r"
      by auto
    then have "n  N. norm (- a (2 * n) - 0) < r"
      by auto
    then show "N. n  N. norm (- a (2 * n) - 0) < r"
      by auto
  qed
qed

lemma summable_Leibniz':
  fixes a :: "nat  real"
  assumes a_zero: "a  0"
    and a_pos: "n. 0  a n"
    and a_monotone: "n. a (Suc n)  a n"
  shows summable: "summable (λ n. (-1)^n * a n)"
    and "n. (i<2*n. (-1)^i*a i)  (i. (-1)^i*a i)"
    and "(λn. i<2*n. (-1)^i*a i)  (i. (-1)^i*a i)"
    and "n. (i. (-1)^i*a i)  (i<2*n+1. (-1)^i*a i)"
    and "(λn. i<2*n+1. (-1)^i*a i)  (i. (-1)^i*a i)"
proof -
  let ?S = "λn. (-1)^n * a n"
  let ?P = "λn. i<n. ?S i"
  let ?f = "λn. ?P (2 * n)"
  let ?g = "λn. ?P (2 * n + 1)"
  obtain l :: real
    where below_l: " n. ?f n  l"
      and "?f  l"
      and above_l: " n. l  ?g n"
      and "?g  l"
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast

  let ?Sa = "λm. n<m. ?S n"
  have "?Sa  l"
  proof (rule LIMSEQ_I)
    fix r :: real
    assume "0 < r"
    with ?f  l[THEN LIMSEQ_D]
    obtain f_no where f: "n. n  f_no  norm (?f n - l) < r"
      by auto
    from 0 < r ?g  l[THEN LIMSEQ_D]
    obtain g_no where g: "n. n  g_no  norm (?g n - l) < r"
      by auto
    have "norm (?Sa n - l) < r" if "n  (max (2 * f_no) (2 * g_no))" for n
    proof -
      from that have "n  2 * f_no" and "n  2 * g_no" by auto
      show ?thesis
      proof (cases "even n")
        case True
        then have n_eq: "2 * (n div 2) = n"
          by (simp add: even_two_times_div_two)
        with n  2 * f_no have "n div 2  f_no"
          by auto
        from f[OF this] show ?thesis
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
      next
        case False
        then have "even (n - 1)" by simp
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
          by (simp add: even_two_times_div_two)
        then have range_eq: "n - 1 + 1 = n"
          using odd_pos[OF False] by auto
        from n_eq n  2 * g_no have "(n - 1) div 2  g_no"
          by auto
        from g[OF this] show ?thesis
          by (simp only: n_eq range_eq)
      qed
    qed
    then show "no. n  no. norm (?Sa n - l) < r" by blast
  qed
  then have sums_l: "(λi. (-1)^i * a i) sums l"
    by (simp only: sums_def)
  then show "summable ?S"
    by (auto simp: summable_def)

  have "l = suminf ?S" by (rule sums_unique[OF sums_l])

  fix n
  show "suminf ?S  ?g n"
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
  show "?f n  suminf ?S"
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
  show "?g  suminf ?S"
    using ?g  l l = suminf ?S by auto
  show "?f  suminf ?S"
    using ?f  l l = suminf ?S by auto
qed

theorem summable_Leibniz:
  fixes a :: "nat  real"
  assumes a_zero: "a  0"
    and "monoseq a"
  shows "summable (λ n. (-1)^n * a n)" (is "?summable")
    and "0 < a 0 
      (n. (i. (- 1)^i*a i)  { i<2*n. (- 1)^i * a i .. i<2*n+1. (- 1)^i * a i})" (is "?pos")
    and "a 0 < 0 
      (n. (i. (- 1)^i*a i)  { i<2*n+1. (- 1)^i * a i .. i<2*n. (- 1)^i * a i})" (is "?neg")
    and "(λn. i<2*n. (- 1)^i*a i)  (i. (- 1)^i*a i)" (is "?f")
    and "(λn. i<2*n+1. (- 1)^i*a i)  (i. (- 1)^i*a i)" (is "?g")
proof -
  have "?summable  ?pos  ?neg  ?f  ?g"
  proof (cases "(n. 0  a n)  (m. nm. a n  a m)")
    case True
    then have ord: "n m. m  n  a n  a m"
      and ge0: "n. 0  a n"
      by auto
    have mono: "a (Suc n)  a n" for n
      using ord[where n="Suc n" and m=n] by auto
    note leibniz = summable_Leibniz'[OF a  0 ge0]
    from leibniz[OF mono]
    show ?thesis using 0  a 0 by auto
  next
    let ?a = "λn. - a n"
    case False
    with monoseq_le[OF monoseq a a  0]
    have "( n. a n  0)  (m. nm. a m  a n)" by auto
    then have ord: "n m. m  n  ?a n  ?a m" and ge0: " n. 0  ?a n"
      by auto
    have monotone: "?a (Suc n)  ?a n" for n
      using ord[where n="Suc n" and m=n] by auto
    note leibniz =
      summable_Leibniz'[OF _ ge0, of "λx. x",
        OF tendsto_minus[OF a  0, unfolded minus_zero] monotone]
    have "summable (λ n. (-1)^n * ?a n)"
      using leibniz(1) by auto
    then obtain l where "(λ n. (-1)^n * ?a n) sums l"
      unfolding summable_def by auto
    from this[THEN sums_minus] have "(λ n. (-1)^n * a n) sums -l"
      by auto
    then have ?summable by (auto simp: summable_def)
    moreover
    have "¦- a - - b¦ = ¦a - b¦" for a b :: real
      unfolding minus_diff_minus by auto

    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
    have move_minus: "(n. - ((- 1) ^ n * a n)) = - (n. (- 1) ^ n * a n)"
      by auto

    have ?pos using 0  ?a 0 by auto
    moreover have ?neg
      using leibniz(2,4)
      unfolding mult_minus_right sum_negf move_minus neg_le_iff_le
      by auto
    moreover have ?f and ?g
      using leibniz(3,5)[unfolded mult_minus_right sum_negf move_minus, THEN tendsto_minus_cancel]
      by auto
    ultimately show ?thesis by auto
  qed
  then show ?summable and ?pos and ?neg and ?f and ?g
    by safe
qed


subsection ‹Term-by-Term Differentiability of Power Series›

definition diffs :: "(nat  'a::ring_1)  nat  'a"
  where "diffs c = (λn. of_nat (Suc n) * c (Suc n))"

text ‹Lemma about distributing negation over it.›
lemma diffs_minus: "diffs (λn. - c n) = (λn. - diffs c n)"
  by (simp add: diffs_def)

lemma diffs_equiv:
  fixes x :: "'a::{real_normed_vector,ring_1}"
  shows "summable (λn. diffs c n * x^n) 
    (λn. of_nat n * c n * x^(n - Suc 0)) sums (n. diffs c n * x^n)"
  unfolding diffs_def
  by (simp add: summable_sums sums_Suc_imp)

lemma lemma_termdiff1:
  fixes z :: "'a :: {monoid_mult,comm_ring}"
  shows "(p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
    (p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
  by (auto simp: algebra_simps power_add [symmetric])

lemma sumr_diff_mult_const2: "sum f {..<n} - of_nat n * r = (i<n. f i - r)"
  for r :: "'a::ring_1"
  by (simp add: sum_subtractf)

lemma lemma_termdiff2:
  fixes h :: "'a::field"
  assumes h: "h  0"
  shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
         h * (p< n - Suc 0. q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
    (is "?lhs = ?rhs")
proof (cases n)
  case (Suc m)
  have 0: "x k. (n<Suc k. h * (z ^ x * (z ^ (k - n) * (h + z) ^ n))) =
                 (j<Suc k.  h * ((h + z) ^ j * z ^ (x + k - j)))"
    by (auto simp add: power_add [symmetric] mult.commute intro: sum.cong)
  have *: "(i<m. z ^ i * ((z + h) ^ (m - i) - z ^ (m - i))) =
           (i<m. j<m - i. h * ((z + h) ^ j * z ^ (m - Suc j)))"
    by (force simp add: less_iff_Suc_add sum_distrib_left diff_power_eq_sum ac_simps 0
        simp del: sum.lessThan_Suc power_Suc intro: sum.cong)
  have "h * ?lhs = (z + h) ^ n - z ^ n - h * of_nat n * z ^ (n - Suc 0)"
    by (simp add: right_diff_distrib diff_divide_distrib h mult.assoc [symmetric])
  also have "... = h * ((p<Suc m. (z + h) ^ p * z ^ (m - p)) - of_nat (Suc m) * z ^ m)"
    by (simp add: Suc diff_power_eq_sum h right_diff_distrib [symmetric] mult.assoc
        del: power_Suc sum.lessThan_Suc of_nat_Suc)
  also have "... = h * ((p<Suc m. (z + h) ^ (m - p) * z ^ p) - of_nat (Suc m) * z ^ m)"
    by (subst sum.nat_diff_reindex[symmetric]) simp
  also have "... = h * (i<Suc m. (z + h) ^ (m - i) * z ^ i - z ^ m)"
    by (simp add: sum_subtractf)
  also have "... = h * ?rhs"
    by (simp add: lemma_termdiff1 sum_distrib_left Suc *)
  finally have "h * ?lhs = h * ?rhs" .
  then show ?thesis
    by (simp add: h)
qed auto


lemma real_sum_nat_ivl_bounded2:
  fixes K :: "'a::linordered_semidom"
  assumes f: "p::nat. p < n  f p  K" and K: "0  K"
  shows "sum f {..<n-k}  of_nat n * K"
proof -
  have "sum f {..<n-k}  (i<n - k. K)"
    by (rule sum_mono [OF f]) auto
  also have "...  of_nat n * K"
    by (auto simp: mult_right_mono K)
  finally show ?thesis .
qed

lemma lemma_termdiff3:
  fixes h z :: "'a::real_normed_field"
  assumes 1: "h  0"
    and 2: "norm z  K"
    and 3: "norm (z + h)  K"
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) 
    of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
proof -
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
    norm (p<n - Suc 0. q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
  also have "  of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
  proof (rule mult_right_mono [OF _ norm_ge_zero])
    from norm_ge_zero 2 have K: "0  K"
      by (rule order_trans)
    have le_Kn: "norm ((z + h) ^ i * z ^ j)  K ^ n" if "i + j = n" for i j n
    proof -
      have "norm (z + h) ^ i * norm z ^ j  K ^ i * K ^ j"
        by (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
      also have "... = K^n"
        by (metis power_add that)
      finally show ?thesis
        by (simp add: norm_mult norm_power) 
    qed
    then have "p q.
       p < n; q < n - Suc 0  norm ((z + h) ^ q * z ^ (n - 2 - q))  K ^ (n - 2)"
      by (simp del: subst_all)
    then
    show "norm (p<n - Suc 0. q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) 
        of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
      by (intro order_trans [OF norm_sum]
          real_sum_nat_ivl_bounded2 mult_nonneg_nonneg of_nat_0_le_iff zero_le_power K)
  qed
  also have " = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
    by (simp only: mult.assoc)
  finally show ?thesis .
qed

lemma lemma_termdiff4:
  fixes f :: "'a::real_normed_vector  'b::real_normed_vector"
    and k :: real
  assumes k: "0 < k"
    and le: "h. h  0  norm h < k  norm (f h)  K * norm h"
  shows "f 0 0"
proof (rule tendsto_norm_zero_cancel)
  show "(λh. norm (f h)) 0 0"
  proof (rule real_tendsto_sandwich)
    show "eventually (λh. 0  norm (f h)) (at 0)"
      by simp
    show "eventually (λh. norm (f h)  K * norm h) (at 0)"
      using k by (auto simp: eventually_at dist_norm le)
    show "(λh. 0) (0::'a) (0::real)"
      by (rule tendsto_const)
    have "(λh. K * norm h) (0::'a) K * norm (0::'a)"
      by (intro tendsto_intros)
    then show "(λh. K * norm h) (0::'a) 0"
      by simp
  qed
qed

lemma lemma_termdiff5:
  fixes g :: "'a::real_normed_vector  nat  'b::banach"
    and k :: real
  assumes k: "0 < k"
    and f: "summable f"
    and le: "h n. h  0  norm h < k  norm (g h n)  f n * norm h"
  shows "(λh. suminf (g h)) 0 0"
proof (rule lemma_termdiff4 [OF k])
  fix h :: 'a
  assume "h  0" and "norm h < k"
  then have 1: "n. norm (g h n)  f n * norm h"
    by (simp add: le)
  then have "N. nN. norm (norm (g h n))  f n * norm h"
    by simp
  moreover from f have 2: "summable (λn. f n * norm h)"
    by (rule summable_mult2)
  ultimately have 3: "summable (λn. norm (g h n))"
    by (rule summable_comparison_test)
  then have "norm (suminf (g h))  (n. norm (g h n))"
    by (rule summable_norm)
  also from 1 3 2 have "(n. norm (g h n))  (n. f n * norm h)"
    by (simp add: suminf_le)
  also from f have "(n. f n * norm h) = suminf f * norm h"
    by (rule suminf_mult2 [symmetric])
  finally show "norm (suminf (g h))  suminf f * norm h" .
qed


(* FIXME: Long proofs *)

lemma termdiffs_aux:
  fixes x :: "'a::{real_normed_field,banach}"
  assumes 1: "summable (λn. diffs (diffs c) n * K ^ n)"
    and 2: "norm x < norm K"
  shows "(λh. n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) 0 0"
proof -
  from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
    by fast
  from norm_ge_zero r1 have r: "0 < r"
    by (rule order_le_less_trans)
  then have r_neq_0: "r  0" by simp
  show ?thesis
  proof (rule lemma_termdiff5)
    show "0 < r - norm x"
      using r1 by simp
    from r r2 have "norm (of_real r::'a) < norm K"
      by simp
    with 1 have "summable (λn. norm (diffs (diffs c) n * (of_real r ^ n)))"
      by (rule powser_insidea)
    then have "summable (λn. diffs (diffs (λn. norm (c n))) n * r ^ n)"
      using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
    then have "summable (λn. of_nat n * diffs (λn. norm (c n)) n * r ^ (n - Suc 0))"
      by (rule diffs_equiv [THEN sums_summable])
    also have "(λn. of_nat n * diffs (λn. norm (c n)) n * r ^ (n - Suc 0)) =
               (λn. diffs (λm. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
      by (simp add: diffs_def r_neq_0 fun_eq_iff split: nat_diff_split)
    finally have "summable
      (λn. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
      by (rule diffs_equiv [THEN sums_summable])
    also have
      "(λn. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
       (λn. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
      by (rule ext) (simp add: r_neq_0 split: nat_diff_split)
    finally show "summable (λn. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
  next
    fix h :: 'a and n
    assume h: "h  0"
    assume "norm h < r - norm x"
    then have "norm x + norm h < r" by simp
    with norm_triangle_ineq 
    have xh: "norm (x + h) < r"
      by (rule order_le_less_trans)
    have "norm (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))
     real n * (real (n - Suc 0) * (r ^ (n - 2) * norm h))"
      by (metis (mono_tags, lifting) h mult.assoc lemma_termdiff3 less_eq_real_def r1 xh)
    then show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) 
      norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
      by (simp only: norm_mult mult.assoc mult_left_mono [OF _ norm_ge_zero])
  qed
qed

lemma termdiffs:
  fixes K x :: "'a::{real_normed_field,banach}"
  assumes 1: "summable (λn. c n * K ^ n)"
    and 2: "summable (λn. (diffs c) n * K ^ n)"
    and 3: "summable (λn. (diffs (diffs c)) n * K ^ n)"
    and 4: "norm x < norm K"
  shows "DERIV (λx. n. c n * x^n) x :> (n. (diffs c) n * x^n)"
  unfolding DERIV_def
proof (rule LIM_zero_cancel)
  show "(λh. (suminf (λn. c n * (x + h) ^ n) - suminf (λn. c n * x^n)) / h
            - suminf (λn. diffs c n * x^n)) 0 0"
  proof (rule LIM_equal2)
    show "0 < norm K - norm x"
      using 4 by (simp add: less_diff_eq)
  next
    fix h :: 'a
    assume "norm (h - 0) < norm K - norm x"
    then have "norm x + norm h < norm K" by simp
    then have 5: "norm (x + h) < norm K"
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
    have "summable (λn. c n * x^n)"
      and "summable (λn. c n * (x + h) ^ n)"
      and "summable (λn. diffs c n * x^n)"
      using 1 2 4 5 by (auto elim: powser_inside)
    then have "((n. c n * (x + h) ^ n) - (n. c n * x^n)) / h - (n. diffs c n * x^n) =
          (n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
    then show "((n. c n * (x + h) ^ n) - (n. c n * x^n)) / h - (n. diffs c n * x^n) =
          (n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
      by (simp add: algebra_simps)
  next
    show "(λh. n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) 0 0"
      by (rule termdiffs_aux [OF 3 4])
  qed
qed

subsection ‹The Derivative of a Power Series Has the Same Radius of Convergence›

lemma termdiff_converges:
  fixes x :: "'a::{real_normed_field,banach}"
  assumes K: "norm x < K"
    and sm: "x. norm x < K  summable(λn. c n * x ^ n)"
  shows "summable (λn. diffs c n * x ^ n)"
proof (cases "x = 0")
  case True
  then show ?thesis
    using powser_sums_zero sums_summable by auto
next
  case False
  then have "K > 0"
    using K less_trans zero_less_norm_iff by blast
  then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
    using K False
    by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
  have to0: "(λn. of_nat n * (x / of_real r) ^ n)  0"
    using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
  obtain N where N: "n. nN  real_of_nat n * norm x ^ n < r ^ n"
    using r LIMSEQ_D [OF to0, of 1]
    by (auto simp: norm_divide norm_mult norm_power field_simps)
  have "summable (λn. (of_nat n * c n) * x ^ n)"
  proof (rule summable_comparison_test')
    show "summable (λn. norm (c n * of_real r ^ n))"
      apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
      using N r norm_of_real [of "r + K", where 'a = 'a] by auto
    show "n. N  n  norm (of_nat n * c n * x ^ n)  norm (c n * of_real r ^ n)"
      using N r by (fastforce simp add: norm_mult norm_power less_eq_real_def)
  qed
  then have "summable (λn. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
    using summable_iff_shift [of "λn. of_nat n * c n * x ^ n" 1]
    by simp
  then have "summable (λn. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
    using False summable_mult2 [of "λn. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
    by (simp add: mult.assoc) (auto simp: ac_simps)
  then show ?thesis
    by (simp add: diffs_def)
qed

lemma termdiff_converges_all:
  fixes x :: "'a::{real_normed_field,banach}"
  assumes "x. summable (λn. c n * x^n)"
  shows "summable (λn. diffs c n * x^n)"
  by (rule termdiff_converges [where K = "1 + norm x"]) (use assms in auto)

lemma termdiffs_strong:
  fixes K x :: "'a::{real_normed_field,banach}"
  assumes sm: "summable (λn. c n * K ^ n)"
    and K: "norm x < norm K"
  shows "DERIV (λx. n. c n * x^n) x :> (n. diffs c n * x^n)"
proof -
  have "norm K + norm x < norm K + norm K"
    using K by force
  then have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
    by (auto simp: norm_triangle_lt norm_divide field_simps)
  then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
    by simp
  have "summable (λn. c n * (of_real (norm x + norm K) / 2) ^ n)"
    by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
  moreover have "x. norm x < norm K  summable (λn. diffs c n * x ^ n)"
    by (blast intro: sm termdiff_converges powser_inside)
  moreover have "x. norm x < norm K  summable (λn. diffs(diffs c) n * x ^ n)"
    by (blast intro: sm termdiff_converges powser_inside)
  ultimately show ?thesis
    by (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
       (use K in auto simp: field_simps simp flip: of_real_add)
qed

lemma termdiffs_strong_converges_everywhere:
  fixes K x :: "'a::{real_normed_field,banach}"
  assumes "y. summable (λn. c n * y ^ n)"
  shows "((λx. n. c n * x^n) has_field_derivative (n. diffs c n * x^n)) (at x)"
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
  by (force simp del: of_real_add)

lemma termdiffs_strong':
  fixes z :: "'a :: {real_normed_field,banach}"
  assumes "z. norm z < K  summable (λn. c n * z ^ n)"
  assumes "norm z < K"
  shows   "((λz. n. c n * z^n) has_field_derivative (n. diffs c n * z^n)) (at z)"
proof (rule termdiffs_strong)
  define L :: real where "L =  (norm z + K) / 2"
  have "0  norm z" by simp
  also note norm z < K
  finally have K: "K  0" by simp
  from assms K have L: "L  0" "norm z < L" "L < K" by (simp_all add: L_def)
  from L show "norm z < norm (of_real L :: 'a)" by simp
  from L show "summable (λn. c n * of_real L ^ n)" by (intro assms(1)) simp_all
qed

lemma termdiffs_sums_strong:
  fixes z :: "'a :: {banach,real_normed_field}"
  assumes sums: "z. norm z < K  (λn. c n * z ^ n) sums f z"
  assumes deriv: "(f has_field_derivative f') (at z)"
  assumes norm: "norm z < K"
  shows   "(λn. diffs c n * z ^ n) sums f'"
proof -
  have summable: "summable (λn. diffs c n * z^n)"
    by (intro termdiff_converges[OF norm] sums_summable[OF sums])
  from norm have "eventually (λz. z  norm -` {..<K}) (nhds z)"
    by (intro eventually_nhds_in_open open_vimage)
       (simp_all add: continuous_on_norm)
  hence eq: "eventually (λz. (n. c n * z^n) = f z) (nhds z)"
    by eventually_elim (insert sums, simp add: sums_iff)

  have "((λz. n. c n * z^n) has_field_derivative (n. diffs c n * z^n)) (at z)"
    by (intro termdiffs_strong'[OF _ norm] sums_summable[OF sums])
  hence "(f has_field_derivative (n. diffs c n * z^n)) (at z)"
    by (subst (asm) DERIV_cong_ev[OF refl eq refl])
  from this and deriv have "(n. diffs c n * z^n) = f'" by (rule DERIV_unique)
  with summable show ?thesis by (simp add: sums_iff)
qed

lemma isCont_powser:
  fixes K x :: "'a::{real_normed_field,banach}"
  assumes "summable (λn. c n * K ^ n)"
  assumes "norm x < norm K"
  shows "isCont (λx. n. c n * x^n) x"
  using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)

lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]

lemma isCont_powser_converges_everywhere:
  fixes K x :: "'a::{real_normed_field,banach}"
  assumes "y. summable (λn. c n * y ^ n)"
  shows "isCont (λx. n. c n * x^n) x"
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
  by (force intro!: DERIV_isCont simp del: of_real_add)

lemma powser_limit_0:
  fixes a :: "nat  'a::{real_normed_field,banach}"
  assumes s: "0 < s"
    and sm: "x. norm x < s  (λn. a n * x ^ n) sums (f x)"
  shows "(f  a 0) (at 0)"
proof -
  have "norm (of_real s / 2 :: 'a) < s"
    using s  by (auto simp: norm_divide)
  then have "summable (λn. a n * (of_real s / 2) ^ n)"
    by (rule sums_summable [OF sm])
  then have "((λx. n. a n * x ^ n) has_field_derivative (n. diffs a n * 0 ^ n)) (at 0)"
    by (rule termdiffs_strong) (use s in auto simp: norm_divide)
  then have "isCont (λx. n. a n * x ^ n) 0"
    by (blast intro: DERIV_continuous)
  then have "((λx. n. a n * x ^ n)  a 0) (at 0)"
    by (simp add: continuous_within)
  moreover have "(λx. f x - (n. a n * x ^ n)) 0 0"
    apply (clarsimp simp: LIM_eq)
    apply (rule_tac x=s in exI)
    using s sm sums_unique by fastforce
  ultimately show ?thesis
    by (rule Lim_transform)
qed

lemma powser_limit_0_strong:
  fixes a :: "nat  'a::{real_normed_field,banach}"
  assumes s: "0 < s"
    and sm: "x. x  0  norm x < s  (λn. a n * x ^ n) sums (f x)"
  shows "(f  a 0) (at 0)"
proof -
  have *: "((λx. if x = 0 then a 0 else f x)  a 0) (at 0)"
    by (rule powser_limit_0 [OF s]) (auto simp: powser_sums_zero sm)
  show ?thesis
    using "*" by (auto cong: Lim_cong_within)
qed


subsection ‹Derivability of power series›

lemma DERIV_series':
  fixes f :: "real  nat  real"
  assumes DERIV_f: " n. DERIV (λ x. f x n) x0 :> (f' x0 n)"
    and allf_summable: " x. x  {a <..< b}  summable (f x)"
    and x0_in_I: "x0  {a <..< b}"
    and "summable (f' x0)"
    and "summable L"
    and L_def: "n x y. x  {a <..< b}  y  {a <..< b}  ¦f x n - f y n¦  L n * ¦x - y¦"
  shows "DERIV (λ x. suminf (f x)) x0 :> (suminf (f' x0))"
  unfolding DERIV_def
proof (rule LIM_I)
  fix r :: real
  assume "0 < r" then have "0 < r/3" by auto

  obtain N_L where N_L: " n. N_L  n  ¦  i. L (i + n) ¦ < r/3"
    using suminf_exist_split[OF 0 < r/3 summable L] by auto

  obtain N_f' where N_f': " n. N_f'  n  ¦  i. f' x0 (i + n) ¦ < r/3"
    using suminf_exist_split[OF 0 < r/3 summable (f' x0)] by auto

  let ?N = "Suc (max N_L N_f')"
  have "¦  i. f' x0 (i + ?N) ¦ < r/3" (is "?f'_part < r/3")
    and L_estimate: "¦  i. L (i + ?N) ¦ < r/3"
    using N_L[of "?N"] and N_f' [of "?N"] by auto

  let ?diff = "λi x. (f (x0 + x) i - f x0 i) / x"

  let ?r = "r / (3 * real ?N)"
  from 0 < r have "0 < ?r" by simp

  let ?s = "λn. SOME s. 0 < s  ( x. x  0  ¦ x ¦ < s  ¦ ?diff n x - f' x0 n ¦ < ?r)"
  define S' where "S' = Min (?s ` {..< ?N })"

  have "0 < S'"
    unfolding S'_def
  proof (rule iffD2[OF Min_gr_iff])
    show "x  (?s ` {..< ?N }). 0 < x"
    proof
      fix x
      assume "x  ?s ` {..<?N}"
      then obtain n where "x = ?s n" and "n  {..<?N}"
        using image_iff[THEN iffD1] by blast
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF 0 < ?r, unfolded real_norm_def]
      obtain s where s_bound: "0 < s  (x. x  0  ¦x¦ < s  ¦?diff n x - f' x0 n¦ < ?r)"
        by auto
      have "0 < ?s n"
        by (rule someI2[where a=s]) (auto simp: s_bound simp del: of_nat_Suc)
      then show "0 < x" by (simp only: x = ?s n)
    qed
  qed auto

  define S where "S = min (min (x0 - a) (b - x0)) S'"
  then have "0 < S" and S_a: "S  x0 - a" and S_b: "S  b - x0"
    and "S  S'" using x0_in_I and 0 < S'
    by auto

  have "¦(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)¦ < r"
    if "x  0" and "¦x¦ < S" for x
  proof -
    from that have x_in_I: "x0 + x  {a <..< b}"
      using S_a S_b by auto

    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
    note div_smbl = summable_divide[OF diff_smbl]
    note all_smbl = summable_diff[OF div_smbl summable (f' x0)]
    note ign = summable_ignore_initial_segment[where k="?N"]
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF summable (f' x0)]]

    have 1: "¦(¦?diff (n + ?N) x¦)¦  L (n + ?N)" for n
    proof -
      have "¦?diff (n + ?N) x¦  L (n + ?N) * ¦(x0 + x) - x0¦ / ¦x¦"
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
        by (simp only: abs_divide)
      with x  0 show ?thesis by auto
    qed
    note 2 = summable_rabs_comparison_test[OF _ ign[OF summable L]]
    from 1 have "¦  i. ?diff (i + ?N) x ¦  ( i. L (i + ?N))"
      by (metis (lifting) abs_idempotent
          order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF summable L]]])
    then have "¦i. ?diff (i + ?N) x¦  r / 3" (is "?L_part  r/3")
      using L_estimate by auto

    have "¦n<?N. ?diff n x - f' x0 n¦  (n<?N. ¦?diff n x - f' x0 n¦)" ..
    also have " < (n<?N. ?r)"
    proof (rule sum_strict_mono)
      fix n
      assume "n  {..< ?N}"
      have "¦x¦ < S" using ¦x¦ < S .
      also have "S  S'" using S  S' .
      also have "S'  ?s n"
        unfolding S'_def
      proof (rule Min_le_iff[THEN iffD2])
        have "?s n  (?s ` {..<?N})  ?s n  ?s n"
          using n  {..< ?N} by auto
        then show " a  (?s ` {..<?N}). a  ?s n"
          by blast
      qed auto
      finally have "¦x¦ < ?s n" .

      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF 0 < ?r,
          unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
      have "x. x  0  ¦x¦ < ?s n  ¦?diff n x - f' x0 n¦ < ?r" .
      with x  0 and ¦x¦ < ?s n show "¦?diff n x - f' x0 n¦ < ?r"
        by blast
    qed auto
    also have " = of_nat (card {..<?N}) * ?r"
      by (rule sum_constant)
    also have " = real ?N * ?r"
      by simp
    also have " = r/3"
      by (auto simp del: of_nat_Suc)
    finally have "¦n<?N. ?diff n x - f' x0 n ¦ < r / 3" (is "?diff_part < r / 3") .

    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
    have "¦(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)¦ =
        ¦n. ?diff n x - f' x0 n¦"
      unfolding suminf_diff[OF div_smbl summable (f' x0), symmetric]
      using suminf_divide[OF diff_smbl, symmetric] by auto
    also have "  ?diff_part + ¦(n. ?diff (n + ?N) x) - ( n. f' x0 (n + ?N))¦"
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
      unfolding suminf_diff[OF div_shft_smbl ign[OF summable (f' x0)]]
      apply (simp only: add.commute)
      using abs_triangle_ineq by blast
    also have "  ?diff_part + ?L_part + ?f'_part"
      using abs_triangle_ineq4 by auto
    also have " < r /3 + r/3 + r/3"
      using ?diff_part < r/3 ?L_part  r/3 and ?f'_part < r/3
      by (rule add_strict_mono [OF add_less_le_mono])
    finally show ?thesis
      by auto
  qed
  then show "s > 0.  x. x  0  norm (x - 0) < s 
      norm (((n. f (x0 + x) n) - (n. f x0 n)) / x - (n. f' x0 n)) < r"
    using 0 < S by auto
qed

lemma DERIV_power_series':
  fixes f :: "nat  real"
  assumes converges: "x. x  {-R <..< R}  summable (λn. f n * real (Suc n) * x^n)"
    and x0_in_I: "x0  {-R <..< R}"
    and "0 < R"
  shows "DERIV (λx. (n. f n * x^(Suc n))) x0 :> (n. f n * real (Suc n) * x0^n)"
    (is "DERIV (λx. suminf (?f x)) x0 :> suminf (?f' x0)")
proof -
  have for_subinterval: "DERIV (λx. suminf (?f x)) x0 :> suminf (?f' x0)"
    if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
  proof -
    from that have "x0  {-R' <..< R'}" and "R'  {-R <..< R}" and "x0  {-R <..< R}"
      by auto
    show ?thesis
    proof (rule DERIV_series')
      show "summable (λ n. ¦f n * real (Suc n) * R'^n¦)"
      proof -
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
          using 0 < R' 0 < R R' < R by (auto simp: field_simps)
        then have in_Rball: "(R' + R) / 2  {-R <..< R}"
          using R' < R by auto
        have "norm R' < norm ((R' + R) / 2)"
          using 0 < R' 0 < R R' < R by (auto simp: field_simps)
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
          by auto
      qed
    next
      fix n x y
      assume "x  {-R' <..< R'}" and "y  {-R' <..< R'}"
      show "¦?f x n - ?f y n¦  ¦f n * real (Suc n) * R'^n¦ * ¦x-y¦"
      proof -
        have "¦f n * x ^ (Suc n) - f n * y ^ (Suc n)¦ =
          (¦f n¦ * ¦x-y¦) * ¦p<Suc n. x ^ p * y ^ (n - p)¦"
          unfolding right_diff_distrib[symmetric] diff_power_eq_sum abs_mult
          by auto
        also have "  (¦f n¦ * ¦x-y¦) * (¦real (Suc n)¦ * ¦R' ^ n¦)"
        proof (rule mult_left_mono)
          have "¦p<Suc n. x ^ p * y ^ (n - p)¦  (p<Suc n. ¦x ^ p * y ^ (n - p)¦)"
            by (rule sum_abs)
          also have "  (p<Suc n. R' ^ n)"
          proof (rule sum_mono)
            fix p
            assume "p  {..<Suc n}"
            then have "p  n" by auto
            have "¦x^n¦  R'^n" if  "x  {-R'<..<R'}" for n and x :: real
            proof -
              from that have "¦x¦  R'" by auto
              then show ?thesis
                unfolding power_abs by (rule power_mono) auto
            qed
            from mult_mono[OF this[OF x  {-R'<..<R'}, of p] this[OF y  {-R'<..<R'}, of "n-p"]]
              and 0 < R'
            have "¦x^p * y^(n - p)¦  R'^p * R'^(n - p)"
              unfolding abs_mult by auto
            then show "¦x^p * y^(n - p)¦  R'^n"
              unfolding power_add[symmetric] using p  n by auto
          qed
          also have " = real (Suc n) * R' ^ n"
            unfolding sum_constant card_atLeastLessThan by auto
          finally show "¦p<Suc n. x ^ p * y ^ (n - p)¦  ¦real (Suc n)¦ * ¦R' ^ n¦"
            unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF 0 < R']]]
            by linarith
          show "0  ¦f n¦ * ¦x - y¦"
            unfolding abs_mult[symmetric] by auto
        qed
        also have " = ¦f n * real (Suc n) * R' ^ n¦ * ¦x - y¦"
          unfolding abs_mult mult.assoc[symmetric] by algebra
        finally show ?thesis .
      qed
    next
      show "DERIV (λx. ?f x n) x0 :> ?f' x0 n" for n
        by (auto intro!: derivative_eq_intros simp del: power_Suc)
    next
      fix x
      assume "x  {-R' <..< R'}"
      then have "R'  {-R <..< R}" and "norm x < norm R'"
        using assms R' < R by auto
      have "summable (λn. f n * x^n)"
      proof (rule summable_comparison_test, intro exI allI impI)
        fix n
        have le: "¦f n¦ * 1  ¦f n¦ * real (Suc n)"
          by (rule mult_left_mono) auto
        show "norm (f n * x^n)  norm (f n * real (Suc n) * x^n)"
          unfolding real_norm_def abs_mult
          using le mult_right_mono by fastforce
      qed (rule powser_insidea[OF converges[OF R'  {-R <..< R}] norm x < norm R'])
      from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
      show "summable (?f x)" by auto
    next
      show "summable (?f' x0)"
        using converges[OF x0  {-R <..< R}] .
      show "x0  {-R' <..< R'}"
        using x0  {-R' <..< R'} .
    qed
  qed
  let ?R = "(R + ¦x0¦) / 2"
  have "¦x0¦ < ?R"
    using assms by (auto simp: field_simps)
  then have "- ?R < x0"
  proof (cases "x0 < 0")
    case True
    then have "- x0 < ?R"
      using ¦x0¦ < ?R by auto
    then show ?thesis
      unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
  next
    case False
    have "- ?R < 0" using assms by auto
    also have "  x0" using False by auto
    finally show ?thesis .
  qed
  then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
    using assms by (auto simp: field_simps)
  from for_subinterval[OF this] show ?thesis .
qed

lemma geometric_deriv_sums:
  fixes z :: "'a :: {real_normed_field,banach}"
  assumes "norm z < 1"
  shows   "(λn. of_nat (Suc n) * z ^ n) sums (1 / (1 - z)^2)"
proof -
  have "(λn. diffs (λn. 1) n * z^n) sums (1 / (1 - z)^2)"
  proof (rule termdiffs_sums_strong)
    fix z :: 'a assume "norm z < 1"
    thus "(λn. 1 * z^n) sums (1 / (1 - z))" by (simp add: geometric_sums)
  qed (insert assms, auto intro!: derivative_eq_intros simp: power2_eq_square)
  thus ?thesis unfolding diffs_def by simp
qed

lemma isCont_pochhammer [continuous_intros]: "isCont (λz. pochhammer z n) z"
  for z :: "'a::real_normed_field"
  by (induct n) (auto simp: pochhammer_rec')

lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (λz. pochhammer z n)"
  for A :: "'a::real_normed_field set"
  by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)

lemmas continuous_on_pochhammer' [continuous_intros] =
  continuous_on_compose2[OF continuous_on_pochhammer _ subset_UNIV]


subsection ‹Exponential Function›

definition exp :: "'a  'a::{real_normed_algebra_1,banach}"
  where "exp = (λx. n. x^n /R fact n)"

lemma summable_exp_generic:
  fixes x :: "'a::{real_normed_algebra_1,banach}"
  defines S_def: "S  λn. x^n /R fact n"
  shows "summable S"
proof -
  have S_Suc: "n. S (Suc n) = (x * S n) /R (Suc n)"
    unfolding S_def by (simp del: mult_Suc)
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
    using dense [OF zero_less_one] by fast
  obtain N :: nat where N: "norm x < real N * r"
    using ex_less_of_nat_mult r0 by auto
  from r1 show ?thesis
  proof (rule summable_ratio_test [rule_format])
    fix n :: nat
    assume n: "N  n"
    have "norm x  real N * r"
      using N by (rule order_less_imp_le)
    also have "real N * r  real (Suc n) * r"
      using r0 n by (simp add: mult_right_mono)
    finally have "norm x * norm (S n)  real (Suc n) * r * norm (S n)"
      using norm_ge_zero by (rule mult_right_mono)
    then have "norm (x * S n)  real (Suc n) * r * norm (S n)"
      by (rule order_trans [OF norm_mult_ineq])
    then have "norm (x * S n) / real (Suc n)  r * norm (S n)"
      by (simp add: pos_divide_le_eq ac_simps)
    then show "norm (S (Suc n))  r * norm (S n)"
      by (simp add: S_Suc inverse_eq_divide)
  qed
qed

lemma summable_norm_exp: "summable (λn. norm (x^n /R fact n))"
  for x :: "'a::{real_normed_algebra_1,banach}"
proof (rule summable_norm_comparison_test [OF exI, rule_format])
  show "summable (λn. norm x^n /R fact n)"
    by (rule summable_exp_generic)
  show "norm (x^n /R fact n)  norm x^n /R fact n" for n
    by (simp add: norm_power_ineq)
qed

lemma summable_exp: "summable (λn. inverse (fact n) * x^n)"
  for x :: "'a::{real_normed_field,banach}"
  using summable_exp_generic [where x=x]
  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)

lemma exp_converges: "(λn. x^n /R fact n) sums exp x"
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])

lemma exp_fdiffs:
  "diffs (λn. inverse (fact n)) = (λn. inverse (fact n :: 'a::{real_normed_field,banach}))"
  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
      del: mult_Suc of_nat_Suc)

lemma diffs_of_real: "diffs (λn. of_real (f n)) = (λn. of_real (diffs f n))"
  by (simp add: diffs_def)

lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
  unfolding exp_def scaleR_conv_of_real
proof (rule DERIV_cong)
  have sinv: "summable (λn. of_real (inverse (fact n)) * x ^ n)" for x::'a
    by (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])
  note xx = exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real]
  show "((λx. n. of_real (inverse (fact n)) * x ^ n) has_field_derivative
        (n. diffs (λn. of_real (inverse (fact n))) n * x ^ n))  (at x)"
    by (rule termdiffs [where K="of_real (1 + norm x)"]) (simp_all only: diffs_of_real exp_fdiffs sinv norm_of_real)
  show "(n. diffs (λn. of_real (inverse (fact n))) n * x ^ n) = (n. of_real (inverse (fact n)) * x ^ n)"
    by (simp add: diffs_of_real exp_fdiffs)
qed

declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
  and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]

lemmas has_derivative_exp[derivative_intros] = DERIV_exp[THEN DERIV_compose_FDERIV]

lemma norm_exp: "norm (exp x)  exp (norm x)"
proof -
  from summable_norm[OF summable_norm_exp, of x]
  have "norm (exp x)  (n. inverse (fact n) * norm (x^n))"
    by (simp add: exp_def)
  also have "  exp (norm x)"
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
  finally show ?thesis .
qed

lemma isCont_exp: "isCont exp x"
  for x :: "'a::{real_normed_field,banach}"
  by (rule DERIV_exp [THEN DERIV_isCont])

lemma isCont_exp' [simp]: "isCont f a  isCont (λx. exp (f x)) a"
  for f :: "_ 'a::{real_normed_field,banach}"
  by (rule isCont_o2 [OF _ isCont_exp])

lemma tendsto_exp [tendsto_intros]: "(f  a) F  ((λx. exp (f x))  exp a) F"
  for f:: "_ 'a::{real_normed_field,banach}"
  by (rule isCont_tendsto_compose [OF isCont_exp])

lemma continuous_exp [continuous_intros]: "continuous F f  continuous F (λx. exp (f x))"
  for f :: "_ 'a::{real_normed_field,banach}"
  unfolding continuous_def by (rule tendsto_exp)

lemma continuous_on_exp [continuous_intros]: "continuous_on s f  continuous_on s (λx. exp (f x))"
  for f :: "_ 'a::{real_normed_field,banach}"
  unfolding continuous_on_def by (auto intro: tendsto_exp)


subsubsection ‹Properties of the Exponential Function›

lemma exp_zero [simp]: "exp 0 = 1"
  unfolding exp_def by (simp add: scaleR_conv_of_real)

lemma exp_series_add_commuting:
  fixes x y :: "'a::{real_normed_algebra_1,banach}"
  defines S_def: "S  λx n. x^n /R fact n"
  assumes comm: "x * y = y * x"
  shows "S (x + y) n = (in. S x i * S y (n - i))"
proof (induct n)
  case 0
  show ?case
    unfolding S_def by simp
next
  case (Suc n)
  have S_Suc: "x n. S x (Suc n) = (x * S x n) /R real (Suc n)"
    unfolding S_def by (simp del: mult_Suc)
  then have times_S: "x n. x * S x n = real (Suc n) *R S x (Suc n)"
    by simp
  have S_comm: "n. S x n * y = y * S x n"
    by (simp add: power_commuting_commutes comm S_def)

  have "real (Suc n) *R S (x + y) (Suc n) = (x + y) * (in. S x i * S y (n - i))"
    by (metis Suc.hyps times_S)
  also have " = x * (in. S x i * S y (n - i)) + y * (in. S x i * S y (n - i))"
    by (rule distrib_right)
  also have " = (in. x * S x i * S y (n - i)) + (in. S x i * y * S y (n - i))"
    by (simp add: sum_distrib_left ac_simps S_comm)
  also have " = (in. x * S x i * S y (n - i)) + (in. S x i * (y * S y (n - i)))"
    by (simp add: ac_simps)
  also have " = (in. real (Suc i) *R (S x (Suc i) * S y (n - i))) 
                + (in. real (Suc n - i) *R (S x i * S y (Suc n - i)))"
    by (simp add: times_S Suc_diff_le)
  also have "(in. real (Suc i) *R (S x (Suc i) * S y (n - i)))
           = (iSuc n. real i *R (S x i * S y (Suc n - i)))"
    by (subst sum.atMost_Suc_shift) simp
  also have "(in. real (Suc n - i) *R (S x i * S y (Suc n - i)))
           = (iSuc n. real (Suc n - i) *R (S x i * S y (Suc n - i)))"
    by simp
  also have "(iSuc n. real i *R (S x i * S y (Suc n - i)))
           + (iSuc n. real (Suc n - i) *R (S x i * S y (Suc n - i))) 
           = (iSuc n. real (Suc n) *R (S x i * S y (Suc n - i)))"
    by (simp flip: sum.distrib scaleR_add_left of_nat_add) 
  also have " = real (Suc n) *R (iSuc n. S x i * S y (Suc n - i))"
    by (simp only: scaleR_right.sum)
  finally show "S (x + y) (Suc n) = (iSuc n. S x i * S y (Suc n - i))"
    by (simp del: sum.cl_ivl_Suc)
qed

lemma exp_add_commuting: "x * y = y * x  exp (x + y) = exp x * exp y"
  by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)

lemma exp_times_arg_commute: "exp A * A = A * exp A"
  by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)

lemma exp_add: "exp (x + y) = exp x * exp y"
  for x y :: "'a::{real_normed_field,banach}"
  by (rule exp_add_commuting) (simp add: ac_simps)

lemma exp_double: "exp(2 * z) = exp z ^ 2"
  by (simp add: exp_add_commuting mult_2 power2_eq_square)

lemmas mult_exp_exp = exp_add [symmetric]

lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
  unfolding exp_def
  apply (subst suminf_of_real [OF summable_exp_generic])
  apply (simp add: scaleR_conv_of_real)
  done

lemmas of_real_exp = exp_of_real[symmetric]

corollary exp_in_Reals [simp]: "z    exp z  "
  by (metis Reals_cases Reals_of_real exp_of_real)

lemma exp_not_eq_zero [simp]: "exp x  0"
proof
  have "exp x * exp (- x) = 1"
    by (simp add: exp_add_commuting[symmetric])
  also assume "exp x = 0"
  finally show False by simp
qed

lemma exp_minus_inverse: "exp x * exp (- x) = 1"
  by (simp add: exp_add_commuting[symmetric])

lemma exp_minus: "exp (- x) = inverse (exp x)"
  for x :: "'a::{real_normed_field,banach}"
  by (intro inverse_unique [symmetric] exp_minus_inverse)

lemma exp_diff: "exp (x - y) = exp x / exp y"
  for x :: "'a::{real_normed_field,banach}"
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)

lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
  for x :: "'a::{real_normed_field,banach}"
  by (induct n) (auto simp: distrib_left exp_add mult.commute)

corollary exp_of_nat2_mult: "exp (x * of_nat n) = exp x ^ n"
  for x :: "'a::{real_normed_field,banach}"
  by (metis exp_of_nat_mult mult_of_nat_commute)

lemma exp_sum: "finite I  exp (sum f I) = prod (λx. exp (f x)) I"
  by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)

lemma exp_divide_power_eq:
  fixes x :: "'a::{real_normed_field,banach}"
  assumes "n > 0"
  shows "exp (x / of_nat n) ^ n = exp x"
  using assms
proof (induction n arbitrary: x)
  case (Suc n)
  show ?case
  proof (cases "n = 0")
    case True
    then show ?thesis by simp
  next
    case False
    have [simp]: "1 + (of_nat n * of_nat n + of_nat n * 2)  (0::'a)"
      using of_nat_eq_iff [of "1 + n * n + n * 2" "0"]
      by simp
    from False have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
      by simp
    have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
      using of_nat_neq_0
      by (auto simp add: field_split_simps)
    show ?thesis
      using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
      by (simp add: exp_add [symmetric])
  qed
qed simp

lemma exp_power_int:
  fixes  x :: "'a::{real_normed_field,banach}"
  shows "exp x powi n = exp (of_int n * x)"
proof (cases "n  0")
  case True
  have "exp x powi n = exp x ^ nat n"
    using True by (simp add: power_int_def)
  thus ?thesis
    using True by (subst (asm) exp_of_nat_mult [symmetric]) auto
next
  case False
  have "exp x powi n = inverse (exp x ^ nat (-n))"
    using False by (simp add: power_int_def field_simps)
  also have "exp x ^ nat (-n) = exp (of_nat (nat (-n)) * x)"
    using False by (subst exp_of_nat_mult) auto
  also have "inverse  = exp (-(of_nat (nat (-n)) * x))"
    by (subst exp_minus) (auto simp: field_simps)
  also have "-(of_nat (nat (-n)) * x) = of_int n * x"
    using False by simp
  finally show ?thesis .
qed


subsubsection ‹Properties of the Exponential Function on Reals›

text ‹Comparisons of termexp x with zero.›

text ‹Proof: because every exponential can be seen as a square.›
lemma exp_ge_zero [simp]: "0  exp x"
  for x :: real
proof -
  have "0  exp (x/2) * exp (x/2)"
    by simp
  then show ?thesis
    by (simp add: exp_add [symmetric])
qed

lemma exp_gt_zero [simp]: "0 < exp x"
  for x :: real
  by (simp add: order_less_le)

lemma not_exp_less_zero [simp]: "¬ exp x < 0"
  for x :: real
  by (simp add: not_less)

lemma not_exp_le_zero [simp]: "¬ exp x  0"
  for x :: real
  by (simp add: not_le)

lemma abs_exp_cancel [simp]: "¦exp x¦ = exp x"
  for x :: real
  by simp

text ‹Strict monotonicity of exponential.›

lemma exp_ge_add_one_self_aux:
  fixes x :: real
  assumes "0  x"
  shows "1 + x  exp x"
  using order_le_imp_less_or_eq [OF assms]
proof
  assume "0 < x"
  have "1 + x  (n<2. inverse (fact n) * x^n)"
    by (auto simp: numeral_2_eq_2)
  also have "  (n. inverse (fact n) * x^n)"
    using 0 < x by (auto  simp add: zero_le_mult_iff intro: sum_le_suminf [OF summable_exp])
  finally show "1 + x  exp x"
    by (simp add: exp_def)
qed auto

lemma exp_gt_one: "0 < x  1 < exp x"
  for x :: real
proof -
  assume x: "0 < x"
  then have "1 < 1 + x" by simp
  also from x have "1 + x  exp x"
    by (simp add: exp_ge_add_one_self_aux)
  finally show ?thesis .
qed

lemma exp_less_mono:
  fixes x y :: real
  assumes "x < y"
  shows "exp x < exp y"
proof -
  from x < y have "0 < y - x" by simp
  then have "1 < exp (y - x)" by (rule exp_gt_one)
  then have "1 < exp y / exp x" by (simp only: exp_diff)
  then show "exp x < exp y" by simp
qed

lemma exp_less_cancel: "exp x < exp y  x < y"
  for x y :: real
  unfolding linorder_not_le [symmetric]
  by (auto simp: order_le_less exp_less_mono)

lemma exp_less_cancel_iff [iff]: "exp x < exp y  x < y"
  for x y :: real
  by (auto intro: exp_less_mono exp_less_cancel)

lemma exp_le_cancel_iff [iff]: "exp x  exp y  x  y"
  for x y :: real
  by (auto simp: linorder_not_less [symmetric])

lemma exp_inj_iff [iff]: "exp x = exp y  x = y"
  for x y :: real
  by (simp add: order_eq_iff)

text ‹Comparisons of termexp x with one.›

lemma one_less_exp_iff [simp]: "1 < exp x  0 < x"
  for x :: real
  using exp_less_cancel_iff [where x = 0 and y = x] by simp

lemma exp_less_one_iff [simp]: "exp x < 1  x < 0"
  for x :: real
  using exp_less_cancel_iff [where x = x and y = 0] by simp

lemma one_le_exp_iff [simp]: "1  exp x  0  x"
  for x :: real
  using exp_le_cancel_iff [where x = 0 and y = x] by simp

lemma exp_le_one_iff [simp]: "exp x  1  x  0"
  for x :: real
  using exp_le_cancel_iff [where x = x and y = 0] by simp

lemma exp_eq_one_iff [simp]: "exp x = 1  x = 0"
  for x :: real
  using exp_inj_iff [where x = x and y = 0] by simp

lemma lemma_exp_total: "1  y  x. 0  x  x  y - 1  exp x = y"
  for y :: real
proof (rule IVT)
  assume "1  y"
  then have "0  y - 1" by simp
  then have "1 + (y - 1)  exp (y - 1)"
    by (rule exp_ge_add_one_self_aux)
  then show "y  exp (y - 1)" by simp
qed (simp_all add: le_diff_eq)

lemma exp_total: "0 < y  x. exp x = y"
  for y :: real
proof (rule linorder_le_cases [of 1 y])
  assume "1  y"
  then show "x. exp x = y"
    by (fast dest: lemma_exp_total)
next
  assume "0 < y" and "y  1"
  then have "1  inverse y"
    by (simp add: one_le_inverse_iff)
  then obtain x where "exp x = inverse y"
    by (fast dest: lemma_exp_total)
  then have "exp (- x) = y"
    by (simp add: exp_minus)
  then show "x. exp x = y" ..
qed


subsection ‹Natural Logarithm›

class ln = real_normed_algebra_1 + banach +
  fixes ln :: "'a  'a"
  assumes ln_one [simp]: "ln 1 = 0"

definition powr :: "'a  'a  'a::ln"  (infixr "powr" 80)
  ― ‹exponentation via ln and exp›
  where "x powr a  if x = 0 then 0 else exp (a * ln x)"

lemma powr_0 [simp]: "0 powr z = 0"
  by (simp add: powr_def)


instantiation real :: ln
begin

definition ln_real :: "real  real"
  where "ln_real x = (THE u. exp u = x)"

instance
  by intro_classes (simp add: ln_real_def)

end

lemma powr_eq_0_iff [simp]: "w powr z = 0  w = 0"
  by (simp add: powr_def)

lemma ln_exp [simp]: "ln (exp x) = x"
  for x :: real
  by (simp add: ln_real_def)

lemma exp_ln [simp]: "0 < x  exp (ln x) = x"
  for x :: real
  by (auto dest: exp_total)

lemma exp_ln_iff [simp]: "exp (ln x) = x  0 < x"
  for x :: real
  by (metis exp_gt_zero exp_ln)

lemma ln_unique: "exp y = x  ln x = y"
  for x :: real
  by (erule subst) (rule ln_exp)

lemma ln_mult: "0 < x  0 < y  ln (x * y) = ln x + ln y"
  for x :: real
  by (rule ln_unique) (simp add: exp_add)

lemma ln_prod: "finite I  (i. i  I  f i > 0)  ln (prod f I) = sum (λx. ln(f x)) I"
  for f :: "'a  real"
  by (induct I rule: finite_induct) (auto simp: ln_mult prod_pos)

lemma ln_inverse: "0 < x  ln (inverse x) = - ln x"
  for x :: real
  by (rule ln_unique) (simp add: exp_minus)

lemma ln_div: "0 < x  0 < y  ln (x / y) = ln x - ln y"
  for x :: real
  by (rule ln_unique) (simp add: exp_diff)

lemma ln_realpow: "0 < x  ln (x^n) = real n * ln x"
  by (rule ln_unique) (simp add: exp_of_nat_mult)

lemma ln_less_cancel_iff [simp]: "0 < x  0 < y  ln x < ln y  x < y"
  for x :: real
  by (subst exp_less_cancel_iff [symmetric]) simp

lemma ln_le_cancel_iff [simp]: "0 < x  0 < y  ln x  ln y  x  y"
  for x :: real
  by (simp add: linorder_not_less [symmetric])

lemma ln_mono: "x::real. x  y; 0 < x; 0 < y  ln x  ln y"
  using ln_le_cancel_iff by presburger

lemma ln_inj_iff [simp]: "0 < x  0 < y  ln x = ln y  x = y"
  for x :: real
  by (simp add: order_eq_iff)

lemma ln_add_one_self_le_self: "0  x  ln (1 + x)  x"
  for x :: real
  by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)

lemma ln_less_self [simp]: "0 < x  ln x < x"
  for x :: real
  by (rule order_less_le_trans [where y = "ln (1 + x)"]) (simp_all add: ln_add_one_self_le_self)

lemma ln_ge_iff: "x::real. 0 < x  y  ln x  exp y  x"
  using exp_le_cancel_iff exp_total by force

lemma ln_ge_zero [simp]: "1  x  0  ln x"
  for x :: real
  using ln_le_cancel_iff [of 1 x] by simp

lemma ln_ge_zero_imp_ge_one: "0  ln x  0 < x  1  x"
  for x :: real
  using ln_le_cancel_iff [of 1 x] by simp

lemma ln_ge_zero_iff [simp]: "0 < x  0  ln x  1  x"
  for x :: real
  using ln_le_cancel_iff [of 1 x] by simp

lemma ln_less_zero_iff [simp]: "0 < x  ln x < 0  x < 1"
  for x :: real
  using ln_less_cancel_iff [of x 1] by simp

lemma ln_le_zero_iff [simp]: "0 < x  ln x  0  x  1"
  for x :: real
  by (metis less_numeral_extra(1) ln_le_cancel_iff ln_one)

lemma ln_gt_zero: "1 < x  0 < ln x"
  for x :: real
  using ln_less_cancel_iff [of 1 x] by simp

lemma ln_gt_zero_imp_gt_one: "0 < ln x  0 < x  1 < x"
  for x :: real
  using ln_less_cancel_iff [of 1 x] by simp

lemma ln_gt_zero_iff [simp]: "0 < x  0 < ln x  1 < x"
  for x :: real
  using ln_less_cancel_iff [of 1 x] by simp

lemma ln_eq_zero_iff [simp]: "0 < x  ln x = 0  x = 1"
  for x :: real
  using ln_inj_iff [of x 1] by simp

lemma ln_less_zero: "0 < x  x < 1  ln x < 0"
  for x :: real
  by simp

lemma ln_neg_is_const: "x  0  ln x = (THE x. False)"
  for x :: real
  by (auto simp: ln_real_def intro!: arg_cong[where f = The])

lemma powr_eq_one_iff [simp]:
  "a powr x = 1  x = 0" if "a > 1" for a x :: real
  using that by (auto simp: powr_def split: if_splits)

lemma isCont_ln:
  fixes x :: real
  assumes "x  0"
  shows "isCont ln x"
proof (cases "0 < x")
  case True
  then have "isCont ln (exp (ln x))"
    by (intro isCont_inverse_function[where d = "¦x¦" and f = exp]) auto
  with True show ?thesis
    by simp
next
  case False
  with x  0 show "isCont ln x"
    unfolding isCont_def
    by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "λ_. ln 0"])
       (auto simp: ln_neg_is_const not_less eventually_at dist_real_def
         intro!: exI[of _ "¦x¦"])
qed

lemma tendsto_ln [tendsto_intros]: "(f  a) F  a  0  ((λx. ln (f x))  ln a) F"
  for a :: real
  by (rule isCont_tendsto_compose [OF isCont_ln])

lemma continuous_ln:
  "continuous F f  f (Lim F (λx. x))  0  continuous F (λx. ln (f x :: real))"
  unfolding continuous_def by (rule tendsto_ln)

lemma isCont_ln' [continuous_intros]:
  "continuous (at x) f  f x  0  continuous (at x) (λx. ln (f x :: real))"
  unfolding continuous_at by (rule tendsto_ln)

lemma continuous_within_ln [continuous_intros]:
  "continuous (at x within s) f  f x  0  continuous (at x within s) (λx. ln (f x :: real))"
  unfolding continuous_within by (rule tendsto_ln)

lemma continuous_on_ln [continuous_intros]:
  "continuous_on s f  (xs. f x  0)  continuous_on s (λx. ln (f x :: real))"
  unfolding continuous_on_def by (auto intro: tendsto_ln)

lemma DERIV_ln: "0 < x  DERIV ln x :> inverse x"
  for x :: real
  by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
    (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)

lemma DERIV_ln_divide: "0 < x  DERIV ln x :> 1/x"
  for x :: real
  by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)

declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
  and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]

lemmas has_derivative_ln[derivative_intros] = DERIV_ln[THEN DERIV_compose_FDERIV]

lemma ln_series:
  assumes "0 < x" and "x < 2"
  shows "ln x = ( n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
    (is "ln x = suminf (?f (x - 1))")
proof -
  let ?f' = "λx n. (-1)^n * (x - 1)^n"

  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
  proof (rule DERIV_isconst3 [where x = x])
    fix x :: real
    assume "x  {0 <..< 2}"
    then have "0 < x" and "x < 2" by auto
    have "norm (1 - x) < 1"
      using 0 < x and x < 2 by auto
    have "1/x = 1 / (1 - (1 - x))" by auto
    also have " = ( n. (1 - x)^n)"
      using geometric_sums[OF norm (1 - x) < 1] by (rule sums_unique)
    also have " = suminf (?f' x)"
      unfolding power_mult_distrib[symmetric]
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="(^)"], auto)
    finally have "DERIV ln x :> suminf (?f' x)"
      using DERIV_ln[OF 0 < x] unfolding divide_inverse by auto
    moreover
    have repos: " h x :: real. h - 1 + x = h + x - 1" by auto
    have "DERIV (λx. suminf (?f x)) (x - 1) :>
      (n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
    proof (rule DERIV_power_series')
      show "x - 1  {- 1<..<1}" and "(0 :: real) < 1"
        using 0 < x x < 2 by auto
    next
      fix x :: real
      assume "x  {- 1<..<1}"
      then show "summable (λn. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
        by (simp add: abs_if flip: power_mult_distrib)
    qed
    then have "DERIV (λx. suminf (?f x)) (x - 1) :> suminf (?f' x)"
      unfolding One_nat_def by auto
    then have "DERIV (λx. suminf (?f (x - 1))) x :> suminf (?f' x)"
      unfolding DERIV_def repos .
    ultimately have "DERIV (λx. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
      by (rule DERIV_diff)
    then show "DERIV (λx. ln x - suminf (?f (x - 1))) x :> 0" by auto
  qed (auto simp: assms)
  then show ?thesis by auto
qed

lemma exp_first_terms:
  fixes x :: "'a::{real_normed_algebra_1,banach}"
  shows "exp x = (n<k. inverse(fact n) *R (x ^ n)) + (n. inverse(fact (n + k)) *R (x ^ (n + k)))"
proof -
  have "exp x = suminf (λn. inverse(fact n) *R (x^n))"
    by (simp add: exp_def)
  also from summable_exp_generic have " = ( n. inverse(fact(n+k)) *R (x ^ (n + k))) +
    ( n::nat<k. inverse(fact n) *R (x^n))" (is "_ = _ + ?a")
    by (rule suminf_split_initial_segment)
  finally show ?thesis by simp
qed

lemma exp_first_term: "exp x = 1 + (n. inverse (fact (Suc n)) *R (x ^ Suc n))"
  for x :: "'a::{real_normed_algebra_1,banach}"
  using exp_first_terms[of x 1] by simp

lemma exp_first_two_terms: "exp x = 1 + x + (n. inverse (fact (n + 2)) *R (x ^ (n + 2)))"
  for x :: "'a::{real_normed_algebra_1,banach}"
  using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)

lemma exp_bound:
  fixes x :: real
  assumes a: "0  x"
    and b: "x  1"
  shows "exp x  1 + x + x2"
proof -
  have "suminf (λn. inverse(fact (n+2)) * (x ^ (n + 2)))  x2"
  proof -
    have "(λn. x2 / 2 * (1/2) ^ n) sums (x2 / 2 * (1 / (1 - 1/2)))"
      by (intro sums_mult geometric_sums) simp
    then have sumsx: "(λn. x2 / 2 * (1/2) ^ n) sums x2"
      by simp
    have "suminf (λn. inverse(fact (n+2)) * (x ^ (n + 2)))  suminf (λn. (x2/2) * ((1/2)^n))"
    proof (intro suminf_le allI)
      show "inverse (fact (n + 2)) * x ^ (n + 2)  (x2/2) * ((1/2)^n)" for n :: nat
      proof -
        have "(2::nat) * 2 ^ n  fact (n + 2)"
          by (induct n) simp_all
        then have "real ((2::nat) * 2 ^ n)  real_of_nat (fact (n + 2))"
          by (simp only: of_nat_le_iff)
        then have "((2::real) * 2 ^ n)  fact (n + 2)"
          unfolding of_nat_fact by simp
        then have "inverse (fact (n + 2))  inverse ((2::real) * 2 ^ n)"
          by (rule le_imp_inverse_le) simp
        then have "inverse (fact (n + 2))  1/(2::real) * (1/2)^n"
          by (simp add: power_inverse [symmetric])
        then have "inverse (fact (n + 2)) * (x^n * x2)  1/2 * (1/2)^n * (1 * x2)"
          by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
        then show ?thesis
          unfolding power_add by (simp add: ac_simps del: fact_Suc)
      qed
      show "summable (λn. inverse (fact (n + 2)) * x ^ (n + 2))"
        by (rule summable_exp [THEN summable_ignore_initial_segment])
      show "summable (λn. x2 / 2 * (1/2) ^ n)"
        by (rule sums_summable [OF sumsx])
    qed
    also have " = x2"
      by (rule sums_unique [THEN sym]) (rule sumsx)
    finally show ?thesis .
  qed
  then show ?thesis
    unfolding exp_first_two_terms by auto
qed

corollary exp_half_le2: "exp(1/2)  (2::real)"
  using exp_bound [of "1/2"]
  by (simp add: field_simps)

corollary exp_le: "exp 1  (3::real)"
  using exp_bound [of 1]
  by (simp add: field_simps)

lemma exp_bound_half: "norm z  1/2  norm (exp z)  2"
  by (blast intro: order_trans intro!: exp_half_le2 norm_exp)

lemma exp_bound_lemma:
  assumes "norm z  1/2"
  shows "norm (exp z)  1 + 2 * norm z"
proof -
  have *: "(norm z)2  norm z * 1"
    unfolding power2_eq_square
    by (rule mult_left_mono) (use assms in auto)
  have "norm (exp z)  exp (norm z)"
    by (rule norm_exp)
  also have "  1 + (norm z) + (norm z)2"
    using assms exp_bound by auto
  also have "  1 + 2 * norm z"
    using * by auto
  finally show ?thesis .
qed

lemma real_exp_bound_lemma: "0  x  x  1/2  exp x  1 + 2 * x"
  for x :: real
  using exp_bound_lemma [of x] by simp

lemma ln_one_minus_pos_upper_bound:
  fixes x :: real
  assumes a: "0  x" and b: "x < 1"
  shows "ln (1 - x)  - x"
proof -
  have "(1 - x) * (1 + x + x2) = 1 - x^3"
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
  also have "  1"
    by (auto simp: a)
  finally have "(1 - x) * (1 + x + x2)  1" .
  moreover have c: "0 < 1 + x + x2"
    by (simp add: add_pos_nonneg a)
  ultimately have "1 - x  1 / (1 + x + x2)"
    by (elim mult_imp_le_div_pos)
  also have "  1 / exp x"
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
        real_sqrt_pow2_iff real_sqrt_power)
  also have " = exp (- x)"
    by (auto simp: exp_minus divide_inverse)
  finally have "1 - x  exp (- x)" .
  also have "1 - x = exp (ln (1 - x))"
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
  finally have "exp (ln (1 - x))  exp (- x)" .
  then show ?thesis
    by (auto simp only: exp_le_cancel_iff)
qed

lemma exp_ge_add_one_self [simp]: "1 + x  exp x"
  for x :: real
proof (cases "0  x  x  -1")
  case True
  then show ?thesis
    by (meson exp_ge_add_one_self_aux exp_ge_zero order.trans real_add_le_0_iff)
next
  case False
  then have ln1: "ln (1 + x)  x"
    using ln_one_minus_pos_upper_bound [of "-x"] by simp
  have "1 + x = exp (ln (1 + x))"
    using False by auto
  also have "  exp x"
    by (simp add: ln1)
  finally show ?thesis .
qed

lemma ln_one_plus_pos_lower_bound:
  fixes x :: real
  assumes a: "0  x" and b: "x  1"
  shows "x - x2  ln (1 + x)"
proof -
  have "exp (x - x2) = exp x / exp (x2)"
    by (rule exp_diff)
  also have "  (1 + x + x2) / exp (x 2)"
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
  also have "  (1 + x + x2) / (1 + x2)"
    by (simp add: a divide_left_mono add_pos_nonneg)
  also from a have "  1 + x"
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
  finally have "exp (x - x2)  1 + x" .
  also have " = exp (ln (1 + x))"
  proof -
    from a have "0 < 1 + x" by auto
    then show ?thesis
      by (auto simp only: exp_ln_iff [THEN sym])
  qed
  finally have "exp (x - x2)  exp (ln (1 + x))" .
  then show ?thesis
    by (metis exp_le_cancel_iff)
qed

lemma ln_one_minus_pos_lower_bound:
  fixes x :: real
  assumes a: "0  x" and b: "x  1/2"
  shows "- x - 2 * x2  ln (1 - x)"
proof -
  from b have c: "x < 1" by auto
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
    by (auto simp: ln_inverse [symmetric] field_simps intro: arg_cong [where f=ln])
  also have "- (x / (1 - x))  "
  proof -
    have "ln (1 + x / (1 - x))  x / (1 - x)"
      using a c by (intro ln_add_one_self_le_self) auto
    then show ?thesis
      by auto
  qed
  also have "- (x / (1 - x)) = - x / (1 - x)"
    by auto
  finally have d: "- x / (1 - x)  ln (1 - x)" .
  have "0 < 1 - x" using a b by simp
  then have e: "- x - 2 * x2  - x / (1 - x)"
    using mult_right_le_one_le[of "x * x" "2 * x"] a b
    by (simp add: field_simps power2_eq_square)
  from e d show "- x - 2 * x2  ln (1 - x)"
    by (rule order_trans)
qed

lemma ln_add_one_self_le_self2:
  fixes x :: real
  shows "-1 < x  ln (1 + x)  x"
  by (metis diff_gt_0_iff_gt diff_minus_eq_add exp_ge_add_one_self exp_le_cancel_iff exp_ln minus_less_iff)

lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
  fixes x :: real
  assumes x: "0  x" and x1: "x  1"
  shows "¦ln (1 + x) - x¦  x2"
proof -
  from x have "ln (1 + x)  x"
    by (rule ln_add_one_self_le_self)
  then have "ln (1 + x) - x  0"
    by simp
  then have "¦ln(1 + x) - x¦ = - (ln(1 + x) - x)"
    by (rule abs_of_nonpos)
  also have " = x - ln (1 + x)"
    by simp
  also have "  x2"
  proof -
    from x x1 have "x - x2  ln (1 + x)"
      by (intro ln_one_plus_pos_lower_bound)
    then show ?thesis
      by simp
  qed
  finally show ?thesis .
qed

lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
  fixes x :: real
  assumes a: "-(1/2)  x" and b: "x  0"
  shows "¦ln (1 + x) - x¦  2 * x2"
proof -
  have *: "- (-x) - 2 * (-x)2  ln (1 - (- x))"
    by (metis a b diff_zero ln_one_minus_pos_lower_bound minus_diff_eq neg_le_iff_le) 
  have "¦ln (1 + x) - x¦ = x - ln (1 - (- x))"
    using a ln_add_one_self_le_self2 [of x] by (simp add: abs_if)
  also have "  2 * x2"
    using * by (simp add: algebra_simps)
  finally show ?thesis .
qed

lemma abs_ln_one_plus_x_minus_x_bound:
  fixes x :: real
  assumes "¦x¦  1/2"
  shows "¦ln (1 + x) - x¦  2 * x2"
proof (cases "0  x")
  case True
  then show ?thesis
    using abs_ln_one_plus_x_minus_x_bound_nonneg assms by fastforce
next
  case False
  then show ?thesis
    using abs_ln_one_plus_x_minus_x_bound_nonpos assms by auto
qed

lemma ln_x_over_x_mono:
  fixes x :: real
  assumes x: "exp 1  x" "x  y"
  shows "ln y / y  ln x / x"
proof -
  note x
  moreover have "0 < exp (1::real)" by simp
  ultimately have a: "0 < x" and b: "0 < y"
    by (fast intro: less_le_trans order_trans)+
  have "x * ln y - x * ln x = x * (ln y - ln x)"
    by (simp add: algebra_simps)
  also have " = x * ln (y / x)"
    by (simp only: ln_div a b)
  also have "y / x = (x + (y - x)) / x"
    by simp
  also have " = 1 + (y - x) / x"
    using x a by (simp add: field_simps)
  also have "x * ln (1 + (y - x) / x)  x * ((y - x) / x)"
    using x a
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
  also have " = y - x"
    using a by simp
  also have " = (y - x) * ln (exp 1)" by simp
  also have "  (y - x) * ln x"
    using a x exp_total of_nat_1 x(1)  by (fastforce intro: mult_left_mono)
  also have " = y * ln x - x * ln x"
    by (rule left_diff_distrib)
  finally have "x * ln y  y * ln x"
    by arith
  then have "ln y  (y * ln x) / x"
    using a by (simp add: field_simps)
  also have " = y * (ln x / x)" by simp
  finally show ?thesis
    using b by (simp add: field_simps)
qed

lemma ln_le_minus_one: "0 < x  ln x  x - 1"
  for x :: real
  using exp_ge_add_one_self[of "ln x"] by simp

corollary ln_diff_le: "0 < x  0 < y  ln x - ln y  (x - y) / y"
  for x :: real
  by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)

lemma ln_eq_minus_one:
  fixes x :: real
  assumes "0 < x" "ln x = x - 1"
  shows "x = 1"
proof -
  let ?l = "λy. ln y - y + 1"
  have D: "x::real. 0 < x  DERIV ?l x :> (1/x - 1)"
    by (auto intro!: derivative_eq_intros)
  show ?thesis
  proof (cases rule: linorder_cases)
    assume "x < 1"
    from dense[OF x < 1] obtain a where "x < a" "a < 1" by blast
    from x < a have "?l x < ?l a"
    proof (rule DERIV_pos_imp_increasing)
      fix y
      assume "x  y" "y  a"
      with 0 < x a < 1 have "0 < 1 / y - 1" "0 < y"
        by (auto simp: field_simps)
      with D show "z. DERIV ?l y :> z  0 < z" by blast
    qed
    also have "  0"
      using ln_le_minus_one 0 < x x < a by (auto simp: field_simps)
    finally show "x = 1" using assms by auto
  next
    assume "1 < x"
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
    from a < x have "?l x < ?l a"
    proof (rule DERIV_neg_imp_decreasing)
      fix y
      assume "a  y" "y  x"
      with 1 < a have "1 / y - 1 < 0" "0 < y"
        by (auto simp: field_simps)
      with D show "z. DERIV ?l y :> z  z < 0"
        by blast
    qed
    also have "  0"
      using ln_le_minus_one 1 < a by (auto simp: field_simps)
    finally show "x = 1" using assms by auto
  next
    assume "x = 1"
    then show ?thesis by simp
  qed
qed

lemma ln_add_one_self_less_self:
  fixes x :: real
  assumes "x > 0" 
  shows "ln (1 + x) < x"
  by (smt (verit, best) assms ln_eq_minus_one ln_le_minus_one)

lemma ln_x_over_x_tendsto_0: "((λx::real. ln x / x)  0) at_top"
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "λ_. 1"])
  from eventually_gt_at_top[of "0::real"]
  show "F x in at_top. (ln has_real_derivative inverse x) (at x)"
    by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
qed (use tendsto_inverse_0 in
      auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity])

corollary exp_1_gt_powr:
  assumes "x > (0::real)"
  shows   "exp 1 > (1 + 1/x) powr x" 
proof -
  have "ln (1 + 1/x) < 1/x"
    using ln_add_one_self_less_self assms by simp
  thus "exp 1 > (1 + 1/x) powr x" using assms
    by (simp add: field_simps powr_def)
qed

lemma exp_ge_one_plus_x_over_n_power_n:
  assumes "x  - real n" "n > 0"
  shows "(1 + x / of_nat n) ^ n  exp x"
proof (cases "x = - of_nat n")
  case False
  from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
    by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
  also from assms False have "ln (1 + x / real n)  x / real n"
    by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
  with assms have "exp (of_nat n * ln (1 + x / of_nat n))  exp x"
    by (simp add: field_simps)
  finally show ?thesis .
next
  case True
  then show ?thesis by (simp add: zero_power)
qed

lemma exp_ge_one_minus_x_over_n_power_n:
  assumes "x  real n" "n > 0"
  shows "(1 - x / of_nat n) ^ n  exp (-x)"
  using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp

lemma exp_at_bot: "(exp  (0::real)) at_bot"
  unfolding tendsto_Zfun_iff
proof (rule ZfunI, simp add: eventually_at_bot_dense)
  fix r :: real
  assume "0 < r"
  have "exp x < r" if "x < ln r" for x
    by (metis 0 < r exp_less_mono exp_ln that)
  then show "k. n<k. exp n < r" by auto
qed

lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
  by (rule filterlim_at_top_at_top[where Q="λx. True" and P="λx. 0 < x" and g=ln])
    (auto intro: eventually_gt_at_top)

lemma lim_exp_minus_1: "((λz::'a. (exp(z) - 1) / z)  1) (at 0)"
  for x :: "'a::{real_normed_field,banach}"
proof -
  have "((λz::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
    by (intro derivative_eq_intros | simp)+
  then show ?thesis
    by (simp add: Deriv.has_field_derivative_iff)
qed

lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
  by (rule filterlim_at_bot_at_right[where Q="λx. 0 < x" and P="λx. True" and g=exp])
     (auto simp: eventually_at_filter)

lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
  by (rule filterlim_at_top_at_top[where Q="λx. 0 < x" and P="λx. True" and g=exp])
     (auto intro: eventually_gt_at_top)

lemma filtermap_ln_at_top: "filtermap (ln::real  real) at_top = at_top"
  by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto

lemma filtermap_exp_at_top: "filtermap (exp::real  real) at_top = at_top"
  by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
     (auto simp: eventually_at_top_dense)

lemma filtermap_ln_at_right: "filtermap ln (at_right (0::real)) = at_bot"
  by (auto intro!: filtermap_fun_inverse[where g="λx. exp x"] ln_at_0
      simp: filterlim_at exp_at_bot)

lemma tendsto_power_div_exp_0: "((λx. x ^ k / exp x)  (0::real)) at_top"
proof (induct k)
  case 0
  show "((λx. x ^ 0 / exp x)  (0::real)) at_top"
    by (simp add: inverse_eq_divide[symmetric])
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
         at_top_le_at_infinity order_refl)
next
  case (Suc k)
  show ?case
  proof (rule lhospital_at_top_at_top)
    show "eventually (λx. DERIV (λx. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
      by eventually_elim (intro derivative_eq_intros, auto)
    show "eventually (λx. DERIV exp x :> exp x) at_top"
      by eventually_elim auto
    show "eventually (λx. exp x  0) at_top"
      by auto
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
    show "((λx. real (Suc k) * x ^ k / exp x)  0) at_top"
      by simp
  qed (rule exp_at_top)
qed

subsubsection‹ A couple of simple bounds›

lemma exp_plus_inverse_exp:
  fixes x::real
  shows "2  exp x + inverse (exp x)"
proof -
  have "2  exp x + exp (-x)"
    using exp_ge_add_one_self [of x] exp_ge_add_one_self [of "-x"]
    by linarith
  then show ?thesis
    by (simp add: exp_minus)
qed

lemma real_le_x_sinh:
  fixes x::real
  assumes "0  x"
  shows "x  (exp x - inverse(exp x)) / 2"
proof -
  have *: "exp a - inverse(exp a) - 2*a  exp b - inverse(exp b) - 2*b" if "a  b" for a b::real
    using exp_plus_inverse_exp
    by (fastforce intro: derivative_eq_intros DERIV_nonneg_imp_nondecreasing [OF that])
  show ?thesis
    using*[OF assms] by simp
qed

lemma real_le_abs_sinh:
  fixes x::real
  shows "abs x  abs((exp x - inverse(exp x)) / 2)"
proof (cases "0  x")
  case True
  show ?thesis
    using real_le_x_sinh [OF True] True by (simp add: abs_if)
next
  case False
  have "-x  (exp(-x) - inverse(exp(-x))) / 2"
    by (meson False linear neg_le_0_iff_le real_le_x_sinh)
  also have "  ¦(exp x - inverse (exp x)) / 2¦"
    by (metis (no_types, opaque_lifting) abs_divide abs_le_iff abs_minus_cancel
       add.inverse_inverse exp_minus minus_diff_eq order_refl)
  finally show ?thesis
    using False by linarith
qed

subsection‹The general logarithm›

definition log :: "real  real  real"
  ― ‹logarithm of termx to base terma
  where "log a x = ln x / ln a"

lemma tendsto_log [tendsto_intros]:
  "(f  a) F  (g  b) F  0 < a  a  1  0 < b 
    ((λx. log (f x) (g x))  log a b) F"
  unfolding log_def by (intro tendsto_intros) auto

lemma continuous_log:
  assumes "continuous F f"
    and "continuous F g"
    and "0 < f (Lim F (λx. x))"
    and "f (Lim F (λx. x))  1"
    and "0 < g (Lim F (λx. x))"
  shows "continuous F (λx. log (f x) (g x))"
  using assms unfolding continuous_def by (rule tendsto_log)

lemma continuous_at_within_log[continuous_intros]:
  assumes "continuous (at a within s) f"
    and "continuous (at a within s) g"
    and "0 < f a"
    and "f a  1"
    and "0 < g a"
  shows "continuous (at a within s) (λx. log (f x) (g x))"
  using assms unfolding continuous_within by (rule tendsto_log)

lemma isCont_log[continuous_intros, simp]:
  assumes "isCont f a" "isCont g a" "0 < f a" "f a  1" "0 < g a"
  shows "isCont (λx. log (f x) (g x)) a"
  using assms unfolding continuous_at by (rule tendsto_log)

lemma continuous_on_log[continuous_intros]:
  assumes "continuous_on s f" "continuous_on s g"
    and "xs. 0 < f x" "xs. f x  1" "xs. 0 < g x"
  shows "continuous_on s (λx. log (f x) (g x))"
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)

lemma exp_powr_real:
  fixes x::real shows "exp x powr y = exp (x*y)"
  by (simp add: powr_def)

lemma powr_one_eq_one [simp]: "1 powr a = 1"
  by (simp add: powr_def)

lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
  by (simp add: powr_def)

lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x  0  x"
  for x :: real
  by (auto simp: powr_def)
declare powr_one_gt_zero_iff [THEN iffD2, simp]

lemma powr_diff:
  fixes w:: "'a::{ln,real_normed_field}" shows  "w powr (z1 - z2) = w powr z1 / w powr z2"
  by (simp add: powr_def algebra_simps exp_diff)

lemma powr_mult: "0  x  0  y  (x * y) powr a = (x powr a) * (y powr a)"
  for a x y :: real
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)

lemma prod_powr_distrib:
  fixes  x :: "'a  real"
  assumes "i. iI  x i  0"
  shows "(prod x I) powr r = (iI. x i powr r)"
  using assms
  by (induction I rule: infinite_finite_induct) (auto simp add: powr_mult prod_nonneg)

lemma powr_ge_pzero [simp]: "0  x powr y"
  for x y :: real
  by (simp add: powr_def)

lemma powr_non_neg[simp]: "¬a powr x < 0" for a x::real
  using powr_ge_pzero[of a x] by arith

lemma inverse_powr: "y::real. 0  y  inverse y powr a = inverse (y powr a)"
    by (simp add: exp_minus ln_inverse powr_def)

lemma powr_divide: "0  x; 0  y  (x / y) powr a = (x powr a) / (y powr a)"
  for a b x :: real
    by (simp add: divide_inverse powr_mult inverse_powr)

lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
  for a b x :: "'a::{ln,real_normed_field}"
  by (simp add: powr_def exp_add [symmetric] distrib_right)

lemma powr_mult_base: "0  x x * x powr y = x powr (1 + y)"
  for x :: real
  by (auto simp: powr_add)

lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
  for a b x :: real
  by (simp add: powr_def)

lemma powr_power: 
  fixes z:: "'a::{real_normed_field,ln}"
  shows "z  0  n  0  (z powr u) ^ n = z powr (of_nat n * u)"
  by (induction n) (auto simp: algebra_simps powr_add)

lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
  for a b x :: real
  by (simp add: powr_powr mult.commute)

lemma powr_minus: "x powr (- a) = inverse (x powr a)"
      for a x :: "'a::{ln,real_normed_field}"
  by (simp add: powr_def exp_minus [symmetric])

lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
      for a x :: "'a::{ln,real_normed_field}"
  by (simp add: divide_inverse powr_minus)

lemma powr_sum: "x  0  finite A  x powr sum f A = (yA. x powr f y)"
  by (simp add: powr_def exp_sum sum_distrib_right)

lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
  for a b c :: real
  by (simp add: powr_minus_divide)

lemma powr_less_mono: "a < b  1 < x  x powr a < x powr b"
  for a b x :: real
  by (simp add: powr_def)

lemma powr_less_cancel: "x powr a < x powr b  1 < x  a < b"
  for a b x :: real
  by (simp add: powr_def)

lemma powr_less_cancel_iff [simp]: "1 < x  x powr a < x powr b  a < b"
  for a b x :: real
  by (blast intro: powr_less_cancel powr_less_mono)

lemma powr_le_cancel_iff [simp]: "1 < x  x powr a  x powr b  a  b"
  for a b x :: real
  by (simp add: linorder_not_less [symmetric])

lemma powr_realpow: "0 < x  x powr (real n) = x^n"
  by (induction n) (simp_all add: ac_simps powr_add)

lemma powr_realpow': "(z :: real)  0  n  0  z powr of_nat n = z ^ n"
  by (cases "z = 0") (auto simp: powr_realpow)

lemma powr_real_of_int':
  assumes "x  0" "x  0  n > 0"
  shows   "x powr real_of_int n = power_int x n"
  by (metis assms exp_ln_iff exp_power_int nless_le power_int_eq_0_iff powr_def)

lemma exp_minus_ge: 
  fixes x::real shows "1 - x  exp (-x)"
  by (smt (verit) exp_ge_add_one_self)

lemma exp_minus_greater: 
  fixes x::real shows "1 - x < exp (-x)  x  0"
  by (smt (verit) exp_minus_ge exp_eq_one_iff exp_gt_zero ln_eq_minus_one ln_exp)

lemma log_ln: "ln x = log (exp(1)) x"
  by (simp add: log_def)

lemma DERIV_log:
  assumes "x > 0"
  shows "DERIV (λy. log b y) x :> 1 / (ln b * x)"
proof -
  define lb where "lb = 1 / ln b"
  moreover have "DERIV (λy. lb * ln y) x :> lb / x"
    using x > 0 by (auto intro!: derivative_eq_intros)
  ultimately show ?thesis
    by (simp add: log_def)
qed

lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
  and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]

lemma powr_log_cancel [simp]: "0 < a  a  1  0 < x  a powr (log a x) = x"
  by (simp add: powr_def log_def)

lemma log_powr_cancel [simp]: "0 < a  a  1  log a (a powr x) = x"
  by (simp add: log_def powr_def)

lemma powr_eq_iff: "y>0; a>1  a powr x = y  log a y = x"
  by auto

lemma log_mult:
  "0 < x  0 < y  log a (x * y) = log a x + log a y"
  by (simp add: log_def ln_mult divide_inverse distrib_right)

lemma log_eq_div_ln_mult_log:
  "0 < b  b  1  0 < x  log a x = (ln b/ln a) * log b x"
  by (simp add: log_def divide_inverse)

text‹Base 10 logarithms›
lemma log_base_10_eq1: "0 < x  log 10 x = (ln (exp 1) / ln 10) * ln x"
  by (simp add: log_def)

lemma log_base_10_eq2: "0 < x  log 10 x = (log 10 (exp 1)) * ln x"
  by (simp add: log_def)

lemma log_one [simp]: "log a 1 = 0"
  by (simp add: log_def)

lemma log_eq_one [simp]: "0 < a  a  1  log a a = 1"
  by (simp add: log_def)

lemma log_inverse: "0 < x  log a (inverse x) = - log a x"
  using ln_inverse log_def by auto

lemma log_divide: "0 < x  0 < y  log a (x/y) = log a x - log a y"
  by (simp add: log_mult divide_inverse log_inverse)

lemma powr_gt_zero [simp]: "0 < x powr a  x  0"
  for a x :: real
  by (simp add: powr_def)

lemma powr_nonneg_iff[simp]: "a powr x  0  a = 0"
  for a x::real
  by (meson not_less powr_gt_zero)

lemma log_add_eq_powr: "0 < b  b  1  0 < x  log b x + y = log b (x * b powr y)"
  and add_log_eq_powr: "0 < b  b  1  0 < x  y + log b x = log b (b powr y * x)"
  and log_minus_eq_powr: "0 < b  b  1  0 < x  log b x - y = log b (x * b powr -y)"
  and minus_log_eq_powr: "0 < b  b  1  0 < x  y - log b x = log b (b powr y / x)"
  by (simp_all add: log_mult log_divide)

lemma log_less_cancel_iff [simp]: "1 < a  0 < x  0 < y  log a x < log a y  x < y"
  using powr_less_cancel_iff [of a] powr_log_cancel [of a x] powr_log_cancel [of a y]
  by (metis less_eq_real_def less_trans not_le zero_less_one)

lemma log_inj:
  assumes "1 < b"
  shows "inj_on (log b) {0 <..}"
proof (rule inj_onI, simp)
  fix x y
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
  show "x = y"
  proof (cases rule: linorder_cases)
    assume "x = y"
    then show ?thesis by simp
  next
    assume "x < y"
    then have "log b x < log b y"
      using log_less_cancel_iff[OF 1 < b] pos by simp
    then show ?thesis using * by simp
  next
    assume "y < x"
    then have "log b y < log b x"
      using log_less_cancel_iff[OF 1 < b] pos by simp
    then show ?thesis using * by simp
  qed
qed

lemma log_le_cancel_iff [simp]: "1 < a  0 < x  0 < y  log a x  log a y  x  y"
  by (simp flip: linorder_not_less)

lemma log_mono: "1 < a  0 < x  x  y  log a x  log a y"
  by simp

lemma log_less: "1 < a  0 < x  x < y  log a x < log a y"
  by simp

lemma zero_less_log_cancel_iff[simp]: "1 < a  0 < x  0 < log a x  1 < x"
  using log_less_cancel_iff[of a 1 x] by simp

lemma zero_le_log_cancel_iff[simp]: "1 < a  0 < x  0  log a x  1  x"
  using log_le_cancel_iff[of a 1 x] by simp

lemma log_less_zero_cancel_iff[simp]: "1 < a  0 < x  log a x < 0  x < 1"
  using log_less_cancel_iff[of a x 1] by simp

lemma log_le_zero_cancel_iff[simp]: "1 < a  0 < x  log a x  0  x  1"
  using log_le_cancel_iff[of a x 1] by simp

lemma one_less_log_cancel_iff[simp]: "1 < a  0 < x  1 < log a x  a < x"
  using log_less_cancel_iff[of a a x] by simp

lemma one_le_log_cancel_iff[simp]: "1 < a  0 < x  1  log a x  a  x"
  using log_le_cancel_iff[of a a x] by simp

lemma log_less_one_cancel_iff[simp]: "1 < a  0 < x  log a x < 1  x < a"
  using log_less_cancel_iff[of a x a] by simp

lemma log_le_one_cancel_iff[simp]: "1 < a  0 < x  log a x  1  x  a"
  using log_le_cancel_iff[of a x a] by simp

lemma le_log_iff:
  fixes b x y :: real
  assumes "1 < b" "x > 0"
  shows "y  log b x  b powr y  x"
  using assms
  by (metis less_irrefl less_trans powr_le_cancel_iff powr_log_cancel zero_less_one)

lemma less_log_iff:
  assumes "1 < b" "x > 0"
  shows "y < log b x  b powr y < x"
  by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
    powr_log_cancel zero_less_one)

lemma
  assumes "1 < b" "x > 0"
  shows log_less_iff: "log b x < y  x < b powr y"
    and log_le_iff: "log b x  y  x  b powr y"
  using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
  by auto

lemmas powr_le_iff = le_log_iff[symmetric]
  and powr_less_iff = less_log_iff[symmetric]
  and less_powr_iff = log_less_iff[symmetric]
  and le_powr_iff = log_le_iff[symmetric]

lemma le_log_of_power:
  assumes "b ^ n  m" "1 < b"
  shows "n  log b m"
proof -
  from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
  thus ?thesis using assms by (simp add: le_log_iff powr_realpow)
qed

lemma le_log2_of_power: "2 ^ n  m  n  log 2 m" for m n :: nat
using le_log_of_power[of 2] by simp

lemma log_of_power_le: " m  b ^ n; b > 1; m > 0   log b (real m)  n"
by (simp add: log_le_iff powr_realpow)

lemma log2_of_power_le: " m  2 ^ n; m > 0   log 2 m  n" for m n :: nat
using log_of_power_le[of _ 2] by simp

lemma log_of_power_less: " m < b ^ n; b > 1; m > 0   log b (real m) < n"
by (simp add: log_less_iff powr_realpow)

lemma log2_of_power_less: " m < 2 ^ n; m > 0   log 2 m < n" for m n :: nat
using log_of_power_less[of _ 2] by simp

lemma less_log_of_power:
  assumes "b ^ n < m" "1 < b"
  shows "n < log b m"
proof -
  have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
  thus ?thesis using assms by (simp add: less_log_iff powr_realpow)
qed

lemma less_log2_of_power: "2 ^ n < m  n < log 2 m" for m n :: nat
using less_log_of_power[of 2] by simp

lemma gr_one_powr[simp]:
  fixes x y :: real shows " x > 1; y > 0   1 < x powr y"
by(simp add: less_powr_iff)

lemma log_pow_cancel [simp]:
  "a > 0  a  1  log a (a ^ b) = b"
  by (simp add: ln_realpow log_def)

lemma floor_log_eq_powr_iff: "x > 0  b > 1  log b x = k  b powr k  x  x < b powr (k + 1)"
  by (auto simp: floor_eq_iff powr_le_iff less_powr_iff)

lemma floor_log_nat_eq_powr_iff: 
  fixes b n k :: nat
  shows " b  2; k > 0   floor (log b (real k)) = n  b^n  k  k < b^(n+1)"
by (auto simp: floor_log_eq_powr_iff powr_add powr_realpow
               of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
         simp del: of_nat_power of_nat_mult)

lemma floor_log_nat_eq_if: 
  fixes b n k :: nat
  assumes "b^n  k" "k < b^(n+1)" "b  2"
  shows "floor (log b (real k)) = n" 
proof -
  have "k  1"
    using assms linorder_le_less_linear by force
  with assms show ?thesis 
    by(simp add: floor_log_nat_eq_powr_iff)
qed

lemma ceiling_log_eq_powr_iff: 
  " x > 0; b > 1   log b x = int k + 1  b powr k < x  x  b powr (k + 1)"
  by (auto simp: ceiling_eq_iff powr_less_iff le_powr_iff)

lemma ceiling_log_nat_eq_powr_iff: 
  fixes b n k :: nat
  shows " b  2; k > 0   ceiling (log b (real k)) = int n + 1  (b^n < k  k  b^(n+1))"
  using ceiling_log_eq_powr_iff
  by (auto simp: powr_add powr_realpow of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
      simp del: of_nat_power of_nat_mult)

lemma ceiling_log_nat_eq_if: 
  fixes b n k :: nat
  assumes "b^n < k" "k  b^(n+1)" "b  2"
  shows "log (real b) (real k) = int n + 1"
  using assms ceiling_log_nat_eq_powr_iff by force

lemma floor_log2_div2: 
  fixes n :: nat 
  assumes "n  2"
  shows "log 2 (real n) = log 2 (n div 2) + 1"
proof cases
  assume "n=2" thus ?thesis by simp
next
  let ?m = "n div 2"
  assume "n2"
  hence "1  ?m" using assms by arith
  then obtain i where i: "2 ^ i  ?m" "?m < 2 ^ (i + 1)"
    using ex_power_ivl1[of 2 ?m] by auto
  have "2^(i+1)  2*?m" using i(1) by simp
  also have "2*?m  n" by arith
  finally have *: "2^(i+1)  " .
  have "n < 2^(i+1+1)" using i(2) by simp
  from floor_log_nat_eq_if[OF * this] floor_log_nat_eq_if[OF i]
  show ?thesis by simp
qed

lemma ceiling_log2_div2: 
  assumes "n  2"
  shows "ceiling(log 2 (real n)) = ceiling(log 2 ((n-1) div 2 + 1)) + 1"
proof cases
  assume "n=2" thus ?thesis by simp
next
  let ?m = "(n-1) div 2 + 1"
  assume "n2"
  hence "2  ?m" using assms by arith
  then obtain i where i: "2 ^ i < ?m" "?m  2 ^ (i + 1)"
    using ex_power_ivl2[of 2 ?m] by auto
  have "n  2*?m" by arith
  also have "2*?m  2 ^ ((i+1)+1)" using i(2) by simp
  finally have *: "n  " .
  have "2^(i+1) < n" using i(1) by (auto simp: less_Suc_eq_0_disj)
  from ceiling_log_nat_eq_if[OF this *] ceiling_log_nat_eq_if[OF i]
  show ?thesis by simp
qed

lemma powr_real_of_int:
  "x > 0  x powr real_of_int n = (if n  0 then x ^ nat n else inverse (x ^ nat (- n)))"
  using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
  by (auto simp: field_simps powr_minus)

lemma powr_numeral [simp]: "0  x  x powr (numeral n :: real) = x ^ (numeral n)"
  by (metis less_le power_zero_numeral powr_0 of_nat_numeral powr_realpow)

lemma powr_int:
  assumes "x > 0"
  shows "x powr i = (if i  0 then x ^ nat i else 1/x ^ nat (-i))"
  by (simp add: assms inverse_eq_divide powr_real_of_int)

lemma power_of_nat_log_ge: "b > 1  b ^ nat log b x  x"
  by (smt (verit) less_log_of_power of_nat_ceiling)

lemma power_of_nat_log_le:
  assumes "b > 1" "x1"
  shows "b ^ nat log b x  x"
proof -
  have "log b x  0"
    using assms by auto
  then show ?thesis
    by (smt (verit) assms le_log_iff of_int_floor_le powr_int)
qed

definition powr_real :: "real  real  real"
  where [code_abbrev, simp]: "powr_real = Transcendental.powr"

lemma compute_powr_real [code]:
  "powr_real b i =
    (if b  0 then Code.abort (STR ''powr_real with nonpositive base'') (λ_. powr_real b i)
     else if i = i then (if 0  i then b ^ nat i else 1 / b ^ nat - i)
     else Code.abort (STR ''powr_real with non-integer exponent'') (λ_. powr_real b i))"
    for b i :: real
  by (auto simp: powr_int)

lemma powr_one: "0  x  x powr 1 = x"
  for x :: real
  using powr_realpow [of x 1] by simp

lemma powr_neg_one: "0 < x  x powr - 1 = 1/x"
  for x :: real
  using powr_int [of x "- 1"] by simp

lemma powr_neg_numeral: "0 < x  x powr - numeral n = 1/x ^ numeral n"
  for x :: real
  using powr_int [of x "- numeral n"] by simp

lemma root_powr_inverse: "0 < n  0 < x  root n x = x powr (1/n)"
  by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)

lemma ln_powr: "x  0  ln (x powr y) = y * ln x"
  for x :: real
  by (simp add: powr_def)

lemma ln_root: "n > 0  b > 0  ln (root n b) =  ln b / n"
  by (simp add: root_powr_inverse ln_powr)

lemma ln_sqrt: "0 < x  ln (sqrt x) = ln x / 2"
  by (simp add: ln_powr ln_powr[symmetric] mult.commute)

lemma log_root: "n > 0  a > 0  log b (root n a) =  log b a / n"
  by (simp add: log_def ln_root)

lemma log_powr: "x  0  log b (x powr y) = y * log b x"
  by (simp add: log_def ln_powr)

(* [simp] is not worth it, interferes with some proofs *)
lemma log_nat_power: "0 < x  log b (x^n) = real n * log b x"
  by (simp add: log_powr powr_realpow [symmetric])

lemma log_of_power_eq:
  assumes "m = b ^ n" "b > 1"
  shows "n = log b (real m)"
proof -
  have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
  also have " = log b m" using assms by simp
  finally show ?thesis .
qed

lemma log2_of_power_eq: "m = 2 ^ n  n = log 2 m" for m n :: nat
using log_of_power_eq[of _ 2] by simp

lemma log_base_change: "0 < a  a  1  log b x = log a x / log a b"
  by (simp add: log_def)

lemma log_base_pow: "0 < a  log (a ^ n) x = log a x / n"
  by (simp add: log_def ln_realpow)

lemma log_base_powr: "a  0  log (a powr b) x = log a x / b"
  by (simp add: log_def ln_powr)

lemma log_base_root: "n > 0  b > 0  log (root n b) x = n * (log b x)"
  by (simp add: log_def ln_root)

lemma ln_bound: "0 < x  ln x  x" for x :: real
  using ln_le_minus_one by force

lemma powr_less_one:
  fixes x::real
  assumes "1 < x" "y < 0"
  shows "x powr y < 1"
using assms less_log_iff by force

lemma powr_le_one_le: "x y::real. 0 < x  x  1  1  y  x powr y  x"
  by (smt (verit) ln_gt_zero_imp_gt_one ln_le_cancel_iff ln_powr mult_le_cancel_right2)

lemma powr_mono:
  fixes x :: real
  assumes "a  b" and "1  x" shows "x powr a  x powr b"
  using assms less_eq_real_def by auto

lemma ge_one_powr_ge_zero: "1  x  0  a  1  x powr a"
  for x :: real
  using powr_mono by fastforce

lemma powr_less_mono2: "0 < a  0  x  x < y  x powr a < y powr a"
  for x :: real
  by (simp add: powr_def)

lemma powr_less_mono2_neg: "a < 0  0 < x  x < y  y powr a < x powr a"
  for x :: real
  by (simp add: powr_def)

lemma powr_mono2: "x powr a  y powr a" if "0  a" "0  x" "x  y"
  for x :: real
  using less_eq_real_def powr_less_mono2 that by auto

lemma powr01_less_one: 
  fixes a::real 
  assumes "0 < a" "a < 1"  
  shows "a powr e < 1  e>0"
proof
  show "a powr e < 1  e>0"
    using assms not_less_iff_gr_or_eq powr_less_mono2_neg by fastforce
  show "e>0  a powr e < 1"
    by (metis assms less_eq_real_def powr_less_mono2 powr_one_eq_one)
qed

lemma powr_le1: "0  a  0  x  x  1  x powr a  1"
  for x :: real
  using powr_mono2 by fastforce

lemma powr_mono2':
  fixes a x y :: real
  assumes "a  0" "x > 0" "x  y"
  shows "x powr a  y powr a"
proof -
  from assms have "x powr - a  y powr - a"
    by (intro powr_mono2) simp_all
  with assms show ?thesis
    by (auto simp: powr_minus field_simps)
qed

lemma powr_mono': "a  (b::real)  x  0  x  1  x powr b  x powr a"
  using powr_mono[of "-b" "-a" "inverse x"] by (auto simp: powr_def ln_inverse ln_div field_split_simps)

lemma powr_mono_both:
  fixes x :: real
  assumes "0  a" "a  b" "1  x" "x  y"
    shows "x powr a  y powr b"
  by (meson assms order.trans powr_mono powr_mono2 zero_le_one)

lemma powr_mono_both':
  fixes x :: real
  assumes "a  b" "b0" "0 < x" "x  y" "y  1"
    shows "x powr a  y powr b"
  by (meson assms nless_le order.trans powr_mono' powr_mono2)

lemma powr_less_mono':
  assumes "(x::real) > 0" "x < 1" "a < b"
  shows   "x powr b < x powr a"
  by (metis assms log_powr_cancel order.strict_iff_order powr_mono')

lemma powr_inj: "0 < a  a  1  a powr x = a powr y  x = y"
  for x :: real
  unfolding powr_def exp_inj_iff by simp

lemma powr_half_sqrt: "0  x  x powr (1/2) = sqrt x"
  by (simp add: powr_def root_powr_inverse sqrt_def)

lemma powr_half_sqrt_powr: "0  x  x powr (a/2) = sqrt(x powr a)"
  by (metis divide_inverse mult.left_neutral powr_ge_pzero powr_half_sqrt powr_powr)

lemma square_powr_half [simp]:
  fixes x::real shows "x2 powr (1/2) = ¦x¦"
  by (simp add: powr_half_sqrt)

lemma ln_powr_bound: "1  x  0 < a  ln x  (x powr a) / a"
  for x :: real
  by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
      mult_imp_le_div_pos not_less powr_gt_zero)

lemma ln_powr_bound2:
  fixes x :: real
  assumes "1 < x" and "0 < a"
  shows "(ln x) powr a  (a powr a) * x"
proof -
  from assms have "ln x  (x powr (1 / a)) / (1 / a)"
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
  also have " = a * (x powr (1 / a))"
    by simp
  finally have "(ln x) powr a  (a * (x powr (1 / a))) powr a"
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
  also have " = (a powr a) * ((x powr (1 / a)) powr a)"
    using assms powr_mult by auto
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
    by (rule powr_powr)
  also have " = x" using assms
    by auto
  finally show ?thesis .
qed

lemma tendsto_powr:
  fixes a b :: real
  assumes f: "(f  a) F"
    and g: "(g  b) F"
    and a: "a  0"
  shows "((λx. f x powr g x)  a powr b) F"
  unfolding powr_def
proof (rule filterlim_If)
  from f show "((λx. 0)  (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
    by simp (auto simp: filterlim_iff eventually_inf_principal elim: eventually_mono dest: t1_space_nhds)
  from f g a show "((λx. exp (g x * ln (f x)))  (if a = 0 then 0 else exp (b * ln a)))
      (inf F (principal {x. f x  0}))"
    by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
qed

lemma tendsto_powr'[tendsto_intros]:
  fixes a :: real
  assumes f: "(f  a) F"
    and g: "(g  b) F"
    and a: "a  0  (b > 0  eventually (λx. f x  0) F)"
  shows "((λx. f x powr g x)  a powr b) F"
proof -
  from a consider "a  0" | "a = 0" "b > 0" "eventually (λx. f x  0) F"
    by auto
  then show ?thesis
  proof cases
    case 1
    with f g show ?thesis by (rule tendsto_powr)
  next
    case 2
    have "((λx. if f x = 0 then 0 else exp (g x * ln (f x)))  0) F"
    proof (intro filterlim_If)
      have "filterlim f (principal {0<..}) (inf F (principal {z. f z  0}))"
        using eventually (λx. f x  0) F
        by (auto simp: filterlim_iff eventually_inf_principal
            eventually_principal elim: eventually_mono)
      moreover have "filterlim f (nhds a) (inf F (principal {z. f z  0}))"
        by (rule tendsto_mono[OF _ f]) simp_all
      ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x  0}))"
        by (simp add: at_within_def filterlim_inf a = 0)
      have g: "(g  b) (inf F (principal {z. f z  0}))"
        by (rule tendsto_mono[OF _ g]) simp_all
      show "((λx. exp (g x * ln (f x)))  0) (inf F (principal {x. f x  0}))"
        by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
                 filterlim_compose[OF ln_at_0] f g b > 0)+
    qed simp_all
    with a = 0 show ?thesis
      by (simp add: powr_def)
  qed
qed

lemma continuous_powr:
  assumes "continuous F f"
    and "continuous F g"
    and "f (Lim F (λx. x))  0"
  shows "continuous F (λx. (f x) powr (g x :: real))"
  using assms unfolding continuous_def by (rule tendsto_powr)

lemma continuous_at_within_powr[continuous_intros]:
  fixes f g :: "_  real"
  assumes "continuous (at a within s) f"
    and "continuous (at a within s) g"
    and "f a  0"
  shows "continuous (at a within s) (λx. (f x) powr (g x))"
  using assms unfolding continuous_within by (rule tendsto_powr)

lemma isCont_powr[continuous_intros, simp]:
  fixes f g :: "_  real"
  assumes "isCont f a" "isCont g a" "f a  0"
  shows "isCont (λx. (f x) powr g x) a"
  using assms unfolding continuous_at by (rule tendsto_powr)

lemma continuous_on_powr[continuous_intros]:
  fixes f g :: "_  real"
  assumes "continuous_on s f" "continuous_on s g" and "xs. f x  0"
  shows "continuous_on s (λx. (f x) powr (g x))"
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)

lemma tendsto_powr2:
  fixes a :: real
  assumes f: "(f  a) F"
    and g: "(g  b) F"
    and "F x in F. 0  f x"
    and b: "0 < b"
  shows "((λx. f x powr g x)  a powr b) F"
  using tendsto_powr'[of f a F g b] assms by auto

lemma has_derivative_powr[derivative_intros]:
  assumes g[derivative_intros]: "(g has_derivative g') (at x within X)"
    and f[derivative_intros]:"(f has_derivative f') (at x within X)"
  assumes pos: "0 < g x" and "x  X"
  shows "((λx. g x powr f x::real) has_derivative (λh. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
proof -
  have "F x in at x within X. g x > 0"
    by (rule order_tendstoD[OF _ pos])
      (rule has_derivative_continuous[OF g, unfolded continuous_within])
  then obtain d where "d > 0" and pos': "x'. x'  X  dist x' x < d  0 < g x'"
    using pos unfolding eventually_at by force
  have "((λx. exp (f x * ln (g x))) has_derivative
    (λh. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
    using pos
    by (auto intro!: derivative_eq_intros simp: field_split_simps powr_def)
  then show ?thesis
    by (rule has_derivative_transform_within[OF _ d > 0 x  X]) (auto simp: powr_def dest: pos')
qed

lemma has_derivative_const_powr [derivative_intros]:
  assumes "x. (f has_derivative f') (at x)" "a  (0::real)"
  shows "((λx. a powr (f x)) has_derivative (λy. f' y * ln a * a powr (f x))) (at x)"
  using assms
  apply (simp add: powr_def)
  apply (rule assms derivative_eq_intros refl)+
  done

lemma has_real_derivative_const_powr [derivative_intros]:
  assumes "x. (f has_real_derivative f' x) (at x)"
    "a  (0::real)"
  shows "((λx. a powr (f x)) has_real_derivative (f' x * ln a * a powr (f x))) (at x)"
  using assms
  apply (simp add: powr_def)
  apply (rule assms derivative_eq_intros refl | simp)+
  done

lemma DERIV_powr:
  fixes r :: real
  assumes g: "DERIV g x :> m"
    and pos: "g x > 0"
    and f: "DERIV f x :> r"
  shows "DERIV (λx. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
  using assms
  by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def algebra_simps)

lemma DERIV_fun_powr:
  fixes r :: real
  assumes g: "DERIV g x :> m"
    and pos: "g x > 0"
  shows "DERIV (λx. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
  using DERIV_powr[OF g pos DERIV_const, of r] pos
  by (simp add: powr_diff field_simps)

lemma has_real_derivative_powr:
  assumes "z > 0"
  shows "((λz. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
proof (subst DERIV_cong_ev[OF refl _ refl])
  from assms have "eventually (λz. z  0) (nhds z)"
    by (intro t1_space_nhds) auto
  then show "eventually (λz. z powr r = exp (r * ln z)) (nhds z)"
    unfolding powr_def by eventually_elim simp
  from assms show "((λz. exp (r * ln z)) has_real_derivative r * z powr (r - 1)) (at z)"
    by (auto intro!: derivative_eq_intros simp: powr_def field_simps exp_diff)
qed

declare has_real_derivative_powr[THEN DERIV_chain2, derivative_intros]

text ‹A more general version, by Johannes Hölzl›
lemma has_real_derivative_powr':
  fixes f g :: "real  real"
  assumes "(f has_real_derivative f') (at x)"
  assumes "(g has_real_derivative g') (at x)"
  assumes "f x > 0"
  defines "h  λx. f x powr g x * (g' * ln (f x) + f' * g x / f x)"
  shows   "((λx. f x powr g x) has_real_derivative h x) (at x)"
proof (subst DERIV_cong_ev[OF refl _ refl])
  from assms have "isCont f x"
    by (simp add: DERIV_continuous)
  hence "f x f x" by (simp add: continuous_at)
  with f x > 0 have "eventually (λx. f x > 0) (nhds x)"
    by (auto simp: tendsto_at_iff_tendsto_nhds dest: order_tendstoD)
  thus "eventually (λx. f x powr g x = exp (g x * ln (f x))) (nhds x)"
    by eventually_elim (simp add: powr_def)
next
  from assms show "((λx. exp (g x * ln (f x))) has_real_derivative h x) (at x)"
    by (auto intro!: derivative_eq_intros simp: h_def powr_def)
qed

lemma tendsto_zero_powrI:
  assumes "(f  (0::real)) F" "(g  b) F" "F x in F. 0  f x" "0 < b"
  shows "((λx. f x powr g x)  0) F"
  using tendsto_powr2[OF assms] by simp

lemma continuous_on_powr':
  fixes f g :: "_  real"
  assumes "continuous_on s f" "continuous_on s g"
    and "xs. f x  0  (f x = 0  g x > 0)"
  shows "continuous_on s (λx. (f x) powr (g x))"
  unfolding continuous_on_def
proof
  fix x
  assume x: "x  s"
  from assms x show "((λx. f x powr g x)  f x powr g x) (at x within s)"
  proof (cases "f x = 0")
    case True
    from assms(3) have "eventually (λx. f x  0) (at x within s)"
      by (auto simp: at_within_def eventually_inf_principal)
    with True x assms show ?thesis
      by (auto intro!: tendsto_zero_powrI[of f _ g "g x"] simp: continuous_on_def)
  next
    case False
    with assms x show ?thesis
      by (auto intro!: tendsto_powr' simp: continuous_on_def)
  qed
qed

lemma tendsto_neg_powr:
  assumes "s < 0"
    and f: "LIM x F. f x :> at_top"
  shows "((λx. f x powr s)  (0::real)) F"
proof -
  have "((λx. exp (s * ln (f x)))  (0::real)) F" (is "?X")
    by (auto intro!: filterlim_compose[OF exp_at_bot] filterlim_compose[OF ln_at_top]
        filterlim_tendsto_neg_mult_at_bot assms)
  also have "?X  ((λx. f x powr s)  (0::real)) F"
    using f filterlim_at_top_dense[of f F]
    by (intro filterlim_cong[OF refl refl]) (auto simp: neq_iff powr_def elim: eventually_mono)
  finally show ?thesis .
qed

lemma tendsto_exp_limit_at_right: "((λy. (1 + x * y) powr (1 / y))  exp x) (at_right 0)"
  for x :: real
proof (cases "x = 0")
  case True
  then show ?thesis by simp
next
  case False
  have "((λy. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
    by (auto intro!: derivative_eq_intros)
  then have "((λy. ln (1 + x * y) / y)  x) (at 0)"
    by (auto simp: has_field_derivative_def field_has_derivative_at)
  then have *: "((λy. exp (ln (1 + x * y) / y))  exp x) (at 0)"
    by (rule tendsto_intros)
  then show ?thesis
  proof (rule filterlim_mono_eventually)
    show "eventually (λxa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
      unfolding eventually_at_right[OF zero_less_one]
      using False
      by (intro exI[of _ "1 / ¦x¦"]) (auto simp: field_simps powr_def abs_if add_nonneg_eq_0_iff)
  qed (simp_all add: at_eq_sup_left_right)
qed

lemma tendsto_exp_limit_at_top: "((λy. (1 + x / y) powr y)  exp x) at_top"
  for x :: real
  by (simp add: filterlim_at_top_to_right inverse_eq_divide tendsto_exp_limit_at_right)

lemma tendsto_exp_limit_sequentially: "(λn. (1 + x / n) ^ n)  exp x"
  for x :: real
proof (rule filterlim_mono_eventually)
  from reals_Archimedean2 [of "¦x¦"] obtain n :: nat where *: "real n > ¦x¦" ..
  then have "eventually (λn :: nat. 0 < 1 + x / real n) at_top"
    by (intro eventually_sequentiallyI [of n]) (auto simp: field_split_simps)
  then show "eventually (λn. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
    by (rule eventually_mono) (erule powr_realpow)
  show "(λn. (1 + x / real n) powr real n)  exp x"
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
qed auto


subsection ‹Sine and Cosine›

definition sin_coeff :: "nat  real"
  where "sin_coeff = (λn. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"

definition cos_coeff :: "nat  real"
  where "cos_coeff = (λn. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"

definition sin :: "'a  'a::{real_normed_algebra_1,banach}"
  where "sin = (λx. n. sin_coeff n *R x^n)"

definition cos :: "'a  'a::{real_normed_algebra_1,banach}"
  where "cos = (λx. n. cos_coeff n *R x^n)"

lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
  unfolding sin_coeff_def by simp

lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
  unfolding cos_coeff_def by simp

lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
  unfolding cos_coeff_def sin_coeff_def
  by (simp del: mult_Suc)

lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
  unfolding cos_coeff_def sin_coeff_def
  by (simp del: mult_Suc) (auto elim: oddE)

lemma summable_norm_sin: "summable (λn. norm (sin_coeff n *R x^n))"
  for x :: "'a::{real_normed_algebra_1,banach}"
proof (rule summable_comparison_test [OF _ summable_norm_exp])
  show "N. nN. norm (norm (sin_coeff n *R x ^ n))  norm (x ^ n /R fact n)"
    unfolding sin_coeff_def
    by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
qed

lemma summable_norm_cos: "summable (λn. norm (cos_coeff n *R x^n))"
  for x :: "'a::{real_normed_algebra_1,banach}"
proof (rule summable_comparison_test [OF _ summable_norm_exp])
  show "N. nN. norm (norm (cos_coeff n *R x ^ n))  norm (x ^ n /R fact n)"
    unfolding cos_coeff_def
    by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
qed


lemma sin_converges: "(λn. sin_coeff n *R x^n) sums sin x"
  unfolding sin_def
  by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)

lemma cos_converges: "(λn. cos_coeff n *R x^n) sums cos x"
  unfolding cos_def
  by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)

lemma sin_of_real: "sin (of_real x) = of_real (sin x)"
  for x :: real
proof -
  have "(λn. of_real (sin_coeff n *R  x^n)) = (λn. sin_coeff n *R  (of_real x)^n)"
  proof
    show "of_real (sin_coeff n *R  x^n) = sin_coeff n *R of_real x^n" for n
      by (simp add: scaleR_conv_of_real)
  qed
  also have " sums (sin (of_real x))"
    by (rule sin_converges)
  finally have "(λn. of_real (sin_coeff n *R x^n)) sums (sin (of_real x))" .
  then show ?thesis
    using sums_unique2 sums_of_real [OF sin_converges] by blast
qed

corollary sin_in_Reals [simp]: "z    sin z  "
  by (metis Reals_cases Reals_of_real sin_of_real)

lemma cos_of_real: "cos (of_real x) = of_real (cos x)"
  for x :: real
proof -
  have "(λn. of_real (cos_coeff n *R  x^n)) = (λn. cos_coeff n *R  (of_real x)^n)"
  proof
    show "of_real (cos_coeff n *R  x^n) = cos_coeff n *R of_real x^n" for n
      by (simp add: scaleR_conv_of_real)
  qed
  also have " sums (cos (of_real x))"
    by (rule cos_converges)
  finally have "(λn. of_real (cos_coeff n *R x^n)) sums (cos (of_real x))" .
  then show ?thesis
    using sums_unique2 sums_of_real [OF cos_converges]
    by blast
qed

corollary cos_in_Reals [simp]: "z    cos z  "
  by (metis Reals_cases Reals_of_real cos_of_real)

lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
  by (simp add: diffs_def sin_coeff_Suc del: of_nat_Suc)

lemma diffs_cos_coeff: "diffs cos_coeff = (λn. - sin_coeff n)"
  by (simp add: diffs_def cos_coeff_Suc del: of_nat_Suc)

lemma sin_int_times_real: "sin (of_int m * of_real x) = of_real (sin (of_int m * x))"
  by (metis sin_of_real of_real_mult of_real_of_int_eq)

lemma cos_int_times_real: "cos (of_int m * of_real x) = of_real (cos (of_int m * x))"
  by (metis cos_of_real of_real_mult of_real_of_int_eq)

text ‹Now at last we can get the derivatives of exp, sin and cos.›

lemma DERIV_sin [simp]: "DERIV sin x :> cos x"
  for x :: "'a::{real_normed_field,banach}"
  unfolding sin_def cos_def scaleR_conv_of_real
  apply (rule DERIV_cong)
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
              summable_minus_iff scaleR_conv_of_real [symmetric]
              summable_norm_sin [THEN summable_norm_cancel]
              summable_norm_cos [THEN summable_norm_cancel])
  done

declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
  and DERIV_sin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]

lemmas has_derivative_sin[derivative_intros] = DERIV_sin[THEN DERIV_compose_FDERIV]

lemma DERIV_cos [simp]: "DERIV cos x :> - sin x"
  for x :: "'a::{real_normed_field,banach}"
  unfolding sin_def cos_def scaleR_conv_of_real
  apply (rule DERIV_cong)
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
              diffs_sin_coeff diffs_cos_coeff
              summable_minus_iff scaleR_conv_of_real [symmetric]
              summable_norm_sin [THEN summable_norm_cancel]
              summable_norm_cos [THEN summable_norm_cancel])
  done

declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
  and DERIV_cos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]

lemmas has_derivative_cos[derivative_intros] = DERIV_cos[THEN DERIV_compose_FDERIV]

lemma isCont_sin: "isCont sin x"
  for x :: "'a::{real_normed_field,banach}"
  by (rule DERIV_sin [THEN DERIV_isCont])

lemma continuous_on_sin_real: "continuous_on {a..b} sin" for a::real
  using continuous_at_imp_continuous_on isCont_sin by blast

lemma isCont_cos: "isCont cos x"
  for x :: "'a::{real_normed_field,banach}"
  by (rule DERIV_cos [THEN DERIV_isCont])

lemma continuous_on_cos_real: "continuous_on {a..b} cos" for a::real
  using continuous_at_imp_continuous_on isCont_cos by blast


context
  fixes f :: "'a::t2_space  'b::{real_normed_field,banach}"
begin

lemma isCont_sin' [simp]: "isCont f a  isCont (λx. sin (f x)) a"
  by (rule isCont_o2 [OF _ isCont_sin])

lemma isCont_cos' [simp]: "isCont f a  isCont (λx. cos (f x)) a"
  by (rule isCont_o2 [OF _ isCont_cos])

lemma tendsto_sin [tendsto_intros]: "(f  a) F  ((λx. sin (f x))  sin a) F"
  by (rule isCont_tendsto_compose [OF isCont_sin])

lemma tendsto_cos [tendsto_intros]: "(f  a) F  ((λx. cos (f x))  cos a) F"
  by (rule isCont_tendsto_compose [OF isCont_cos])

lemma continuous_sin [continuous_intros]: "continuous F f  continuous F (λx. sin (f x))"
  unfolding continuous_def by (rule tendsto_sin)

lemma continuous_on_sin [continuous_intros]: "continuous_on s f  continuous_on s (λx. sin (f x))"
  unfolding continuous_on_def by (auto intro: tendsto_sin)

lemma continuous_cos [continuous_intros]: "continuous F f  continuous F (λx. cos (f x))"
  unfolding continuous_def by (rule tendsto_cos)

lemma continuous_on_cos [continuous_intros]: "continuous_on s f  continuous_on s (λx. cos (f x))"
  unfolding continuous_on_def by (auto intro: tendsto_cos)

end

lemma continuous_within_sin: "continuous (at z within s) sin"     
  for z :: "'a::{real_normed_field,banach}"
  by (simp add: continuous_within tendsto_sin)

lemma continuous_within_cos: "continuous (at z within s) cos"
  for z :: "'a::{real_normed_field,banach}"
  by (simp add: continuous_within tendsto_cos)


subsection ‹Properties of Sine and Cosine›

lemma sin_zero [simp]: "sin 0 = 0"
  by (simp add: sin_def sin_coeff_def scaleR_conv_of_real)

lemma cos_zero [simp]: "cos 0 = 1"
  by (simp add: cos_def cos_coeff_def scaleR_conv_of_real)

lemma DERIV_fun_sin: "DERIV g x :> m  DERIV (λx. sin (g x)) x :> cos (g x) * m"
  by (fact derivative_intros)

lemma DERIV_fun_cos: "DERIV g x :> m  DERIV (λx. cos(g x)) x :> - sin (g x) * m"
  by (fact derivative_intros)


subsection ‹Deriving the Addition Formulas›

text ‹The product of two cosine series.›
lemma cos_x_cos_y:
  fixes x :: "'a::{real_normed_field,banach}"
  shows
    "(λp. np.
        if even p  even n
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0)
      sums (cos x * cos y)"
proof -
  have "(cos_coeff n * cos_coeff (p - n)) *R (x^n * y^(p - n)) =
    (if even p  even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p - n)
     else 0)"
    if "n  p" for n p :: nat
  proof -
    from that have *: "even n  even p 
        (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
      by (metis div_add power_add le_add_diff_inverse odd_add)
    with that show ?thesis
      by (auto simp: algebra_simps cos_coeff_def binomial_fact)
  qed
  then have "(λp. np. if even p  even n
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0) =
             (λp. np. (cos_coeff n * cos_coeff (p - n)) *R (x^n * y^(p-n)))"
    by simp
  also have " = (λp. np. (cos_coeff n *R x^n) * (cos_coeff (p - n) *R y^(p-n)))"
    by (simp add: algebra_simps)
  also have " sums (cos x * cos y)"
    using summable_norm_cos
    by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
  finally show ?thesis .
qed

text ‹The product of two sine series.›
lemma sin_x_sin_y:
  fixes x :: "'a::{real_normed_field,banach}"
  shows
    "(λp. np.
        if even p  odd n
        then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n)
        else 0)
      sums (sin x * sin y)"
proof -
  have "(sin_coeff n * sin_coeff (p - n)) *R (x^n * y^(p-n)) =
    (if even p  odd n
     then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n)
     else 0)"
    if "n  p" for n p :: nat
  proof -
    have "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
      if np: "odd n" "even p"
    proof -
      have "p > 0"
        using n  p neq0_conv that(1) by blast
      then have §: "(- 1::real) ^ (p div 2 - Suc 0) = - ((- 1) ^ (p div 2))"
        using even p by (auto simp add: dvd_def power_eq_if)
      from n  p np have *: "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0)  p"
        by arith+
      have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
        by simp
      with n  p np  § * show ?thesis
        by (simp add: flip: div_add power_add)
    qed
    then show ?thesis
      using np by (auto simp: algebra_simps sin_coeff_def binomial_fact)
  qed
  then have "(λp. np. if even p  odd n
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0) =
             (λp. np. (sin_coeff n * sin_coeff (p - n)) *R (x^n * y^(p-n)))"
    by simp
  also have " = (λp. np. (sin_coeff n *R x^n) * (sin_coeff (p - n) *R y^(p-n)))"
    by (simp add: algebra_simps)
  also have " sums (sin x * sin y)"
    using summable_norm_sin
    by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
  finally show ?thesis .
qed

lemma sums_cos_x_plus_y:
  fixes x :: "'a::{real_normed_field,banach}"
  shows
    "(λp. np.
        if even p
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n)
        else 0)
      sums cos (x + y)"
proof -
  have
    "(np.
      if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n)
      else 0) = cos_coeff p *R ((x + y) ^ p)"
    for p :: nat
  proof -
    have
      "(np. if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0) =
       (if even p then np. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0)"
      by simp
    also have " =
       (if even p
        then of_real ((-1) ^ (p div 2) / (fact p)) * (np. (p choose n) *R (x^n) * y^(p-n))
        else 0)"
      by (auto simp: sum_distrib_left field_simps scaleR_conv_of_real nonzero_of_real_divide)
    also have " = cos_coeff p *R ((x + y) ^ p)"
      by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real atLeast0AtMost)
    finally show ?thesis .
  qed
  then have
    "(λp. np.
        if even p
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n)
        else 0) = (λp. cos_coeff p *R ((x+y)^p))"
    by simp
   also have " sums cos (x + y)"
    by (rule cos_converges)
   finally show ?thesis .
qed

theorem cos_add:
  fixes x :: "'a::{real_normed_field,banach}"
  shows "cos (x + y) = cos x * cos y - sin x * sin y"
proof -
  have
    "(if even p  even n
      then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0) -
     (if even p  odd n
      then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0) =
     (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0)"
    if "n  p" for n p :: nat
    by simp
  then have
    "(λp. np. (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *R (x^n) * y^(p-n) else 0))
      sums (cos x * cos y - sin x * sin y)"
    using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
    by (simp add: sum_subtractf [symmetric])
  then show ?thesis
    by (blast intro: sums_cos_x_plus_y sums_unique2)
qed

lemma sin_minus_converges: "(λn. - (sin_coeff n *R (-x)^n)) sums sin x"
proof -
  have [simp]: "n. - (sin_coeff n *R (-x)^n) = (sin_coeff n *R x^n)"
    by (auto simp: sin_coeff_def elim!: oddE)
  show ?thesis
    by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
qed

lemma sin_minus [simp]: "sin (- x) = - sin x"
  for x :: "'a::{real_normed_algebra_1,banach}"
  using sin_minus_converges [of x]
  by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel]
      suminf_minus sums_iff equation_minus_iff)

lemma cos_minus_converges: "(λn. (cos_coeff n *R (-x)^n)) sums cos x"
proof -
  have [simp]: "n. (cos_coeff n *R (-x)^n) = (cos_coeff n *R x^n)"
    by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
  show ?thesis
    by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
qed

lemma cos_minus [simp]: "cos (-x) = cos x"
  for x :: "'a::{real_normed_algebra_1,banach}"
  using cos_minus_converges [of x] by (metis cos_def sums_unique)

lemma cos_abs_real [simp]: "cos ¦x :: real¦ = cos x"
  by (simp add: abs_if)

lemma sin_cos_squared_add [simp]: "(sin x)2 + (cos x)2 = 1"
  for x :: "'a::{real_normed_field,banach}"
  using cos_add [of x "-x"]
  by (simp add: power2_eq_square algebra_simps)

lemma sin_cos_squared_add2 [simp]: "(cos x)2 + (sin x)2 = 1"
  for x :: "'a::{real_normed_field,banach}"
  by (subst add.commute, rule sin_cos_squared_add)

lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
  for x :: "'a::{real_normed_field,banach}"
  using sin_cos_squared_add2 [unfolded power2_eq_square] .

lemma sin_squared_eq: "(sin x)2 = 1 - (cos x)2"
  for x :: "'a::{real_normed_field,banach}"
  unfolding eq_diff_eq by (rule sin_cos_squared_add)

lemma cos_squared_eq: "(cos x)2 = 1 - (sin x)2"
  for x :: "'a::{real_normed_field,banach}"
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)

lemma abs_sin_le_one [simp]: "¦sin x¦  1"
  for x :: real
  by (rule power2_le_imp_le) (simp_all add: sin_squared_eq)

lemma sin_ge_minus_one [simp]: "- 1  sin x"
  for x :: real
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)

lemma sin_le_one [simp]: "sin x  1"
  for x :: real
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)

lemma abs_cos_le_one [simp]: "¦cos x¦  1"
  for x :: real
  by (rule power2_le_imp_le) (simp_all add: cos_squared_eq)

lemma cos_ge_minus_one [simp]: "- 1  cos x"
  for x :: real
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)

lemma cos_le_one [simp]: "cos x  1"
  for x :: real
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)

lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
  for x :: "'a::{real_normed_field,banach}"
  using cos_add [of x "- y"] by simp

lemma cos_double: "cos(2*x) = (cos x)2 - (sin x)2"
  for x :: "'a::{real_normed_field,banach}"
  using cos_add [where x=x and y=x] by (simp add: power2_eq_square)

lemma sin_cos_le1: "¦sin x * sin y + cos x * cos y¦  1"
  for x :: real
  using cos_diff [of x y] by (metis abs_cos_le_one add.commute)

lemma DERIV_fun_pow: "DERIV g x :> m  DERIV (λx. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
  by (auto intro!: derivative_eq_intros simp:)

lemma DERIV_fun_exp: "DERIV g x :> m  DERIV (λx. exp (g x)) x :> exp (g x) * m"
  by (auto intro!: derivative_intros)


subsection ‹The Constant Pi›

definition pi :: real
  where "pi = 2 * (THE x. 0  x  x  2  cos x = 0)"

text ‹Show that there's a least positive termx with termcos x = 0;
   hence define pi.›

lemma sin_paired: "(λn. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
  for x :: real
proof -
  have "(λn. k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
    by (rule sums_group) (use sin_converges [of x, unfolded scaleR_conv_of_real] in auto)
  then show ?thesis
    by (simp add: sin_coeff_def ac_simps)
qed

lemma sin_gt_zero_02:
  fixes x :: real
  assumes "0 < x" and "x < 2"
  shows "0 < sin x"
proof -
  let ?f = "λn::nat. k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
  have pos: "n. 0 < ?f n"
  proof
    fix n :: nat
    let ?k2 = "real (Suc (Suc (4 * n)))"
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
    have "x * x < ?k2 * ?k3"
      using assms by (intro mult_strict_mono', simp_all)
    then have "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
      by (intro mult_strict_right_mono zero_less_power 0 < x)
    then show "0 < ?f n"
      by (simp add: ac_simps divide_less_eq)
qed
  have sums: "?f sums sin x"
    by (rule sin_paired [THEN sums_group]) simp
  show "0 < sin x"
    unfolding sums_unique [OF sums] using sums_summable [OF sums] pos by (simp add: suminf_pos)
qed

lemma cos_double_less_one: "0 < x  x < 2  cos (2 * x) < 1"
  for x :: real
  using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)

lemma cos_paired: "(λn. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
  for x :: real
proof -
  have "(λn. k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
    by (rule sums_group) (use cos_converges [of x, unfolded scaleR_conv_of_real] in auto)
  then show ?thesis
    by (simp add: cos_coeff_def ac_simps)
qed

lemma sum_pos_lt_pair:
  fixes f :: "nat  real"
  assumes f: "summable f" and fplus: "d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc (Suc 0) * d) + 1))"
  shows "sum f {..<k} < suminf f"
proof -
  have "(λn. n = n * Suc (Suc 0)..<n * Suc (Suc 0) +  Suc (Suc 0). f (n + k)) 
             sums (n. f (n + k))"
  proof (rule sums_group)
    show "(λn. f (n + k)) sums (n. f (n + k))"
      by (simp add: f summable_iff_shift summable_sums)
  qed auto
  with fplus have "0 < (n. f (n + k))"
    apply (simp add: add.commute)
    apply (metis (no_types, lifting) suminf_pos summable_def sums_unique)
    done
  then show ?thesis
    by (simp add: f suminf_minus_initial_segment)
qed

lemma cos_two_less_zero [simp]: "cos 2 < (0::real)"
proof -
  note fact_Suc [simp del]
  from sums_minus [OF cos_paired]
  have *: "(λn. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
    by simp
  then have sm: "summable (λn. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
    by (rule sums_summable)
  have "0 < (n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
    by (simp add: fact_num_eq_if power_eq_if)
  moreover have "(n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n)))) <
    (n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
  proof -
    {
      fix d
      let ?six4d = "Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))"
      have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))"
        unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono)
      then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))"
        by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact)
      then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))"
        by (simp add: inverse_eq_divide less_divide_eq)
    }
    then show ?thesis
      by (force intro!: sum_pos_lt_pair [OF sm] simp add: divide_inverse algebra_simps)
  qed
  ultimately have "0 < (n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
    by (rule order_less_trans)
  moreover from * have "- cos 2 = (n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
    by (rule sums_unique)
  ultimately have "(0::real) < - cos 2" by simp
  then show ?thesis by simp
qed

lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]

lemma cos_is_zero: "∃!x::real. 0  x  x  2  cos x = 0"
proof (rule ex_ex1I)
  show "x::real. 0  x  x  2  cos x = 0"
    by (rule IVT2) simp_all
next
  fix a b :: real
  assume ab: "0  a  a  2  cos a = 0" "0  b  b  2  cos b = 0"
  have cosd: "x::real. cos differentiable (at x)"
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
  show "a = b"
  proof (cases a b rule: linorder_cases)
    case less
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
      using Rolle by (metis cosd continuous_on_cos_real ab)
    then have "sin z = 0"
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
    then show ?thesis
      by (metis a < z z < b ab order_less_le_trans less_le sin_gt_zero_02)
  next
    case greater
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
      using Rolle by (metis cosd continuous_on_cos_real ab)
    then have "sin z = 0"
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
    then show ?thesis
      by (metis b < z z < a ab order_less_le_trans less_le sin_gt_zero_02)
  qed auto
qed

lemma pi_half: "pi/2 = (THE x. 0  x  x  2  cos x = 0)"
  by (simp add: pi_def)

lemma cos_pi_half [simp]: "cos (pi/2) = 0"
  by (simp add: pi_half cos_is_zero [THEN theI'])

lemma cos_of_real_pi_half [simp]: "cos ((of_real pi/2) :: 'a) = 0"
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
  by (metis cos_pi_half cos_of_real eq_numeral_simps(4)
      nonzero_of_real_divide of_real_0 of_real_numeral)

lemma pi_half_gt_zero [simp]: "0 < pi/2"
proof -
  have "0  pi/2"
    by (simp add: pi_half cos_is_zero [THEN theI'])
  then show ?thesis
    by (metis cos_pi_half cos_zero less_eq_real_def one_neq_zero)
qed

lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]

lemma pi_half_less_two [simp]: "pi/2 < 2"
proof -
  have "pi/2  2"
    by (simp add: pi_half cos_is_zero [THEN theI'])
  then show ?thesis
    by (metis cos_pi_half cos_two_neq_zero le_less)
qed

lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]

lemma pi_gt_zero [simp]: "0 < pi"
  using pi_half_gt_zero by simp

lemma pi_ge_zero [simp]: "0  pi"
  by (rule pi_gt_zero [THEN order_less_imp_le])

lemma pi_neq_zero [simp]: "pi  0"
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])

lemma pi_not_less_zero [simp]: "¬ pi < 0"
  by (simp add: linorder_not_less)

lemma minus_pi_half_less_zero: "-(pi/2) < 0"
  by simp

lemma m2pi_less_pi: "- (2*pi) < pi"
  by simp

lemma sin_pi_half [simp]: "sin(pi/2) = 1"
  using sin_cos_squared_add2 [where x = "pi/2"]
  using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
  by (simp add: power2_eq_1_iff)

lemma sin_of_real_pi_half [simp]: "sin ((of_real pi/2) :: 'a) = 1"
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
  using sin_pi_half
  by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)

lemma sin_cos_eq: "sin x = cos (of_real pi/2 - x)"
  for x :: "'a::{real_normed_field,banach}"
  by (simp add: cos_diff)

lemma minus_sin_cos_eq: "- sin x = cos (x + of_real pi/2)"
  for x :: "'a::{real_normed_field,banach}"
  by (simp add: cos_add nonzero_of_real_divide)

lemma cos_sin_eq: "cos x = sin (of_real pi/2 - x)"
  for x :: "'a::{real_normed_field,banach}"
  using sin_cos_eq [of "of_real pi/2 - x"] by simp

lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
  for x :: "'a::{real_normed_field,banach}"
  using cos_add [of "of_real pi/2 - x" "-y"]
  by (simp add: cos_sin_eq) (simp add: sin_cos_eq)

lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
  for x :: "'a::{real_normed_field,banach}"
  using sin_add [of x "- y"] by simp

lemma sin_double: "sin(2 * x) = 2 * sin x * cos x"
  for x :: "'a::{real_normed_field,banach}"
  using sin_add [where x=x and y=x] by simp

lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
  using cos_add [where x = "pi/2" and y = "pi/2"]
  by (simp add: cos_of_real)

lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
  using sin_add [where x = "pi/2" and y = "pi/2"]
  by (simp add: sin_of_real)

lemma cos_pi [simp]: "cos pi = -1"
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp

lemma sin_pi [simp]: "sin pi = 0"
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp

lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
  by (simp add: sin_add)

lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
  by (simp add: sin_add)

lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
  by (simp add: cos_add)

lemma cos_periodic_pi2 [simp]: "cos (pi + x) = - cos x"
  by (simp add: cos_add)

lemma sin_periodic [simp]: "sin (x + 2 * pi) = sin x"
  by (simp add: sin_add sin_double cos_double)

lemma cos_periodic [simp]: "cos (x + 2 * pi) = cos x"
  by (simp add: cos_add sin_double cos_double)

lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
  by (induct n) (auto simp: distrib_right)

lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
  by (metis cos_npi mult.commute)

lemma sin_npi [simp]: "sin (real n * pi) = 0"
  for n :: nat
  by (induct n) (auto simp: distrib_right)

lemma sin_npi2 [simp]: "sin (pi * real n) = 0"
  for n :: nat
  by (simp add: mult.commute [of pi])

lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
  by (simp add: cos_double)

lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
  by (simp add: sin_double)

context
  fixes w :: "'a::{real_normed_field,banach}"

begin

lemma sin_times_sin: "sin w * sin z = (cos (w - z) - cos (w + z)) / 2"
  by (simp add: cos_diff cos_add)

lemma sin_times_cos: "sin w * cos z = (sin (w + z) + sin (w - z)) / 2"
  by (simp add: sin_diff sin_add)

lemma cos_times_sin: "cos w * sin z = (sin (w + z) - sin (w - z)) / 2"
  by (simp add: sin_diff sin_add)

lemma cos_times_cos: "cos w * cos z = (cos (w - z) + cos (w + z)) / 2"
  by (simp add: cos_diff cos_add)

lemma cos_double_cos: "cos (2 * w) = 2 * cos w ^ 2 - 1"
  by (simp add: cos_double sin_squared_eq)

lemma cos_double_sin: "cos (2 * w) = 1 - 2 * sin w ^ 2"
  by (simp add: cos_double sin_squared_eq)

end

lemma sin_plus_sin: "sin w + sin z = 2 * sin ((w + z) / 2) * cos ((w - z) / 2)"
  for w :: "'a::{real_normed_field,banach}" 
  apply (simp add: mult.assoc sin_times_cos)
  apply (simp add: field_simps)
  done

lemma sin_diff_sin: "sin w - sin z = 2 * sin ((w - z) / 2) * cos ((w + z) / 2)"
  for w :: "'a::{real_normed_field,banach}"
  apply (simp add: mult.assoc sin_times_cos)
  apply (simp add: field_simps)
  done

lemma cos_plus_cos: "cos w + cos z = 2 * cos ((w + z) / 2) * cos ((w - z) / 2)"
  for w :: "'a::{real_normed_field,banach,field}"
  apply (simp add: mult.assoc cos_times_cos)
  apply (simp add: field_simps)
  done

lemma cos_diff_cos: "cos w - cos z = 2 * sin ((w + z) / 2) * sin ((z - w) / 2)"
  for w :: "'a::{real_normed_field,banach,field}"
  apply (simp add: mult.assoc sin_times_sin)
  apply (simp add: field_simps)
  done

lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
  by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)

lemma cos_pi_minus [simp]: "cos (pi - x) = - (cos x)"
  by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)

lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
  by (simp add: sin_diff)

lemma cos_minus_pi [simp]: "cos (x - pi) = - (cos x)"
  by (simp add: cos_diff)

lemma sin_2pi_minus [simp]: "sin (2 * pi - x) = - (sin x)"
  by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)

lemma cos_2pi_minus [simp]: "cos (2 * pi - x) = cos x"
  by (metis (no_types, opaque_lifting) cos_add cos_minus cos_two_pi sin_minus sin_two_pi
      diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)

lemma sin_gt_zero2: "0 < x  x < pi/2  0 < sin x"
  by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)

lemma sin_less_zero:
  assumes "- pi/2 < x" and "x < 0"
  shows "sin x < 0"
proof -
  have "0 < sin (- x)"
    using assms by (simp only: sin_gt_zero2)
  then show ?thesis by simp
qed

lemma pi_less_4: "pi < 4"
  using pi_half_less_two by auto

lemma cos_gt_zero: "0 < x  x < pi/2  0 < cos x"
  by (simp add: cos_sin_eq sin_gt_zero2)

lemma cos_gt_zero_pi: "-(pi/2) < x  x < pi/2  0 < cos x"
  using cos_gt_zero [of x] cos_gt_zero [of "-x"]
  by (cases rule: linorder_cases [of x 0]) auto

lemma cos_ge_zero: "-(pi/2)  x  x  pi/2  0  cos x"
  by (auto simp: order_le_less cos_gt_zero_pi)
    (metis cos_pi_half eq_divide_eq eq_numeral_simps(4))

lemma sin_gt_zero: "0 < x  x < pi  0 < sin x"
  by (simp add: sin_cos_eq cos_gt_zero_pi)

lemma sin_lt_zero: "pi < x  x < 2 * pi  sin x < 0"
  using sin_gt_zero [of "x - pi"]
  by (simp add: sin_diff)

lemma pi_ge_two: "2  pi"
proof (rule ccontr)
  assume "¬ ?thesis"
  then have "pi < 2" by auto
  have "y > pi. y < 2  y < 2 * pi"
  proof (cases "2 < 2 * pi")
    case True
    with dense[OF pi < 2] show ?thesis by auto
  next
    case False
    have "pi < 2 * pi" by auto
    from dense[OF this] and False show ?thesis by auto
  qed
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi"
    by blast
  then have "0 < sin y"
    using sin_gt_zero_02 by auto
  moreover have "sin y < 0"
    using sin_gt_zero[of "y - pi"] pi < y and y < 2 * pi sin_periodic_pi[of "y - pi"]
    by auto
  ultimately show False by auto
qed

lemma sin_ge_zero: "0  x  x  pi  0  sin x"
  by (auto simp: order_le_less sin_gt_zero)

lemma sin_le_zero: "pi  x  x < 2 * pi  sin x  0"
  using sin_ge_zero [of "x - pi"] by (simp add: sin_diff)

lemma sin_pi_divide_n_ge_0 [simp]:
  assumes "n  0"
  shows "0  sin (pi/real n)"
  by (rule sin_ge_zero) (use assms in simp_all add: field_split_simps)

lemma sin_pi_divide_n_gt_0:
  assumes "2  n"
  shows "0 < sin (pi/real n)"
  by (rule sin_gt_zero) (use assms in simp_all add: field_split_simps)

text‹Proof resembles that of cos_is_zero› but with termpi for the upper bound›
lemma cos_total:
  assumes y: "-1  y" "y  1"
  shows "∃!x. 0  x  x  pi  cos x = y"
proof (rule ex_ex1I)
  show "x::real. 0  x  x  pi  cos x = y"
    by (rule IVT2) (simp_all add: y)
next
  fix a b :: real
  assume ab: "0  a  a  pi  cos a = y" "0  b  b  pi  cos b = y"
  have cosd: "x::real. cos differentiable (at x)"
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
  show "a = b"
  proof (cases a b rule: linorder_cases)
    case less
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
      using Rolle by (metis cosd continuous_on_cos_real ab)
    then have "sin z = 0"
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
    then show ?thesis
      by (metis a < z z < b ab order_less_le_trans less_le sin_gt_zero)
  next
    case greater
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
      using Rolle by (metis cosd continuous_on_cos_real ab)
    then have "sin z = 0"
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
    then show ?thesis
      by (metis b < z z < a ab order_less_le_trans less_le sin_gt_zero)
  qed auto
qed

lemma sin_total:
  assumes y: "-1  y" "y  1"
  shows "∃!x. - (pi/2)  x  x  pi/2  sin x = y"
proof -
  from cos_total [OF y]
  obtain x where x: "0  x" "x  pi" "cos x = y"
    and uniq: "x'. 0  x'  x'  pi  cos x' = y  x' = x "
    by blast
  show ?thesis
    unfolding sin_cos_eq
  proof (rule ex1I [where a="pi/2 - x"])
    show "- (pi/2)  z  z  pi/2  cos (of_real pi/2 - z) = y 
          z = pi/2 - x" for z
      using uniq [of "pi/2 -z"] by auto
  qed (use x in auto)
qed

lemma cos_zero_lemma:
  assumes "0  x" "cos x = 0"
  shows "n. odd n  x = of_nat n * (pi/2)"
proof -
  have xle: "x < (1 + real_of_int x/pi) * pi"
    using floor_correct [of "x/pi"]
    by (simp add: add.commute divide_less_eq)
  obtain n where "real n * pi  x" "x < real (Suc n) * pi"
  proof 
    show "real (nat x / pi) * pi  x"
      using assms floor_divide_lower [of pi x] by auto
    show "x < real (Suc (nat x / pi)) * pi"
      using assms floor_divide_upper [of pi x]  by (simp add: xle)
  qed
  then have x: "0  x - n * pi" "(x - n * pi)  pi" "cos (x - n * pi) = 0"
    by (auto simp: algebra_simps cos_diff assms)
  then have "∃!x. 0  x  x  pi  cos x = 0"
    by (auto simp: intro!: cos_total)
  then obtain θ where θ: "0  θ" "θ  pi" "cos θ = 0"
    and uniq: "φ. 0  φ  φ  pi  cos φ = 0  φ = θ"
    by blast
  then have "x - real n * pi = θ"
    using x by blast
  moreover have "pi/2 = θ"
    using pi_half_ge_zero uniq by fastforce
  ultimately show ?thesis
    by (rule_tac x = "Suc (2 * n)" in exI) (simp add: algebra_simps)
qed

lemma sin_zero_lemma:
  assumes "0  x" "sin x = 0"
  shows "n::nat. even n  x = real n * (pi/2)"
proof -
  obtain n where "odd n" and n: "x + pi/2 = of_nat n * (pi/2)" "n > 0"
    using cos_zero_lemma [of "x + pi/2"] assms by (auto simp add: cos_add)
  then have "x = real (n - 1) * (pi/2)"
    by (simp add: algebra_simps of_nat_diff)
  then show ?thesis
    by (simp add: odd n)
qed

lemma cos_zero_iff:
  "cos x = 0  ((n. odd n  x = real n * (pi/2))  (n. odd n  x = - (real n * (pi/2))))"
  (is "?lhs = ?rhs")
proof -
  have *: "cos (real n * pi/2) = 0" if "odd n" for n :: nat
  proof -
    from that obtain m where "n = 2 * m + 1" ..
    then show ?thesis
      by (simp add: field_simps) (simp add: cos_add add_divide_distrib)
  qed
  show ?thesis
  proof
    show ?rhs if ?lhs
      using that cos_zero_lemma [of x] cos_zero_lemma [of "-x"] by force
    show ?lhs if ?rhs
      using that by (auto dest: * simp del: eq_divide_eq_numeral1)
  qed
qed

lemma sin_zero_iff:
  "sin x = 0  ((n. even n  x = real n * (pi/2))  (n. even n  x = - (real n * (pi/2))))"
  (is "?lhs = ?rhs")
proof
  show ?rhs if ?lhs
    using that sin_zero_lemma [of x] sin_zero_lemma [of "-x"] by force
  show ?lhs if ?rhs
    using that by (auto elim: evenE)
qed

lemma sin_zero_pi_iff:
  fixes x::real
  assumes "¦x¦ < pi"
  shows "sin x = 0  x = 0"
proof
  show "x = 0" if "sin x = 0"
    using that assms by (auto simp: sin_zero_iff)
qed auto

lemma cos_zero_iff_int: "cos x = 0  (i. odd i  x = of_int i * (pi/2))"
proof -
  have 1: "n. odd n  i. odd i  real n = real_of_int i"
    by (metis even_of_nat_iff of_int_of_nat_eq)
  have 2: "n. odd n  i. odd i  - (real n * pi) = real_of_int i * pi"
    by (metis even_minus even_of_nat_iff mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
  have 3: "odd i;  n. even n  real_of_int i  - (real n)
          n. odd n  real_of_int i = real n" for i
    by (cases i rule: int_cases2) auto
  show ?thesis
    by (force simp: cos_zero_iff intro!: 1 2 3)
qed

lemma sin_zero_iff_int: "sin x = 0  (i. even i  x = of_int i * (pi/2))" (is "?lhs = ?rhs")
proof safe
  assume ?lhs
  then consider (plus) n where "even n" "x = real n * (pi/2)" | (minus) n where "even n"  "x = - (real n * (pi/2))"
    using sin_zero_iff by auto
  then show "n. even n  x = of_int n * (pi/2)"
  proof cases
    case plus
    then show ?rhs
      by (metis even_of_nat_iff of_int_of_nat_eq)
  next
    case minus
    then show ?thesis
      by (rule_tac x="- (int n)" in exI) simp
  qed
next
  fix i :: int
  assume "even i"
  then show "sin (of_int i * (pi/2)) = 0"
    by (cases i rule: int_cases2, simp_all add: sin_zero_iff)
qed

lemma sin_zero_iff_int2: "sin x = 0  (i::int. x = of_int i * pi)"
proof -
  have "sin x = 0  (i. even i  x = real_of_int i * (pi/2))"
    by (auto simp: sin_zero_iff_int)
  also have "... = (j. x = real_of_int (2*j) * (pi/2))"
    using dvd_triv_left by blast
  also have "... = (i::int. x = of_int i * pi)"
    by auto
  finally show ?thesis .
qed

lemma cos_zero_iff_int2:
  fixes x::real
  shows "cos x = 0  (n::int. x = n * pi +  pi/2)"
  using sin_zero_iff_int2[of "x-pi/2"] unfolding sin_cos_eq 
  by (auto simp add: algebra_simps)

lemma sin_npi_int [simp]: "sin (pi * of_int n) = 0"
  by (simp add: sin_zero_iff_int2)

lemma cos_monotone_0_pi:
  assumes "0  y" and "y < x" and "x  pi"
  shows "cos x < cos y"
proof -
  have "- (x - y) < 0" using assms by auto
  from MVT2[OF y < x DERIV_cos]
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
    by auto
  then have "0 < z" and "z < pi"
    using assms by auto
  then have "0 < sin z"
    using sin_gt_zero by auto
  then have "cos x - cos y < 0"
    unfolding cos_diff minus_mult_commute[symmetric]
    using - (x - y) < 0 by (rule mult_pos_neg2)
  then show ?thesis by auto
qed

lemma cos_monotone_0_pi_le:
  assumes "0  y" and "y  x" and "x  pi"
  shows "cos x  cos y"
proof (cases "y < x")
  case True
  show ?thesis
    using cos_monotone_0_pi[OF 0  y True x  pi] by auto
next
  case False
  then have "y = x" using y  x by auto
  then show ?thesis by auto
qed

lemma cos_monotone_minus_pi_0:
  assumes "- pi  y" and "y < x" and "x  0"
  shows "cos y < cos x"
proof -
  have "0  - x" and "- x < - y" and "- y  pi"
    using assms by auto
  from cos_monotone_0_pi[OF this] show ?thesis
    unfolding cos_minus .
qed

lemma cos_monotone_minus_pi_0':
  assumes "- pi  y" and "y  x" and "x  0"
  shows "cos y  cos x"
proof (cases "y < x")
  case True
  show ?thesis using cos_monotone_minus_pi_0[OF -pi  y True x  0]
    by auto
next
  case False
  then have "y = x" using y  x by auto
  then show ?thesis by auto
qed

lemma sin_monotone_2pi:
  assumes "- (pi/2)  y" and "y < x" and "x  pi/2"
  shows "sin y < sin x"
  unfolding sin_cos_eq
  using assms by (auto intro: cos_monotone_0_pi)

lemma sin_monotone_2pi_le:
  assumes "- (pi/2)  y" and "y  x" and "x  pi/2"
  shows "sin y  sin x"
  by (metis assms le_less sin_monotone_2pi)

lemma sin_x_le_x:
  fixes x :: real
  assumes "x  0"
  shows "sin x  x"
proof -
  let ?f = "λx. x - sin x"
  have "u. 0  u; u  x  y. (?f has_real_derivative 1 - cos u) (at u)"
    by (auto intro!: derivative_eq_intros simp: field_simps)
  then have "?f x  ?f 0"
    by (metis cos_le_one diff_ge_0_iff_ge DERIV_nonneg_imp_nondecreasing [OF assms])
  then show "sin x  x" by simp
qed

lemma sin_x_ge_neg_x:
  fixes x :: real
  assumes x: "x  0"
  shows "sin x  - x"
proof -
  let ?f = "λx. x + sin x"
  have §: "u. 0  u; u  x  y. (?f has_real_derivative 1 + cos u) (at u)"
    by (auto intro!: derivative_eq_intros simp: field_simps)
  have "?f x  ?f 0"
    by (rule DERIV_nonneg_imp_nondecreasing [OF assms]) (use § real_0_le_add_iff in force)
  then show "sin x  -x" by simp
qed

lemma abs_sin_x_le_abs_x: "¦sin x¦  ¦x¦"
  for x :: real
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
  by (auto simp: abs_real_def)


subsection ‹More Corollaries about Sine and Cosine›

lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi/2) = (-1) ^ n"
proof -
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
    by (auto simp: algebra_simps sin_add)
  then show ?thesis
    by (simp add: distrib_right add_divide_distrib add.commute mult.commute [of pi])
qed

lemma cos_2npi [simp]: "cos (2 * real n * pi) = 1"
  for n :: nat
  by (cases "even n") (simp_all add: cos_double mult.assoc)

lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
proof -
  have "cos (3/2*pi) = cos (pi + pi/2)"
    by simp
  also have "... = 0"
    by (subst cos_add, simp)
  finally show ?thesis .
qed

lemma sin_2npi [simp]: "sin (2 * real n * pi) = 0"
  for n :: nat
  by (auto simp: mult.assoc sin_double)

lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
proof -
  have "sin (3/2*pi) = sin (pi + pi/2)"
    by simp
  also have "... = -1"
    by (subst sin_add, simp)
  finally show ?thesis .
qed

lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
  by (simp only: cos_add sin_add of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)

lemma DERIV_cos_add [simp]: "DERIV (λx. cos (x + k)) xa :> - sin (xa + k)"
  by (auto intro!: derivative_eq_intros)

lemma sin_zero_norm_cos_one:
  fixes x :: "'a::{real_normed_field,banach}"
  assumes "sin x = 0"
  shows "norm (cos x) = 1"
  using sin_cos_squared_add [of x, unfolded assms]
  by (simp add: square_norm_one)

lemma sin_zero_abs_cos_one: "sin x = 0  ¦cos x¦ = (1::real)"
  using sin_zero_norm_cos_one by fastforce

lemma cos_one_sin_zero:
  fixes x :: "'a::{real_normed_field,banach}"
  assumes "cos x = 1"
  shows "sin x = 0"
  using sin_cos_squared_add [of x, unfolded assms]
  by simp

lemma sin_times_pi_eq_0: "sin (x * pi) = 0  x  "
  by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_of_int)

lemma cos_one_2pi: "cos x = 1  (n::nat. x = n * 2 * pi)  (n::nat. x = - (n * 2 * pi))"
  (is "?lhs = ?rhs")
proof
  assume ?lhs
  then have "sin x = 0"
    by (simp add: cos_one_sin_zero)
  then show ?rhs
  proof (simp only: sin_zero_iff, elim exE disjE conjE)
    fix n :: nat
    assume n: "even n" "x = real n * (pi/2)"
    then obtain m where m: "n = 2 * m"
      using dvdE by blast
    then have me: "even m" using ?lhs n
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
    show ?rhs
      using m me n
      by (auto simp: field_simps elim!: evenE)
  next
    fix n :: nat
    assume n: "even n" "x = - (real n * (pi/2))"
    then obtain m where m: "n = 2 * m"
      using dvdE by blast
    then have me: "even m" using ?lhs n
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
    show ?rhs
      using m me n
      by (auto simp: field_simps elim!: evenE)
  qed
next
  assume ?rhs
  then show "cos x = 1"
    by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
qed

lemma cos_one_2pi_int: "cos x = 1  (n::int. x = n * 2 * pi)" (is "?lhs = ?rhs")
proof
  assume "cos x = 1"
  then show ?rhs
    by (metis cos_one_2pi mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
next
  assume ?rhs
  then show "cos x = 1"
    by (clarsimp simp add: cos_one_2pi) (metis mult_minus_right of_int_of_nat)
qed

lemma cos_npi_int [simp]:
  fixes n::int shows "cos (pi * of_int n) = (if even n then 1 else -1)"
    by (auto simp: algebra_simps cos_one_2pi_int elim!: oddE evenE)

lemma sin_cos_sqrt: "0  sin x  sin x = sqrt (1 - (cos(x) ^ 2))"
  using sin_squared_eq real_sqrt_unique by fastforce

lemma sin_eq_0_pi: "- pi < x  x < pi  sin x = 0  x = 0"
  by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)

lemma cos_treble_cos: "cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x"
  for x :: "'a::{real_normed_field,banach}"
proof -
  have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
    by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
  have "cos(3 * x) = cos(2*x + x)"
    by simp
  also have " = 4 * cos x ^ 3 - 3 * cos x"
    unfolding cos_add cos_double sin_double
    by (simp add: * field_simps power2_eq_square power3_eq_cube)
  finally show ?thesis .
qed

lemma cos_45: "cos (pi/4) = sqrt 2 / 2"
proof -
  let ?c = "cos (pi/4)"
  let ?s = "sin (pi/4)"
  have nonneg: "0  ?c"
    by (simp add: cos_ge_zero)
  have "0 = cos (pi/4 + pi/4)"
    by simp
  also have "cos (pi/4 + pi/4) = ?c2 - ?s2"
    by (simp only: cos_add power2_eq_square)
  also have " = 2 * ?c2 - 1"
    by (simp add: sin_squared_eq)
  finally have "?c2 = (sqrt 2 / 2)2"
    by (simp add: power_divide)
  then show ?thesis
    using nonneg by (rule power2_eq_imp_eq) simp
qed

lemma cos_30: "cos (pi/6) = sqrt 3/2"
proof -
  let ?c = "cos (pi/6)"
  let ?s = "sin (pi/6)"
  have pos_c: "0 < ?c"
    by (rule cos_gt_zero) simp_all
  have "0 = cos (pi/6 + pi/6 + pi/6)"
    by simp
  also have " = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
    by (simp only: cos_add sin_add)
  also have " = ?c * (?c2 - 3 * ?s2)"
    by (simp add: algebra_simps power2_eq_square)
  finally have "?c2 = (sqrt 3/2)2"
    using pos_c by (simp add: sin_squared_eq power_divide)
  then show ?thesis
    using pos_c [THEN order_less_imp_le]
    by (rule power2_eq_imp_eq) simp
qed

lemma sin_45: "sin (pi/4) = sqrt 2 / 2"
  by (simp add: sin_cos_eq cos_45)

lemma sin_60: "sin (pi/3) = sqrt 3/2"
  by (simp add: sin_cos_eq cos_30)

lemma cos_60: "cos (pi/3) = 1/2"
proof -
  have "0  cos (pi/3)"
    by (rule cos_ge_zero) (use pi_half_ge_zero in linarith+)
  then show ?thesis
    by (simp add: cos_squared_eq sin_60 power_divide power2_eq_imp_eq)
qed

lemma sin_30: "sin (pi/6) = 1/2"
  by (simp add: sin_cos_eq cos_60)

lemma cos_120: "cos (2 * pi/3) = -1/2"
  and sin_120: "sin (2 * pi/3) = sqrt 3 / 2"
  using sin_double[of "pi/3"] cos_double[of "pi/3"]
  by (simp_all add: power2_eq_square sin_60 cos_60)

lemma cos_120': "cos (pi * 2 / 3) = -1/2"
  using cos_120 by (subst mult.commute)

lemma sin_120': "sin (pi * 2 / 3) = sqrt 3 / 2"
  using sin_120 by (subst mult.commute)

lemma cos_integer_2pi: "n    cos(2 * pi * n) = 1"
  by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute)

lemma sin_integer_2pi: "n    sin(2 * pi * n) = 0"
  by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)

lemma cos_int_2pin [simp]: "cos ((2 * pi) * of_int n) = 1"
  by (simp add: cos_one_2pi_int)

lemma sin_int_2pin [simp]: "sin ((2 * pi) * of_int n) = 0"
  by (metis Ints_of_int sin_integer_2pi)

lemma sin_cos_eq_iff: "sin y = sin x  cos y = cos x  (n::int. y = x + 2 * pi * n)" (is "?L=?R")
proof
  assume ?L
  then have "cos (y-x) = 1"
    using cos_add [of y "-x"] by simp
  then show ?R
    by (metis cos_one_2pi_int add.commute diff_add_cancel mult.assoc mult.commute) 
next
  assume ?R
  then show ?L
    by (auto simp: sin_add cos_add)
qed

lemma sincos_principal_value: "y. (- pi < y  y  pi)  (sin y = sin x  cos y = cos x)"
proof -
  define y where "y  pi - (2 * pi) * frac ((pi - x) / (2 * pi))"
  have "-pi < y"" y  pi"
    by (auto simp: field_simps frac_lt_1 y_def)
  moreover
  have "sin y = sin x" "cos y = cos x"
    by (simp_all add: y_def frac_def divide_simps sin_add cos_add mult_of_int_commute)
  ultimately
  show ?thesis by metis
qed


subsection ‹Tangent›

definition tan :: "'a  'a::{real_normed_field,banach}"
  where "tan = (λx. sin x / cos x)"

lemma tan_of_real: "of_real (tan x) = (tan (of_real x) :: 'a::{real_normed_field,banach})"
  by (simp add: tan_def sin_of_real cos_of_real)

lemma tan_in_Reals [simp]: "z    tan z  "
  for z :: "'a::{real_normed_field,banach}"
  by (simp add: tan_def)

lemma tan_zero [simp]: "tan 0 = 0"
  by (simp add: tan_def)

lemma tan_pi [simp]: "tan pi = 0"
  by (simp add: tan_def)

lemma tan_npi [simp]: "tan (real n * pi) = 0"
  for n :: nat
  by (simp add: tan_def)

lemma tan_pi_half [simp]: "tan (pi / 2) = 0"
  by (simp add: tan_def)

lemma tan_minus [simp]: "tan (- x) = - tan x"
  by (simp add: tan_def)

lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x"
  by (simp add: tan_def)

lemma lemma_tan_add1: "cos x  0  cos y  0  1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
  by (simp add: tan_def cos_add field_simps)

lemma add_tan_eq: "cos x  0  cos y  0  tan x + tan y = sin(x + y)/(cos x * cos y)"
  for x :: "'a::{real_normed_field,banach}"
  by (simp add: tan_def sin_add field_simps)

lemma tan_eq_0_cos_sin: "tan x = 0  cos x = 0  sin x = 0"
  by (auto simp: tan_def)

text ‹Note: half of these zeros would normally be regarded as undefined cases.›
lemma tan_eq_0_Ex:
  assumes "tan x = 0"
  obtains k::int where "x = (k/2) * pi"
  using assms
  by (metis cos_zero_iff_int mult.commute sin_zero_iff_int tan_eq_0_cos_sin times_divide_eq_left) 

lemma tan_add:
  "cos x  0  cos y  0  cos (x + y)  0  tan (x + y) = (tan x + tan y)/(1 - tan x * tan y)"
  for x :: "'a::{real_normed_field,banach}"
  by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)

lemma tan_double: "cos x  0  cos (2 * x)  0  tan (2 * x) = (2 * tan x) / (1 - (tan x)2)"
  for x :: "'a::{real_normed_field,banach}"
  using tan_add [of x x] by (simp add: power2_eq_square)

lemma tan_gt_zero: "0 < x  x < pi/2  0 < tan x"
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)

lemma tan_less_zero:
  assumes "- pi/2 < x" and "x < 0"
  shows "tan x < 0"
proof -
  have "0 < tan (- x)"
    using assms by (simp only: tan_gt_zero)
  then show ?thesis by simp
qed

lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
  for x :: "'a::{real_normed_field,banach,field}"
  unfolding tan_def sin_double cos_double sin_squared_eq
  by (simp add: power2_eq_square)

lemma tan_30: "tan (pi/6) = 1 / sqrt 3"
  unfolding tan_def by (simp add: sin_30 cos_30)

lemma tan_45: "tan (pi/4) = 1"
  unfolding tan_def by (simp add: sin_45 cos_45)

lemma tan_60: "tan (pi/3) = sqrt 3"
  unfolding tan_def by (simp add: sin_60 cos_60)

lemma DERIV_tan [simp]: "cos x  0  DERIV tan x :> inverse ((cos x)2)"
  for x :: "'a::{real_normed_field,banach}"
  unfolding tan_def
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)

declare DERIV_tan[THEN DERIV_chain2, derivative_intros]
  and DERIV_tan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]

lemmas has_derivative_tan[derivative_intros] = DERIV_tan[THEN DERIV_compose_FDERIV]

lemma isCont_tan: "cos x  0  isCont tan x"
  for x :: "'a::{real_normed_field,banach}"
  by (rule DERIV_tan [THEN DERIV_isCont])

lemma isCont_tan' [simp,continuous_intros]:
  fixes a :: "'a::{real_normed_field,banach}" and f :: "'a  'a"
  shows "isCont f a  cos (f a)  0  isCont (λx. tan (f x)) a"
  by (rule isCont_o2 [OF _ isCont_tan])

lemma tendsto_tan [tendsto_intros]:
  fixes f :: "'a  'a::{real_normed_field,banach}"
  shows "(f  a) F  cos a  0  ((λx. tan (f x))  tan a) F"
  by (rule isCont_tendsto_compose [OF isCont_tan])

lemma continuous_tan:
  fixes f :: "'a  'a::{real_normed_field,banach}"
  shows "continuous F f  cos (f (Lim F (λx. x)))  0  continuous F (λx. tan (f x))"
  unfolding continuous_def by (rule tendsto_tan)

lemma continuous_on_tan [continuous_intros]:
  fixes f :: "'a  'a::{real_normed_field,banach}"
  shows "continuous_on s f  (xs. cos (f x)  0)  continuous_on s (λx. tan (f x))"
  unfolding continuous_on_def by (auto intro: tendsto_tan)

lemma continuous_within_tan [continuous_intros]:
  fixes f :: "'a  'a::{real_normed_field,banach}"
  shows "continuous (at x within s) f 
    cos (f x)  0  continuous (at x within s) (λx. tan (f x))"
  unfolding continuous_within by (rule tendsto_tan)

lemma LIM_cos_div_sin: "(λx. cos(x)/sin(x)) pi/2 0"
  by (rule tendsto_cong_limit, (rule tendsto_intros)+, simp_all)

lemma lemma_tan_total: 
  assumes "0 < y" shows "x. 0 < x  x < pi/2  y < tan x"
proof -
  obtain s where "0 < s" 
    and s: "x. x  pi/2; norm (x - pi/2) < s  norm (cos x / sin x - 0) < inverse y"
    using LIM_D [OF LIM_cos_div_sin, of "inverse y"] that assms by force
  obtain e where e: "0 < e" "e < s" "e < pi/2"
    using 0 < s field_lbound_gt_zero pi_half_gt_zero by blast
  show ?thesis
  proof (intro exI conjI)
    have "0 < sin e" "0 < cos e"
      using e by (auto intro: cos_gt_zero sin_gt_zero2 simp: mult.commute)
    then 
    show "y < tan (pi/2 - e)"
      using s [of "pi/2 - e"] e assms
      by (simp add: tan_def sin_diff cos_diff) (simp add: field_simps split: if_split_asm)
  qed (use e in auto)
qed

lemma tan_total_pos: 
  assumes "0  y" shows "x. 0  x  x < pi/2  tan x = y"
proof (cases "y = 0")
  case True
  then show ?thesis
    using pi_half_gt_zero tan_zero by blast
next
  case False
  with assms have "y > 0"
    by linarith
  obtain x where x: "0 < x" "x < pi/2" "y < tan x"
    using lemma_tan_total 0 < y by blast
  have "u0. u  x  tan u = y"
  proof (intro IVT allI impI)
    show "isCont tan u" if "0  u  u  x" for u
    proof -
      have "cos u  0"
        using antisym_conv2 cos_gt_zero that x(2) by fastforce
      with assms show ?thesis
        by (auto intro!: DERIV_tan [THEN DERIV_isCont])
    qed
  qed (use assms x in auto)
  then show ?thesis
    using x(2) by auto
qed
    
lemma lemma_tan_total1: "x. -(pi/2) < x  x < (pi/2)  tan x = y"
proof (cases "0::real" y rule: le_cases)
  case le
  then show ?thesis
    by (meson less_le_trans minus_pi_half_less_zero tan_total_pos)
next
  case ge
  with tan_total_pos [of "-y"] obtain x where "0  x" "x < pi/2" "tan x = - y"
    by force
  then show ?thesis
    by (rule_tac x="-x" in exI) auto
qed

proposition tan_total: "∃! x. -(pi/2) < x  x < (pi/2)  tan x = y"
proof -
  have "u = v" if u: "- (pi/2) < u" "u < pi/2" and v: "- (pi/2) < v" "v < pi/2"
    and eq: "tan u = tan v" for u v
  proof (cases u v rule: linorder_cases)
    case less
    have "x. u  x  x  v  isCont tan x"
      by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(1) v(2))
    then have "continuous_on {u..v} tan"
      by (simp add: continuous_at_imp_continuous_on)
    moreover have "x. u < x  x < v  tan differentiable (at x)"
      by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(1) v(2))
    ultimately obtain z where "u < z" "z < v" "DERIV tan z :> 0"
      by (metis less Rolle eq)
    moreover have "cos z  0"
      by (metis (no_types) u < z z < v cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(1) v(2))
    ultimately show ?thesis
      using DERIV_unique [OF _ DERIV_tan] by fastforce
  next
    case greater
    have "x. v  x  x  u  isCont tan x"
      by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(2) v(1))
    then have "continuous_on {v..u} tan"
      by (simp add: continuous_at_imp_continuous_on)
    moreover have "x. v < x  x < u  tan differentiable (at x)"
      by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(2) v(1))
    ultimately obtain z where "v < z" "z < u" "DERIV tan z :> 0"
      by (metis greater Rolle eq)
    moreover have "cos z  0"
      by (metis v < z z < u cos_gt_zero_pi less_eq_real_def less_le_trans order_less_irrefl u(2) v(1))
    ultimately show ?thesis
      using DERIV_unique [OF _ DERIV_tan] by fastforce
  qed auto
  then have "∃!x. - (pi/2) < x  x < pi/2  tan x = y" 
    if x: "- (pi/2) < x" "x < pi/2" "tan x = y" for x
    using that by auto
  then show ?thesis
    using lemma_tan_total1 [where y = y]
    by auto
qed

lemma tan_monotone:
  assumes "- (pi/2) < y" and "y < x" and "x < pi/2"
  shows "tan y < tan x"
proof -
  have "DERIV tan x' :> inverse ((cos x')2)" if "y  x'" "x'  x" for x'
  proof -
    have "-(pi/2) < x'" and "x' < pi/2"
      using that assms by auto
    with cos_gt_zero_pi have "cos x'  0" by force
    then show "DERIV tan x' :> inverse ((cos x')2)"
      by (rule DERIV_tan)
  qed
  from MVT2[OF y < x this]
  obtain z where "y < z" and "z < x"
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)2)" by auto
  then have "- (pi/2) < z" and "z < pi/2"
    using assms by auto
  then have "0 < cos z"
    using cos_gt_zero_pi by auto
  then have inv_pos: "0 < inverse ((cos z)2)"
    by auto
  have "0 < x - y" using y < x by auto
  with inv_pos have "0 < tan x - tan y"
    unfolding tan_diff by auto
  then show ?thesis by auto
qed

lemma tan_monotone':
  assumes "- (pi/2) < y"
    and "y < pi/2"
    and "- (pi/2) < x"
    and "x < pi/2"
  shows "y < x  tan y < tan x"
proof
  assume "y < x"
  then show "tan y < tan x"
    using tan_monotone and - (pi/2) < y and x < pi/2 by auto
next
  assume "tan y < tan x"
  show "y < x"
  proof (rule ccontr)
    assume "¬ ?thesis"
    then have "x  y" by auto
    then have "tan x  tan y"
    proof (cases "x = y")
      case True
      then show ?thesis by auto
    next
      case False
      then have "x < y" using x  y by auto
      from tan_monotone[OF - (pi/2) < x this y < pi/2] show ?thesis
        by auto
    qed
    then show False
      using tan y < tan x by auto
  qed
qed

lemma tan_inverse: "1 / (tan y) = tan (pi/2 - y)"
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto

lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
  by (simp add: tan_def)

lemma tan_periodic_nat[simp]: "tan (x + real n * pi) = tan x"
proof (induct n arbitrary: x)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
    unfolding Suc_eq_plus1 of_nat_add  distrib_right by auto
  show ?case
    unfolding split_pi_off using Suc by auto
qed

lemma tan_periodic_int[simp]: "tan (x + of_int i * pi) = tan x"
proof (cases "0  i")
  case False
  then have i_nat: "of_int i = - of_int (nat (- i))" by auto
  then show ?thesis
    by (smt (verit, best) mult_minus_left of_int_of_nat_eq tan_periodic_nat)
qed (use zero_le_imp_eq_int in fastforce)

lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
  using tan_periodic_int[of _ "numeral n" ] by simp

lemma tan_minus_45 [simp]: "tan (-(pi/4)) = -1"
  unfolding tan_def by (simp add: sin_45 cos_45)

lemma tan_diff:
  "cos x  0  cos y  0  cos (x - y)  0  tan (x - y) = (tan x - tan y)/(1 + tan x * tan y)"
  for x :: "'a::{real_normed_field,banach}"
  using tan_add [of x "-y"] by simp

lemma tan_pos_pi2_le: "0  x  x < pi/2  0  tan x"
  using less_eq_real_def tan_gt_zero by auto

lemma cos_tan: "¦x¦ < pi/2  cos x = 1 / sqrt (1 + tan x ^ 2)"
  using cos_gt_zero_pi [of x]
  by (simp add: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)

lemma cos_tan_half: "cos x 0   cos (2*x) = (1 - (tan x)^2) / (1 + (tan x)^2)"
  unfolding cos_double tan_def by (auto simp add:field_simps )

lemma sin_tan: "¦x¦ < pi/2  sin x = tan x / sqrt (1 + tan x ^ 2)"
  using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
  by (force simp: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)

lemma sin_tan_half: "sin (2*x) = 2 * tan x / (1 + (tan x)^2)"
  unfolding sin_double tan_def
  by (cases "cos x=0") (auto simp add:field_simps power2_eq_square)

lemma tan_mono_le: "-(pi/2) < x  x  y  y < pi/2  tan x  tan y"
  using less_eq_real_def tan_monotone by auto

lemma tan_mono_lt_eq:
  "-(pi/2) < x  x < pi/2  -(pi/2) < y  y < pi/2  tan x < tan y  x < y"
  using tan_monotone' by blast

lemma tan_mono_le_eq:
  "-(pi/2) < x  x < pi/2  -(pi/2) < y  y < pi/2  tan x  tan y  x  y"
  by (meson tan_mono_le not_le tan_monotone)

lemma tan_bound_pi2: "¦x¦ < pi/4  ¦tan x¦ < 1"
  using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
  by (auto simp: abs_if split: if_split_asm)

lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
  by (simp add: tan_def sin_diff cos_diff)


subsection ‹Cotangent›

definition cot :: "'a  'a::{real_normed_field,banach}"
  where "cot = (λx. cos x / sin x)"

lemma cot_of_real: "of_real (cot x) = (cot (of_real x) :: 'a::{real_normed_field,banach})"
  by (simp add: cot_def sin_of_real cos_of_real)

lemma cot_in_Reals [simp]: "z    cot z  "
  for z :: "'a::{real_normed_field,banach}"
  by (simp add: cot_def)

lemma cot_zero [simp]: "cot 0 = 0"
  by (simp add: cot_def)

lemma cot_pi [simp]: "cot pi = 0"
  by (simp add: cot_def)

lemma cot_npi [simp]: "cot (real n * pi) = 0"
  for n :: nat
  by (simp add: cot_def)

lemma cot_minus [simp]: "cot (- x) = - cot x"
  by (simp add: cot_def)

lemma cot_periodic [simp]: "cot (x + 2 * pi) = cot x"
  by (simp add: cot_def)

lemma cot_altdef: "cot x = inverse (tan x)"
  by (simp add: cot_def tan_def)

lemma tan_altdef: "tan x = inverse (cot x)"
  by (simp add: cot_def tan_def)

lemma tan_cot': "tan (pi/2 - x) = cot x"
  by (simp add: tan_cot cot_altdef)

lemma cot_gt_zero: "0 < x  x < pi/2  0 < cot x"
  by (simp add: cot_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)

lemma cot_less_zero:
  assumes lb: "- pi/2 < x" and "x < 0"
  shows "cot x < 0"
  by (smt (verit) assms cot_gt_zero cot_minus divide_minus_left)

lemma DERIV_cot [simp]: "sin x  0  DERIV cot x :> -inverse ((sin x)2)"
  for x :: "'a::{real_normed_field,banach}"
  unfolding cot_def using cos_squared_eq[of x]
  by (auto intro!: derivative_eq_intros) (simp add: divide_inverse power2_eq_square)

lemma isCont_cot: "sin x  0  isCont cot x"
  for x :: "'a::{real_normed_field,banach}"
  by (rule DERIV_cot [THEN DERIV_isCont])

lemma isCont_cot' [simp,continuous_intros]:
  "isCont f a  sin (f a)  0  isCont (λx. cot (f x)) a"
  for a :: "'a::{real_normed_field,banach}" and f :: "'a  'a"
  by (rule isCont_o2 [OF _ isCont_cot])

lemma tendsto_cot [tendsto_intros]: "(f  a) F  sin a  0  ((λx. cot (f x))  cot a) F"
  for f :: "'a  'a::{real_normed_field,banach}"
  by (rule isCont_tendsto_compose [OF isCont_cot])

lemma continuous_cot:
  "continuous F f  sin (f (Lim F (λx. x)))  0  continuous F (λx. cot (f x))"
  for f :: "'a  'a::{real_normed_field,banach}"
  unfolding continuous_def by (rule tendsto_cot)

lemma continuous_on_cot [continuous_intros]:
  fixes f :: "'a  'a::{real_normed_field,banach}"
  shows "continuous_on s f  (xs. sin (f x)  0)  continuous_on s (λx. cot (f x))"
  unfolding continuous_on_def by (auto intro: tendsto_cot)

lemma continuous_within_cot [continuous_intros]:
  fixes f :: "'a  'a::{real_normed_field,banach}"
  shows "continuous (at x within s) f  sin (f x)  0  continuous (at x within s) (λx. cot (f x))"
  unfolding continuous_within by (rule tendsto_cot)


subsection ‹Inverse Trigonometric Functions›

definition arcsin :: "real  real"
  where "arcsin y = (THE x. -(pi/2)  x  x  pi/2  sin x = y)"

definition arccos :: "real  real"
  where "arccos y = (THE x. 0  x  x  pi  cos x = y)"

definition arctan :: "real  real"
  where "arctan y = (THE x. -(pi/2) < x  x < pi/2  tan x = y)"

lemma arcsin: "- 1  y  y  1  - (pi/2)  arcsin y  arcsin y  pi/2  sin (arcsin y) = y"
  unfolding arcsin_def by (rule theI' [OF sin_total])

lemma arcsin_pi: "- 1  y  y  1  - (pi/2)  arcsin y  arcsin y  pi  sin (arcsin y) = y"
  by (drule (1) arcsin) (force intro: order_trans)

lemma sin_arcsin [simp]: "- 1  y  y  1  sin (arcsin y) = y"
  by (blast dest: arcsin)

lemma arcsin_bounded: "- 1  y  y  1  - (pi/2)  arcsin y  arcsin y  pi/2"
  by (blast dest: arcsin)

lemma arcsin_lbound: "- 1  y  y  1  - (pi/2)  arcsin y"
  by (blast dest: arcsin)

lemma arcsin_ubound: "- 1  y  y  1  arcsin y  pi/2"
  by (blast dest: arcsin)

lemma arcsin_lt_bounded:
  assumes "- 1 < y" "y < 1"
  shows  "- (pi/2) < arcsin y  arcsin y < pi/2"
proof -
  have "arcsin y  pi/2"
    by (metis arcsin assms not_less not_less_iff_gr_or_eq sin_pi_half)
  moreover have "arcsin y  - pi/2"
    by (metis arcsin assms minus_divide_left not_less not_less_iff_gr_or_eq sin_minus sin_pi_half)
  ultimately show ?thesis
    using arcsin_bounded [of y] assms by auto
qed

lemma arcsin_sin: "- (pi/2)  x  x  pi/2  arcsin (sin x) = x"
  unfolding arcsin_def
  using the1_equality [OF sin_total]  by simp

lemma arcsin_unique:
  assumes "-pi/2  x" and "x  pi/2" and "sin x = y" shows "arcsin y = x"
  using arcsin_sin[of x] assms by force

lemma arcsin_0 [simp]: "arcsin 0 = 0"
  using arcsin_sin [of 0] by simp

lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
  using arcsin_sin [of "pi/2"] by simp

lemma arcsin_minus_1 [simp]: "arcsin (- 1) = - (pi/2)"
  using arcsin_sin [of "- pi/2"] by simp

lemma arcsin_minus: "- 1  x  x  1  arcsin (- x) = - arcsin x"
  by (metis (no_types, opaque_lifting) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)

lemma arcsin_one_half [simp]: "arcsin (1/2) = pi / 6"
  and arcsin_minus_one_half [simp]: "arcsin (-(1/2)) = -pi / 6"
  by (intro arcsin_unique; simp add: sin_30 field_simps)+
  
lemma arcsin_one_over_sqrt_2: "arcsin (1 / sqrt 2) = pi / 4"
  by (rule arcsin_unique) (auto simp: sin_45 field_simps)

lemma arcsin_eq_iff: "¦x¦  1  ¦y¦  1  arcsin x = arcsin y  x = y"
  by (metis abs_le_iff arcsin minus_le_iff)

lemma cos_arcsin_nonzero: "- 1 < x  x < 1  cos (arcsin x)  0"
  using arcsin_lt_bounded cos_gt_zero_pi by force

lemma arccos: "- 1  y  y  1  0  arccos y  arccos y  pi  cos (arccos y) = y"
  unfolding arccos_def by (rule theI' [OF cos_total])

lemma cos_arccos [simp]: "- 1  y  y  1  cos (arccos y) = y"
  by (blast dest: arccos)

lemma arccos_bounded: "- 1  y  y  1  0  arccos y  arccos y  pi"
  by (blast dest: arccos)

lemma arccos_lbound: "- 1  y  y  1  0  arccos y"
  by (blast dest: arccos)

lemma arccos_ubound: "- 1  y  y  1  arccos y  pi"
  by (blast dest: arccos)

lemma arccos_lt_bounded: 
  assumes "- 1 < y" "y < 1"
  shows  "0 < arccos y  arccos y < pi"
proof -
  have "arccos y  0"
    by (metis (no_types) arccos assms(1) assms(2) cos_zero less_eq_real_def less_irrefl)
  moreover have "arccos y  -pi"
    by (metis arccos assms(1) assms(2) cos_minus cos_pi not_less not_less_iff_gr_or_eq)
  ultimately show ?thesis
    using arccos_bounded [of y] assms
    by (metis arccos cos_pi not_less not_less_iff_gr_or_eq)
qed

lemma arccos_cos: "0  x  x  pi  arccos (cos x) = x"
  by (auto simp: arccos_def intro!: the1_equality cos_total)

lemma arccos_cos2: "x  0  - pi  x  arccos (cos x) = -x"
  by (auto simp: arccos_def intro!: the1_equality cos_total)

lemma arccos_unique:
  assumes "0  x" and "x  pi" and "cos x = y" shows "arccos y = x"
  using arccos_cos assms by blast

lemma cos_arcsin:
  assumes "- 1  x" "x  1"
  shows "cos (arcsin x) = sqrt (1 - x2)"
proof (rule power2_eq_imp_eq)
  show "(cos (arcsin x))2 = (sqrt (1 - x2))2"
    by (simp add: square_le_1 assms cos_squared_eq)
  show "0  cos (arcsin x)"
    using arcsin assms cos_ge_zero by blast
  show "0  sqrt (1 - x2)"
    by (simp add: square_le_1 assms)
qed

lemma sin_arccos:
  assumes "- 1  x" "x  1"
  shows "sin (arccos x) = sqrt (1 - x2)"
proof (rule power2_eq_imp_eq)
  show "(sin (arccos x))2 = (sqrt (1 - x2))2"
    by (simp add: square_le_1 assms sin_squared_eq)
  show "0  sin (arccos x)"
    by (simp add: arccos_bounded assms sin_ge_zero)
  show "0  sqrt (1 - x2)"
    by (simp add: square_le_1 assms)
qed

lemma arccos_0 [simp]: "arccos 0 = pi/2"
  using arccos_cos pi_half_ge_zero by fastforce

lemma arccos_1 [simp]: "arccos 1 = 0"
  using arccos_cos by force

lemma arccos_minus_1 [simp]: "arccos (- 1) = pi"
  by (metis arccos_cos cos_pi order_refl pi_ge_zero)

lemma arccos_minus: "-1  x  x  1  arccos (- x) = pi - arccos x"
  by (smt (verit, ccfv_threshold) arccos arccos_cos cos_minus cos_minus_pi)

lemma arccos_one_half [simp]: "arccos (1/2) = pi / 3"
  and arccos_minus_one_half [simp]: "arccos (-(1/2)) = 2 * pi / 3"
  by (intro arccos_unique; simp add: cos_60 cos_120)+

lemma arccos_one_over_sqrt_2: "arccos (1 / sqrt 2) = pi / 4"
  by (rule arccos_unique) (auto simp: cos_45 field_simps)

corollary arccos_minus_abs:
  assumes "¦x¦  1"
  shows "arccos (- x) = pi - arccos x"
using assms by (simp add: arccos_minus)

lemma sin_arccos_nonzero: "- 1 < x  x < 1  sin (arccos x)  0"
  using arccos_lt_bounded sin_gt_zero by force

lemma arctan: "- (pi/2) < arctan y  arctan y < pi/2  tan (arctan y) = y"
  unfolding arctan_def by (rule theI' [OF tan_total])

lemma tan_arctan: "tan (arctan y) = y"
  by (simp add: arctan)

lemma arctan_bounded: "- (pi/2) < arctan y  arctan y < pi/2"
  by (auto simp only: arctan)

lemma arctan_lbound: "- (pi/2) < arctan y"
  by (simp add: arctan)

lemma arctan_ubound: "arctan y < pi/2"
  by (auto simp only: arctan)

lemma arctan_unique:
  assumes "-(pi/2) < x"
    and "x < pi/2"
    and "tan x = y"
  shows "arctan y = x"
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)

lemma arctan_tan: "-(pi/2) < x  x < pi/2  arctan (tan x) = x"
  by (rule arctan_unique) simp_all

lemma arctan_zero_zero [simp]: "arctan 0 = 0"
  by (rule arctan_unique) simp_all

lemma arctan_minus: "arctan (- x) = - arctan x"
  using arctan [of "x"] by (auto simp: arctan_unique)

lemma cos_arctan_not_zero [simp]: "cos (arctan x)  0"
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)

lemma tan_eq_arctan_Ex:
  shows "tan x = y  (k::int. x = arctan y + k*pi  (x = pi/2 + k*pi  y=0))"
proof
  assume lhs: "tan x = y"
  obtain k::int where k:"-pi/2 < x-k*pi" "x-k*pi  pi/2"
  proof 
    define k where "k  ceiling (x/pi - 1/2)"
    show "- pi / 2 < x - real_of_int k * pi" 
      using ceiling_divide_lower [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
    show  "x-k*pi  pi/2"
      using ceiling_divide_upper [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
  qed
  have "x = arctan y + of_int k * pi" when "x  pi/2 + k*pi"
  proof -
    have "tan (x - k * pi) = y" using lhs tan_periodic_int[of _ "-k"] by auto
    then have "arctan y = x - real_of_int k * pi"
      by (smt (verit) arctan_tan lhs divide_minus_left k mult_minus_left of_int_minus tan_periodic_int that)
    then show ?thesis by auto
  qed
  then show "k. x = arctan y + of_int k * pi  (x = pi/2 + k*pi  y=0)"
    using lhs k by force
qed (auto simp: arctan)

lemma arctan_tan_eq_abs_pi:
  assumes "cos θ  0"
  obtains k where "arctan (tan θ) = θ - of_int k * pi"
  by (metis add.commute assms cos_zero_iff_int2 eq_diff_eq tan_eq_arctan_Ex)

lemma tan_eq:
  assumes "tan x = tan y" "tan x  0"
  obtains k::int where "x = y + k * pi"
proof -
  obtain k0 where k0: "x = arctan (tan y) + real_of_int k0 * pi"
    using assms tan_eq_arctan_Ex[of x "tan y"] by auto
  obtain k1 where k1: "arctan (tan y) = y - of_int k1 * pi"
    using arctan_tan_eq_abs_pi assms tan_eq_0_cos_sin by auto
  have "x = y + (k0-k1)*pi"
    using k0 k1 by (auto simp: algebra_simps)
  with that show ?thesis
    by blast
qed

lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x2)"
proof (rule power2_eq_imp_eq)
  have "0 < 1 + x2" by (simp add: add_pos_nonneg)
  show "0  1 / sqrt (1 + x2)" by simp
  show "0  cos (arctan x)"
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
  have "(cos (arctan x))2 * (1 + (tan (arctan x))2) = 1"
    unfolding tan_def by (simp add: distrib_left power_divide)
  then show "(cos (arctan x))2 = (1 / sqrt (1 + x2))2"
    using 0 < 1 + x2 by (simp add: arctan power_divide eq_divide_eq)
qed

lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x2)"
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
  using tan_arctan [of x] unfolding tan_def cos_arctan
  by (simp add: eq_divide_eq)

lemma tan_sec: "cos x  0  1 + (tan x)2 = (inverse (cos x))2"
  for x :: "'a::{real_normed_field,banach,field}"
  by (simp add: add_divide_eq_iff inverse_eq_divide power2_eq_square tan_def)

lemma arctan_less_iff: "arctan x < arctan y  x < y"
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)

lemma arctan_le_iff: "arctan x  arctan y  x  y"
  by (simp only: not_less [symmetric] arctan_less_iff)

lemma arctan_eq_iff: "arctan x = arctan y  x = y"
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)

lemma zero_less_arctan_iff [simp]: "0 < arctan x  0 < x"
  using arctan_less_iff [of 0 x] by simp

lemma arctan_less_zero_iff [simp]: "arctan x < 0  x < 0"
  using arctan_less_iff [of x 0] by simp

lemma zero_le_arctan_iff [simp]: "0  arctan x  0  x"
  using arctan_le_iff [of 0 x] by simp

lemma arctan_le_zero_iff [simp]: "arctan x  0  x  0"
  using arctan_le_iff [of x 0] by simp

lemma arctan_eq_zero_iff [simp]: "arctan x = 0  x = 0"
  using arctan_eq_iff [of x 0] by simp

lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
proof -
  have "continuous_on (sin ` {- pi/2 .. pi/2}) arcsin"
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
  also have "sin ` {- pi/2 .. pi/2} = {-1 .. 1}"
  proof safe
    fix x :: real
    assume "x  {-1..1}"
    then show "x  sin ` {- pi/2..pi/2}"
      using arcsin_lbound arcsin_ubound
      by (intro image_eqI[where x="arcsin x"]) auto
  qed simp
  finally show ?thesis .
qed

lemma continuous_on_arcsin [continuous_intros]:
  "continuous_on s f  (xs. -1  f x  f x  1)  continuous_on s (λx. arcsin (f x))"
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
  by (auto simp: comp_def subset_eq)

lemma isCont_arcsin: "-1 < x  x < 1  isCont arcsin x"
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
  by (auto simp: continuous_on_eq_continuous_at subset_eq)

lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
proof -
  have "continuous_on (cos ` {0 .. pi}) arccos"
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
  also have "cos ` {0 .. pi} = {-1 .. 1}"
  proof safe
    fix x :: real
    assume "x  {-1..1}"
    then show "x  cos ` {0..pi}"
      using arccos_lbound arccos_ubound
      by (intro image_eqI[where x="arccos x"]) auto
  qed simp
  finally show ?thesis .
qed

lemma continuous_on_arccos [continuous_intros]:
  "continuous_on s f  (xs. -1  f x  f x  1)  continuous_on s (λx. arccos (f x))"
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
  by (auto simp: comp_def subset_eq)

lemma isCont_arccos: "-1 < x  x < 1  isCont arccos x"
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
  by (auto simp: continuous_on_eq_continuous_at subset_eq)

lemma isCont_arctan: "isCont arctan x"
proof -
  obtain u where u: "- (pi/2) < u" "u < arctan x"
    by (meson arctan arctan_less_iff linordered_field_no_lb)
  obtain v where v: "arctan x < v" "v < pi/2"
    by (meson arctan_less_iff arctan_ubound linordered_field_no_ub)
  have "isCont arctan (tan (arctan x))"
  proof (rule isCont_inverse_function2 [of u "arctan x" v])
    show "z. u  z; z  v  arctan (tan z) = z"
      using arctan_unique u(1) v(2) by auto
    then show "z. u  z; z  v  isCont tan z"
      by (metis arctan cos_gt_zero_pi isCont_tan less_irrefl)
  qed (use u v in auto)
  then show ?thesis
    by (simp add: arctan)
qed

lemma tendsto_arctan [tendsto_intros]: "(f  x) F  ((λx. arctan (f x))  arctan x) F"
  by (rule isCont_tendsto_compose [OF isCont_arctan])

lemma continuous_arctan [continuous_intros]: "continuous F f  continuous F (λx. arctan (f x))"
  unfolding continuous_def by (rule tendsto_arctan)

lemma continuous_on_arctan [continuous_intros]:
  "continuous_on s f  continuous_on s (λx. arctan (f x))"
  unfolding continuous_on_def by (auto intro: tendsto_arctan)

lemma DERIV_arcsin:
  assumes "- 1 < x" "x < 1"
  shows "DERIV arcsin x :> inverse (sqrt (1 - x2))"
proof (rule DERIV_inverse_function)
  show "(sin has_real_derivative sqrt (1 - x2)) (at (arcsin x))"
    by (rule derivative_eq_intros | use assms cos_arcsin in force)+
  show "sqrt (1 - x2)  0"
    using abs_square_eq_1 assms by force
qed (use assms isCont_arcsin in auto)

lemma DERIV_arccos:
  assumes "- 1 < x" "x < 1"
  shows "DERIV arccos x :> inverse (- sqrt (1 - x2))"
proof (rule DERIV_inverse_function)
  show "(cos has_real_derivative - sqrt (1 - x2)) (at (arccos x))"
    by (rule derivative_eq_intros | use assms sin_arccos in force)+
  show "- sqrt (1 - x2)  0"
    using abs_square_eq_1 assms by force
qed (use assms isCont_arccos in auto)

lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x2)"
proof (rule DERIV_inverse_function)
  have "inverse ((cos (arctan x))2) = 1 + x2"
    by (metis arctan cos_arctan_not_zero power_inverse tan_sec)
  then show "(tan has_real_derivative 1 + x2) (at (arctan x))"
    by (auto intro!: derivative_eq_intros)
  show "y. x - 1 < y; y < x + 1  tan (arctan y) = y"
    using tan_arctan by blast
  show "1 + x2  0"
    by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
qed (use isCont_arctan in auto)

declare
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
  DERIV_arcsin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
  DERIV_arccos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
  DERIV_arctan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]

lemmas has_derivative_arctan[derivative_intros] = DERIV_arctan[THEN DERIV_compose_FDERIV]
  and has_derivative_arccos[derivative_intros] = DERIV_arccos[THEN DERIV_compose_FDERIV]
  and has_derivative_arcsin[derivative_intros] = DERIV_arcsin[THEN DERIV_compose_FDERIV]

lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- (pi/2)))"
  by (rule filterlim_at_bot_at_right[where Q="λx. - pi/2 < x  x < pi/2" and P="λx. True" and g=arctan])
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
           intro!: tan_monotone exI[of _ "pi/2"])

lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
  by (rule filterlim_at_top_at_left[where Q="λx. - pi/2 < x  x < pi/2" and P="λx. True" and g=arctan])
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
           intro!: tan_monotone exI[of _ "pi/2"])

lemma tendsto_arctan_at_top: "(arctan  (pi/2)) at_top"
proof (rule tendstoI)
  fix e :: real
  assume "0 < e"
  define y where "y = pi/2 - min (pi/2) e"
  then have y: "0  y" "y < pi/2" "pi/2  e + y"
    using 0 < e by auto
  show "eventually (λx. dist (arctan x) (pi/2) < e) at_top"
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
    fix x
    assume "tan y < x"
    then have "arctan (tan y) < arctan x"
      by (simp add: arctan_less_iff)
    with y have "y < arctan x"
      by (subst (asm) arctan_tan) simp_all
    with arctan_ubound[of x, arith] y 0 < e
    show "dist (arctan x) (pi/2) < e"
      by (simp add: dist_real_def)
  qed
qed

lemma tendsto_arctan_at_bot: "(arctan  - (pi/2)) at_bot"
  unfolding filterlim_at_bot_mirror arctan_minus
  by (intro tendsto_minus tendsto_arctan_at_top)

lemma sin_multiple_reduce:
  "sin (x * numeral n :: 'a :: {real_normed_field, banach}) = 
     sin x * cos (x * of_nat (pred_numeral n)) + cos x * sin (x * of_nat (pred_numeral n))"
proof -
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
  also have "sin (x * ) = sin (x * of_nat (pred_numeral n) + x)"
    unfolding of_nat_Suc by (simp add: ring_distribs)
  finally show ?thesis
    by (simp add: sin_add)
qed

lemma cos_multiple_reduce:
  "cos (x * numeral n :: 'a :: {real_normed_field, banach}) =
     cos (x * of_nat (pred_numeral n)) * cos x - sin (x * of_nat (pred_numeral n)) * sin x"
proof -
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
  also have "cos (x * ) = cos (x * of_nat (pred_numeral n) + x)"
    unfolding of_nat_Suc by (simp add: ring_distribs)
  finally show ?thesis
    by (simp add: cos_add)
qed

lemma arccos_eq_pi_iff: "x  {-1..1}  arccos x = pi  x = -1"
  by (metis arccos arccos_minus_1 atLeastAtMost_iff cos_pi)

lemma arccos_eq_0_iff: "x  {-1..1}  arccos x = 0  x = 1"
  by (metis arccos arccos_1 atLeastAtMost_iff cos_zero)

subsection ‹Prove Totality of the Trigonometric Functions›

lemma cos_arccos_abs: "¦y¦  1  cos (arccos y) = y"
  by (simp add: abs_le_iff)

lemma sin_arccos_abs: "¦y¦  1  sin (arccos y) = sqrt (1 - y2)"
  by (simp add: sin_arccos abs_le_iff)

lemma sin_mono_less_eq:
  "- (pi/2)  x  x  pi/2  - (pi/2)  y  y  pi/2  sin x < sin y  x < y"
  by (metis not_less_iff_gr_or_eq sin_monotone_2pi)

lemma sin_mono_le_eq:
  "- (pi/2)  x  x  pi/2  - (pi/2)  y  y  pi/2  sin x  sin y  x  y"
  by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)

lemma sin_inj_pi:
  "- (pi/2)  x  x  pi/2  - (pi/2)  y  y  pi/2  sin x = sin y  x = y"
  by (metis arcsin_sin)

lemma arcsin_le_iff:
  assumes "x  -1" "x  1" "y  -pi/2" "y  pi/2"
  shows   "arcsin x  y  x  sin y"
proof -
  have "arcsin x  y  sin (arcsin x)  sin y"
    using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
  also from assms have "sin (arcsin x) = x" by simp
  finally show ?thesis .
qed

lemma le_arcsin_iff:
  assumes "x  -1" "x  1" "y  -pi/2" "y  pi/2"
  shows   "arcsin x  y  x  sin y"
proof -
  have "arcsin x  y  sin (arcsin x)  sin y"
    using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
  also from assms have "sin (arcsin x) = x" by simp
  finally show ?thesis .
qed

lemma cos_mono_less_eq: "0  x  x  pi  0  y  y  pi  cos x < cos y  y < x"
  by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)

lemma cos_mono_le_eq: "0  x  x  pi  0  y  y  pi  cos x  cos y  y  x"
  by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)

lemma cos_inj_pi: "0  x  x  pi  0  y  y  pi  cos x = cos y  x = y"
  by (metis arccos_cos)

lemma arccos_le_pi2: "0  y; y  1  arccos y  pi/2"
  by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
      cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)

lemma sincos_total_pi_half:
  assumes "0  x" "0  y" "x2 + y2 = 1"
  shows "t. 0  t  t  pi/2  x = cos t  y = sin t"
proof -
  have x1: "x  1"
    using assms by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2)
  with assms have *: "0  arccos x" "cos (arccos x) = x"
    by (auto simp: arccos)
  from assms have "y = sqrt (1 - x2)"
    by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
  with x1 * assms arccos_le_pi2 [of x] show ?thesis
    by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
qed

lemma sincos_total_pi:
  assumes "0  y" "x2 + y2 = 1"
  shows "t. 0  t  t  pi  x = cos t  y = sin t"
proof (cases rule: le_cases [of 0 x])
  case le
  from sincos_total_pi_half [OF le] show ?thesis
    by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
next
  case ge
  then have "0  -x"
    by simp
  then obtain t where t: "t0" "t  pi/2" "-x = cos t" "y = sin t"
    using sincos_total_pi_half assms
    by auto (metis 0  - x power2_minus)
  show ?thesis
    by (rule exI [where x = "pi -t"]) (use t in auto)
qed

lemma sincos_total_2pi_le:
  assumes "x2 + y2 = 1"
  shows "t. 0  t  t  2 * pi  x = cos t  y = sin t"
proof (cases rule: le_cases [of 0 y])
  case le
  from sincos_total_pi [OF le] show ?thesis
    by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
next
  case ge
  then have "0  -y"
    by simp
  then obtain t where t: "t0" "t  pi" "x = cos t" "-y = sin t"
    using sincos_total_pi assms
    by auto (metis 0  - y power2_minus)
  show ?thesis
    by (rule exI [where x = "2 * pi - t"]) (use t in auto)
qed

lemma sincos_total_2pi:
  assumes "x2 + y2 = 1"
  obtains t where "0  t" "t < 2*pi" "x = cos t" "y = sin t"
proof -
  from sincos_total_2pi_le [OF assms]
  obtain t where t: "0  t" "t  2*pi" "x = cos t" "y = sin t"
    by blast
  show ?thesis
    by (cases "t = 2 * pi") (use t that in force+)
qed

lemma arcsin_less_mono: "¦x¦  1  ¦y¦  1  arcsin x < arcsin y  x < y"
  by (rule trans [OF sin_mono_less_eq [symmetric]]) (use arcsin_ubound arcsin_lbound in auto)

lemma arcsin_le_mono: "¦x¦  1  ¦y¦  1  arcsin x  arcsin y  x  y"
  using arcsin_less_mono not_le by blast

lemma arcsin_less_arcsin: "- 1  x  x < y  y  1  arcsin x < arcsin y"
  using arcsin_less_mono by auto

lemma arcsin_le_arcsin: "- 1  x  x  y  y  1  arcsin x  arcsin y"
  using arcsin_le_mono by auto

lemma arcsin_nonneg: "x  {0..1}  arcsin x  0"
  using arcsin_le_arcsin[of 0 x] by simp
  
lemma arccos_less_mono: "¦x¦  1  ¦y¦  1  arccos x < arccos y  y < x"
  by (rule trans [OF cos_mono_less_eq [symmetric]]) (use arccos_ubound arccos_lbound in auto)

lemma arccos_le_mono: "¦x¦  1  ¦y¦  1  arccos x  arccos y  y  x"
  using arccos_less_mono [of y x] by (simp add: not_le [symmetric])

lemma arccos_less_arccos: "- 1  x  x < y  y  1  arccos y < arccos x"
  using arccos_less_mono by auto

lemma arccos_le_arccos: "- 1  x  x  y  y  1  arccos y  arccos x"
  using arccos_le_mono by auto

lemma arccos_eq_iff: "¦x¦  1  ¦y¦  1  arccos x = arccos y  x = y"
  using cos_arccos_abs by fastforce


lemma arccos_cos_eq_abs:
  assumes "¦θ¦  pi"
  shows "arccos (cos θ) = ¦θ¦"
  unfolding arccos_def
proof (intro the_equality conjI; clarify?)
  show "cos ¦θ¦ = cos θ"
    by (simp add: abs_real_def)
  show "x = ¦θ¦" if "cos x = cos θ" "0  x" "x  pi" for x
    by (simp add: cos ¦θ¦ = cos θ assms cos_inj_pi that)
qed (use assms in auto)

lemma arccos_cos_eq_abs_2pi:
  obtains k where "arccos (cos θ) = ¦θ - of_int k * (2 * pi)¦"
proof -
  define k where "k   (θ + pi) / (2 * pi)"
  have lepi: "¦θ - of_int k * (2 * pi)¦  pi"
    using floor_divide_lower [of "2*pi" "θ + pi"] floor_divide_upper [of "2*pi" "θ + pi"]
    by (auto simp: k_def abs_if algebra_simps)
  have "arccos (cos θ) = arccos (cos (θ - of_int k * (2 * pi)))"
    using cos_int_2pin sin_int_2pin by (simp add: cos_diff mult.commute)
  also have " = ¦θ - of_int k * (2 * pi)¦"
    using arccos_cos_eq_abs lepi by blast
  finally show ?thesis
    using that by metis
qed

lemma arccos_arctan:
  assumes "-1 < x" "x < 1"
  shows "arccos x = pi/2 - arctan(x / sqrt(1 - x2))"
proof -
  have "arctan(x / sqrt(1 - x2)) - (pi/2 - arccos x) = 0"
  proof (rule sin_eq_0_pi)
    show "- pi < arctan (x / sqrt (1 - x2)) - (pi/2 - arccos x)"
      using arctan_lbound [of "x / sqrt(1 - x2)"]  arccos_bounded [of x] assms
      by (simp add: algebra_simps)
  next
    show "arctan (x / sqrt (1 - x2)) - (pi/2 - arccos x) < pi"
      using arctan_ubound [of "x / sqrt(1 - x2)"]  arccos_bounded [of x] assms
      by (simp add: algebra_simps)
  next
    show "sin (arctan (x / sqrt (1 - x2)) - (pi/2 - arccos x)) = 0"
      using assms
      by (simp add: algebra_simps sin_diff cos_add sin_arccos sin_arctan cos_arctan
                    power2_eq_square square_eq_1_iff)
  qed
  then show ?thesis
    by simp
qed

lemma arcsin_plus_arccos:
  assumes "-1  x" "x  1"
    shows "arcsin x + arccos x = pi/2"
proof -
  have "arcsin x = pi/2 - arccos x"
    apply (rule sin_inj_pi)
    using assms arcsin [OF assms] arccos [OF assms]
    by (auto simp: algebra_simps sin_diff)
  then show ?thesis
    by (simp add: algebra_simps)
qed

lemma arcsin_arccos_eq: "-1  x  x  1  arcsin x = pi/2 - arccos x"
  using arcsin_plus_arccos by force

lemma arccos_arcsin_eq: "-1  x  x  1  arccos x = pi/2 - arcsin x"
  using arcsin_plus_arccos by force

lemma arcsin_arctan: "-1 < x  x < 1  arcsin x = arctan(x / sqrt(1 - x2))"
  by (simp add: arccos_arctan arcsin_arccos_eq)

lemma arcsin_arccos_sqrt_pos: "0  x  x  1  arcsin x = arccos(sqrt(1 - x2))"
  by (smt (verit, del_insts) arccos_cos arcsin_0 arcsin_le_arcsin arcsin_pi cos_arcsin)

lemma arcsin_arccos_sqrt_neg: "-1  x  x  0  arcsin x = -arccos(sqrt(1 - x2))"
  using arcsin_arccos_sqrt_pos [of "-x"]
  by (simp add: arcsin_minus)

lemma arccos_arcsin_sqrt_pos: "0  x  x  1  arccos x = arcsin(sqrt(1 - x2))"
  by (smt (verit, del_insts) arccos_lbound arccos_le_pi2 arcsin_sin sin_arccos)

lemma arccos_arcsin_sqrt_neg: "-1  x  x  0  arccos x = pi - arcsin(sqrt(1 - x2))"
  using arccos_arcsin_sqrt_pos [of "-x"]
  by (simp add: arccos_minus)

lemma cos_limit_1:
  assumes "(λj. cos (θ j))  1"
  shows "k. (λj. θ j - of_int (k j) * (2 * pi))  0"
proof -
  have "F j in sequentially. cos (θ j)  {- 1..1}"
    by auto
  then have "(λj. arccos (cos (θ j)))  arccos 1"
    using continuous_on_tendsto_compose [OF continuous_on_arccos' assms] by auto
  moreover have "j. k. arccos (cos (θ j)) = ¦θ j - of_int k * (2 * pi)¦"
    using arccos_cos_eq_abs_2pi by metis
  then have "k. j. arccos (cos (θ j)) = ¦θ j - of_int (k j) * (2 * pi)¦"
    by metis
  ultimately have "k. (λj. ¦θ j - of_int (k j) * (2 * pi)¦)  0"
    by auto
  then show ?thesis
    by (simp add: tendsto_rabs_zero_iff)
qed

lemma cos_diff_limit_1:
  assumes "(λj. cos (θ j - Θ))  1"
  obtains k where "(λj. θ j - of_int (k j) * (2 * pi))  Θ"
proof -
  obtain k where "(λj. (θ j - Θ) - of_int (k j) * (2 * pi))  0"
    using cos_limit_1 [OF assms] by auto
  then have "(λj. Θ + ((θ j - Θ) - of_int (k j) * (2 * pi)))  Θ + 0"
    by (rule tendsto_add [OF tendsto_const])
  with that show ?thesis
    by auto
qed

subsection ‹Machin's formula›

lemma arctan_one: "arctan 1 = pi/4"
  by (rule arctan_unique) (simp_all add: tan_45 m2pi_less_pi)

lemma tan_total_pi4:
  assumes "¦x¦ < 1"
  shows "z. - (pi/4) < z  z < pi/4  tan z = x"
proof
  show "- (pi/4) < arctan x  arctan x < pi/4  tan (arctan x) = x"
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
    unfolding arctan_less_iff
    using assms by (auto simp: arctan)
qed

lemma arctan_add:
  assumes "¦x¦  1" "¦y¦ < 1"
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
proof (rule arctan_unique [symmetric])
  have "- (pi/4)  arctan x" "- (pi/4) < arctan y"
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
    unfolding arctan_le_iff arctan_less_iff
    using assms by auto
  from add_le_less_mono [OF this] show 1: "- (pi/2) < arctan x + arctan y"
    by simp
  have "arctan x  pi/4" "arctan y < pi/4"
    unfolding arctan_one [symmetric]
    unfolding arctan_le_iff arctan_less_iff
    using assms by auto
  from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi/2"
    by simp
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
    using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
qed

lemma arctan_double: "¦x¦ < 1  2 * arctan x = arctan ((2 * x) / (1 - x2))"
  by (metis arctan_add linear mult_2 not_less power2_eq_square)

theorem machin: "pi/4 = 4 * arctan (1 / 5) - arctan (1/239)"
proof -
  have "¦1 / 5¦ < (1 :: real)"
    by auto
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)"
    by auto
  moreover
  have "¦5 / 12¦ < (1 :: real)"
    by auto
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)"
    by auto
  moreover
  have "¦1¦  (1::real)" and "¦1/239¦ < (1::real)"
    by auto
  from arctan_add[OF this] have "arctan 1 + arctan (1/239) = arctan (120 / 119)"
    by auto
  ultimately have "arctan 1 + arctan (1/239) = 4 * arctan (1 / 5)"
    by auto
  then show ?thesis
    unfolding arctan_one by algebra
qed

lemma machin_Euler: "5 * arctan (1 / 7) + 2 * arctan (3 / 79) = pi/4"
proof -
  have 17: "¦1 / 7¦ < (1 :: real)" by auto
  with arctan_double have "2 * arctan (1 / 7) = arctan (7 / 24)"
    by simp (simp add: field_simps)
  moreover
  have "¦7 / 24¦ < (1 :: real)" by auto
  with arctan_double have "2 * arctan (7 / 24) = arctan (336 / 527)"
    by simp (simp add: field_simps)
  moreover
  have "¦336 / 527¦ < (1 :: real)" by auto
  from arctan_add[OF less_imp_le[OF 17] this]
  have "arctan(1/7) + arctan (336 / 527) = arctan (2879 / 3353)"
    by auto
  ultimately have I: "5 * arctan (1 / 7) = arctan (2879 / 3353)" by auto
  have 379: "¦3 / 79¦ < (1 :: real)" by auto
  with arctan_double have II: "2 * arctan (3 / 79) = arctan (237 / 3116)"
    by simp (simp add: field_simps)
  have *: "¦2879 / 3353¦ < (1 :: real)" by auto
  have "¦237 / 3116¦ < (1 :: real)" by auto
  from arctan_add[OF less_imp_le[OF *] this] have "arctan (2879/3353) + arctan (237/3116) = pi/4"
    by (simp add: arctan_one)
  with I II show ?thesis by auto
qed

(*But could also prove MACHIN_GAUSS:
  12 * arctan(1/18) + 8 * arctan(1/57) - 5 * arctan(1/239) = pi/4*)


subsection ‹Introducing the inverse tangent power series›

lemma monoseq_arctan_series:
  fixes x :: real
  assumes "¦x¦  1"
  shows "monoseq (λn. 1 / real (n * 2 + 1) * x^(n * 2 + 1))"
    (is "monoseq ?a")
proof (cases "x = 0")
  case True
  then show ?thesis by (auto simp: monoseq_def)
next
  case False
  have "norm x  1" and "x  1" and "-1  x"
    using assms by auto
  show "monoseq ?a"
  proof -
    have mono: "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) 
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
      if "0  x" and "x  1" for n and x :: real
    proof (rule mult_mono)
      show "1 / real (Suc (Suc n * 2))  1 / real (Suc (n * 2))"
        by (rule frac_le) simp_all
      show "0  1 / real (Suc (n * 2))"
        by auto
      show "x ^ Suc (Suc n * 2)  x ^ Suc (n * 2)"
        by (rule power_decreasing) (simp_all add: 0  x x  1)
      show "0  x ^ Suc (Suc n * 2)"
        by (rule zero_le_power) (simp add: 0  x)
    qed
    show ?thesis
    proof (cases "0  x")
      case True
      from mono[OF this x  1, THEN allI]
      show ?thesis
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
    next
      case False
      then have "0  - x" and "- x  1"
        using -1  x by auto
      from mono[OF this]
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) 
          1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" for n
        using 0  -x by auto
      then show ?thesis
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
    qed
  qed
qed

lemma zeroseq_arctan_series:
  fixes x :: real
  assumes "¦x¦  1"
  shows "(λn. 1 / real (n * 2 + 1) * x^(n * 2 + 1))  0"
    (is "?a  0")
proof (cases "x = 0")
  case True
  then show ?thesis by simp
next
  case False
  have "norm x  1" and "x  1" and "-1  x"
    using assms by auto
  show "?a  0"
  proof (cases "¦x¦ < 1")
    case True
    then have "norm x < 1" by auto
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF norm x < 1, THEN LIMSEQ_Suc]]
    have "(λn. 1 / real (n + 1) * x ^ (n + 1))  0"
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
    then show ?thesis
      using pos2 by (rule LIMSEQ_linear)
  next
    case False
    then have "x = -1  x = 1"
      using ¦x¦  1 by auto
    then have n_eq: " n. x ^ (n * 2 + 1) = x"
      unfolding One_nat_def by auto
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
    show ?thesis
      unfolding n_eq Suc_eq_plus1 by auto
  qed
qed

lemma summable_arctan_series:
  fixes n :: nat
  assumes "¦x¦  1"
  shows "summable (λ k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
    (is "summable (?c x)")
  by (rule summable_Leibniz(1),
      rule zeroseq_arctan_series[OF assms],
      rule monoseq_arctan_series[OF assms])

lemma DERIV_arctan_series:
  assumes "¦x¦ < 1"
  shows "DERIV (λx'. k. (-1)^k * (1 / real (k * 2 + 1) * x' ^ (k * 2 + 1))) x :>
      (k. (-1)^k * x^(k * 2))"
    (is "DERIV ?arctan _ :> ?Int")
proof -
  let ?f = "λn. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"

  have n_even: "even n  2 * (n div 2) = n" for n :: nat
    by presburger
  then have if_eq: "?f n * real (Suc n) * x'^n =
      (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
    for n x'
    by auto

  have summable_Integral: "summable (λ n. (- 1) ^ n * x^(2 * n))" if "¦x¦ < 1" for x :: real
  proof -
    from that have "x2 < 1"
      by (simp add: abs_square_less_1)
    have "summable (λ n. (- 1) ^ n * (x2) ^n)"
      by (rule summable_Leibniz(1))
        (auto intro!: LIMSEQ_realpow_zero monoseq_realpow x2 < 1 order_less_imp_le[OF x2 < 1])
    then show ?thesis
      by (simp only: power_mult)
  qed

  have sums_even: "(sums) f = (sums) (λ n. if even n then f (n div 2) else 0)"
    for f :: "nat  real"
  proof -
    have "f sums x = (λ n. if even n then f (n div 2) else 0) sums x" for x :: real
    proof
      assume "f sums x"
      from sums_if[OF sums_zero this] show "(λn. if even n then f (n div 2) else 0) sums x"
        by auto
    next
      assume "(λ n. if even n then f (n div 2) else 0) sums x"
      from LIMSEQ_linear[OF this[simplified sums_def] pos2, simplified sum_split_even_odd[simplified mult.commute]]
      show "f sums x"
        unfolding sums_def by auto
    qed
    then show ?thesis ..
  qed

  have Int_eq: "(n. ?f n * real (Suc n) * x^n) = ?Int"
    unfolding if_eq mult.commute[of _ 2]
      suminf_def sums_even[of "λ n. (- 1) ^ n * x ^ (2 * n)", symmetric]
    by auto

  have arctan_eq: "(n. ?f n * x^(Suc n)) = ?arctan x" for x
  proof -
    have if_eq': "n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
      using n_even by auto
    have idx_eq: "n. n * 2 + 1 = Suc (2 * n)"
      by auto
    then show ?thesis
      unfolding if_eq' idx_eq suminf_def
        sums_even[of "λ n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
      by auto
  qed

  have "DERIV (λ x.  n. ?f n * x^(Suc n)) x :> (n. ?f n * real (Suc n) * x^n)"
  proof (rule DERIV_power_series')
    show "x  {- 1 <..< 1}"
      using ¦ x ¦ < 1 by auto
    show "summable (λ n. ?f n * real (Suc n) * x'^n)"
      if x'_bounds: "x'  {- 1 <..< 1}" for x' :: real
    proof -
      from that have "¦x'¦ < 1" by auto
      then show ?thesis
        using that sums_summable sums_if [OF sums_0 [of "λx. 0"] summable_sums [OF summable_Integral]]   
        by (auto simp add: if_distrib [of "λx. x * y" for y] cong: if_cong)
    qed
  qed auto
  then show ?thesis
    by (simp only: Int_eq arctan_eq)
qed

lemma arctan_series:
  assumes "¦x¦  1"
  shows "arctan x = (k. (-1)^k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
    (is "_ = suminf (λ n. ?c x n)")
proof -
  let ?c' = "λx n. (-1)^n * x^(n*2)"

  have DERIV_arctan_suminf: "DERIV (λ x. suminf (?c x)) x :> (suminf (?c' x))"
    if "0 < r" and "r < 1" and "¦x¦ < r" for r x :: real
  proof (rule DERIV_arctan_series)
    from that show "¦x¦ < 1"
      using r < 1 and ¦x¦ < r by auto
  qed

  {
    fix x :: real
    assume "¦x¦  1"
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
  } note arctan_series_borders = this

  have when_less_one: "arctan x = (k. ?c x k)" if "¦x¦ < 1" for x :: real
  proof -
    obtain r where "¦x¦ < r" and "r < 1"
      using dense[OF ¦x¦ < 1] by blast
    then have "0 < r" and "- r < x" and "x < r" by auto

    have suminf_eq_arctan_bounded: "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
      if "-r < a" and "b < r" and "a < b" and "a  x" and "x  b" for x a b
    proof -
      from that have "¦x¦ < r" by auto
      show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
      proof (rule DERIV_isconst2[of "a" "b"])
        show "a < b" and "a  x" and "x  b"
          using a < b a  x x  b by auto
        have "x. - r < x  x < r  DERIV (λ x. suminf (?c x) - arctan x) x :> 0"
        proof (rule allI, rule impI)
          fix x
          assume "-r < x  x < r"
          then have "¦x¦ < r" by auto
          with r < 1 have "¦x¦ < 1" by auto
          have "¦- (x2)¦ < 1" using abs_square_less_1 ¦x¦ < 1 by auto
          then have "(λn. (- (x2)) ^ n) sums (1 / (1 - (- (x2))))"
            unfolding real_norm_def[symmetric] by (rule geometric_sums)
          then have "(?c' x) sums (1 / (1 - (- (x2))))"
            unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
          then have suminf_c'_eq_geom: "inverse (1 + x2) = suminf (?c' x)"
            using sums_unique unfolding inverse_eq_divide by auto
          have "DERIV (λ x. suminf (?c x)) x :> (inverse (1 + x2))"
            unfolding suminf_c'_eq_geom
            by (rule DERIV_arctan_suminf[OF 0 < r r < 1 ¦x¦ < r])
          from DERIV_diff [OF this DERIV_arctan] show "DERIV (λx. suminf (?c x) - arctan x) x :> 0"
            by auto
        qed
        then have DERIV_in_rball: "y. a  y  y  b  DERIV (λx. suminf (?c x) - arctan x) y :> 0"
          using -r < a b < r by auto
        then show "y. a < y; y < b  DERIV (λx. suminf (?c x) - arctan x) y :> 0"
          using ¦x¦ < r by auto
        show "continuous_on {a..b} (λx. suminf (?c x) - arctan x)"
          using DERIV_in_rball DERIV_atLeastAtMost_imp_continuous_on by blast
      qed
    qed

    have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
      unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
      by auto

    have "suminf (?c x) - arctan x = 0"
    proof (cases "x = 0")
      case True
      then show ?thesis
        using suminf_arctan_zero by auto
    next
      case False
      then have "0 < ¦x¦" and "- ¦x¦ < ¦x¦"
        by auto
      have "suminf (?c (- ¦x¦)) - arctan (- ¦x¦) = suminf (?c 0) - arctan 0"
        by (rule suminf_eq_arctan_bounded[where x1=0 and a1="-¦x¦" and b1="¦x¦", symmetric])
          (simp_all only: ¦x¦ < r -¦x¦ < ¦x¦ neg_less_iff_less)
      moreover
      have "suminf (?c x) - arctan x = suminf (?c (- ¦x¦)) - arctan (- ¦x¦)"
        by (rule suminf_eq_arctan_bounded[where x1=x and a1="- ¦x¦" and b1="¦x¦"])
           (simp_all only: ¦x¦ < r - ¦x¦ < ¦x¦ neg_less_iff_less)
      ultimately show ?thesis
        using suminf_arctan_zero by auto
    qed
    then show ?thesis by auto
  qed

  show "arctan x = suminf (λn. ?c x n)"
  proof (cases "¦x¦ < 1")
    case True
    then show ?thesis by (rule when_less_one)
  next
    case False
    then have "¦x¦ = 1" using ¦x¦  1 by auto
    let ?a = "λx n. ¦1 / real (n * 2 + 1) * x^(n * 2 + 1)¦"
    let ?diff = "λx n. ¦arctan x - (i<n. ?c x i)¦"
    have "?diff 1 n  ?a 1 n" for n :: nat
    proof -
      have "0 < (1 :: real)" by auto
      moreover
      have "?diff x n  ?a x n" if "0 < x" and "x < 1" for x :: real
      proof -
        from that have "¦x¦  1" and "¦x¦ < 1"
          by auto
        from 0 < x have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
          by auto
        note bounds = mp[OF arctan_series_borders(2)[OF ¦x¦  1] this, unfolded when_less_one[OF ¦x¦ < 1, symmetric], THEN spec]
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
          by (rule mult_pos_pos) (simp_all only: zero_less_power[OF 0 < x], auto)
        then have a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
          by (rule abs_of_pos)
        show ?thesis
        proof (cases "even n")
          case True
          then have sgn_pos: "(-1)^n = (1::real)" by auto
          from even n obtain m where "n = 2 * m" ..
          then have "2 * m = n" ..
          from bounds[of m, unfolded this atLeastAtMost_iff]
          have "¦arctan x - (i<n. (?c x i))¦  (i<n + 1. (?c x i)) - (i<n. (?c x i))"
            by auto
          also have " = ?c x n" by auto
          also have " = ?a x n" unfolding sgn_pos a_pos by auto
          finally show ?thesis .
        next
          case False
          then have sgn_neg: "(-1)^n = (-1::real)" by auto
          from odd n obtain m where "n = 2 * m + 1" ..
          then have m_def: "2 * m + 1 = n" ..
          then have m_plus: "2 * (m + 1) = n + 1" by auto
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
          have "¦arctan x - (i<n. (?c x i))¦  (i<n. (?c x i)) - (i<n+1. (?c x i))" by auto
          also have " = - ?c x n" by auto
          also have " = ?a x n" unfolding sgn_neg a_pos by auto
          finally show ?thesis .
        qed
      qed
      hence "x  { 0 <..< 1 }. 0  ?a x n - ?diff x n" by auto
      moreover have "isCont (λ x. ?a x n - ?diff x n) x" for x
        unfolding diff_conv_add_uminus divide_inverse
        by (auto intro!: isCont_add isCont_rabs continuous_ident isCont_minus isCont_arctan
          continuous_at_within_inverse isCont_mult isCont_power continuous_const isCont_sum
          simp del: add_uminus_conv_diff)
      ultimately have "0  ?a 1 n - ?diff 1 n"
        by (rule LIM_less_bound)
      then show ?thesis by auto
    qed
    have "?a 1  0"
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat simp del: of_nat_Suc)
    have "?diff 1  0"
    proof (rule LIMSEQ_I)
      fix r :: real
      assume "0 < r"
      obtain N :: nat where N_I: "N  n  ?a 1 n < r" for n
        using LIMSEQ_D[OF ?a 1  0 0 < r] by auto
      have "norm (?diff 1 n - 0) < r" if "N  n" for n
        using ?diff 1 n  ?a 1 n N_I[OF that] by auto
      then show "N.  n  N. norm (?diff 1 n - 0) < r" by blast
    qed
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
    then have "arctan 1 = (i. ?c 1 i)" by (rule sums_unique)

    show ?thesis
    proof (cases "x = 1")
      case True
      then show ?thesis by (simp add: arctan 1 = ( i. ?c 1 i))
    next
      case False
      then have "x = -1" using ¦x¦ = 1 by auto

      have "- (pi/2) < 0" using pi_gt_zero by auto
      have "- (2 * pi) < 0" using pi_gt_zero by auto

      have c_minus_minus: "?c (- 1) i = - ?c 1 i" for i by auto

      have "arctan (- 1) = arctan (tan (-(pi/4)))"
        unfolding tan_45 tan_minus ..
      also have " = - (pi/4)"
        by (rule arctan_tan) (auto simp: order_less_trans[OF - (pi/2) < 0 pi_gt_zero])
      also have " = - (arctan (tan (pi/4)))"
        unfolding neg_equal_iff_equal
        by (rule arctan_tan[symmetric]) (auto simp: order_less_trans[OF - (2 * pi) < 0 pi_gt_zero])
      also have " = - (arctan 1)"
        unfolding tan_45 ..
      also have " = - ( i. ?c 1 i)"
        using arctan 1 = ( i. ?c 1 i) by auto
      also have " = ( i. ?c (- 1) i)"
        using suminf_minus[OF sums_summable[OF (?c 1) sums (arctan 1)]]
        unfolding c_minus_minus by auto
      finally show ?thesis using x = -1 by auto
    qed
  qed
qed

lemma arctan_half: "arctan x = 2 * arctan (x / (1 + sqrt(1 + x2)))"
  for x :: real
proof -
  obtain y where low: "- (pi/2) < y" and high: "y < pi/2" and y_eq: "tan y = x"
    using tan_total by blast
  then have low2: "- (pi/2) < y / 2" and high2: "y / 2 < pi/2"
    by auto

  have "0 < cos y" by (rule cos_gt_zero_pi[OF low high])
  then have "cos y  0" and cos_sqrt: "sqrt ((cos y)2) = cos y"
    by auto

  have "1 + (tan y)2 = 1 + (sin y)2 / (cos y)2"
    unfolding tan_def power_divide ..
  also have " = (cos y)2 / (cos y)2 + (sin y)2 / (cos y)2"
    using cos y  0 by auto
  also have " = 1 / (cos y)2"
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
  finally have "1 + (tan y)2 = 1 / (cos y)2" .

  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
    unfolding tan_def using cos y  0 by (simp add: field_simps)
  also have " = tan y / (1 + 1 / cos y)"
    using cos y  0 unfolding add_divide_distrib by auto
  also have " = tan y / (1 + 1 / sqrt ((cos y)2))"
    unfolding cos_sqrt ..
  also have " = tan y / (1 + sqrt (1 / (cos y)2))"
    unfolding real_sqrt_divide by auto
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)2))"
    unfolding 1 + (tan y)2 = 1 / (cos y)2 .

  have "arctan x = y"
    using arctan_tan low high y_eq by auto
  also have " = 2 * (arctan (tan (y/2)))"
    using arctan_tan[OF low2 high2] by auto
  also have " = 2 * (arctan (sin y / (cos y + 1)))"
    unfolding tan_half by auto
  finally show ?thesis
    unfolding eq tan y = x .
qed

lemma arctan_monotone: "x < y  arctan x < arctan y"
  by (simp only: arctan_less_iff)

lemma arctan_monotone': "x  y  arctan x  arctan y"
  by (simp only: arctan_le_iff)

lemma arctan_inverse:
  assumes "x  0"
  shows "arctan (1/x) = sgn x * pi/2 - arctan x"
proof (rule arctan_unique)
  have §: "x > 0  arctan x < pi"
    using arctan_bounded [of x] by linarith 
  show "- (pi/2) < sgn x * pi/2 - arctan x"
    using assms by (auto simp: sgn_real_def arctan algebra_simps §)
  show "sgn x * pi/2 - arctan x < pi/2"
    using arctan_bounded [of "- x"] assms
    by (auto simp: algebra_simps sgn_real_def arctan_minus)
  show "tan (sgn x * pi/2 - arctan x) = 1/x"
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan] sgn_real_def
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
qed

theorem pi_series: "pi/4 = (k. (-1)^k * 1 / real (k * 2 + 1))"
  (is "_ = ?SUM")
proof -
  have "pi/4 = arctan 1"
    using arctan_one by auto
  also have " = ?SUM"
    using arctan_series[of 1] by auto
  finally show ?thesis by auto
qed


subsection ‹Existence of Polar Coordinates›

lemma cos_x_y_le_one: "¦x / sqrt (x2 + y2)¦  1"
  by (rule power2_le_imp_le [OF _ zero_le_one])
    (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)

lemma polar_Ex: "r::real. a. x = r * cos a  y = r * sin a"
proof -
  have polar_ex1: "r a. x = r * cos a  y = r * sin a" if "0 < y" for y
  proof -
    have "x = sqrt (x2 + y2) * cos (arccos (x / sqrt (x2 + y2)))"
      by (simp add: cos_arccos_abs [OF cos_x_y_le_one])
    moreover have "y = sqrt (x2 + y2) * sin (arccos (x / sqrt (x2 + y2)))"
      using that
      by (simp add: sin_arccos_abs [OF cos_x_y_le_one] power_divide right_diff_distrib flip: real_sqrt_mult)
    ultimately show ?thesis
      by blast
  qed
  show ?thesis
  proof (cases "0::real" y rule: linorder_cases)
    case less
    then show ?thesis
      by (rule polar_ex1)
  next
    case equal
    then show ?thesis
      by (force simp: intro!: cos_zero sin_zero)
  next
    case greater
    with polar_ex1 [where y="-y"] show ?thesis
      by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
  qed
qed


subsection ‹Basics about polynomial functions: products, extremal behaviour and root counts›

lemma polynomial_product_nat:
  fixes x :: nat
  assumes m: "i. i > m  int (a i) = 0"
    and n: "j. j > n  int (b j) = 0"
  shows "(im. (a i) * x ^ i) * (jn. (b j) * x ^ j) =
         (rm + n. (kr. (a k) * (b (r - k))) * x ^ r)"
  using polynomial_product [of m a n b x] assms
  by (simp only: of_nat_mult [symmetric] of_nat_power [symmetric]
      of_nat_eq_iff Int.int_sum [symmetric])

lemma polyfun_diff: (*COMPLEX_SUB_POLYFUN in HOL Light*)
  fixes x :: "'a::idom"
  assumes "1  n"
  shows "(in. a i * x^i) - (in. a i * y^i) =
    (x - y) * (j<n. (i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
proof -
  have h: "bij_betw (λ(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
    by (auto simp: bij_betw_def inj_on_def)
  have "(in. a i * x^i) - (in. a i * y^i) = (in. a i * (x^i - y^i))"
    by (simp add: right_diff_distrib sum_subtractf)
  also have " = (in. a i * (x - y) * (j<i. y^(i - Suc j) * x^j))"
    by (simp add: power_diff_sumr2 mult.assoc)
  also have " = (in. j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
    by (simp add: sum_distrib_left)
  also have " = ((i,j)  (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
    by (simp add: sum.Sigma)
  also have " = ((j,i)  (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
    by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
  also have " = (j<n. i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
    by (simp add: sum.Sigma)
  also have " = (x - y) * (j<n. (i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
    by (simp add: sum_distrib_left mult_ac)
  finally show ?thesis .
qed

lemma polyfun_diff_alt: (*COMPLEX_SUB_POLYFUN_ALT in HOL Light*)
  fixes x :: "'a::idom"
  assumes "1  n"
  shows "(in. a i * x^i) - (in. a i * y^i) =
    (x - y) * ((j<n. k<n-j. a(j + k + 1) * y^k * x^j))"
proof -
  have "(i=Suc j..n. a i * y^(i - j - 1)) = (k<n-j. a(j+k+1) * y^k)"
    if "j < n" for j :: nat
  proof -
    have "k. k < n - j  k  (λi. i - Suc j) ` {Suc j..n}"
      by (rule_tac x="k + Suc j" in image_eqI, auto)
    then have h: "bij_betw (λi. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
      by (auto simp: bij_betw_def inj_on_def)
    then show ?thesis
      by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
  qed
  then show ?thesis
    by (simp add: polyfun_diff [OF assms] sum_distrib_right)
qed

lemma polyfun_linear_factor:  (*COMPLEX_POLYFUN_LINEAR_FACTOR in HOL Light*)
  fixes a :: "'a::idom"
  shows "b. z. (in. c(i) * z^i) = (z - a) * (i<n. b(i) * z^i) + (in. c(i) * a^i)"
proof (cases "n = 0")
  case True then show ?thesis
    by simp
next
  case False
  have "(b. z. (in. c i * z^i) = (z - a) * (i<n. b i * z^i) + (in. c i * a^i)) 
        (b. z. (in. c i * z^i) - (in. c i * a^i) = (z - a) * (i<n. b i * z^i))"
    by (simp add: algebra_simps)
  also have " 
    (b. z. (z - a) * (j<n. (i = Suc j..n. c i * a^(i - Suc j)) * z^j) =
      (z - a) * (i<n. b i * z^i))"
    using False by (simp add: polyfun_diff)
  also have " = True" by auto
  finally show ?thesis
    by simp
qed

lemma polyfun_linear_factor_root:  (*COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT in HOL Light*)
  fixes a :: "'a::idom"
  assumes "(in. c(i) * a^i) = 0"
  obtains b where "z. (in. c i * z^i) = (z - a) * (i<n. b i * z^i)"
  using polyfun_linear_factor [of c n a] assms by auto

(*The material of this section, up until this point, could go into a new theory of polynomials
  based on Main alone. The remaining material involves limits, continuity, series, etc.*)

lemma isCont_polynom: "isCont (λw. in. c i * w^i) a"
  for c :: "nat  'a::real_normed_div_algebra"
  by simp

lemma zero_polynom_imp_zero_coeffs:
  fixes c :: "nat  'a::{ab_semigroup_mult,real_normed_div_algebra}"
  assumes "w. (in. c i * w^i) = 0"  "k  n"
  shows "c k = 0"
  using assms
proof (induction n arbitrary: c k)
  case 0
  then show ?case
    by simp
next
  case (Suc n c k)
  have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
    by simp
  have "(iSuc n. c i * w^i) = w * (in. c (Suc i) * w^i)" for w
  proof -
    have "(iSuc n. c i * w^i) = (in. c (Suc i) * w ^ Suc i)"
      unfolding Set_Interval.sum.atMost_Suc_shift
      by simp
    also have " = w * (in. c (Suc i) * w^i)"
      by (simp add: sum_distrib_left ac_simps)
    finally show ?thesis .
  qed
  then have w: "w. w  0  (in. c (Suc i) * w^i) = 0"
    using Suc  by auto
  then have "(λh. in. c (Suc i) * h^i) 0 0"
    by (simp cong: LIM_cong)  ― ‹the case w = 0› by continuity›
  then have "(in. c (Suc i) * 0^i) = 0"
    using isCont_polynom [of 0 "λi. c (Suc i)" n] LIM_unique
    by (force simp: Limits.isCont_iff)
  then have "w. (in. c (Suc i) * w^i) = 0"
    using w by metis
  then have "i. i  n  c (Suc i) = 0"
    using Suc.IH [of "λi. c (Suc i)"] by blast
  then show ?case using k  Suc n
    by (cases k) auto
qed

lemma polyfun_rootbound: (*COMPLEX_POLYFUN_ROOTBOUND in HOL Light*)
  fixes c :: "nat  'a::{idom,real_normed_div_algebra}"
  assumes "c k  0" "kn"
  shows "finite {z. (in. c(i) * z^i) = 0}  card {z. (in. c(i) * z^i) = 0}  n"
  using assms
proof (induction n arbitrary: c k)
  case 0
  then show ?case
    by simp
next
  case (Suc m c k)
  let ?succase = ?case
  show ?case
  proof (cases "{z. (iSuc m. c(i) * z^i) = 0} = {}")
    case True
    then show ?succase
      by simp
  next
    case False
    then obtain z0 where z0: "(iSuc m. c(i) * z0^i) = 0"
      by blast
    then obtain b where b: "w. (iSuc m. c i * w^i) = (w - z0) * (im. b i * w^i)"
      using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
      by blast
    then have eq: "{z. (iSuc m. c i * z^i) = 0} = insert z0 {z. (im. b i * z^i) = 0}"
      by auto
    have "¬ (km. b k = 0)"
    proof
      assume [simp]: "km. b k = 0"
      then have "w. (im. b i * w^i) = 0"
        by simp
      then have "w. (iSuc m. c i * w^i) = 0"
        using b by simp
      then have "k. k  Suc m  c k = 0"
        using zero_polynom_imp_zero_coeffs by blast
      then show False using Suc.prems by blast
    qed
    then obtain k' where bk': "b k'  0" "k'  m"
      by blast
    show ?succase
      using Suc.IH [of b k'] bk'
      by (simp add: eq card_insert_if del: sum.atMost_Suc)
    qed
qed

lemma
  fixes c :: "nat  'a::{idom,real_normed_div_algebra}"
  assumes "c k  0" "kn"
  shows polyfun_roots_finite: "finite {z. (in. c(i) * z^i) = 0}"
    and polyfun_roots_card: "card {z. (in. c(i) * z^i) = 0}  n"
  using polyfun_rootbound assms by auto

lemma polyfun_finite_roots: (*COMPLEX_POLYFUN_FINITE_ROOTS in HOL Light*)
  fixes c :: "nat  'a::{idom,real_normed_div_algebra}"
  shows "finite {x. (in. c i * x^i) = 0}  (in. c i  0)"
    (is "?lhs = ?rhs")
proof
  assume ?lhs
  moreover have "¬ finite {x. (in. c i * x^i) = 0}" if "in. c i = 0"
  proof -
    from that have "x. (in. c i * x^i) = 0"
      by simp
    then show ?thesis
      using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
      by auto
  qed
  ultimately show ?rhs by metis
next
  assume ?rhs
  with polyfun_rootbound show ?lhs by blast
qed

lemma polyfun_eq_0: "(x. (in. c i * x^i) = 0)  (in. c i = 0)"
  for c :: "nat  'a::{idom,real_normed_div_algebra}"
  (*COMPLEX_POLYFUN_EQ_0 in HOL Light*)
  using zero_polynom_imp_zero_coeffs by auto

lemma polyfun_eq_coeffs: "(x. (in. c i * x^i) = (in. d i * x^i))  (in. c i = d i)"
  for c :: "nat  'a::{idom,real_normed_div_algebra}"
proof -
  have "(x. (in. c i * x^i) = (in. d i * x^i))  (x. (in. (c i - d i) * x^i) = 0)"
    by (simp add: left_diff_distrib Groups_Big.sum_subtractf)
  also have "  (in. c i - d i = 0)"
    by (rule polyfun_eq_0)
  finally show ?thesis
    by simp
qed

lemma polyfun_eq_const: (*COMPLEX_POLYFUN_EQ_CONST in HOL Light*)
  fixes c :: "nat  'a::{idom,real_normed_div_algebra}"
  shows "(x. (in. c i * x^i) = k)  c 0 = k  (i  {1..n}. c i = 0)"
    (is "?lhs = ?rhs")
proof -
  have *: "x. (in. (if i=0 then k else 0) * x^i) = k"
    by (induct n) auto
  show ?thesis
  proof
    assume ?lhs
    with * have "(in. c i = (if i=0 then k else 0))"
      by (simp add: polyfun_eq_coeffs [symmetric])
    then show ?rhs by simp
  next
    assume ?rhs
    then show ?lhs by (induct n) auto
  qed
qed

lemma root_polyfun:
  fixes z :: "'a::idom"
  assumes "1  n"
  shows "z^n = a  (in. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
  using assms by (cases n) (simp_all add: sum.atLeast_Suc_atMost atLeast0AtMost [symmetric])

lemma
  assumes "SORT_CONSTRAINT('a::{idom,real_normed_div_algebra})"
    and "1  n"
  shows finite_roots_unity: "finite {z::'a. z^n = 1}"
    and card_roots_unity: "card {z::'a. z^n = 1}  n"
  using polyfun_rootbound [of "λi. if i = 0 then -1 else if i=n then 1 else 0" n n] assms(2)
  by (auto simp: root_polyfun [OF assms(2)])


subsection ‹Hyperbolic functions›

definition sinh :: "'a :: {banach, real_normed_algebra_1}  'a" where
  "sinh x = (exp x - exp (-x)) /R 2"

definition cosh :: "'a :: {banach, real_normed_algebra_1}  'a" where
  "cosh x = (exp x + exp (-x)) /R 2"

definition tanh :: "'a :: {banach, real_normed_field}  'a" where
  "tanh x = sinh x / cosh x"

definition arsinh :: "'a :: {banach, real_normed_algebra_1, ln}  'a" where
  "arsinh x = ln (x + (x^2 + 1) powr of_real (1/2))"

definition arcosh :: "'a :: {banach, real_normed_algebra_1, ln}  'a" where
  "arcosh x = ln (x + (x^2 - 1) powr of_real (1/2))"

definition artanh :: "'a :: {banach, real_normed_field, ln}  'a" where
  "artanh x = ln ((1 + x) / (1 - x)) / 2"

lemma arsinh_0 [simp]: "arsinh 0 = 0"
  by (simp add: arsinh_def)

lemma arcosh_1 [simp]: "arcosh 1 = 0"
  by (simp add: arcosh_def)

lemma artanh_0 [simp]: "artanh 0 = 0"
  by (simp add: artanh_def)

lemma tanh_altdef:
  "tanh x = (exp x - exp (-x)) / (exp x + exp (-x))"
proof -
  have "tanh x = (2 *R sinh x) / (2 *R cosh x)"
    by (simp add: tanh_def scaleR_conv_of_real)
  also have "2 *R sinh x = exp x - exp (-x)"
    by (simp add: sinh_def)
  also have "2 *R cosh x = exp x + exp (-x)"
    by (simp add: cosh_def)
  finally show ?thesis .
qed

lemma tanh_real_altdef: "tanh (x::real) = (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))"
proof -
  have [simp]: "exp (2 * x) = exp x * exp x" "exp (x * 2) = exp x * exp x"
    by (subst exp_add [symmetric]; simp)+
  have "tanh x = (2 * exp (-x) * sinh x) / (2 * exp (-x) * cosh x)"
    by (simp add: tanh_def)
  also have "2 * exp (-x) * sinh x = 1 - exp (-2*x)"
    by (simp add: exp_minus field_simps sinh_def)
  also have "2 * exp (-x) * cosh x = 1 + exp (-2*x)"
    by (simp add: exp_minus field_simps cosh_def)
  finally show ?thesis .
qed


lemma sinh_converges: "(λn. if even n then 0 else x ^ n /R fact n) sums sinh x"
proof -
  have "(λn. (x ^ n /R fact n - (-x) ^ n /R fact n) /R 2) sums sinh x"
    unfolding sinh_def by (intro sums_scaleR_right sums_diff exp_converges)
  also have "(λn. (x ^ n /R fact n - (-x) ^ n /R fact n) /R 2) =
               (λn. if even n then 0 else x ^ n /R fact n)" by auto
  finally show ?thesis .
qed

lemma cosh_converges: "(λn. if even n then x ^ n /R fact n else 0) sums cosh x"
proof -
  have "(λn. (x ^ n /R fact n + (-x) ^ n /R fact n) /R 2) sums cosh x"
    unfolding cosh_def by (intro sums_scaleR_right sums_add exp_converges)
  also have "(λn. (x ^ n /R fact n + (-x) ^ n /R fact n) /R 2) =
               (λn. if even n then x ^ n /R fact n else 0)" by auto
  finally show ?thesis .
qed

lemma sinh_0 [simp]: "sinh 0 = 0"
  by (simp add: sinh_def)

lemma cosh_0 [simp]: "cosh 0 = 1"
proof -
  have "cosh 0 = (1/2) *R (1 + 1)" by (simp add: cosh_def)
  also have " = 1" by (rule scaleR_half_double)
  finally show ?thesis .
qed

lemma tanh_0 [simp]: "tanh 0 = 0"
  by (simp add: tanh_def)

lemma sinh_minus [simp]: "sinh (- x) = -sinh x"
  by (simp add: sinh_def algebra_simps)

lemma cosh_minus [simp]: "cosh (- x) = cosh x"
  by (simp add: cosh_def algebra_simps)

lemma tanh_minus [simp]: "tanh (-x) = -tanh x"
  by (simp add: tanh_def)

lemma sinh_ln_real: "x > 0  sinh (ln x :: real) = (x - inverse x) / 2"
  by (simp add: sinh_def exp_minus)

lemma cosh_ln_real: "x > 0  cosh (ln x :: real) = (x + inverse x) / 2"
  by (simp add: cosh_def exp_minus)

lemma tanh_ln_real:
  "tanh (ln x :: real) = (x ^ 2 - 1) / (x ^ 2 + 1)" if "x > 0"
proof -
  from that have "(x * 2 - inverse x * 2) * (x2 + 1) =
    (x2 - 1) * (2 * x + 2 * inverse x)"
    by (simp add: field_simps power2_eq_square)
  moreover have "x2 + 1 > 0"
    using that by (simp add: ac_simps add_pos_nonneg)
  moreover have "2 * x + 2 * inverse x > 0"
    using that by (simp add: add_pos_pos)
  ultimately have "(x * 2 - inverse x * 2) /
    (2 * x + 2 * inverse x) =
    (x2 - 1) / (x2 + 1)"
    by (simp add: frac_eq_eq)
  with that show ?thesis
    by (simp add: tanh_def sinh_ln_real cosh_ln_real)
qed

lemma has_field_derivative_scaleR_right [derivative_intros]:
  "(f has_field_derivative D) F  ((λx. c *R f x) has_field_derivative (c *R D)) F"
  unfolding has_field_derivative_def
  using has_derivative_scaleR_right[of f "λx. D * x" F c]
  by (simp add: mult_scaleR_left [symmetric] del: mult_scaleR_left)

lemma has_field_derivative_sinh [THEN DERIV_chain2, derivative_intros]:
  "(sinh has_field_derivative cosh x) (at (x :: 'a :: {banach, real_normed_field}))"
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)

lemma has_field_derivative_cosh [THEN DERIV_chain2, derivative_intros]:
  "(cosh has_field_derivative sinh x) (at (x :: 'a :: {banach, real_normed_field}))"
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)

lemma has_field_derivative_tanh [THEN DERIV_chain2, derivative_intros]:
  "cosh x  0  (tanh has_field_derivative 1 - tanh x ^ 2)
                     (at (x :: 'a :: {banach, real_normed_field}))"
  unfolding tanh_def by (auto intro!: derivative_eq_intros simp: power2_eq_square field_split_simps)

lemma has_derivative_sinh [derivative_intros]:
  fixes g :: "'a  ('a :: {banach, real_normed_field})"
  assumes "(g has_derivative (λx. Db * x)) (at x within s)"
  shows   "((λx. sinh (g x)) has_derivative (λy. (cosh (g x) * Db) * y)) (at x within s)"
proof -
  have "((λx. - g x) has_derivative (λy. -(Db * y))) (at x within s)"
    using assms by (intro derivative_intros)
  also have "(λy. -(Db * y)) = (λx. (-Db) * x)" by (simp add: fun_eq_iff)
  finally have "((λx. sinh (g x)) has_derivative
    (λy. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /R 2)) (at x within s)"
    unfolding sinh_def by (intro derivative_intros assms)
  also have "(λy. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /R 2) = (λy. (cosh (g x) * Db) * y)"
    by (simp add: fun_eq_iff cosh_def algebra_simps)
  finally show ?thesis .
qed

lemma has_derivative_cosh [derivative_intros]:
  fixes g :: "'a  ('a :: {banach, real_normed_field})"
  assumes "(g has_derivative (λy. Db * y)) (at x within s)"
  shows   "((λx. cosh (g x)) has_derivative (λy. (sinh (g x) * Db) * y)) (at x within s)"
proof -
  have "((λx. - g x) has_derivative (λy. -(Db * y))) (at x within s)"
    using assms by (intro derivative_intros)
  also have "(λy. -(Db * y)) = (λy. (-Db) * y)" by (simp add: fun_eq_iff)
  finally have "((λx. cosh (g x)) has_derivative
    (λy. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /R 2)) (at x within s)"
    unfolding cosh_def by (intro derivative_intros assms)
  also have "(λy. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /R 2) = (λy. (sinh (g x) * Db) * y)"
    by (simp add: fun_eq_iff sinh_def algebra_simps)
  finally show ?thesis .
qed

lemma sinh_plus_cosh: "sinh x + cosh x = exp x"
proof -
  have "sinh x + cosh x = (1/2) *R (exp x + exp x)"
    by (simp add: sinh_def cosh_def algebra_simps)
  also have " = exp x" by (rule scaleR_half_double)
  finally show ?thesis .
qed

lemma cosh_plus_sinh: "cosh x + sinh x = exp x"
  by (subst add.commute) (rule sinh_plus_cosh)

lemma cosh_minus_sinh: "cosh x - sinh x = exp (-x)"
proof -
  have "cosh x - sinh x = (1/2) *R (exp (-x) + exp (-x))"
    by (simp add: sinh_def cosh_def algebra_simps)
  also have " = exp (-x)" by (rule scaleR_half_double)
  finally show ?thesis .
qed

lemma sinh_minus_cosh: "sinh x - cosh x = -exp (-x)"
  using cosh_minus_sinh[of x] by (simp add: algebra_simps)


context
  fixes x :: "'a :: {real_normed_field, banach}"
begin

lemma sinh_zero_iff: "sinh x = 0  exp x  {1, -1}"
  by (auto simp: sinh_def field_simps exp_minus power2_eq_square square_eq_1_iff)

lemma cosh_zero_iff: "cosh x = 0  exp x ^ 2 = -1"
  by (auto simp: cosh_def exp_minus field_simps power2_eq_square eq_neg_iff_add_eq_0)

lemma cosh_square_eq: "cosh x ^ 2 = sinh x ^ 2 + 1"
  by (simp add: cosh_def sinh_def algebra_simps power2_eq_square exp_add [symmetric]
                scaleR_conv_of_real)

lemma sinh_square_eq: "sinh x ^ 2 = cosh x ^ 2 - 1"
  by (simp add: cosh_square_eq)

lemma hyperbolic_pythagoras: "cosh x ^ 2 - sinh x ^ 2 = 1"
  by (simp add: cosh_square_eq)

lemma sinh_add: "sinh (x + y) = sinh x * cosh y + cosh x * sinh y"
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])

lemma sinh_diff: "sinh (x - y) = sinh x * cosh y - cosh x * sinh y"
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])

lemma cosh_add: "cosh (x + y) = cosh x * cosh y + sinh x * sinh y"
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])

lemma cosh_diff: "cosh (x - y) = cosh x * cosh y - sinh x * sinh y"
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])

lemma tanh_add:
  "tanh (x + y) = (tanh x + tanh y) / (1 + tanh x * tanh y)"
  if "cosh x  0" "cosh y  0"
proof -
  have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
    (cosh x * cosh y + sinh x * sinh y) * ((sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x))"
    using that by (simp add: field_split_simps)
  also have "(sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x) = sinh x / cosh x + sinh y / cosh y"
    using that by (simp add: field_split_simps)
  finally have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
    (sinh x / cosh x + sinh y / cosh y) * (cosh x * cosh y + sinh x * sinh y)"
    by simp
  then show ?thesis
    using that by (auto simp add: tanh_def sinh_add cosh_add eq_divide_eq)
     (simp_all add: field_split_simps)
qed

lemma sinh_double: "sinh (2 * x) = 2 * sinh x * cosh x"
  using sinh_add[of x] by simp

lemma cosh_double: "cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2"
  using cosh_add[of x] by (simp add: power2_eq_square)

end

lemma sinh_field_def: "sinh z = (exp z - exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
  by (simp add: sinh_def scaleR_conv_of_real)

lemma cosh_field_def: "cosh z = (exp z + exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
  by (simp add: cosh_def scaleR_conv_of_real)


subsubsection ‹More specific properties of the real functions›

lemma plus_inverse_ge_2:
  fixes x :: real
  assumes "x > 0"
  shows   "x + inverse x  2"
proof -
  have "0  (x - 1) ^ 2" by simp
  also have " = x^2 - 2*x + 1" by (simp add: power2_eq_square algebra_simps)
  finally show ?thesis using assms by (simp add: field_simps power2_eq_square)
qed

lemma sinh_real_nonneg_iff [simp]: "sinh (x :: real)  0  x  0"
  by (simp add: sinh_def)

lemma sinh_real_pos_iff [simp]: "sinh (x :: real) > 0  x > 0"
  by (simp add: sinh_def)

lemma sinh_real_nonpos_iff [simp]: "sinh (x :: real)  0  x  0"
  by (simp add: sinh_def)

lemma sinh_real_neg_iff [simp]: "sinh (x :: real) < 0  x < 0"
  by (simp add: sinh_def)

lemma cosh_real_ge_1: "cosh (x :: real)  1"
  using plus_inverse_ge_2[of "exp x"] by (simp add: cosh_def exp_minus)

lemma cosh_real_pos [simp]: "cosh (x :: real) > 0"
  using cosh_real_ge_1[of x] by simp

lemma cosh_real_nonneg[simp]: "cosh (x :: real)  0"
  using cosh_real_ge_1[of x] by simp

lemma cosh_real_nonzero [simp]: "cosh (x :: real)  0"
  using cosh_real_ge_1[of x] by simp

lemma arsinh_real_def: "arsinh (x::real) = ln (x + sqrt (x^2 + 1))"
  by (simp add: arsinh_def powr_half_sqrt)

lemma arcosh_real_def: "x  1  arcosh (x::real) = ln (x + sqrt (x^2 - 1))"
  by (simp add: arcosh_def powr_half_sqrt)

lemma arsinh_real_aux: "0 < x + sqrt (x ^ 2 + 1 :: real)"
proof (cases "x < 0")
  case True
  have "(-x) ^ 2 = x ^ 2" by simp
  also have "x ^ 2 < x ^ 2 + 1" by simp
  finally have "sqrt ((-x) ^ 2) < sqrt (x ^ 2 + 1)"
    by (rule real_sqrt_less_mono)
  thus ?thesis using True by simp
qed (auto simp: add_nonneg_pos)

lemma arsinh_minus_real [simp]: "arsinh (-x::real) = -arsinh x"
proof -
  have "arsinh (-x) = ln (sqrt (x2 + 1) - x)"
    by (simp add: arsinh_real_def)
  also have "sqrt (x^2 + 1) - x = inverse (sqrt (x^2 + 1) + x)"
    using arsinh_real_aux[of x] by (simp add: field_split_simps algebra_simps power2_eq_square)
  also have "ln  = -arsinh x"
    using arsinh_real_aux[of x] by (simp add: arsinh_real_def ln_inverse)
  finally show ?thesis .
qed

lemma artanh_minus_real [simp]:
  assumes "abs x < 1"
  shows   "artanh (-x::real) = -artanh x"
  using assms by (simp add: artanh_def ln_div field_simps)

lemma sinh_less_cosh_real: "sinh (x :: real) < cosh x"
  by (simp add: sinh_def cosh_def)

lemma sinh_le_cosh_real: "sinh (x :: real)  cosh x"
  by (simp add: sinh_def cosh_def)

lemma tanh_real_lt_1: "tanh (x :: real) < 1"
  by (simp add: tanh_def sinh_less_cosh_real)

lemma tanh_real_gt_neg1: "tanh (x :: real) > -1"
proof -
  have "- cosh x < sinh x" by (simp add: sinh_def cosh_def field_split_simps)
  thus ?thesis by (simp add: tanh_def field_simps)
qed

lemma tanh_real_bounds: "tanh (x :: real)  {-1<..<1}"
  using tanh_real_lt_1 tanh_real_gt_neg1 by simp

context
  fixes x :: real
begin

lemma arsinh_sinh_real: "arsinh (sinh x) = x"
  by (simp add: arsinh_real_def powr_def sinh_square_eq sinh_plus_cosh)

lemma arcosh_cosh_real: "x  0  arcosh (cosh x) = x"
  by (simp add: arcosh_real_def powr_def cosh_square_eq cosh_real_ge_1 cosh_plus_sinh)

lemma artanh_tanh_real: "artanh (tanh x) = x"
proof -
  have "artanh (tanh x) = ln (cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x))) / 2"
    by (simp add: artanh_def tanh_def field_split_simps)
  also have "cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x)) =
               (cosh x + sinh x) / (cosh x - sinh x)" by simp
  also have " = (exp x)^2"
    by (simp add: cosh_plus_sinh cosh_minus_sinh exp_minus field_simps power2_eq_square)
  also have "ln ((exp x)^2) / 2 = x" by (simp add: ln_realpow)
  finally show ?thesis .
qed

lemma sinh_real_zero_iff [simp]: "sinh x = 0  x = 0"
  by (metis arsinh_0 arsinh_sinh_real sinh_0)

lemma cosh_real_one_iff [simp]: "cosh x = 1  x = 0"
  by (smt (verit, best) Transcendental.arcosh_cosh_real cosh_0 cosh_minus)

lemma tanh_real_nonneg_iff [simp]: "tanh x  0  x  0"
  by (simp add: tanh_def field_simps)

lemma tanh_real_pos_iff [simp]: "tanh x > 0  x > 0"
  by (simp add: tanh_def field_simps)

lemma tanh_real_nonpos_iff [simp]: "tanh x  0  x  0"
  by (simp add: tanh_def field_simps)

lemma tanh_real_neg_iff [simp]: "tanh x < 0  x < 0"
  by (simp add: tanh_def field_simps)

lemma tanh_real_zero_iff [simp]: "tanh x = 0  x = 0"
  by (simp add: tanh_def field_simps)

end
  
lemma sinh_real_strict_mono: "strict_mono (sinh :: real  real)"
  by (rule pos_deriv_imp_strict_mono derivative_intros)+ auto

lemma cosh_real_strict_mono:
  assumes "0  x" and "x < (y::real)"
  shows   "cosh x < cosh y"
proof -
  from assms have "z>x. z < y  cosh y - cosh x = (y - x) * sinh z"
    by (intro MVT2) (auto dest: connectedD_interval intro!: derivative_eq_intros)
  then obtain z where z: "z > x" "z < y" "cosh y - cosh x = (y - x) * sinh z" by blast
  note cosh y - cosh x = (y - x) * sinh z
  also from z > x and assms have "(y - x) * sinh z > 0" by (intro mult_pos_pos) auto
  finally show "cosh x < cosh y" by simp
qed

lemma tanh_real_strict_mono: "strict_mono (tanh :: real  real)"
proof -
  have *: "tanh x ^ 2 < 1" for x :: real
    using tanh_real_bounds[of x] by (simp add: abs_square_less_1 abs_if)
  show ?thesis
    by (rule pos_deriv_imp_strict_mono) (insert *, auto intro!: derivative_intros)
qed

lemma sinh_real_abs [simp]: "sinh (abs x :: real) = abs (sinh x)"
  by (simp add: abs_if)

lemma cosh_real_abs [simp]: "cosh (abs x :: real) = cosh x"
  by (simp add: abs_if)

lemma tanh_real_abs [simp]: "tanh (abs x :: real) = abs (tanh x)"
  by (auto simp: abs_if)

lemma sinh_real_eq_iff [simp]: "sinh x = sinh y  x = (y :: real)"
  using sinh_real_strict_mono by (simp add: strict_mono_eq)

lemma tanh_real_eq_iff [simp]: "tanh x = tanh y  x = (y :: real)"
  using tanh_real_strict_mono by (simp add: strict_mono_eq)

lemma cosh_real_eq_iff [simp]: "cosh x = cosh y  abs x = abs (y :: real)"
proof -
  have "cosh x = cosh y  x = y" if "x  0" "y  0" for x y :: real
    using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x] that
    by (cases x y rule: linorder_cases) auto
  from this[of "abs x" "abs y"] show ?thesis by simp
qed

lemma sinh_real_le_iff [simp]: "sinh x  sinh y  x  (y::real)"
  using sinh_real_strict_mono by (simp add: strict_mono_less_eq)

lemma cosh_real_nonneg_le_iff: "x  0  y  0  cosh x  cosh y  x  (y::real)"
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
  by (cases x y rule: linorder_cases) auto

lemma cosh_real_nonpos_le_iff: "x  0  y  0  cosh x  cosh y  x  (y::real)"
  using cosh_real_nonneg_le_iff[of "-x" "-y"] by simp

lemma tanh_real_le_iff [simp]: "tanh x  tanh y  x  (y::real)"
  using tanh_real_strict_mono by (simp add: strict_mono_less_eq)


lemma sinh_real_less_iff [simp]: "sinh x < sinh y  x < (y::real)"
  using sinh_real_strict_mono by (simp add: strict_mono_less)

lemma cosh_real_nonneg_less_iff: "x  0  y  0  cosh x < cosh y  x < (y::real)"
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
  by (cases x y rule: linorder_cases) auto

lemma cosh_real_nonpos_less_iff: "x  0  y  0  cosh x < cosh y  x > (y::real)"
  using cosh_real_nonneg_less_iff[of "-x" "-y"] by simp

lemma tanh_real_less_iff [simp]: "tanh x < tanh y  x < (y::real)"
  using tanh_real_strict_mono by (simp add: strict_mono_less)


subsubsection ‹Limits›

lemma sinh_real_at_top: "filterlim (sinh :: real  real) at_top at_top"
proof -
  have *: "((λx. - exp (- x))  (-0::real)) at_top"
    by (intro tendsto_minus filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
  have "filterlim (λx. (1/2) * (-exp (-x) + exp x) :: real) at_top at_top"
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
  also have "(λx. (1/2) * (-exp (-x) + exp x) :: real) = sinh"
    by (simp add: fun_eq_iff sinh_def)
  finally show ?thesis .
qed

lemma sinh_real_at_bot: "filterlim (sinh :: real  real) at_bot at_bot"
proof -
  have "filterlim (λx. -sinh x :: real) at_bot at_top"
    by (simp add: filterlim_uminus_at_top [symmetric] sinh_real_at_top)
  also have "(λx. -sinh x :: real) = (λx. sinh (-x))" by simp
  finally show ?thesis by (subst filterlim_at_bot_mirror)
qed

lemma cosh_real_at_top: "filterlim (cosh :: real  real) at_top at_top"
proof -
  have *: "((λx. exp (- x))  (0::real)) at_top"
    by (intro filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
  have "filterlim (λx. (1/2) * (exp (-x) + exp x) :: real) at_top at_top"
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
  also have "(λx. (1/2) * (exp (-x) + exp x) :: real) = cosh"
    by (simp add: fun_eq_iff cosh_def)
  finally show ?thesis .
qed

lemma cosh_real_at_bot: "filterlim (cosh :: real  real) at_top at_bot"
proof -
  have "filterlim (λx. cosh (-x) :: real) at_top at_top"
    by (simp add: cosh_real_at_top)
  thus ?thesis by (subst filterlim_at_bot_mirror)
qed

lemma tanh_real_at_top: "(tanh  (1::real)) at_top"
proof -
  have "((λx::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x)))  (1 - 0) / (1 + 0)) at_top"
    by (intro tendsto_intros filterlim_compose[OF exp_at_bot]
              filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_ident) auto
  also have "(λx::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) = tanh"
    by (rule ext) (simp add: tanh_real_altdef)
  finally show ?thesis by simp
qed

lemma tanh_real_at_bot: "(tanh  (-1::real)) at_bot"
proof -
  have "((λx::real. -tanh x)  -1) at_top"
    by (intro tendsto_minus tanh_real_at_top)
  also have "(λx. -tanh x :: real) = (λx. tanh (-x))" by simp
  finally show ?thesis by (subst filterlim_at_bot_mirror)
qed


subsubsection ‹Properties of the inverse hyperbolic functions›

lemma isCont_sinh: "isCont sinh (x :: 'a :: {real_normed_field, banach})"
  unfolding sinh_def [abs_def] by (auto intro!: continuous_intros)

lemma isCont_cosh: "isCont cosh (x :: 'a :: {real_normed_field, banach})"
  unfolding cosh_def [abs_def] by (auto intro!: continuous_intros)

lemma isCont_tanh: "cosh x  0  isCont tanh (x :: 'a :: {real_normed_field, banach})"
  unfolding tanh_def [abs_def]
  by (auto intro!: continuous_intros isCont_divide isCont_sinh isCont_cosh)

lemma continuous_on_sinh [continuous_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  assumes "continuous_on A f"
  shows   "continuous_on A (λx. sinh (f x))"
  unfolding sinh_def using assms by (intro continuous_intros)

lemma continuous_on_cosh [continuous_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  assumes "continuous_on A f"
  shows   "continuous_on A (λx. cosh (f x))"
  unfolding cosh_def using assms by (intro continuous_intros)

lemma continuous_sinh [continuous_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  assumes "continuous F f"
  shows   "continuous F (λx. sinh (f x))"
  unfolding sinh_def using assms by (intro continuous_intros)

lemma continuous_cosh [continuous_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  assumes "continuous F f"
  shows   "continuous F (λx. cosh (f x))"
  unfolding cosh_def using assms by (intro continuous_intros)

lemma continuous_on_tanh [continuous_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  assumes "continuous_on A f" "x. x  A  cosh (f x)  0"
  shows   "continuous_on A (λx. tanh (f x))"
  unfolding tanh_def using assms by (intro continuous_intros) auto

lemma continuous_at_within_tanh [continuous_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  assumes "continuous (at x within A) f" "cosh (f x)  0"
  shows   "continuous (at x within A) (λx. tanh (f x))"
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto

lemma continuous_tanh [continuous_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  assumes "continuous F f" "cosh (f (Lim F (λx. x)))  0"
  shows   "continuous F (λx. tanh (f x))"
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto

lemma tendsto_sinh [tendsto_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  shows "(f  a) F  ((λx. sinh (f x))  sinh a) F"
  by (rule isCont_tendsto_compose [OF isCont_sinh])

lemma tendsto_cosh [tendsto_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  shows "(f  a) F  ((λx. cosh (f x))  cosh a) F"
  by (rule isCont_tendsto_compose [OF isCont_cosh])

lemma tendsto_tanh [tendsto_intros]:
  fixes f :: "_ 'a::{real_normed_field,banach}"
  shows "(f  a) F  cosh a  0  ((λx. tanh (f x))  tanh a) F"
  by (rule isCont_tendsto_compose [OF isCont_tanh])


lemma arsinh_real_has_field_derivative [derivative_intros]:
  fixes x :: real
  shows "(arsinh has_field_derivative (1 / (sqrt (x ^ 2 + 1)))) (at x within A)"
proof -
  have pos: "1 + x ^ 2 > 0" by (intro add_pos_nonneg) auto
  from pos arsinh_real_aux[of x] show ?thesis unfolding arsinh_def [abs_def]
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt field_split_simps)
qed

lemma arcosh_real_has_field_derivative [derivative_intros]:
  fixes x :: real
  assumes "x > 1"
  shows   "(arcosh has_field_derivative (1 / (sqrt (x ^ 2 - 1)))) (at x within A)"
proof -
  from assms have "x + sqrt (x2 - 1) > 0" by (simp add: add_pos_pos)
  thus ?thesis using assms unfolding arcosh_def [abs_def]
    by (auto intro!: derivative_eq_intros
             simp: powr_minus powr_half_sqrt field_split_simps power2_eq_1_iff)
qed

lemma artanh_real_has_field_derivative [derivative_intros]:
  "(artanh has_field_derivative (1 / (1 - x ^ 2))) (at x within A)" if
    "¦x¦ < 1" for x :: real
proof -
  from that have "- 1 < x" "x < 1" by linarith+
  hence "(artanh has_field_derivative (4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4))
           (at x within A)" unfolding artanh_def [abs_def]
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt)
  also have "(4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4) = 1 / ((1 + x) * (1 - x))"
    using -1 < x x < 1 by (simp add: frac_eq_eq)
  also have "(1 + x) * (1 - x) = 1 - x ^ 2"
    by (simp add: algebra_simps power2_eq_square)
  finally show ?thesis .
qed

lemma cosh_double_cosh: "cosh (2 * x :: 'a :: {banach, real_normed_field}) = 2 * (cosh x)2 - 1"
  using cosh_double[of x] by (simp add: sinh_square_eq)

lemma sinh_multiple_reduce:
  "sinh (x * numeral n :: 'a :: {real_normed_field, banach}) = 
     sinh x * cosh (x * of_nat (pred_numeral n)) + cosh x * sinh (x * of_nat (pred_numeral n))"
proof -
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
  also have "sinh (x * ) = sinh (x * of_nat (pred_numeral n) + x)"
    unfolding of_nat_Suc by (simp add: ring_distribs)
  finally show ?thesis
    by (simp add: sinh_add)
qed

lemma cosh_multiple_reduce:
  "cosh (x * numeral n :: 'a :: {real_normed_field, banach}) =
     cosh (x * of_nat (pred_numeral n)) * cosh x + sinh (x * of_nat (pred_numeral n)) * sinh x"
proof -
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
  also have "cosh (x * ) = cosh (x * of_nat (pred_numeral n) + x)"
    unfolding of_nat_Suc by (simp add: ring_distribs)
  finally show ?thesis
    by (simp add: cosh_add)
qed

lemma cosh_arcosh_real [simp]:
  assumes "x  (1 :: real)"
  shows   "cosh (arcosh x) = x"
proof -
  have "eventually (λt::real. cosh t  x) at_top"
    using cosh_real_at_top by (simp add: filterlim_at_top)
  then obtain t where "t  1" "cosh t  x"
    by (metis eventually_at_top_linorder linorder_not_le order_le_less)
  moreover have "isCont cosh (y :: real)" for y
    by (intro continuous_intros)
  ultimately obtain y where "y  0" "x = cosh y"
    using IVT[of cosh 0 x t] assms by auto
  thus ?thesis
    by (simp add: arcosh_cosh_real)
qed

lemma arcosh_eq_0_iff_real [simp]: "x  1  arcosh x = 0  x = (1 :: real)"
  using cosh_arcosh_real by fastforce

lemma arcosh_nonneg_real [simp]:
  assumes "x  1"
  shows   "arcosh (x :: real)  0"
proof -
  have "1 + 0  x + (x2 - 1) powr (1 / 2)"
    using assms by (intro add_mono) auto
  thus ?thesis unfolding arcosh_def by simp
qed

lemma arcosh_real_strict_mono:
  fixes x y :: real
  assumes "1  x" "x < y"
  shows   "arcosh x < arcosh y"
proof -
  have "cosh (arcosh x) < cosh (arcosh y)"
    by (subst (1 2) cosh_arcosh_real) (use assms in auto)
  thus ?thesis
    using assms by (subst (asm) cosh_real_nonneg_less_iff) auto
qed

lemma arcosh_less_iff_real [simp]:
  fixes x y :: real
  assumes "1  x" "1  y"
  shows   "arcosh x < arcosh y  x < y"
  using arcosh_real_strict_mono[of x y] arcosh_real_strict_mono[of y x] assms
  by (cases x y rule: linorder_cases) auto

lemma arcosh_real_gt_1_iff [simp]: "x  1  arcosh x > 0  x  (1 :: real)"
  using arcosh_less_iff_real[of 1 x] by (auto simp del: arcosh_less_iff_real)

lemma sinh_arcosh_real: "x  1  sinh (arcosh x) = sqrt (x2 - 1)"
  by (rule sym, rule real_sqrt_unique) (auto simp: sinh_square_eq)


lemma sinh_arsinh_real [simp]: "sinh (arsinh x :: real) = x"
proof -
  have "eventually (λt::real. sinh t  x) at_top"
    using sinh_real_at_top by (simp add: filterlim_at_top)
  then obtain t where "sinh t  x"
    by (metis eventually_at_top_linorder linorder_not_le order_le_less)
  moreover have "eventually (λt::real. sinh t  x) at_bot"
    using sinh_real_at_bot by (simp add: filterlim_at_bot)
  then obtain t' where "t'  t" "sinh t'  x"
    by (metis eventually_at_bot_linorder nle_le)
  moreover have "isCont sinh (y :: real)" for y
    by (intro continuous_intros)
  ultimately obtain y where "x = sinh y"
    using IVT[of sinh t' x t] by auto
  thus ?thesis
    by (simp add: arsinh_sinh_real)
qed

lemma arsinh_real_strict_mono:
  fixes x y :: real
  assumes "x < y"
  shows   "arsinh x < arsinh y"
proof -
  have "sinh (arsinh x) < sinh (arsinh y)"
    by (subst (1 2) sinh_arsinh_real) (use assms in auto)
  thus ?thesis
    using assms by (subst (asm) sinh_real_less_iff) auto
qed

lemma arsinh_less_iff_real [simp]:
  fixes x y :: real
  shows "arsinh x < arsinh y  x < y"
  using arsinh_real_strict_mono[of x y] arsinh_real_strict_mono[of y x]
  by (cases x y rule: linorder_cases) auto

lemma arsinh_real_eq_0_iff [simp]: "arsinh x = 0  x = (0 :: real)"
  by (metis arsinh_0 sinh_arsinh_real)

lemma arsinh_real_pos_iff [simp]: "arsinh x > 0  x > (0 :: real)"
  using arsinh_less_iff_real[of 0 x] by (simp del: arsinh_less_iff_real)

lemma arsinh_real_neg_iff [simp]: "arsinh x < 0  x < (0 :: real)"
  using arsinh_less_iff_real[of x 0] by (simp del: arsinh_less_iff_real)

lemma cosh_arsinh_real: "cosh (arsinh x) = sqrt (x2 + 1)"
  by (rule sym, rule real_sqrt_unique) (auto simp: cosh_square_eq)

lemma continuous_on_arsinh [continuous_intros]: "continuous_on A (arsinh :: real  real)"
  by (rule DERIV_continuous_on derivative_intros)+

lemma continuous_on_arcosh [continuous_intros]:
  assumes "A  {1..}"
  shows   "continuous_on A (arcosh :: real  real)"
proof -
  have pos: "x + sqrt (x ^ 2 - 1) > 0" if "x  1" for x
    using that by (intro add_pos_nonneg) auto
  show ?thesis
  unfolding arcosh_def [abs_def]
  by (intro continuous_on_subset [OF _ assms] continuous_on_ln continuous_on_add
               continuous_on_id continuous_on_powr')
     (auto dest: pos simp: powr_half_sqrt intro!: continuous_intros)
qed

lemma continuous_on_artanh [continuous_intros]:
  assumes "A  {-1<..<1}"
  shows   "continuous_on A (artanh :: real  real)"
  unfolding artanh_def [abs_def]
  by (intro continuous_on_subset [OF _ assms]) (auto intro!: continuous_intros)

lemma continuous_on_arsinh' [continuous_intros]:
  fixes f :: "real  real"
  assumes "continuous_on A f"
  shows   "continuous_on A (λx. arsinh (f x))"
  by (rule continuous_on_compose2[OF continuous_on_arsinh assms]) auto

lemma continuous_on_arcosh' [continuous_intros]:
  fixes f :: "real  real"
  assumes "continuous_on A f" "x. x  A  f x  1"
  shows   "continuous_on A (λx. arcosh (f x))"
  by (rule continuous_on_compose2[OF continuous_on_arcosh assms(1) order.refl])
     (use assms(2) in auto)

lemma continuous_on_artanh' [continuous_intros]:
  fixes f :: "real  real"
  assumes "continuous_on A f" "x. x  A  f x  {-1<..<1}"
  shows   "continuous_on A (λx. artanh (f x))"
  by (rule continuous_on_compose2[OF continuous_on_artanh assms(1) order.refl])
     (use assms(2) in auto)

lemma isCont_arsinh [continuous_intros]: "isCont arsinh (x :: real)"
  using continuous_on_arsinh[of UNIV] by (auto simp: continuous_on_eq_continuous_at)

lemma isCont_arcosh [continuous_intros]:
  assumes "x > 1"
  shows   "isCont arcosh (x :: real)"
proof -
  have "continuous_on {1::real<..} arcosh"
    by (rule continuous_on_arcosh) auto
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
qed

lemma isCont_artanh [continuous_intros]:
  assumes "x > -1" "x < 1"
  shows   "isCont artanh (x :: real)"
proof -
  have "continuous_on {-1<..<(1::real)} artanh"
    by (rule continuous_on_artanh) auto
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
qed

lemma tendsto_arsinh [tendsto_intros]: "(f  a) F  ((λx. arsinh (f x))  arsinh a) F"
  for f :: "_  real"
  by (rule isCont_tendsto_compose [OF isCont_arsinh])

lemma tendsto_arcosh_strong [tendsto_intros]:
  fixes f :: "_  real"
  assumes "(f  a) F" "a  1" "eventually (λx. f x  1) F"
  shows   "((λx. arcosh (f x))  arcosh a) F"
  by (rule continuous_on_tendsto_compose[OF continuous_on_arcosh[OF order.refl]])
     (use assms in auto)

lemma tendsto_arcosh:
  fixes f :: "_  real"
  assumes "(f  a) F" "a > 1"
  shows "((λx. arcosh (f x))  arcosh a) F"
  by (rule isCont_tendsto_compose [OF isCont_arcosh]) (use assms in auto)

lemma tendsto_arcosh_at_left_1: "(arcosh  0) (at_right (1::real))"
proof -
  have "(arcosh  arcosh 1) (at_right (1::real))"
    by (rule tendsto_arcosh_strong) (auto simp: eventually_at intro!: exI[of _ 1])
  thus ?thesis by simp
qed

lemma tendsto_artanh [tendsto_intros]:
  fixes f :: "'a  real"
  assumes "(f  a) F" "a > -1" "a < 1"
  shows   "((λx. artanh (f x))  artanh a) F"
  by (rule isCont_tendsto_compose [OF isCont_artanh]) (use assms in auto)

lemma continuous_arsinh [continuous_intros]:
  "continuous F f  continuous F (λx. arsinh (f x :: real))"
  unfolding continuous_def by (rule tendsto_arsinh)

(* TODO: This rule does not work for one-sided continuity at 1 *)
lemma continuous_arcosh_strong [continuous_intros]:
  assumes "continuous F f" "eventually (λx. f x  1) F"
  shows   "continuous F (λx. arcosh (f x :: real))"
proof (cases "F = bot")
  case False
  show ?thesis
    unfolding continuous_def
  proof (intro tendsto_arcosh_strong)
    show "1  f (Lim F (λx. x))"
      using assms False unfolding continuous_def by (rule tendsto_lowerbound)
  qed (insert assms, auto simp: continuous_def)
qed auto

lemma continuous_arcosh:
  "continuous F f  f (Lim F (λx. x)) > 1  continuous F (λx. arcosh (f x :: real))"
  unfolding continuous_def by (rule tendsto_arcosh) auto

lemma continuous_artanh [continuous_intros]:
  "continuous F f  f (Lim F (λx. x))  {-1<..<1}  continuous F (λx. artanh (f x :: real))"
  unfolding continuous_def by (rule tendsto_artanh) auto

lemma arsinh_real_at_top:
  "filterlim (arsinh :: real  real) at_top at_top"
proof (subst filterlim_cong[OF refl refl])
  show "filterlim (λx. ln (x + sqrt (1 + x2))) at_top at_top"
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
              filterlim_pow_at_top) auto
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arsinh_real_def add_ac)

lemma arsinh_real_at_bot:
  "filterlim (arsinh :: real  real) at_bot at_bot"
proof -
  have "filterlim (λx::real. -arsinh x) at_bot at_top"
    by (subst filterlim_uminus_at_top [symmetric]) (rule arsinh_real_at_top)
  also have "(λx::real. -arsinh x) = (λx. arsinh (-x))" by simp
  finally show ?thesis
    by (subst filterlim_at_bot_mirror)
qed

lemma arcosh_real_at_top:
  "filterlim (arcosh :: real  real) at_top at_top"
proof (subst filterlim_cong[OF refl refl])
  show "filterlim (λx. ln (x + sqrt (-1 + x2))) at_top at_top"
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
              filterlim_pow_at_top) auto
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arcosh_real_def)

lemma artanh_real_at_left_1:
  "filterlim (artanh :: real  real) at_top (at_left 1)"
proof -
  have *: "filterlim (λx::real. (1 + x) / (1 - x)) at_top (at_left 1)"
    by (rule LIM_at_top_divide)
       (auto intro!: tendsto_eq_intros eventually_mono[OF eventually_at_left_real[of 0]])
  have "filterlim (λx::real. (1/2) * ln ((1 + x) / (1 - x))) at_top (at_left 1)"
    by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const] *
                 filterlim_compose[OF ln_at_top]) auto
  also have "(λx::real. (1/2) * ln ((1 + x) / (1 - x))) = artanh"
    by (simp add: artanh_def [abs_def])
  finally show ?thesis .
qed

lemma artanh_real_at_right_1:
  "filterlim (artanh :: real  real) at_bot (at_right (-1))"
proof -
  have "?thesis  filterlim (λx::real. -artanh x) at_top (at_right (-1))"
    by (simp add: filterlim_uminus_at_bot)
  also have "  filterlim (λx::real. artanh (-x)) at_top (at_right (-1))"
    by (intro filterlim_cong refl eventually_mono[OF eventually_at_right_real[of "-1" "1"]]) auto
  also have "  filterlim (artanh :: real  real) at_top (at_left 1)"
    by (simp add: filterlim_at_left_to_right)
  also have  by (rule artanh_real_at_left_1)
  finally show ?thesis .
qed


subsection ‹Simprocs for root and power literals›

lemma numeral_powr_numeral_real [simp]:
  "numeral m powr numeral n = (numeral m ^ numeral n :: real)"
  by (simp add: powr_numeral)

context
begin

private lemma sqrt_numeral_simproc_aux:
  assumes "m * m  n"
  shows   "sqrt (numeral n :: real)  numeral m"
proof -
  have "numeral n  numeral m * (numeral m :: real)" by (simp add: assms [symmetric])
  moreover have "sqrt   numeral m" by (subst real_sqrt_abs2) simp
  ultimately show "sqrt (numeral n :: real)  numeral m" by simp
qed

private lemma root_numeral_simproc_aux:
  assumes "Num.pow m n  x"
  shows   "root (numeral n) (numeral x :: real)  numeral m"
  by (subst assms [symmetric], subst numeral_pow, subst real_root_pos2) simp_all

private lemma powr_numeral_simproc_aux:
  assumes "Num.pow y n = x"
  shows   "numeral x powr (m / numeral n :: real)  numeral y powr m"
  by (subst assms [symmetric], subst numeral_pow, subst powr_numeral [symmetric])
     (simp, subst powr_powr, simp_all)

private lemma numeral_powr_inverse_eq:
  "numeral x powr (inverse (numeral n)) = numeral x powr (1 / numeral n :: real)"
  by simp


ML signature ROOT_NUMERAL_SIMPROC = sig

val sqrt : int option -> int -> int option
val sqrt' : int option -> int -> int option
val nth_root : int option -> int -> int -> int option
val nth_root' : int option -> int -> int -> int option
val sqrt_proc : Simplifier.proc
val root_proc : int * int -> Simplifier.proc
val powr_proc : int * int -> Simplifier.proc

end

structure Root_Numeral_Simproc : ROOT_NUMERAL_SIMPROC = struct

fun iterate NONE p f x =
      let
        fun go x = if p x then x else go (f x)
      in
        SOME (go x)
      end
  | iterate (SOME threshold) p f x =
      let
        fun go (threshold, x) = 
          if p x then SOME x else if threshold = 0 then NONE else go (threshold - 1, f x)
      in
        go (threshold, x)
      end  


fun nth_root _ 1 x = SOME x
  | nth_root _ _ 0 = SOME 0
  | nth_root _ _ 1 = SOME 1
  | nth_root threshold n x =
  let
    fun newton_step y = ((n - 1) * y + x div Integer.pow (n - 1) y) div n
    fun is_root y = Integer.pow n y <= x andalso x < Integer.pow n (y + 1)
  in
    if x < n then
      SOME 1
    else if x < Integer.pow n 2 then 
      SOME 1 
    else 
      let
        val y = Real.floor (Math.pow (Real.fromInt x, Real.fromInt 1 / Real.fromInt n))
      in
        if is_root y then
          SOME y
        else
          iterate threshold is_root newton_step ((x + n - 1) div n)
      end
  end

fun nth_root' _ 1 x = SOME x
  | nth_root' _ _ 0 = SOME 0
  | nth_root' _ _ 1 = SOME 1
  | nth_root' threshold n x = if x < n then NONE else if x < Integer.pow n 2 then NONE else
      case nth_root threshold n x of
        NONE => NONE
      | SOME y => if Integer.pow n y = x then SOME y else NONE

fun sqrt _ 0 = SOME 0
  | sqrt _ 1 = SOME 1
  | sqrt threshold n =
    let
      fun aux (a, b) = if n >= b * b then aux (b, b * b) else (a, b)
      val (lower_root, lower_n) = aux (1, 2)
      fun newton_step x = (x + n div x) div 2
      fun is_sqrt r = r*r <= n andalso n < (r+1)*(r+1)
      val y = Real.floor (Math.sqrt (Real.fromInt n))
    in
      if is_sqrt y then 
        SOME y
      else
        Option.mapPartial (iterate threshold is_sqrt newton_step o (fn x => x * lower_root)) 
          (sqrt threshold (n div lower_n))
    end

fun sqrt' threshold x =
  case sqrt threshold x of
    NONE => NONE
  | SOME y => if y * y = x then SOME y else NONE

fun sqrt_proc ctxt ct =
  let
    val n = ct |> Thm.term_of |> dest_comb |> snd |> dest_comb |> snd |> HOLogic.dest_numeral
  in
    case sqrt' (SOME 10000) n of
      NONE => NONE
    | SOME m => 
        SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n])
                  @{thm sqrt_numeral_simproc_aux})
  end
    handle TERM _ => NONE

fun root_proc (threshold1, threshold2) ctxt ct =
  let
    val [n, x] = 
      ct |> Thm.term_of |> strip_comb |> snd |> map (dest_comb #> snd #> HOLogic.dest_numeral)
  in
    if n > threshold1 orelse x > threshold2 then NONE else
      case nth_root' (SOME 100) n x of
        NONE => NONE
      | SOME m => 
          SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n, x])
            @{thm root_numeral_simproc_aux})
  end
    handle TERM _ => NONE
         | Match => NONE

fun powr_proc (threshold1, threshold2) ctxt ct =
  let
    val eq_thm = Conv.try_conv (Conv.rewr_conv @{thm numeral_powr_inverse_eq}) ct
    val ct = Thm.dest_equals_rhs (Thm.cprop_of eq_thm)
    val (_, [x, t]) = strip_comb (Thm.term_of ct)
    val (_, [m, n]) = strip_comb t
    val [x, n] = map (dest_comb #> snd #> HOLogic.dest_numeral) [x, n]
  in
    if n > threshold1 orelse x > threshold2 then NONE else
      case nth_root' (SOME 100) n x of
        NONE => NONE
      | SOME y => 
          let
            val [y, n, x] = map HOLogic.mk_numeral [y, n, x]
            val thm = Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt) [y, n, x, m])
              @{thm powr_numeral_simproc_aux}
          in
            SOME (@{thm transitive} OF [eq_thm, thm])
          end
  end
    handle TERM _ => NONE
         | Match => NONE

end

end

simproc_setup sqrt_numeral ("sqrt (numeral n)") = 
  K Root_Numeral_Simproc.sqrt_proc
  
simproc_setup root_numeral ("root (numeral n) (numeral x)") = 
  K (Root_Numeral_Simproc.root_proc (200, Integer.pow 200 2))

simproc_setup powr_divide_numeral 
  ("numeral x powr (m / numeral n :: real)" | "numeral x powr (inverse (numeral n) :: real)") = 
    K (Root_Numeral_Simproc.powr_proc (200, Integer.pow 200 2))


lemma "root 100 1267650600228229401496703205376 = 2"
  by simp
    
lemma "sqrt 196 = 14" 
  by simp

lemma "256 powr (7 / 4 :: real) = 16384"
  by simp
    
lemma "27 powr (inverse 3) = (3::real)"
  by simp

end