Theory Equivalence_Lebesgue_Henstock_Integration
theory Equivalence_Lebesgue_Henstock_Integration
imports
Lebesgue_Measure
Henstock_Kurzweil_Integration
Complete_Measure
Set_Integral
Homeomorphism
Cartesian_Euclidean_Space
begin
lemma LIMSEQ_if_less: "(λk. if i < k then a else b) ⇢ a"
by (rule_tac k="Suc i" in LIMSEQ_offset) auto
text ‹Note that the rhs is an implication. This lemma plays a specific role in one proof.›
lemma le_left_mono: "x ≤ y ⟹ y ≤ a ⟶ x ≤ (a::'a::preorder)"
by (auto intro: order_trans)
lemma ball_trans:
assumes "y ∈ ball z q" "r + q ≤ s" shows "ball y r ⊆ ball z s"
using assms by metric
lemma has_integral_implies_lebesgue_measurable_cbox:
fixes f :: "'a :: euclidean_space ⇒ real"
assumes f: "(f has_integral I) (cbox x y)"
shows "f ∈ lebesgue_on (cbox x y) →⇩M borel"
proof (rule cld_measure.borel_measurable_cld)
let ?L = "lebesgue_on (cbox x y)"
let ?μ = "emeasure ?L"
let ?μ' = "outer_measure_of ?L"
interpret L: finite_measure ?L
proof
show "?μ (space ?L) ≠ ∞"
by (simp add: emeasure_restrict_space space_restrict_space emeasure_lborel_cbox_eq)
qed
show "cld_measure ?L"
proof
fix B A assume "B ⊆ A" "A ∈ null_sets ?L"
then show "B ∈ sets ?L"
using null_sets_completion_subset[OF ‹B ⊆ A›, of lborel]
by (auto simp add: null_sets_restrict_space sets_restrict_space_iff intro: )
next
fix A assume "A ⊆ space ?L" "⋀B. B ∈ sets ?L ⟹ ?μ B < ∞ ⟹ A ∩ B ∈ sets ?L"
from this(1) this(2)[of "space ?L"] show "A ∈ sets ?L"
by (auto simp: Int_absorb2 less_top[symmetric])
qed auto
then interpret cld_measure ?L
.
have content_eq_L: "A ∈ sets borel ⟹ A ⊆ cbox x y ⟹ content A = measure ?L A" for A
by (subst measure_restrict_space) (auto simp: measure_def)
fix E and a b :: real assume "E ∈ sets ?L" "a < b" "0 < ?μ E" "?μ E < ∞"
then obtain M :: real where "?μ E = M" "0 < M"
by (cases "?μ E") auto
define e where "e = M / (4 + 2 / (b - a))"
from ‹a < b› ‹0<M› have "0 < e"
by (auto intro!: divide_pos_pos simp: field_simps e_def)
have "e < M / (3 + 2 / (b - a))"
using ‹a < b› ‹0 < M›
unfolding e_def by (intro divide_strict_left_mono add_strict_right_mono mult_pos_pos) (auto simp: field_simps)
then have "2 * e < (b - a) * (M - e * 3)"
using ‹0<M› ‹0 < e› ‹a < b› by (simp add: field_simps)
have e_less_M: "e < M / 1"
unfolding e_def using ‹a < b› ‹0<M› by (intro divide_strict_left_mono) (auto simp: field_simps)
obtain d
where "gauge d"
and integral_f: "∀p. p tagged_division_of cbox x y ∧ d fine p ⟶
norm ((∑(x,k) ∈ p. content k *⇩R f x) - I) < e"
using ‹0<e› f unfolding has_integral by auto
define C where "C X m = X ∩ {x. ball x (1/Suc m) ⊆ d x}" for X m
have "incseq (C X)" for X
unfolding C_def [abs_def]
by (intro monoI Collect_mono conj_mono imp_refl le_left_mono subset_ball divide_left_mono Int_mono) auto
{ fix X assume "X ⊆ space ?L" and eq: "?μ' X = ?μ E"
have "(SUP m. outer_measure_of ?L (C X m)) = outer_measure_of ?L (⋃m. C X m)"
using ‹X ⊆ space ?L› by (intro SUP_outer_measure_of_incseq ‹incseq (C X)›) (auto simp: C_def)
also have "(⋃m. C X m) = X"
proof -
{ fix x
obtain e where "0 < e" "ball x e ⊆ d x"
using gaugeD[OF ‹gauge d›, of x] unfolding open_contains_ball by auto
moreover
obtain n where "1 / (1 + real n) < e"
using reals_Archimedean[OF ‹0<e›] by (auto simp: inverse_eq_divide)
then have "ball x (1 / (1 + real n)) ⊆ ball x e"
by (intro subset_ball) auto
ultimately have "∃n. ball x (1 / (1 + real n)) ⊆ d x"
by blast }
then show ?thesis
by (auto simp: C_def)
qed
finally have "(SUP m. outer_measure_of ?L (C X m)) = ?μ E"
using eq by auto
also have "… > M - e"
using ‹0 < M› ‹?μ E = M› ‹0<e› by (auto intro!: ennreal_lessI)
finally have "∃m. M - e < outer_measure_of ?L (C X m)"
unfolding less_SUP_iff by auto }
note C = this
let ?E = "{x∈E. f x ≤ a}" and ?F = "{x∈E. b ≤ f x}"
have "¬ (?μ' ?E = ?μ E ∧ ?μ' ?F = ?μ E)"
proof
assume eq: "?μ' ?E = ?μ E ∧ ?μ' ?F = ?μ E"
with C[of ?E] C[of ?F] ‹E ∈ sets ?L›[THEN sets.sets_into_space] obtain ma mb
where "M - e < outer_measure_of ?L (C ?E ma)" "M - e < outer_measure_of ?L (C ?F mb)"
by auto
moreover define m where "m = max ma mb"
ultimately have M_minus_e: "M - e < outer_measure_of ?L (C ?E m)" "M - e < outer_measure_of ?L (C ?F m)"
using
incseqD[OF ‹incseq (C ?E)›, of ma m, THEN outer_measure_of_mono]
incseqD[OF ‹incseq (C ?F)›, of mb m, THEN outer_measure_of_mono]
by (auto intro: less_le_trans)
define d' where "d' x = d x ∩ ball x (1 / (3 * Suc m))" for x
have "gauge d'"
unfolding d'_def by (intro gauge_Int ‹gauge d› gauge_ball) auto
then obtain p where p: "p tagged_division_of cbox x y" "d' fine p"
by (rule fine_division_exists)
then have "d fine p"
unfolding d'_def[abs_def] fine_def by auto
define s where "s = {(x::'a, k). k ∩ (C ?E m) ≠ {} ∧ k ∩ (C ?F m) ≠ {}}"
define T where "T E k = (SOME x. x ∈ k ∩ C E m)" for E k
let ?A = "(λ(x, k). (T ?E k, k)) ` (p ∩ s) ∪ (p - s)"
let ?B = "(λ(x, k). (T ?F k, k)) ` (p ∩ s) ∪ (p - s)"
{ fix X assume X_eq: "X = ?E ∨ X = ?F"
let ?T = "(λ(x, k). (T X k, k))"
let ?p = "?T ` (p ∩ s) ∪ (p - s)"
have in_s: "(x, k) ∈ s ⟹ T X k ∈ k ∩ C X m" for x k
using someI_ex[of "λx. x ∈ k ∩ C X m"] X_eq unfolding ex_in_conv by (auto simp: T_def s_def)
{ fix x k assume "(x, k) ∈ p" "(x, k) ∈ s"
have k: "k ⊆ ball x (1 / (3 * Suc m))"
using ‹d' fine p›[THEN fineD, OF ‹(x, k) ∈ p›] by (auto simp: d'_def)
then have "x ∈ ball (T X k) (1 / (3 * Suc m))"
using in_s[OF ‹(x, k) ∈ s›] by (auto simp: C_def subset_eq dist_commute)
then have "ball x (1 / (3 * Suc m)) ⊆ ball (T X k) (1 / Suc m)"
by (rule ball_trans) (auto simp: field_split_simps)
with k in_s[OF ‹(x, k) ∈ s›] have "k ⊆ d (T X k)"
by (auto simp: C_def) }
then have "d fine ?p"
using ‹d fine p› by (auto intro!: fineI)
moreover
have "?p tagged_division_of cbox x y"
proof (rule tagged_division_ofI)
show "finite ?p"
using p(1) by auto
next
fix z k assume *: "(z, k) ∈ ?p"
then consider "(z, k) ∈ p" "(z, k) ∉ s"
| x' where "(x', k) ∈ p" "(x', k) ∈ s" "z = T X k"
by (auto simp: T_def)
then have "z ∈ k ∧ k ⊆ cbox x y ∧ (∃a b. k = cbox a b)"
using p(1) by cases (auto dest: in_s)
then show "z ∈ k" "k ⊆ cbox x y" "∃a b. k = cbox a b"
by auto
next
fix z k z' k' assume "(z, k) ∈ ?p" "(z', k') ∈ ?p" "(z, k) ≠ (z', k')"
with tagged_division_ofD(5)[OF p(1), of _ k _ k']
show "interior k ∩ interior k' = {}"
by (auto simp: T_def dest: in_s)
next
have "{k. ∃x. (x, k) ∈ ?p} = {k. ∃x. (x, k) ∈ p}"
by (auto simp: T_def image_iff Bex_def)
then show "⋃{k. ∃x. (x, k) ∈ ?p} = cbox x y"
using p(1) by auto
qed
ultimately have I: "norm ((∑(x,k) ∈ ?p. content k *⇩R f x) - I) < e"
using integral_f by auto
have "(∑(x,k) ∈ ?p. content k *⇩R f x) =
(∑(x,k) ∈ ?T ` (p ∩ s). content k *⇩R f x) + (∑(x,k) ∈ p - s. content k *⇩R f x)"
using p(1)[THEN tagged_division_ofD(1)]
by (safe intro!: sum.union_inter_neutral) (auto simp: s_def T_def)
also have "(∑(x,k) ∈ ?T ` (p ∩ s). content k *⇩R f x) = (∑(x,k) ∈ p ∩ s. content k *⇩R f (T X k))"
proof (subst sum.reindex_nontrivial, safe)
fix x1 x2 k assume 1: "(x1, k) ∈ p" "(x1, k) ∈ s" and 2: "(x2, k) ∈ p" "(x2, k) ∈ s"
and eq: "content k *⇩R f (T X k) ≠ 0"
with tagged_division_ofD(5)[OF p(1), of x1 k x2 k] tagged_division_ofD(4)[OF p(1), of x1 k]
show "x1 = x2"
by (auto simp: content_eq_0_interior)
qed (use p in ‹auto intro!: sum.cong›)
finally have eq: "(∑(x,k) ∈ ?p. content k *⇩R f x) =
(∑(x,k) ∈ p ∩ s. content k *⇩R f (T X k)) + (∑(x,k) ∈ p - s. content k *⇩R f x)" .
have in_T: "(x, k) ∈ s ⟹ T X k ∈ X" for x k
using in_s[of x k] by (auto simp: C_def)
note I eq in_T }
note parts = this
have p_in_L: "(x, k) ∈ p ⟹ k ∈ sets ?L" for x k
using tagged_division_ofD(3, 4)[OF p(1), of x k] by (auto simp: sets_restrict_space)
have [simp]: "finite p"
using tagged_division_ofD(1)[OF p(1)] .
have "(M - 3*e) * (b - a) ≤ (∑(x,k) ∈ p ∩ s. content k) * (b - a)"
proof (intro mult_right_mono)
have fin: "?μ (E ∩ ⋃{k∈snd`p. k ∩ C X m = {}}) < ∞" for X
using ‹?μ E < ∞› by (rule le_less_trans[rotated]) (auto intro!: emeasure_mono ‹E ∈ sets ?L›)
have sets: "(E ∩ ⋃{k∈snd`p. k ∩ C X m = {}}) ∈ sets ?L" for X
using tagged_division_ofD(1)[OF p(1)] by (intro sets.Diff ‹E ∈ sets ?L› sets.finite_Union sets.Int) (auto intro: p_in_L)
{ fix X assume "X ⊆ E" "M - e < ?μ' (C X m)"
have "M - e ≤ ?μ' (C X m)"
by (rule less_imp_le) fact
also have "… ≤ ?μ' (E - (E ∩ ⋃{k∈snd`p. k ∩ C X m = {}}))"
proof (intro outer_measure_of_mono subsetI)
fix v assume "v ∈ C X m"
then have "v ∈ cbox x y" "v ∈ E"
using ‹E ⊆ space ?L› ‹X ⊆ E› by (auto simp: space_restrict_space C_def)
then obtain z k where "(z, k) ∈ p" "v ∈ k"
using tagged_division_ofD(6)[OF p(1), symmetric] by auto
then show "v ∈ E - E ∩ (⋃{k∈snd`p. k ∩ C X m = {}})"
using ‹v ∈ C X m› ‹v ∈ E› by auto
qed
also have "… = ?μ E - ?μ (E ∩ ⋃{k∈snd`p. k ∩ C X m = {}})"
using ‹E ∈ sets ?L› fin[of X] sets[of X] by (auto intro!: emeasure_Diff)
finally have "?μ (E ∩ ⋃{k∈snd`p. k ∩ C X m = {}}) ≤ e"
using ‹0 < e› e_less_M
by (cases "?μ (E ∩ ⋃{k∈snd`p. k ∩ C X m = {}})") (auto simp add: ‹?μ E = M› ennreal_minus ennreal_le_iff2)
note this }
note upper_bound = this
have "?μ (E ∩ ⋃(snd`(p - s))) =
?μ ((E ∩ ⋃{k∈snd`p. k ∩ C ?E m = {}}) ∪ (E ∩ ⋃{k∈snd`p. k ∩ C ?F m = {}}))"
by (intro arg_cong[where f="?μ"]) (auto simp: s_def image_def Bex_def)
also have "… ≤ ?μ (E ∩ ⋃{k∈snd`p. k ∩ C ?E m = {}}) + ?μ (E ∩ ⋃{k∈snd`p. k ∩ C ?F m = {}})"
using sets[of ?E] sets[of ?F] M_minus_e by (intro emeasure_subadditive) auto
also have "… ≤ e + ennreal e"
using upper_bound[of ?E] upper_bound[of ?F] M_minus_e by (intro add_mono) auto
finally have "?μ E - 2*e ≤ ?μ (E - (E ∩ ⋃(snd`(p - s))))"
using ‹0 < e› ‹E ∈ sets ?L› tagged_division_ofD(1)[OF p(1)]
by (subst emeasure_Diff)
(auto simp: top_unique simp flip: ennreal_plus
intro!: sets.Int sets.finite_UN ennreal_mono_minus intro: p_in_L)
also have "… ≤ ?μ (⋃x∈p ∩ s. snd x)"
proof (safe intro!: emeasure_mono subsetI)
fix v assume "v ∈ E" and not: "v ∉ (⋃x∈p ∩ s. snd x)"
then have "v ∈ cbox x y"
using ‹E ⊆ space ?L› by (auto simp: space_restrict_space)
then obtain z k where "(z, k) ∈ p" "v ∈ k"
using tagged_division_ofD(6)[OF p(1), symmetric] by auto
with not show "v ∈ ⋃(snd ` (p - s))"
by (auto intro!: bexI[of _ "(z, k)"] elim: ballE[of _ _ "(z, k)"])
qed (auto intro!: sets.Int sets.finite_UN ennreal_mono_minus intro: p_in_L)
also have "… = measure ?L (⋃x∈p ∩ s. snd x)"
by (auto intro!: emeasure_eq_ennreal_measure)
finally have "M - 2 * e ≤ measure ?L (⋃x∈p ∩ s. snd x)"
unfolding ‹?μ E = M› using ‹0 < e› by (simp add: ennreal_minus)
also have "measure ?L (⋃x∈p ∩ s. snd x) = content (⋃x∈p ∩ s. snd x)"
using tagged_division_ofD(1,3,4) [OF p(1)]
by (intro content_eq_L[symmetric])
(fastforce intro!: sets.finite_UN UN_least del: subsetI)+
also have "content (⋃x∈p ∩ s. snd x) ≤ (∑k∈p ∩ s. content (snd k))"
using p(1) by (auto simp: emeasure_lborel_cbox_eq intro!: measure_subadditive_finite
dest!: p(1)[THEN tagged_division_ofD(4)])
finally show "M - 3 * e ≤ (∑(x, y)∈p ∩ s. content y)"
using ‹0 < e› by (simp add: split_beta)
qed (use ‹a < b› in auto)
also have "… = (∑(x,k) ∈ p ∩ s. content k * (b - a))"
by (simp add: sum_distrib_right split_beta')
also have "… ≤ (∑(x,k) ∈ p ∩ s. content k * (f (T ?F k) - f (T ?E k)))"
using parts(3) by (auto intro!: sum_mono mult_left_mono diff_mono)
also have "… = (∑(x,k) ∈ p ∩ s. content k * f (T ?F k)) - (∑(x,k) ∈ p ∩ s. content k * f (T ?E k))"
by (auto intro!: sum.cong simp: field_simps sum_subtractf[symmetric])
also have "… = (∑(x,k) ∈ ?B. content k *⇩R f x) - (∑(x,k) ∈ ?A. content k *⇩R f x)"
by (subst (1 2) parts) auto
also have "… ≤ norm ((∑(x,k) ∈ ?B. content k *⇩R f x) - (∑(x,k) ∈ ?A. content k *⇩R f x))"
by auto
also have "… ≤ e + e"
using parts(1)[of ?E] parts(1)[of ?F] by (intro norm_diff_triangle_le[of _ I]) auto
finally show False
using ‹2 * e < (b - a) * (M - e * 3)› by (auto simp: field_simps)
qed
moreover have "?μ' ?E ≤ ?μ E" "?μ' ?F ≤ ?μ E"
unfolding outer_measure_of_eq[OF ‹E ∈ sets ?L›, symmetric] by (auto intro!: outer_measure_of_mono)
ultimately show "min (?μ' ?E) (?μ' ?F) < ?μ E"
unfolding min_less_iff_disj by (auto simp: less_le)
qed
lemma has_integral_implies_lebesgue_measurable_real:
fixes f :: "'a :: euclidean_space ⇒ real"
assumes f: "(f has_integral I) Ω"
shows "(λx. f x * indicator Ω x) ∈ lebesgue →⇩M borel"
proof -
define B :: "nat ⇒ 'a set" where "B n = cbox (- real n *⇩R One) (real n *⇩R One)" for n
show "(λx. f x * indicator Ω x) ∈ lebesgue →⇩M borel"
proof (rule measurable_piecewise_restrict)
have "(⋃n. box (- real n *⇩R One) (real n *⇩R One)) ⊆ ⋃(B ` UNIV)"
unfolding B_def by (intro UN_mono box_subset_cbox order_refl)
then show "countable (range B)" "space lebesgue ⊆ ⋃(B ` UNIV)"
by (auto simp: B_def UN_box_eq_UNIV)
next
fix Ω' assume "Ω' ∈ range B"
then obtain n where Ω': "Ω' = B n" by auto
then show "Ω' ∩ space lebesgue ∈ sets lebesgue"
by (auto simp: B_def)
have "f integrable_on Ω"
using f by auto
then have "(λx. f x * indicator Ω x) integrable_on Ω"
by (auto simp: integrable_on_def cong: has_integral_cong)
then have "(λx. f x * indicator Ω x) integrable_on (Ω ∪ B n)"
by (rule integrable_on_superset) auto
then have "(λx. f x * indicator Ω x) integrable_on B n"
unfolding B_def by (rule integrable_on_subcbox) auto
then show "(λx. f x * indicator Ω x) ∈ lebesgue_on Ω' →⇩M borel"
unfolding B_def Ω' by (auto intro: has_integral_implies_lebesgue_measurable_cbox simp: integrable_on_def)
qed
qed
lemma has_integral_implies_lebesgue_measurable:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
assumes f: "(f has_integral I) Ω"
shows "(λx. indicator Ω x *⇩R f x) ∈ lebesgue →⇩M borel"
proof (intro borel_measurable_euclidean_space[where 'c='b, THEN iffD2] ballI)
fix i :: "'b" assume "i ∈ Basis"
have "(λx. (f x ∙ i) * indicator Ω x) ∈ borel_measurable (completion lborel)"
using has_integral_linear[OF f bounded_linear_inner_left, of i]
by (intro has_integral_implies_lebesgue_measurable_real) (auto simp: comp_def)
then show "(λx. indicator Ω x *⇩R f x ∙ i) ∈ borel_measurable (completion lborel)"
by (simp add: ac_simps)
qed
subsection ‹Equivalence Lebesgue integral on \<^const>‹lborel› and HK-integral›
lemma has_integral_measure_lborel:
fixes A :: "'a::euclidean_space set"
assumes A[measurable]: "A ∈ sets borel" and finite: "emeasure lborel A < ∞"
shows "((λx. 1) has_integral measure lborel A) A"
proof -
{ fix l u :: 'a
have "((λx. 1) has_integral measure lborel (box l u)) (box l u)"
proof cases
assume "∀b∈Basis. l ∙ b ≤ u ∙ b"
then show ?thesis
using has_integral_const[of "1::real" l u]
by (simp flip: has_integral_restrict[OF box_subset_cbox] add: has_integral_spike_interior)
next
assume "¬ (∀b∈Basis. l ∙ b ≤ u ∙ b)"
then have "box l u = {}"
unfolding box_eq_empty by (auto simp: not_le intro: less_imp_le)
then show ?thesis
by simp
qed }
note has_integral_box = this
{ fix a b :: 'a let ?M = "λA. measure lborel (A ∩ box a b)"
have "Int_stable (range (λ(a, b). box a b))"
by (auto simp: Int_stable_def box_Int_box)
moreover have "(range (λ(a, b). box a b)) ⊆ Pow UNIV"
by auto
moreover have "A ∈ sigma_sets UNIV (range (λ(a, b). box a b))"
using A unfolding borel_eq_box by simp
ultimately have "((λx. 1) has_integral ?M A) (A ∩ box a b)"
proof (induction rule: sigma_sets_induct_disjoint)
case (basic A) then show ?case
by (auto simp: box_Int_box has_integral_box)
next
case empty then show ?case
by simp
next
case (compl A)
then have [measurable]: "A ∈ sets borel"
by (simp add: borel_eq_box)
have "((λx. 1) has_integral ?M (box a b)) (box a b)"
by (simp add: has_integral_box)
moreover have "((λx. if x ∈ A ∩ box a b then 1 else 0) has_integral ?M A) (box a b)"
by (subst has_integral_restrict) (auto intro: compl)
ultimately have "((λx. 1 - (if x ∈ A ∩ box a b then 1 else 0)) has_integral ?M (box a b) - ?M A) (box a b)"
by (rule has_integral_diff)
then have "((λx. (if x ∈ (UNIV - A) ∩ box a b then 1 else 0)) has_integral ?M (box a b) - ?M A) (box a b)"
by (rule has_integral_cong[THEN iffD1, rotated 1]) auto
then have "((λx. 1) has_integral ?M (box a b) - ?M A) ((UNIV - A) ∩ box a b)"
by (subst (asm) has_integral_restrict) auto
also have "?M (box a b) - ?M A = ?M (UNIV - A)"
by (subst measure_Diff[symmetric]) (auto simp: emeasure_lborel_box_eq Diff_Int_distrib2)
finally show ?case .
next
case (union F)
then have [measurable]: "⋀i. F i ∈ sets borel"
by (simp add: borel_eq_box subset_eq)
have "((λx. if x ∈ ⋃(F ` UNIV) ∩ box a b then 1 else 0) has_integral ?M (⋃i. F i)) (box a b)"
proof (rule has_integral_monotone_convergence_increasing)
let ?f = "λk x. ∑i<k. if x ∈ F i ∩ box a b then 1 else 0 :: real"
show "⋀k. (?f k has_integral (∑i<k. ?M (F i))) (box a b)"
using union.IH by (auto intro!: has_integral_sum simp del: Int_iff)
show "⋀k x. ?f k x ≤ ?f (Suc k) x"
by (intro sum_mono2) auto
from union(1) have *: "⋀x i j. x ∈ F i ⟹ x ∈ F j ⟷ j = i"
by (auto simp add: disjoint_family_on_def)
show "(λk. ?f k x) ⇢ (if x ∈ ⋃(F ` UNIV) ∩ box a b then 1 else 0)" for x
by (auto simp: * sum.If_cases Iio_Int_singleton if_distrib LIMSEQ_if_less cong: if_cong)
have *: "emeasure lborel ((⋃x. F x) ∩ box a b) ≤ emeasure lborel (box a b)"
by (intro emeasure_mono) auto
with union(1) show "(λk. ∑i<k. ?M (F i)) ⇢ ?M (⋃i. F i)"
unfolding sums_def[symmetric] UN_extend_simps
by (intro measure_UNION) (auto simp: disjoint_family_on_def emeasure_lborel_box_eq top_unique)
qed
then show ?case
by (subst (asm) has_integral_restrict) auto
qed }
note * = this
show ?thesis
proof (rule has_integral_monotone_convergence_increasing)
let ?B = "λn::nat. box (- real n *⇩R One) (real n *⇩R One) :: 'a set"
let ?f = "λn::nat. λx. if x ∈ A ∩ ?B n then 1 else 0 :: real"
let ?M = "λn. measure lborel (A ∩ ?B n)"
show "⋀n::nat. (?f n has_integral ?M n) A"
using * by (subst has_integral_restrict) simp_all
show "⋀k x. ?f k x ≤ ?f (Suc k) x"
by (auto simp: box_def)
{ fix x assume "x ∈ A"
moreover have "(λk. indicator (A ∩ ?B k) x :: real) ⇢ indicator (⋃k::nat. A ∩ ?B k) x"
by (intro LIMSEQ_indicator_incseq) (auto simp: incseq_def box_def)
ultimately show "(λk. if x ∈ A ∩ ?B k then 1 else 0::real) ⇢ 1"
by (simp add: indicator_def of_bool_def UN_box_eq_UNIV) }
have "(λn. emeasure lborel (A ∩ ?B n)) ⇢ emeasure lborel (⋃n::nat. A ∩ ?B n)"
by (intro Lim_emeasure_incseq) (auto simp: incseq_def box_def)
also have "(λn. emeasure lborel (A ∩ ?B n)) = (λn. measure lborel (A ∩ ?B n))"
proof (intro ext emeasure_eq_ennreal_measure)
fix n have "emeasure lborel (A ∩ ?B n) ≤ emeasure lborel (?B n)"
by (intro emeasure_mono) auto
then show "emeasure lborel (A ∩ ?B n) ≠ top"
by (auto simp: top_unique)
qed
finally show "(λn. measure lborel (A ∩ ?B n)) ⇢ measure lborel A"
using emeasure_eq_ennreal_measure[of lborel A] finite
by (simp add: UN_box_eq_UNIV less_top)
qed
qed
lemma nn_integral_has_integral:
fixes f::"'a::euclidean_space ⇒ real"
assumes f: "f ∈ borel_measurable borel" "⋀x. 0 ≤ f x" "(∫⇧+x. f x ∂lborel) = ennreal r" "0 ≤ r"
shows "(f has_integral r) UNIV"
using f proof (induct f arbitrary: r rule: borel_measurable_induct_real)
case (set A)
then have "((λx. 1) has_integral measure lborel A) A"
by (intro has_integral_measure_lborel) (auto simp: ennreal_indicator)
with set show ?case
by (simp add: ennreal_indicator measure_def) (simp add: indicator_def of_bool_def)
next
case (mult g c)
then have "ennreal c * (∫⇧+ x. g x ∂lborel) = ennreal r"
by (subst nn_integral_cmult[symmetric]) (auto simp: ennreal_mult)
with ‹0 ≤ r› ‹0 ≤ c›
obtain r' where "(c = 0 ∧ r = 0) ∨ (0 ≤ r' ∧ (∫⇧+ x. ennreal (g x) ∂lborel) = ennreal r' ∧ r = c * r')"
by (cases "∫⇧+ x. ennreal (g x) ∂lborel" rule: ennreal_cases)
(auto split: if_split_asm simp: ennreal_mult_top ennreal_mult[symmetric])
with mult show ?case
by (auto intro!: has_integral_cmult_real)
next
case (add g h)
then have "(∫⇧+ x. h x + g x ∂lborel) = (∫⇧+ x. h x ∂lborel) + (∫⇧+ x. g x ∂lborel)"
by (simp add: nn_integral_add)
with add obtain a b where "0 ≤ a" "0 ≤ b" "(∫⇧+ x. h x ∂lborel) = ennreal a" "(∫⇧+ x. g x ∂lborel) = ennreal b" "r = a + b"
by (cases "∫⇧+ x. h x ∂lborel" "∫⇧+ x. g x ∂lborel" rule: ennreal2_cases)
(auto simp: add_top nn_integral_add top_add simp flip: ennreal_plus)
with add show ?case
by (auto intro!: has_integral_add)
next
case (seq U)
note seq(1)[measurable] and f[measurable]
have U_le_f: "U i x ≤ f x" for i x
by (metis (no_types) LIMSEQ_le_const UNIV_I incseq_def le_fun_def seq.hyps(4) seq.hyps(5) space_borel)
{ fix i
have "(∫⇧+x. U i x ∂lborel) ≤ (∫⇧+x. f x ∂lborel)"
using seq(2) f(2) U_le_f by (intro nn_integral_mono) simp
then obtain p where "(∫⇧+x. U i x ∂lborel) = ennreal p" "p ≤ r" "0 ≤ p"
using seq(6) ‹0≤r› by (cases "∫⇧+x. U i x ∂lborel" rule: ennreal_cases) (auto simp: top_unique)
moreover note seq
ultimately have "∃p. (∫⇧+x. U i x ∂lborel) = ennreal p ∧ 0 ≤ p ∧ p ≤ r ∧ (U i has_integral p) UNIV"
by auto }
then obtain p where p: "⋀i. (∫⇧+x. ennreal (U i x) ∂lborel) = ennreal (p i)"
and bnd: "⋀i. p i ≤ r" "⋀i. 0 ≤ p i"
and U_int: "⋀i.(U i has_integral (p i)) UNIV" by metis
have int_eq: "⋀i. integral UNIV (U i) = p i" using U_int by (rule integral_unique)
have *: "f integrable_on UNIV ∧ (λk. integral UNIV (U k)) ⇢ integral UNIV f"
proof (rule monotone_convergence_increasing)
show "⋀k. U k integrable_on UNIV" using U_int by auto
show "⋀k x. x∈UNIV ⟹ U k x ≤ U (Suc k) x" using ‹incseq U› by (auto simp: incseq_def le_fun_def)
then show "bounded (range (λk. integral UNIV (U k)))"
using bnd int_eq by (auto simp: bounded_real intro!: exI[of _ r])
show "⋀x. x∈UNIV ⟹ (λk. U k x) ⇢ f x"
using seq by auto
qed
moreover have "(λi. (∫⇧+x. U i x ∂lborel)) ⇢ (∫⇧+x. f x ∂lborel)"
using seq f(2) U_le_f by (intro nn_integral_dominated_convergence[where w=f]) auto
ultimately have "integral UNIV f = r"
by (auto simp add: bnd int_eq p seq intro: LIMSEQ_unique)
with * show ?case
by (simp add: has_integral_integral)
qed
lemma nn_integral_lborel_eq_integral:
fixes f::"'a::euclidean_space ⇒ real"
assumes f: "f ∈ borel_measurable borel" "⋀x. 0 ≤ f x" "(∫⇧+x. f x ∂lborel) < ∞"
shows "(∫⇧+x. f x ∂lborel) = integral UNIV f"
proof -
from f(3) obtain r where r: "(∫⇧+x. f x ∂lborel) = ennreal r" "0 ≤ r"
by (cases "∫⇧+x. f x ∂lborel" rule: ennreal_cases) auto
then show ?thesis
using nn_integral_has_integral[OF f(1,2) r] by (simp add: integral_unique)
qed
lemma nn_integral_integrable_on:
fixes f::"'a::euclidean_space ⇒ real"
assumes f: "f ∈ borel_measurable borel" "⋀x. 0 ≤ f x" "(∫⇧+x. f x ∂lborel) < ∞"
shows "f integrable_on UNIV"
proof -
from f(3) obtain r where r: "(∫⇧+x. f x ∂lborel) = ennreal r" "0 ≤ r"
by (cases "∫⇧+x. f x ∂lborel" rule: ennreal_cases) auto
then show ?thesis
by (intro has_integral_integrable[where i=r] nn_integral_has_integral[where r=r] f)
qed
lemma nn_integral_has_integral_lborel:
fixes f :: "'a::euclidean_space ⇒ real"
assumes f_borel: "f ∈ borel_measurable borel" and nonneg: "⋀x. 0 ≤ f x"
assumes I: "(f has_integral I) UNIV"
shows "integral⇧N lborel f = I"
proof -
from f_borel have "(λx. ennreal (f x)) ∈ borel_measurable lborel" by auto
from borel_measurable_implies_simple_function_sequence'[OF this]
obtain F where F: "⋀i. simple_function lborel (F i)" "incseq F"
"⋀i x. F i x < top" "⋀x. (SUP i. F i x) = ennreal (f x)"
by blast
then have [measurable]: "⋀i. F i ∈ borel_measurable lborel"
by (metis borel_measurable_simple_function)
let ?B = "λi::nat. box (- (real i *⇩R One)) (real i *⇩R One) :: 'a set"
have "0 ≤ I"
using I by (rule has_integral_nonneg) (simp add: nonneg)
have F_le_f: "enn2real (F i x) ≤ f x" for i x
using F(3,4)[where x=x] nonneg SUP_upper[of i UNIV "λi. F i x"]
by (cases "F i x" rule: ennreal_cases) auto
let ?F = "λi x. F i x * indicator (?B i) x"
have "(∫⇧+ x. ennreal (f x) ∂lborel) = (SUP i. integral⇧N lborel (λx. ?F i x))"
proof (subst nn_integral_monotone_convergence_SUP[symmetric])
{ fix x
obtain j where j: "x ∈ ?B j"
using UN_box_eq_UNIV by auto
have "ennreal (f x) = (SUP i. F i x)"
using F(4)[of x] nonneg[of x] by (simp add: max_def)
also have "… = (SUP i. ?F i x)"
proof (rule SUP_eq)
fix i show "∃j∈UNIV. F i x ≤ ?F j x"
using j F(2)
by (intro bexI[of _ "max i j"])
(auto split: split_max split_indicator simp: incseq_def le_fun_def box_def)
qed (auto intro!: F split: split_indicator)
finally have "ennreal (f x) = (SUP i. ?F i x)" . }
then show "(∫⇧+ x. ennreal (f x) ∂lborel) = (∫⇧+ x. (SUP i. ?F i x) ∂lborel)"
by simp
qed (insert F, auto simp: incseq_def le_fun_def box_def split: split_indicator)
also have "… ≤ ennreal I"
proof (rule SUP_least)
fix i :: nat
have finite_F: "(∫⇧+ x. ennreal (enn2real (F i x) * indicator (?B i) x) ∂lborel) < ∞"
proof (rule nn_integral_bound_simple_function)
have "emeasure lborel {x ∈ space lborel. ennreal (enn2real (F i x) * indicator (?B i) x) ≠ 0} ≤
emeasure lborel (?B i)"
by (intro emeasure_mono) (auto split: split_indicator)
then show "emeasure lborel {x ∈ space lborel. ennreal (enn2real (F i x) * indicator (?B i) x) ≠ 0} < ∞"
by (auto simp: less_top[symmetric] top_unique)
qed (auto split: split_indicator
intro!: F simple_function_compose1[where g="enn2real"] simple_function_ennreal)
have int_F: "(λx. enn2real (F i x) * indicator (?B i) x) integrable_on UNIV"
using F(4) finite_F
by (intro nn_integral_integrable_on) (auto split: split_indicator simp: enn2real_nonneg)
have "(∫⇧+ x. F i x * indicator (?B i) x ∂lborel) =
(∫⇧+ x. ennreal (enn2real (F i x) * indicator (?B i) x) ∂lborel)"
using F(3,4)
by (intro nn_integral_cong) (auto simp: image_iff eq_commute split: split_indicator)
also have "… = ennreal (integral UNIV (λx. enn2real (F i x) * indicator (?B i) x))"
using F
by (intro nn_integral_lborel_eq_integral[OF _ _ finite_F])
(auto split: split_indicator intro: enn2real_nonneg)
also have "… ≤ ennreal I"
by (auto intro!: has_integral_le[OF integrable_integral[OF int_F] I] nonneg F_le_f
simp: ‹0 ≤ I› split: split_indicator )
finally show "(∫⇧+ x. F i x * indicator (?B i) x ∂lborel) ≤ ennreal I" .
qed
finally have "(∫⇧+ x. ennreal (f x) ∂lborel) < ∞"
by (auto simp: less_top[symmetric] top_unique)
from nn_integral_lborel_eq_integral[OF assms(1,2) this] I show ?thesis
by (simp add: integral_unique)
qed
lemma has_integral_iff_emeasure_lborel:
fixes A :: "'a::euclidean_space set"
assumes A[measurable]: "A ∈ sets borel" and [simp]: "0 ≤ r"
shows "((λx. 1) has_integral r) A ⟷ emeasure lborel A = ennreal r"
proof (cases "emeasure lborel A = ∞")
case emeasure_A: True
have "¬ (λx. 1::real) integrable_on A"
proof
assume int: "(λx. 1::real) integrable_on A"
then have "(indicator A::'a ⇒ real) integrable_on UNIV"
unfolding indicator_def of_bool_def integrable_restrict_UNIV .
then obtain r where "((indicator A::'a⇒real) has_integral r) UNIV"
by auto
from nn_integral_has_integral_lborel[OF _ _ this] emeasure_A show False
by (simp add: ennreal_indicator)
qed
with emeasure_A show ?thesis
by auto
next
case False
then have "((λx. 1) has_integral measure lborel A) A"
by (simp add: has_integral_measure_lborel less_top)
with False show ?thesis
by (auto simp: emeasure_eq_ennreal_measure has_integral_unique)
qed
lemma ennreal_max_0: "ennreal (max 0 x) = ennreal x"
by (auto simp: max_def ennreal_neg)
lemma has_integral_integral_real:
fixes f::"'a::euclidean_space ⇒ real"
assumes f: "integrable lborel f"
shows "(f has_integral (integral⇧L lborel f)) UNIV"
proof -
from integrableE[OF f] obtain r q
where "0 ≤ r" "0 ≤ q"
and r: "(∫⇧+ x. ennreal (max 0 (f x)) ∂lborel) = ennreal r"
and q: "(∫⇧+ x. ennreal (max 0 (- f x)) ∂lborel) = ennreal q"
and f: "f ∈ borel_measurable lborel" and eq: "integral⇧L lborel f = r - q"
unfolding ennreal_max_0 by auto
then have "((λx. max 0 (f x)) has_integral r) UNIV" "((λx. max 0 (- f x)) has_integral q) UNIV"
using nn_integral_has_integral[OF _ _ r] nn_integral_has_integral[OF _ _ q] by auto
note has_integral_diff[OF this]
moreover have "(λx. max 0 (f x) - max 0 (- f x)) = f"
by auto
ultimately show ?thesis
by (simp add: eq)
qed
lemma has_integral_AE:
assumes ae: "AE x in lborel. x ∈ Ω ⟶ f x = g x"
shows "(f has_integral x) Ω = (g has_integral x) Ω"
proof -
from ae obtain N
where N: "N ∈ sets borel" "emeasure lborel N = 0" "{x. ¬ (x ∈ Ω ⟶ f x = g x)} ⊆ N"
by (auto elim!: AE_E)
then have not_N: "AE x in lborel. x ∉ N"
by (simp add: AE_iff_measurable)
show ?thesis
proof (rule has_integral_spike_eq[symmetric])
show "⋀x. x∈Ω - N ⟹ f x = g x" using N(3) by auto
show "negligible N"
unfolding negligible_def
proof (intro allI)
fix a b :: "'a"
let ?F = "λx::'a. if x ∈ cbox a b then indicator N x else 0 :: real"
have "integrable lborel ?F = integrable lborel (λx::'a. 0::real)"
using not_N N(1) by (intro integrable_cong_AE) auto
moreover have "(LINT x|lborel. ?F x) = (LINT x::'a|lborel. 0::real)"
using not_N N(1) by (intro integral_cong_AE) auto
ultimately have "(?F has_integral 0) UNIV"
using has_integral_integral_real[of ?F] by simp
then show "(indicator N has_integral (0::real)) (cbox a b)"
unfolding has_integral_restrict_UNIV .
qed
qed
qed
lemma nn_integral_has_integral_lebesgue:
fixes f :: "'a::euclidean_space ⇒ real"
assumes nonneg: "⋀x. x ∈ Ω ⟹ 0 ≤ f x" and I: "(f has_integral I) Ω"
shows "integral⇧N lborel (λx. indicator Ω x * f x) = I"
proof -
from I have "(λx. indicator Ω x *⇩R f x) ∈ lebesgue →⇩M borel"
by (rule has_integral_implies_lebesgue_measurable)
then obtain f' :: "'a ⇒ real"
where [measurable]: "f' ∈ borel →⇩M borel" and eq: "AE x in lborel. indicator Ω x * f x = f' x"
by (auto dest: completion_ex_borel_measurable_real)
from I have "((λx. abs (indicator Ω x * f x)) has_integral I) UNIV"
using nonneg by (simp add: indicator_def of_bool_def if_distrib[of "λx. x * f y" for y] cong: if_cong)
also have "((λx. abs (indicator Ω x * f x)) has_integral I) UNIV ⟷ ((λx. abs (f' x)) has_integral I) UNIV"
using eq by (intro has_integral_AE) auto
finally have "integral⇧N lborel (λx. abs (f' x)) = I"
by (rule nn_integral_has_integral_lborel[rotated 2]) auto
also have "integral⇧N lborel (λx. abs (f' x)) = integral⇧N lborel (λx. abs (indicator Ω x * f x))"
using eq by (intro nn_integral_cong_AE) auto
also have "(λx. abs (indicator Ω x * f x)) = (λx. indicator Ω x * f x)"
using nonneg by (auto simp: indicator_def fun_eq_iff)
finally show ?thesis .
qed
lemma has_integral_iff_nn_integral_lebesgue:
assumes f: "⋀x. 0 ≤ f x"
shows "(f has_integral r) UNIV ⟷ (f ∈ lebesgue →⇩M borel ∧ integral⇧N lebesgue f = r ∧ 0 ≤ r)" (is "?I = ?N")
proof
assume ?I
have "0 ≤ r"
using has_integral_nonneg[OF ‹?I›] f by auto
then show ?N
using nn_integral_has_integral_lebesgue[OF f ‹?I›]
has_integral_implies_lebesgue_measurable[OF ‹?I›]
by (auto simp: nn_integral_completion)
next
assume ?N
then obtain f' where f': "f' ∈ borel →⇩M borel" "AE x in lborel. f x = f' x"
by (auto dest: completion_ex_borel_measurable_real)
moreover have "(∫⇧+ x. ennreal ¦f' x¦ ∂lborel) = (∫⇧+ x. ennreal ¦f x¦ ∂lborel)"
using f' by (intro nn_integral_cong_AE) auto
moreover have "((λx. ¦f' x¦) has_integral r) UNIV ⟷ ((λx. ¦f x¦) has_integral r) UNIV"
using f' by (intro has_integral_AE) auto
moreover note nn_integral_has_integral[of "λx. ¦f' x¦" r] ‹?N›
ultimately show ?I
using f by (auto simp: nn_integral_completion)
qed
lemma set_nn_integral_lborel_eq_integral:
fixes f::"'a::euclidean_space ⇒ real"
assumes "set_borel_measurable borel A f"
assumes "⋀x. x ∈ A ⟹ 0 ≤ f x" "(∫⇧+x∈A. f x ∂lborel) < ∞"
shows "(∫⇧+x∈A. f x ∂lborel) = integral A f"
proof -
have eq: "(∫⇧+x∈A. f x ∂lborel) = (∫⇧+x. ennreal (indicator A x * f x) ∂lborel)"
by (intro nn_integral_cong) (auto simp: indicator_def)
also have "… = integral UNIV (λx. indicator A x * f x)"
using assms eq by (intro nn_integral_lborel_eq_integral)
(auto simp: indicator_def set_borel_measurable_def)
also have "integral UNIV (λx. indicator A x * f x) = integral A (λx. indicator A x * f x)"
by (rule integral_spike_set) (auto intro: empty_imp_negligible)
also have "… = integral A f"
by (rule integral_cong) (auto simp: indicator_def)
finally show ?thesis .
qed
lemma nn_integral_has_integral_lebesgue':
fixes f :: "'a::euclidean_space ⇒ real"
assumes nonneg: "⋀x. x ∈ Ω ⟹ 0 ≤ f x" and I: "(f has_integral I) Ω"
shows "integral⇧N lborel (λx. ennreal (f x) * indicator Ω x) = ennreal I"
proof -
have "integral⇧N lborel (λx. ennreal (f x) * indicator Ω x) =
integral⇧N lborel (λx. ennreal (indicator Ω x * f x))"
by (intro nn_integral_cong) (auto simp: indicator_def)
also have "… = ennreal I"
using assms by (intro nn_integral_has_integral_lebesgue)
finally show ?thesis .
qed
context
fixes f::"'a::euclidean_space ⇒ 'b::euclidean_space"
begin
lemma has_integral_integral_lborel:
assumes f: "integrable lborel f"
shows "(f has_integral (integral⇧L lborel f)) UNIV"
proof -
have "((λx. ∑b∈Basis. (f x ∙ b) *⇩R b) has_integral (∑b∈Basis. integral⇧L lborel (λx. f x ∙ b) *⇩R b)) UNIV"
using f by (intro has_integral_sum finite_Basis ballI has_integral_scaleR_left has_integral_integral_real) auto
also have eq_f: "(λx. ∑b∈Basis. (f x ∙ b) *⇩R b) = f"
by (simp add: fun_eq_iff euclidean_representation)
also have "(∑b∈Basis. integral⇧L lborel (λx. f x ∙ b) *⇩R b) = integral⇧L lborel f"
using f by (subst (2) eq_f[symmetric]) simp
finally show ?thesis .
qed
lemma integrable_on_lborel: "integrable lborel f ⟹ f integrable_on UNIV"
using has_integral_integral_lborel by auto
lemma integral_lborel: "integrable lborel f ⟹ integral UNIV f = (∫x. f x ∂lborel)"
using has_integral_integral_lborel by auto
end
context
begin
private lemma has_integral_integral_lebesgue_real:
fixes f :: "'a::euclidean_space ⇒ real"
assumes f: "integrable lebesgue f"
shows "(f has_integral (integral⇧L lebesgue f)) UNIV"
proof -
obtain f' where f': "f' ∈ borel →⇩M borel" "AE x in lborel. f x = f' x"
using completion_ex_borel_measurable_real[OF borel_measurable_integrable[OF f]] by auto
moreover have "(∫⇧+ x. ennreal (norm (f x)) ∂lborel) = (∫⇧+ x. ennreal (norm (f' x)) ∂lborel)"
using f' by (intro nn_integral_cong_AE) auto
ultimately have "integrable lborel f'"
using f by (auto simp: integrable_iff_bounded nn_integral_completion cong: nn_integral_cong_AE)
note has_integral_integral_real[OF this]
moreover have "integral⇧L lebesgue f = integral⇧L lebesgue f'"
using f' f by (intro integral_cong_AE) (auto intro: AE_completion measurable_completion)
moreover have "integral⇧L lebesgue f' = integral⇧L lborel f'"
using f' by (simp add: integral_completion)
moreover have "(f' has_integral integral⇧L lborel f') UNIV ⟷ (f has_integral integral⇧L lborel f') UNIV"
using f' by (intro has_integral_AE) auto
ultimately show ?thesis
by auto
qed
lemma has_integral_integral_lebesgue:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "integrable lebesgue f"
shows "(f has_integral (integral⇧L lebesgue f)) UNIV"
proof -
have "((λx. ∑b∈Basis. (f x ∙ b) *⇩R b) has_integral (∑b∈Basis. integral⇧L lebesgue (λx. f x ∙ b) *⇩R b)) UNIV"
using f by (intro has_integral_sum finite_Basis ballI has_integral_scaleR_left has_integral_integral_lebesgue_real) auto
also have eq_f: "(λx. ∑b∈Basis. (f x ∙ b) *⇩R b) = f"
by (simp add: fun_eq_iff euclidean_representation)
also have "(∑b∈Basis. integral⇧L lebesgue (λx. f x ∙ b) *⇩R b) = integral⇧L lebesgue f"
using f by (subst (2) eq_f[symmetric]) simp
finally show ?thesis .
qed
lemma has_integral_integral_lebesgue_on:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "integrable (lebesgue_on S) f" "S ∈ sets lebesgue"
shows "(f has_integral (integral⇧L (lebesgue_on S) f)) S"
proof -
let ?f = "λx. if x ∈ S then f x else 0"
have "integrable lebesgue (λx. indicat_real S x *⇩R f x)"
using indicator_scaleR_eq_if [of S _ f] assms
by (metis (full_types) integrable_restrict_space sets.Int_space_eq2)
then have "integrable lebesgue ?f"
using indicator_scaleR_eq_if [of S _ f] assms by auto
then have "(?f has_integral (integral⇧L lebesgue ?f)) UNIV"
by (rule has_integral_integral_lebesgue)
then have "(f has_integral (integral⇧L lebesgue ?f)) S"
using has_integral_restrict_UNIV by blast
moreover
have "S ∩ space lebesgue ∈ sets lebesgue"
by (simp add: assms)
then have "(integral⇧L lebesgue ?f) = (integral⇧L (lebesgue_on S) f)"
by (simp add: integral_restrict_space indicator_scaleR_eq_if)
ultimately show ?thesis
by auto
qed
lemma lebesgue_integral_eq_integral:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "integrable (lebesgue_on S) f" "S ∈ sets lebesgue"
shows "integral⇧L (lebesgue_on S) f = integral S f"
by (metis has_integral_integral_lebesgue_on assms integral_unique)
lemma integrable_on_lebesgue:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "integrable lebesgue f ⟹ f integrable_on UNIV"
using has_integral_integral_lebesgue by auto
lemma integral_lebesgue:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "integrable lebesgue f ⟹ integral UNIV f = (∫x. f x ∂lebesgue)"
using has_integral_integral_lebesgue by auto
end
subsection ‹Absolute integrability (this is the same as Lebesgue integrability)›
syntax
"_lebesgue_borel_integral" :: "pttrn ⇒ real ⇒ real"
(‹(‹indent=2 notation=‹binder LBINT››LBINT _./ _)› [0,10] 10)
"_set_lebesgue_borel_integral" :: "pttrn ⇒ real set ⇒ real ⇒ real"
(‹(‹indent=3 notation=‹binder LBINT››LBINT _:_./ _)› [0,0,10] 10)
syntax_consts
"_lebesgue_borel_integral" ⇌ lebesgue_integral and
"_set_lebesgue_borel_integral" ⇌ set_lebesgue_integral
translations
"LBINT x. f" == "CONST lebesgue_integral CONST lborel (λx. f)"
"LBINT x:A. f" == "CONST set_lebesgue_integral CONST lborel A (λx. f)"
lemma set_integral_reflect:
fixes S and f :: "real ⇒ 'a :: {banach, second_countable_topology}"
shows "(LBINT x : S. f x) = (LBINT x : {x. - x ∈ S}. f (- x))"
unfolding set_lebesgue_integral_def
by (subst lborel_integral_real_affine[where c="-1" and t=0])
(auto intro!: Bochner_Integration.integral_cong split: split_indicator)
lemma borel_integrable_atLeastAtMost':
fixes f :: "real ⇒ 'a::{banach, second_countable_topology}"
assumes f: "continuous_on {a..b} f"
shows "set_integrable lborel {a..b} f"
unfolding set_integrable_def
by (intro borel_integrable_compact compact_Icc f)
lemma integral_FTC_atLeastAtMost:
fixes f :: "real ⇒ 'a :: euclidean_space"
assumes "a ≤ b"
and F: "⋀x. a ≤ x ⟹ x ≤ b ⟹ (F has_vector_derivative f x) (at x within {a .. b})"
and f: "continuous_on {a .. b} f"
shows "integral⇧L lborel (λx. indicator {a .. b} x *⇩R f x) = F b - F a"
proof -
let ?f = "λx. indicator {a .. b} x *⇩R f x"
have "(?f has_integral (∫x. ?f x ∂lborel)) UNIV"
using borel_integrable_atLeastAtMost'[OF f]
unfolding set_integrable_def by (rule has_integral_integral_lborel)
moreover
have "(f has_integral F b - F a) {a .. b}"
by (intro fundamental_theorem_of_calculus ballI assms) auto
then have "(?f has_integral F b - F a) {a .. b}"
by (subst has_integral_cong[where g=f]) auto
then have "(?f has_integral F b - F a) UNIV"
by (intro has_integral_on_superset[where T=UNIV and S="{a..b}"]) auto
ultimately show "integral⇧L lborel ?f = F b - F a"
by (rule has_integral_unique)
qed
lemma set_borel_integral_eq_integral:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "set_integrable lborel S f"
shows "f integrable_on S" "(LINT x : S | lborel. f x) = integral S f"
proof -
let ?f = "λx. indicator S x *⇩R f x"
have "(?f has_integral (LINT x : S | lborel. f x)) UNIV"
using assms has_integral_integral_lborel
unfolding set_integrable_def set_lebesgue_integral_def by blast
hence 1: "(f has_integral (set_lebesgue_integral lborel S f)) S"
by (simp add: indicator_scaleR_eq_if)
thus "f integrable_on S"
by (auto simp add: integrable_on_def)
with 1 have "(f has_integral (integral S f)) S"
by (intro integrable_integral, auto simp add: integrable_on_def)
thus "(LINT x : S | lborel. f x) = integral S f"
by (intro has_integral_unique [OF 1])
qed
lemma has_integral_set_lebesgue:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "set_integrable lebesgue S f"
shows "(f has_integral (LINT x:S|lebesgue. f x)) S"
using has_integral_integral_lebesgue f
by (fastforce simp add: set_integrable_def set_lebesgue_integral_def indicator_def
of_bool_def if_distrib[of "λx. x *⇩R f _"] cong: if_cong)
lemma set_lebesgue_integral_eq_integral:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "set_integrable lebesgue S f"
shows "f integrable_on S" "(LINT x:S | lebesgue. f x) = integral S f"
using has_integral_set_lebesgue[OF f] by (auto simp: integral_unique integrable_on_def)
lemma lmeasurable_iff_has_integral:
"S ∈ lmeasurable ⟷ ((indicator S) has_integral measure lebesgue S) UNIV"
by (subst has_integral_iff_nn_integral_lebesgue)
(auto simp: ennreal_indicator emeasure_eq_measure2 borel_measurable_indicator_iff intro!: fmeasurableI)
abbreviation
absolutely_integrable_on :: "('a::euclidean_space ⇒ 'b::{banach, second_countable_topology}) ⇒ 'a set ⇒ bool"
(infixr ‹absolutely'_integrable'_on› 46)
where "f absolutely_integrable_on s ≡ set_integrable lebesgue s f"
lemma absolutely_integrable_zero [simp]: "(λx. 0) absolutely_integrable_on S"
by (simp add: set_integrable_def)
lemma absolutely_integrable_on_def:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "f absolutely_integrable_on S ⟷ f integrable_on S ∧ (λx. norm (f x)) integrable_on S"
proof safe
assume f: "f absolutely_integrable_on S"
then have nf: "integrable lebesgue (λx. norm (indicator S x *⇩R f x))"
using integrable_norm set_integrable_def by blast
show "f integrable_on S"
by (rule set_lebesgue_integral_eq_integral[OF f])
have "(λx. norm (indicator S x *⇩R f x)) = (λx. if x ∈ S then norm (f x) else 0)"
by auto
with integrable_on_lebesgue[OF nf] show "(λx. norm (f x)) integrable_on S"
by (simp add: integrable_restrict_UNIV)
next
assume f: "f integrable_on S" and nf: "(λx. norm (f x)) integrable_on S"
show "f absolutely_integrable_on S"
unfolding set_integrable_def
proof (rule integrableI_bounded)
show "(λx. indicator S x *⇩R f x) ∈ borel_measurable lebesgue"
using f has_integral_implies_lebesgue_measurable[of f _ S] by (auto simp: integrable_on_def)
show "(∫⇧+ x. ennreal (norm (indicator S x *⇩R f x)) ∂lebesgue) < ∞"
using nf nn_integral_has_integral_lebesgue[of _ "λx. norm (f x)"]
by (auto simp: integrable_on_def nn_integral_completion)
qed
qed
lemma integrable_on_lebesgue_on:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "integrable (lebesgue_on S) f" and S: "S ∈ sets lebesgue"
shows "f integrable_on S"
proof -
have "integrable lebesgue (λx. indicator S x *⇩R f x)"
using S f inf_top.comm_neutral integrable_restrict_space by blast
then show ?thesis
using absolutely_integrable_on_def set_integrable_def by blast
qed
lemma absolutely_integrable_imp_integrable:
assumes "f absolutely_integrable_on S" "S ∈ sets lebesgue"
shows "integrable (lebesgue_on S) f"
by (meson assms integrable_restrict_space set_integrable_def sets.Int sets.top)
lemma absolutely_integrable_on_null [intro]:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "content (cbox a b) = 0 ⟹ f absolutely_integrable_on (cbox a b)"
by (auto simp: absolutely_integrable_on_def)
lemma absolutely_integrable_on_open_interval:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
shows "f absolutely_integrable_on box a b ⟷
f absolutely_integrable_on cbox a b"
by (auto simp: integrable_on_open_interval absolutely_integrable_on_def)
lemma absolutely_integrable_restrict_UNIV:
"(λx. if x ∈ S then f x else 0) absolutely_integrable_on UNIV ⟷ f absolutely_integrable_on S"
unfolding set_integrable_def
by (intro arg_cong2[where f=integrable]) auto
lemma absolutely_integrable_onI:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "f integrable_on S ⟹ (λx. norm (f x)) integrable_on S ⟹ f absolutely_integrable_on S"
unfolding absolutely_integrable_on_def by auto
lemma nonnegative_absolutely_integrable_1:
fixes f :: "'a :: euclidean_space ⇒ real"
assumes f: "f integrable_on A" and "⋀x. x ∈ A ⟹ 0 ≤ f x"
shows "f absolutely_integrable_on A"
by (rule absolutely_integrable_onI [OF f]) (use assms in ‹simp add: integrable_eq›)
lemma absolutely_integrable_on_iff_nonneg:
fixes f :: "'a :: euclidean_space ⇒ real"
assumes "⋀x. x ∈ S ⟹ 0 ≤ f x" shows "f absolutely_integrable_on S ⟷ f integrable_on S"
proof -
{ assume "f integrable_on S"
then have "(λx. if x ∈ S then f x else 0) integrable_on UNIV"
by (simp add: integrable_restrict_UNIV)
then have "(λx. if x ∈ S then f x else 0) absolutely_integrable_on UNIV"
using ‹f integrable_on S› absolutely_integrable_restrict_UNIV assms nonnegative_absolutely_integrable_1 by blast
then have "f absolutely_integrable_on S"
using absolutely_integrable_restrict_UNIV by blast
}
then show ?thesis
unfolding absolutely_integrable_on_def by auto
qed
lemma absolutely_integrable_on_scaleR_iff:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows
"(λx. c *⇩R f x) absolutely_integrable_on S ⟷
c = 0 ∨ f absolutely_integrable_on S"
proof (cases "c=0")
case False
then show ?thesis
unfolding absolutely_integrable_on_def
by (simp add: norm_mult)
qed auto
lemma absolutely_integrable_spike:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "f absolutely_integrable_on T" and S: "negligible S" "⋀x. x ∈ T - S ⟹ g x = f x"
shows "g absolutely_integrable_on T"
using assms integrable_spike
unfolding absolutely_integrable_on_def by metis
lemma absolutely_integrable_negligible:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "negligible S"
shows "f absolutely_integrable_on S"
using assms by (simp add: absolutely_integrable_on_def integrable_negligible)
lemma absolutely_integrable_spike_eq:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "negligible S" "⋀x. x ∈ T - S ⟹ g x = f x"
shows "(f absolutely_integrable_on T ⟷ g absolutely_integrable_on T)"
using assms by (blast intro: absolutely_integrable_spike sym)
lemma absolutely_integrable_spike_set_eq:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "negligible {x ∈ S - T. f x ≠ 0}" "negligible {x ∈ T - S. f x ≠ 0}"
shows "(f absolutely_integrable_on S ⟷ f absolutely_integrable_on T)"
proof -
have "(λx. if x ∈ S then f x else 0) absolutely_integrable_on UNIV ⟷
(λx. if x ∈ T then f x else 0) absolutely_integrable_on UNIV"
proof (rule absolutely_integrable_spike_eq)
show "negligible ({x ∈ S - T. f x ≠ 0} ∪ {x ∈ T - S. f x ≠ 0})"
by (rule negligible_Un [OF assms])
qed auto
with absolutely_integrable_restrict_UNIV show ?thesis
by blast
qed
lemma absolutely_integrable_spike_set:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "f absolutely_integrable_on S" and neg: "negligible {x ∈ S - T. f x ≠ 0}" "negligible {x ∈ T - S. f x ≠ 0}"
shows "f absolutely_integrable_on T"
using absolutely_integrable_spike_set_eq f neg by blast
lemma absolutely_integrable_reflect[simp]:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "(λx. f(-x)) absolutely_integrable_on cbox (-b) (-a) ⟷ f absolutely_integrable_on cbox a b"
unfolding absolutely_integrable_on_def
by (metis (mono_tags, lifting) integrable_eq integrable_reflect)
lemma absolutely_integrable_reflect_real[simp]:
fixes f :: "real ⇒ 'b::euclidean_space"
shows "(λx. f(-x)) absolutely_integrable_on {-b .. -a} ⟷ f absolutely_integrable_on {a..b::real}"
unfolding box_real[symmetric] by (rule absolutely_integrable_reflect)
lemma absolutely_integrable_on_subcbox:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "⟦f absolutely_integrable_on S; cbox a b ⊆ S⟧ ⟹ f absolutely_integrable_on cbox a b"
by (meson absolutely_integrable_on_def integrable_on_subcbox)
lemma absolutely_integrable_on_subinterval:
fixes f :: "real ⇒ 'b::euclidean_space"
shows "⟦f absolutely_integrable_on S; {a..b} ⊆ S⟧ ⟹ f absolutely_integrable_on {a..b}"
using absolutely_integrable_on_subcbox by fastforce
lemma integrable_subinterval:
fixes f :: "real ⇒ 'a::euclidean_space"
assumes "integrable (lebesgue_on {a..b}) f"
and "{c..d} ⊆ {a..b}"
shows "integrable (lebesgue_on {c..d}) f"
proof (rule absolutely_integrable_imp_integrable)
show "f absolutely_integrable_on {c..d}"
proof -
have "f integrable_on {c..d}"
using assms integrable_on_lebesgue_on integrable_on_subinterval by fastforce
moreover have "(λx. norm (f x)) integrable_on {c..d}"
proof (rule integrable_on_subinterval)
show "(λx. norm (f x)) integrable_on {a..b}"
by (simp add: assms integrable_on_lebesgue_on)
qed (use assms in auto)
ultimately show ?thesis
by (auto simp: absolutely_integrable_on_def)
qed
qed auto
lemma indefinite_integral_continuous_real:
fixes f :: "real ⇒ 'a::euclidean_space"
assumes "integrable (lebesgue_on {a..b}) f"
shows "continuous_on {a..b} (λx. integral⇧L (lebesgue_on {a..x}) f)"
proof -
have "f integrable_on {a..b}"
by (simp add: assms integrable_on_lebesgue_on)
then have "continuous_on {a..b} (λx. integral {a..x} f)"
using indefinite_integral_continuous_1 by blast
moreover have "integral⇧L (lebesgue_on {a..x}) f = integral {a..x} f" if "a ≤ x" "x ≤ b" for x
proof -
have "{a..x} ⊆ {a..b}"
using that by auto
then have "integrable (lebesgue_on {a..x}) f"
using integrable_subinterval assms by blast
then show "integral⇧L (lebesgue_on {a..x}) f = integral {a..x} f"
by (simp add: lebesgue_integral_eq_integral)
qed
ultimately show ?thesis
by (metis (no_types, lifting) atLeastAtMost_iff continuous_on_cong)
qed
lemma lmeasurable_iff_integrable_on: "S ∈ lmeasurable ⟷ (λx. 1::real) integrable_on S"
by (subst absolutely_integrable_on_iff_nonneg[symmetric])
(simp_all add: lmeasurable_iff_integrable set_integrable_def)
lemma lmeasure_integral_UNIV: "S ∈ lmeasurable ⟹ measure lebesgue S = integral UNIV (indicator S)"
by (simp add: lmeasurable_iff_has_integral integral_unique)
lemma lmeasure_integral: "S ∈ lmeasurable ⟹ measure lebesgue S = integral S (λx. 1::real)"
by (fastforce simp add: lmeasure_integral_UNIV indicator_def [abs_def] of_bool_def lmeasurable_iff_integrable_on)
lemma integrable_on_const: "S ∈ lmeasurable ⟹ (λx. c) integrable_on S"
unfolding lmeasurable_iff_integrable
by (metis (mono_tags, lifting) integrable_eq integrable_on_scaleR_left lmeasurable_iff_integrable lmeasurable_iff_integrable_on scaleR_one)
lemma integral_indicator:
assumes "(S ∩ T) ∈ lmeasurable"
shows "integral T (indicator S) = measure lebesgue (S ∩ T)"
proof -
have "integral UNIV (indicator (S ∩ T)) = integral UNIV (λa. if a ∈ S ∩ T then 1::real else 0)"
by (simp add: indicator_def [abs_def] of_bool_def)
moreover have "(indicator (S ∩ T) has_integral measure lebesgue (S ∩ T)) UNIV"
using assms by (simp add: lmeasurable_iff_has_integral)
ultimately have "integral UNIV (λx. if x ∈ S ∩ T then 1 else 0) = measure lebesgue (S ∩ T)"
by (metis (no_types) integral_unique)
moreover have "integral T (λa. if a ∈ S then 1::real else 0) = integral (S ∩ T ∩ UNIV) (λa. 1)"
by (simp add: Henstock_Kurzweil_Integration.integral_restrict_Int)
moreover have "integral T (indicat_real S) = integral T (λa. if a ∈ S then 1 else 0)"
by (simp add: indicator_def [abs_def] of_bool_def)
ultimately show ?thesis
by (simp add: assms lmeasure_integral)
qed
lemma measurable_integrable:
fixes S :: "'a::euclidean_space set"
shows "S ∈ lmeasurable ⟷ (indicat_real S) integrable_on UNIV"
by (auto simp: lmeasurable_iff_integrable absolutely_integrable_on_iff_nonneg [symmetric] set_integrable_def)
lemma integrable_on_indicator:
fixes S :: "'a::euclidean_space set"
shows "indicat_real S integrable_on T ⟷ (S ∩ T) ∈ lmeasurable"
unfolding measurable_integrable
unfolding integrable_restrict_UNIV [of T, symmetric]
by (fastforce simp add: indicator_def elim: integrable_eq)
lemma
assumes 𝒟: "𝒟 division_of S"
shows lmeasurable_division: "S ∈ lmeasurable" (is ?l)
and content_division: "(∑k∈𝒟. measure lebesgue k) = measure lebesgue S" (is ?m)
proof -
{ fix d1 d2 assume *: "d1 ∈ 𝒟" "d2 ∈ 𝒟" "d1 ≠ d2"
then obtain a b c d where "d1 = cbox a b" "d2 = cbox c d"
using division_ofD(4)[OF 𝒟] by blast
with division_ofD(5)[OF 𝒟 *]
have "d1 ∈ sets lborel" "d2 ∈ sets lborel" "d1 ∩ d2 ⊆ (cbox a b - box a b) ∪ (cbox c d - box c d)"
by auto
moreover have "(cbox a b - box a b) ∪ (cbox c d - box c d) ∈ null_sets lborel"
by (intro null_sets.Un null_sets_cbox_Diff_box)
ultimately have "d1 ∩ d2 ∈ null_sets lborel"
by (blast intro: null_sets_subset) }
then show ?l ?m
unfolding division_ofD(6)[OF 𝒟, symmetric]
using division_ofD(1,4)[OF 𝒟]
by (auto intro!: measure_Union_AE[symmetric] simp: completion.AE_iff_null_sets Int_def[symmetric] pairwise_def null_sets_def)
qed
lemma has_measure_limit:
assumes "S ∈ lmeasurable" "e > 0"
obtains B where "B > 0"
"⋀a b. ball 0 B ⊆ cbox a b ⟹ ¦measure lebesgue (S ∩ cbox a b) - measure lebesgue S¦ < e"
using assms unfolding lmeasurable_iff_has_integral has_integral_alt'
by (force simp: integral_indicator integrable_on_indicator)
lemma lmeasurable_iff_indicator_has_integral:
fixes S :: "'a::euclidean_space set"
shows "S ∈ lmeasurable ∧ m = measure lebesgue S ⟷ (indicat_real S has_integral m) UNIV"
by (metis has_integral_iff lmeasurable_iff_has_integral measurable_integrable)
lemma has_measure_limit_iff:
fixes f :: "'n::euclidean_space ⇒ 'a::banach"
shows "S ∈ lmeasurable ∧ m = measure lebesgue S ⟷
(∀e>0. ∃B>0. ∀a b. ball 0 B ⊆ cbox a b ⟶
(S ∩ cbox a b) ∈ lmeasurable ∧ ¦measure lebesgue (S ∩ cbox a b) - m¦ < e)" (is "?lhs = ?rhs")
proof
assume ?lhs then show ?rhs
by (meson has_measure_limit fmeasurable.Int lmeasurable_cbox)
next
assume RHS [rule_format]: ?rhs
then show ?lhs
apply (simp add: lmeasurable_iff_indicator_has_integral has_integral' [where i=m])
by (metis (full_types) integral_indicator integrable_integral integrable_on_indicator)
qed
subsection‹Applications to Negligibility›
lemma negligible_iff_null_sets: "negligible S ⟷ S ∈ null_sets lebesgue"
proof
assume "negligible S"
then have "(indicator S has_integral (0::real)) UNIV"
by (auto simp: negligible)
then show "S ∈ null_sets lebesgue"
by (subst (asm) has_integral_iff_nn_integral_lebesgue)
(auto simp: borel_measurable_indicator_iff nn_integral_0_iff_AE AE_iff_null_sets indicator_eq_0_iff)
next
assume S: "S ∈ null_sets lebesgue"
show "negligible S"
unfolding negligible_def
proof (safe intro!: has_integral_iff_nn_integral_lebesgue[THEN iffD2]
has_integral_restrict_UNIV[where s="cbox _ _", THEN iffD1])
fix a b
show "(λx. if x ∈ cbox a b then indicator S x else 0) ∈ lebesgue →⇩M borel"
using S by (auto intro!: measurable_If)
then show "(∫⇧+ x. ennreal (if x ∈ cbox a b then indicator S x else 0) ∂lebesgue) = ennreal 0"
using S[THEN AE_not_in] by (auto intro!: nn_integral_0_iff_AE[THEN iffD2])
qed auto
qed
corollary eventually_ae_filter_negligible:
"eventually P (ae_filter lebesgue) ⟷ (∃N. negligible N ∧ {x. ¬ P x} ⊆ N)"
by (auto simp: completion.AE_iff_null_sets negligible_iff_null_sets null_sets_completion_subset)
lemma starlike_negligible:
assumes "closed S"
and eq1: "⋀c x. (a + c *⇩R x) ∈ S ⟹ 0 ≤ c ⟹ a + x ∈ S ⟹ c = 1"
shows "negligible S"
proof -
have "negligible ((+) (-a) ` S)"
proof (subst negligible_on_intervals, intro allI)
fix u v
show "negligible ((+) (- a) ` S ∩ cbox u v)"
using ‹closed S› eq1 by (auto simp add: negligible_iff_null_sets algebra_simps
intro!: closed_translation_subtract starlike_negligible_compact cong: image_cong_simp)
(metis add_diff_eq diff_add_cancel scale_right_diff_distrib)
qed
then show ?thesis
by (rule negligible_translation_rev)
qed
lemma starlike_negligible_strong:
assumes "closed S"
and star: "⋀c x. ⟦0 ≤ c; c < 1; a+x ∈ S⟧ ⟹ a + c *⇩R x ∉ S"
shows "negligible S"
proof -
show ?thesis
proof (rule starlike_negligible [OF ‹closed S›, of a])
fix c x
assume cx: "a + c *⇩R x ∈ S" "0 ≤ c" "a + x ∈ S"
with star have "¬ (c < 1)" by auto
moreover have "¬ (c > 1)"
using star [of "1/c" "c *⇩R x"] cx by force
ultimately show "c = 1" by arith
qed
qed
lemma negligible_hyperplane:
assumes "a ≠ 0 ∨ b ≠ 0" shows "negligible {x. a ∙ x = b}"
proof -
obtain x where x: "a ∙ x ≠ b"
using assms by (metis euclidean_all_zero_iff inner_zero_right)
moreover have "c = 1" if "a ∙ (x + c *⇩R w) = b" "a ∙ (x + w) = b" for c w
using that
by (metis (no_types, opaque_lifting) add_diff_eq diff_0 diff_minus_eq_add inner_diff_right inner_scaleR_right mult_cancel_right2 right_minus_eq x)
ultimately
show ?thesis
using starlike_negligible [OF closed_hyperplane, of x] by simp
qed
lemma negligible_lowdim:
fixes S :: "'N :: euclidean_space set"
assumes "dim S < DIM('N)"
shows "negligible S"
proof -
obtain a where "a ≠ 0" and a: "span S ⊆ {x. a ∙ x = 0}"
using lowdim_subset_hyperplane [OF assms] by blast
have "negligible (span S)"
using ‹a ≠ 0› a negligible_hyperplane by (blast intro: negligible_subset)
then show ?thesis
using span_base by (blast intro: negligible_subset)
qed
proposition negligible_convex_frontier:
fixes S :: "'N :: euclidean_space set"
assumes "convex S"
shows "negligible(frontier S)"
proof -
have nf: "negligible(frontier S)" if "convex S" "0 ∈ S" for S :: "'N set"
proof -
obtain B where "B ⊆ S" and indB: "independent B"
and spanB: "S ⊆ span B" and cardB: "card B = dim S"
by (metis basis_exists)
consider "dim S < DIM('N)" | "dim S = DIM('N)"
using dim_subset_UNIV le_eq_less_or_eq by auto
then show ?thesis
proof cases
case 1
show ?thesis
by (rule negligible_subset [of "closure S"])
(simp_all add: frontier_def negligible_lowdim 1)
next
case 2
obtain a where "a ∈ interior (convex hull insert 0 B)"
proof (rule interior_simplex_nonempty [OF indB])
show "finite B"
by (simp add: indB independent_imp_finite)
show "card B = DIM('N)"
by (simp add: cardB 2)
qed
then have a: "a ∈ interior S"
by (metis ‹B ⊆ S› ‹0 ∈ S› ‹convex S› insert_absorb insert_subset interior_mono subset_hull)
show ?thesis
proof (rule starlike_negligible_strong [where a=a])
fix c::real and x
have eq: "a + c *⇩R x = (a + x) - (1 - c) *⇩R ((a + x) - a)"
by (simp add: algebra_simps)
assume "0 ≤ c" "c < 1" "a + x ∈ frontier S"
then show "a + c *⇩R x ∉ frontier S"
using eq mem_interior_closure_convex_shrink [OF ‹convex S› a, of _ "1-c"]
unfolding frontier_def
by (metis Diff_iff add_diff_cancel_left' add_diff_eq diff_gt_0_iff_gt group_cancel.rule0 not_le)
qed auto
qed
qed
show ?thesis
proof (cases "S = {}")
case True then show ?thesis by auto
next
case False
then obtain a where "a ∈ S" by auto
show ?thesis
using nf [of "(λx. -a + x) ` S"]
by (metis ‹a ∈ S› add.left_inverse assms convex_translation_eq frontier_translation
image_eqI negligible_translation_rev)
qed
qed
corollary negligible_sphere: "negligible (sphere a e)"
using frontier_cball negligible_convex_frontier convex_cball
by (blast intro: negligible_subset)
lemma non_negligible_UNIV [simp]: "¬ negligible UNIV"
unfolding negligible_iff_null_sets by (auto simp: null_sets_def)
lemma negligible_interval:
"negligible (cbox a b) ⟷ box a b = {}" "negligible (box a b) ⟷ box a b = {}"
by (auto simp: negligible_iff_null_sets null_sets_def prod_nonneg inner_diff_left box_eq_empty
not_le emeasure_lborel_cbox_eq emeasure_lborel_box_eq
intro: eq_refl antisym less_imp_le)
proposition open_not_negligible:
assumes "open S" "S ≠ {}"
shows "¬ negligible S"
proof
assume neg: "negligible S"
obtain a where "a ∈ S"
using ‹S ≠ {}› by blast
then obtain e where "e > 0" "cball a e ⊆ S"
using ‹open S› open_contains_cball_eq by blast
let ?p = "a - (e / DIM('a)) *⇩R One" let ?q = "a + (e / DIM('a)) *⇩R One"
have "cbox ?p ?q ⊆ cball a e"
proof (clarsimp simp: mem_box dist_norm)
fix x
assume "∀i∈Basis. ?p ∙ i ≤ x ∙ i ∧ x ∙ i ≤ ?q ∙ i"
then have ax: "¦(a - x) ∙ i¦ ≤ e / real DIM('a)" if "i ∈ Basis" for i
using that by (auto simp: algebra_simps)
have "norm (a - x) ≤ (∑i∈Basis. ¦(a - x) ∙ i¦)"
by (rule norm_le_l1)
also have "… ≤ DIM('a) * (e / real DIM('a))"
by (intro sum_bounded_above ax)
also have "… = e"
by simp
finally show "norm (a - x) ≤ e" .
qed
then have "negligible (cbox ?p ?q)"
by (meson ‹cball a e ⊆ S› neg negligible_subset)
with ‹e > 0› show False
by (simp add: negligible_interval box_eq_empty algebra_simps field_split_simps mult_le_0_iff)
qed
lemma negligible_convex_interior:
"convex S ⟹ (negligible S ⟷ interior S = {})"
by (metis Diff_empty closure_subset frontier_def interior_subset negligible_convex_frontier negligible_subset open_interior open_not_negligible)
lemma measure_eq_0_null_sets: "S ∈ null_sets M ⟹ measure M S = 0"
by (auto simp: measure_def null_sets_def)
lemma negligible_imp_measure0: "negligible S ⟹ measure lebesgue S = 0"
by (simp add: measure_eq_0_null_sets negligible_iff_null_sets)
lemma negligible_iff_emeasure0: "S ∈ sets lebesgue ⟹ (negligible S ⟷ emeasure lebesgue S = 0)"
by (auto simp: measure_eq_0_null_sets negligible_iff_null_sets)
lemma negligible_iff_measure0: "S ∈ lmeasurable ⟹ (negligible S ⟷ measure lebesgue S = 0)"
by (metis (full_types) completion.null_sets_outer negligible_iff_null_sets negligible_imp_measure0 order_refl)
lemma negligible_imp_sets: "negligible S ⟹ S ∈ sets lebesgue"
by (simp add: negligible_iff_null_sets null_setsD2)
lemma negligible_imp_measurable: "negligible S ⟹ S ∈ lmeasurable"
by (simp add: fmeasurableI_null_sets negligible_iff_null_sets)
lemma negligible_iff_measure: "negligible S ⟷ S ∈ lmeasurable ∧ measure lebesgue S = 0"
by (fastforce simp: negligible_iff_measure0 negligible_imp_measurable dest: negligible_imp_measure0)
lemma negligible_outer:
"negligible S ⟷ (∀e>0. ∃T. S ⊆ T ∧ T ∈ lmeasurable ∧ measure lebesgue T < e)" (is "_ = ?rhs")
proof
assume "negligible S" then show ?rhs
by (metis negligible_iff_measure order_refl)
next
assume ?rhs then show "negligible S"
by (meson completion.null_sets_outer negligible_iff_null_sets)
qed
lemma negligible_outer_le:
"negligible S ⟷ (∀e>0. ∃T. S ⊆ T ∧ T ∈ lmeasurable ∧ measure lebesgue T ≤ e)" (is "_ = ?rhs")
proof
assume "negligible S" then show ?rhs
by (metis dual_order.strict_implies_order negligible_imp_measurable negligible_imp_measure0 order_refl)
next
assume ?rhs then show "negligible S"
by (metis le_less_trans negligible_outer field_lbound_gt_zero)
qed
lemma negligible_UNIV: "negligible S ⟷ (indicat_real S has_integral 0) UNIV" (is "_=?rhs")
by (metis lmeasurable_iff_indicator_has_integral negligible_iff_measure)
lemma sets_negligible_symdiff:
"⟦S ∈ sets lebesgue; negligible((S - T) ∪ (T - S))⟧ ⟹ T ∈ sets lebesgue"
by (metis Diff_Diff_Int Int_Diff_Un inf_commute negligible_Un_eq negligible_imp_sets sets.Diff sets.Un)
lemma lmeasurable_negligible_symdiff:
"⟦S ∈ lmeasurable; negligible((S - T) ∪ (T - S))⟧ ⟹ T ∈ lmeasurable"
using integrable_spike_set_eq lmeasurable_iff_integrable_on by blast
lemma measure_Un3_negligible:
assumes meas: "S ∈ lmeasurable" "T ∈ lmeasurable" "U ∈ lmeasurable"
and neg: "negligible(S ∩ T)" "negligible(S ∩ U)" "negligible(T ∩ U)" and V: "S ∪ T ∪ U = V"
shows "measure lebesgue V = measure lebesgue S + measure lebesgue T + measure lebesgue U"
proof -
have [simp]: "measure lebesgue (S ∩ T) = 0"
using neg(1) negligible_imp_measure0 by blast
have [simp]: "measure lebesgue (S ∩ U ∪ T ∩ U) = 0"
using neg(2) neg(3) negligible_Un negligible_imp_measure0 by blast
have "measure lebesgue V = measure lebesgue (S ∪ T ∪ U)"
using V by simp
also have "… = measure lebesgue S + measure lebesgue T + measure lebesgue U"
by (simp add: measure_Un3 meas fmeasurable.Un Int_Un_distrib2)
finally show ?thesis .
qed
lemma measure_translate_add:
assumes meas: "S ∈ lmeasurable" "T ∈ lmeasurable"
and U: "S ∪ ((+)a ` T) = U" and neg: "negligible(S ∩ ((+)a ` T))"
shows "measure lebesgue S + measure lebesgue T = measure lebesgue U"
proof -
have [simp]: "measure lebesgue (S ∩ (+) a ` T) = 0"
using neg negligible_imp_measure0 by blast
have "measure lebesgue (S ∪ ((+)a ` T)) = measure lebesgue S + measure lebesgue T"
by (simp add: measure_Un3 meas measurable_translation measure_translation fmeasurable.Un)
then show ?thesis
using U by auto
qed
lemma measure_negligible_symdiff:
assumes S: "S ∈ lmeasurable"
and neg: "negligible (S - T ∪ (T - S))"
shows "measure lebesgue T = measure lebesgue S"
proof -
have "measure lebesgue (S - T) = 0"
using neg negligible_Un_eq negligible_imp_measure0 by blast
then show ?thesis
by (metis S Un_commute add.right_neutral lmeasurable_negligible_symdiff measure_Un2 neg negligible_Un_eq negligible_imp_measure0)
qed
lemma measure_closure:
assumes "bounded S" and neg: "negligible (frontier S)"
shows "measure lebesgue (closure S) = measure lebesgue S"
proof -
have "measure lebesgue (frontier S) = 0"
by (metis neg negligible_imp_measure0)
then show ?thesis
by (metis assms lmeasurable_iff_integrable_on eq_iff_diff_eq_0 has_integral_interior integrable_on_def integral_unique lmeasurable_interior lmeasure_integral measure_frontier)
qed
lemma measure_interior:
"⟦bounded S; negligible(frontier S)⟧ ⟹ measure lebesgue (interior S) = measure lebesgue S"
using measure_closure measure_frontier negligible_imp_measure0 by fastforce
lemma measurable_Jordan:
assumes "bounded S" and neg: "negligible (frontier S)"
shows "S ∈ lmeasurable"
proof -
have "closure S ∈ lmeasurable"
by (metis lmeasurable_closure ‹bounded S›)
moreover have "interior S ∈ lmeasurable"
by (simp add: lmeasurable_interior ‹bounded S›)
moreover have "interior S ⊆ S"
by (simp add: interior_subset)
ultimately show ?thesis
using assms by (metis (full_types) closure_subset completion.complete_sets_sandwich_fmeasurable measure_closure measure_interior)
qed
lemma measurable_convex: "⟦convex S; bounded S⟧ ⟹ S ∈ lmeasurable"
by (simp add: measurable_Jordan negligible_convex_frontier)
lemma content_cball_conv_ball: "content (cball c r) = content (ball c r)"
proof -
have "ball c r - cball c r ∪ (cball c r - ball c r) = sphere c r"
by auto
hence "measure lebesgue (cball c r) = measure lebesgue (ball c r)"
using negligible_sphere[of c r] by (intro measure_negligible_symdiff) simp_all
thus ?thesis by simp
qed
subsection‹Negligibility of image under non-injective linear map›
lemma negligible_Union_nat:
assumes "⋀n::nat. negligible(S n)"
shows "negligible(⋃n. S n)"
proof -
have "negligible (⋃m≤k. S m)" for k
using assms by blast
then have 0: "integral UNIV (indicat_real (⋃m≤k. S m)) = 0"
and 1: "(indicat_real (⋃m≤k. S m)) integrable_on UNIV" for k
by (auto simp: negligible has_integral_iff)
have 2: "⋀k x. indicat_real (⋃m≤k. S m) x ≤ (indicat_real (⋃m≤Suc k. S m) x)"
by (auto simp add: indicator_def)
have 3: "⋀x. (λk. indicat_real (⋃m≤k. S m) x) ⇢ (indicat_real (⋃n. S n) x)"
by (force simp: indicator_def eventually_sequentially intro: tendsto_eventually)
have 4: "bounded (range (λk. integral UNIV (indicat_real (⋃m≤k. S m))))"
by (simp add: 0)
have *: "indicat_real (⋃n. S n) integrable_on UNIV ∧
(λk. integral UNIV (indicat_real (⋃m≤k. S m))) ⇢ (integral UNIV (indicat_real (⋃n. S n)))"
by (intro monotone_convergence_increasing 1 2 3 4)
then have "integral UNIV (indicat_real (⋃n. S n)) = (0::real)"
using LIMSEQ_unique by (auto simp: 0)
then show ?thesis
using * by (simp add: negligible_UNIV has_integral_iff)
qed
lemma negligible_linear_singular_image:
fixes f :: "'n::euclidean_space ⇒ 'n"
assumes "linear f" "¬ inj f"
shows "negligible (f ` S)"
proof -
obtain a where "a ≠ 0" "⋀S. f ` S ⊆ {x. a ∙ x = 0}"
using assms linear_singular_image_hyperplane by blast
then show "negligible (f ` S)"
by (metis negligible_hyperplane negligible_subset)
qed
lemma measure_negligible_finite_Union:
assumes "finite ℱ"
and meas: "⋀S. S ∈ ℱ ⟹ S ∈ lmeasurable"
and djointish: "pairwise (λS T. negligible (S ∩ T)) ℱ"
shows "measure lebesgue (⋃ℱ) = (∑S∈ℱ. measure lebesgue S)"
using assms
proof (induction)
case empty
then show ?case
by auto
next
case (insert S ℱ)
then have "S ∈ lmeasurable" "⋃ℱ ∈ lmeasurable" "pairwise (λS T. negligible (S ∩ T)) ℱ"
by (simp_all add: fmeasurable.finite_Union insert.hyps(1) insert.prems(1) pairwise_insert subsetI)
then show ?case
proof (simp add: measure_Un3 insert)
have *: "⋀T. T ∈ (∩) S ` ℱ ⟹ negligible T"
using insert by (force simp: pairwise_def)
have "negligible(S ∩ ⋃ℱ)"
unfolding Int_Union
by (rule negligible_Union) (simp_all add: * insert.hyps(1))
then show "measure lebesgue (S ∩ ⋃ℱ) = 0"
using negligible_imp_measure0 by blast
qed
qed
lemma measure_negligible_finite_Union_image:
assumes "finite S"
and meas: "⋀x. x ∈ S ⟹ f x ∈ lmeasurable"
and djointish: "pairwise (λx y. negligible (f x ∩ f y)) S"
shows "measure lebesgue (⋃(f ` S)) = (∑x∈S. measure lebesgue (f x))"
proof -
have "measure lebesgue (⋃(f ` S)) = sum (measure lebesgue) (f ` S)"
using assms by (auto simp: pairwise_mono pairwise_image intro: measure_negligible_finite_Union)
also have "… = sum (measure lebesgue ∘ f) S"
using djointish [unfolded pairwise_def] by (metis inf.idem negligible_imp_measure0 sum.reindex_nontrivial [OF ‹finite S›])
also have "… = (∑x∈S. measure lebesgue (f x))"
by simp
finally show ?thesis .
qed
subsection ‹Negligibility of a Lipschitz image of a negligible set›
text‹The bound will be eliminated by a sort of onion argument›
lemma locally_Lipschitz_negl_bounded:
fixes f :: "'M::euclidean_space ⇒ 'N::euclidean_space"
assumes MleN: "DIM('M) ≤ DIM('N)" "0 < B" "bounded S" "negligible S"
and lips: "⋀x. x ∈ S
⟹ ∃T. open T ∧ x ∈ T ∧
(∀y ∈ S ∩ T. norm(f y - f x) ≤ B * norm(y - x))"
shows "negligible (f ` S)"
unfolding negligible_iff_null_sets
proof (clarsimp simp: completion.null_sets_outer)
fix e::real
assume "0 < e"
have "S ∈ lmeasurable"
using ‹negligible S› by (simp add: negligible_iff_null_sets fmeasurableI_null_sets)
then have "S ∈ sets lebesgue"
by blast
have e22: "0 < e/2 / (2 * B * real DIM('M)) ^ DIM('N)"
using ‹0 < e› ‹0 < B› by (simp add: field_split_simps)
obtain T where "open T" "S ⊆ T" "(T - S) ∈ lmeasurable"
"measure lebesgue (T - S) < e/2 / (2 * B * DIM('M)) ^ DIM('N)"
using sets_lebesgue_outer_open [OF ‹S ∈ sets lebesgue› e22]
by (metis emeasure_eq_measure2 ennreal_leI linorder_not_le)
then have T: "measure lebesgue T ≤ e/2 / (2 * B * DIM('M)) ^ DIM('N)"
using ‹negligible S› by (simp add: measure_Diff_null_set negligible_iff_null_sets)
have "∃r. 0 < r ∧ r ≤ 1/2 ∧
(x ∈ S ⟶ (∀y. norm(y - x) < r
⟶ y ∈ T ∧ (y ∈ S ⟶ norm(f y - f x) ≤ B * norm(y - x))))"
for x
proof (cases "x ∈ S")
case True
obtain U where "open U" "x ∈ U" and U: "⋀y. y ∈ S ∩ U ⟹ norm(f y - f x) ≤ B * norm(y - x)"
using lips [OF ‹x ∈ S›] by auto
have "x ∈ T ∩ U"
using ‹S ⊆ T› ‹x ∈ U› ‹x ∈ S› by auto
then obtain ε where "0 < ε" "ball x ε ⊆ T ∩ U"
by (metis ‹open T› ‹open U› openE open_Int)
then show ?thesis
by (rule_tac x="min (1/2) ε" in exI) (simp add: U dist_norm norm_minus_commute subset_iff)
next
case False
then show ?thesis
by (rule_tac x="1/4" in exI) auto
qed
then obtain R where R12: "⋀x. 0 < R x ∧ R x ≤ 1/2"
and RT: "⋀x y. ⟦x ∈ S; norm(y - x) < R x⟧ ⟹ y ∈ T"
and RB: "⋀x y. ⟦x ∈ S; y ∈ S; norm(y - x) < R x⟧ ⟹ norm(f y - f x) ≤ B * norm(y - x)"
by metis+
then have gaugeR: "gauge (λx. ball x (R x))"
by (simp add: gauge_def)
obtain c where c: "S ⊆ cbox (-c *⇩R One) (c *⇩R One)" "box (-c *⇩R One:: 'M) (c *⇩R One) ≠ {}"
proof -
obtain B where B: "⋀x. x ∈ S ⟹ norm x ≤ B"
using ‹bounded S› bounded_iff by blast
show ?thesis
proof (rule_tac c = "abs B + 1" in that)
show "S ⊆ cbox (- (¦B¦ + 1) *⇩R One) ((¦B¦ + 1) *⇩R One)"
using norm_bound_Basis_le Basis_le_norm
by (fastforce simp: mem_box dest!: B intro: order_trans)
show "box (- (¦B¦ + 1) *⇩R One) ((¦B¦ + 1) *⇩R One) ≠ {}"
by (simp add: box_eq_empty(1))
qed
qed
obtain 𝒟 where "countable 𝒟"
and Dsub: "⋃𝒟 ⊆ cbox (-c *⇩R One) (c *⇩R One)"
and cbox: "⋀K. K ∈ 𝒟 ⟹ interior K ≠ {} ∧ (∃c d. K = cbox c d)"
and pw: "pairwise (λA B. interior A ∩ interior B = {}) 𝒟"
and Ksub: "⋀K. K ∈ 𝒟 ⟹ ∃x ∈ S ∩ K. K ⊆ (λx. ball x (R x)) x"
and exN: "⋀u v. cbox u v ∈ 𝒟 ⟹ ∃n. ∀i ∈ Basis. v ∙ i - u ∙ i = (2*c) / 2^n"
and "S ⊆ ⋃𝒟"
using covering_lemma [OF c gaugeR] by force
have "∃u v z. K = cbox u v ∧ box u v ≠ {} ∧ z ∈ S ∧ z ∈ cbox u v ∧
cbox u v ⊆ ball z (R z)" if "K ∈ 𝒟" for K
proof -
obtain u v where "K = cbox u v"
using ‹K ∈ 𝒟› cbox by blast
with that show ?thesis
by (metis Int_iff interior_cbox cbox Ksub)
qed
then obtain uf vf zf
where uvz: "⋀K. K ∈ 𝒟 ⟹
K = cbox (uf K) (vf K) ∧ box (uf K) (vf K) ≠ {} ∧ zf K ∈ S ∧
zf K ∈ cbox (uf K) (vf K) ∧ cbox (uf K) (vf K) ⊆ ball (zf K) (R (zf K))"
by metis
define prj1 where "prj1 ≡ λx::'M. x ∙ (SOME i. i ∈ Basis)"
define fbx where "fbx ≡ λD. cbox (f(zf D) - (B * DIM('M) * (prj1(vf D - uf D))) *⇩R One::'N)
(f(zf D) + (B * DIM('M) * prj1(vf D - uf D)) *⇩R One)"
have vu_pos: "0 < prj1 (vf X - uf X)" if "X ∈ 𝒟" for X
using uvz [OF that] by (simp add: prj1_def box_ne_empty SOME_Basis inner_diff_left)
have prj1_idem: "prj1 (vf X - uf X) = (vf X - uf X) ∙ i" if "X ∈ 𝒟" "i ∈ Basis" for X i
proof -
have "cbox (uf X) (vf X) ∈ 𝒟"
using uvz ‹X ∈ 𝒟› by auto
with exN obtain n where "⋀i. i ∈ Basis ⟹ vf X ∙ i - uf X ∙ i = (2*c) / 2^n"
by blast
then show ?thesis
by (simp add: ‹i ∈ Basis› SOME_Basis inner_diff prj1_def)
qed
have countbl: "countable (fbx ` 𝒟)"
using ‹countable 𝒟› by blast
have "(∑k∈fbx`𝒟'. measure lebesgue k) ≤ e/2" if "𝒟' ⊆ 𝒟" "finite 𝒟'" for 𝒟'
proof -
have BM_ge0: "0 ≤ B * (DIM('M) * prj1 (vf X - uf X))" if "X ∈ 𝒟'" for X
using ‹0 < B› ‹𝒟' ⊆ 𝒟› that vu_pos by fastforce
have "{} ∉ 𝒟'"
using cbox ‹𝒟' ⊆ 𝒟› interior_empty by blast
have "(∑k∈fbx`𝒟'. measure lebesgue k) ≤ sum (measure lebesgue o fbx) 𝒟'"
by (rule sum_image_le [OF ‹finite 𝒟'›]) (force simp: fbx_def)
also have "… ≤ (∑X∈𝒟'. (2 * B * DIM('M)) ^ DIM('N) * measure lebesgue X)"
proof (rule sum_mono)
fix X assume "X ∈ 𝒟'"
then have "X ∈ 𝒟" using ‹𝒟' ⊆ 𝒟› by blast
then have ufvf: "cbox (uf X) (vf X) = X"
using uvz by blast
have "prj1 (vf X - uf X) ^ DIM('M) = (∏i::'M ∈ Basis. prj1 (vf X - uf X))"
by (rule prod_constant [symmetric])
also have "… = (∏i∈Basis. vf X ∙ i - uf X ∙ i)"
by (simp add: ‹X ∈ 𝒟› inner_diff_left prj1_idem cong: prod.cong)
finally have prj1_eq: "prj1 (vf X - uf X) ^ DIM('M) = (∏i∈Basis. vf X ∙ i - uf X ∙ i)" .
have "uf X ∈ cbox (uf X) (vf X)" "vf X ∈ cbox (uf X) (vf X)"
using uvz [OF ‹X ∈ 𝒟›] by (force simp: mem_box)+
moreover have "cbox (uf X) (vf X) ⊆ ball (zf X) (1/2)"
by (meson R12 order_trans subset_ball uvz [OF ‹X ∈ 𝒟›])
ultimately have "uf X ∈ ball (zf X) (1/2)" "vf X ∈ ball (zf X) (1/2)"
by auto
then have "dist (vf X) (uf X) ≤ 1"
unfolding mem_ball
by (metis dist_commute dist_triangle_half_l dual_order.order_iff_strict)
then have 1: "prj1 (vf X - uf X) ≤ 1"
unfolding prj1_def dist_norm using Basis_le_norm SOME_Basis order_trans by fastforce
have 0: "0 ≤ prj1 (vf X - uf X)"
using ‹X ∈ 𝒟› prj1_def vu_pos by fastforce
have "(measure lebesgue ∘ fbx) X ≤ (2 * B * DIM('M)) ^ DIM('N) * content (cbox (uf X) (vf X))"
apply (simp add: fbx_def content_cbox_cases algebra_simps BM_ge0 ‹X ∈ 𝒟'› ‹0 < B› flip: prj1_eq)
using MleN 0 1 uvz ‹X ∈ 𝒟›
by (fastforce simp add: box_ne_empty power_decreasing)
also have "… = (2 * B * DIM('M)) ^ DIM('N) * measure lebesgue X"
by (subst (3) ufvf[symmetric]) simp
finally show "(measure lebesgue ∘ fbx) X ≤ (2 * B * DIM('M)) ^ DIM('N) * measure lebesgue X" .
qed
also have "… = (2 * B * DIM('M)) ^ DIM('N) * sum (measure lebesgue) 𝒟'"
by (simp add: sum_distrib_left)
also have "… ≤ e/2"
proof -
have "⋀K. K ∈ 𝒟' ⟹ ∃a b. K = cbox a b"
using cbox that by blast
then have div: "𝒟' division_of ⋃𝒟'"
using pairwise_subset [OF pw ‹𝒟' ⊆ 𝒟›] unfolding pairwise_def
by (force simp: ‹finite 𝒟'› ‹{} ∉ 𝒟'› division_of_def)
have le_meaT: "measure lebesgue (⋃𝒟') ≤ measure lebesgue T"
proof (rule measure_mono_fmeasurable)
show "(⋃𝒟') ∈ sets lebesgue"
using div lmeasurable_division by auto
have "⋃𝒟' ⊆ ⋃𝒟"
using ‹𝒟' ⊆ 𝒟› by blast
also have "... ⊆ T"
proof (clarify)
fix x D
assume "x ∈ D" "D ∈ 𝒟"
show "x ∈ T"
using Ksub [OF ‹D ∈ 𝒟›]
by (metis ‹x ∈ D› Int_iff dist_norm mem_ball norm_minus_commute subsetD RT)
qed
finally show "⋃𝒟' ⊆ T" .
show "T ∈ lmeasurable"
using ‹S ∈ lmeasurable› ‹S ⊆ T› ‹T - S ∈ lmeasurable› fmeasurable_Diff_D by blast
qed
have "sum (measure lebesgue) 𝒟' = sum content 𝒟'"
using ‹𝒟' ⊆ 𝒟› cbox by (force intro: sum.cong)
then have "(2 * B * DIM('M)) ^ DIM('N) * sum (measure lebesgue) 𝒟' =
(2 * B * real DIM('M)) ^ DIM('N) * measure lebesgue (⋃𝒟')"
using content_division [OF div] by auto
also have "… ≤ (2 * B * real DIM('M)) ^ DIM('N) * measure lebesgue T"
using ‹0 < B›
by (intro mult_left_mono [OF le_meaT]) (force simp add: algebra_simps)
also have "… ≤ e/2"
using T ‹0 < B› by (simp add: field_simps)
finally show ?thesis .
qed
finally show ?thesis .
qed
then have e2: "sum (measure lebesgue) 𝒢 ≤ e/2" if "𝒢 ⊆ fbx ` 𝒟" "finite 𝒢" for 𝒢
by (metis finite_subset_image that)
show "∃W∈lmeasurable. f ` S ⊆ W ∧ measure lebesgue W < e"
proof (intro bexI conjI)
have "∃X∈𝒟. f y ∈ fbx X" if "y ∈ S" for y
proof -
obtain X where "y ∈ X" "X ∈ 𝒟"
using ‹S ⊆ ⋃𝒟› ‹y ∈ S› by auto
then have y: "y ∈ ball(zf X) (R(zf X))"
using uvz by fastforce
have conj_le_eq: "z - b ≤ y ∧ y ≤ z + b ⟷ abs(y - z) ≤ b" for z y b::real
by auto
have yin: "y ∈ cbox (uf X) (vf X)" and zin: "(zf X) ∈ cbox (uf X) (vf X)"
using uvz ‹X ∈ 𝒟› ‹y ∈ X› by auto
have "norm (y - zf X) ≤ (∑i∈Basis. ¦(y - zf X) ∙ i¦)"
by (rule norm_le_l1)
also have "… ≤ real DIM('M) * prj1 (vf X - uf X)"
proof (rule sum_bounded_above)
fix j::'M assume j: "j ∈ Basis"
show "¦(y - zf X) ∙ j¦ ≤ prj1 (vf X - uf X)"
using yin zin j
by (fastforce simp add: mem_box prj1_idem [OF ‹X ∈ 𝒟› j] inner_diff_left)
qed
finally have nole: "norm (y - zf X) ≤ DIM('M) * prj1 (vf X - uf X)"
by simp
have fle: "¦f y ∙ i - f(zf X) ∙ i¦ ≤ B * DIM('M) * prj1 (vf X - uf X)" if "i ∈ Basis" for i
proof -
have "¦f y ∙ i - f (zf X) ∙ i¦ = ¦(f y - f (zf X)) ∙ i¦"
by (simp add: algebra_simps)
also have "… ≤ norm (f y - f (zf X))"
by (simp add: Basis_le_norm that)
also have "… ≤ B * norm(y - zf X)"
by (metis uvz RB ‹X ∈ 𝒟› dist_commute dist_norm mem_ball ‹y ∈ S› y)
also have "… ≤ B * real DIM('M) * prj1 (vf X - uf X)"
using ‹0 < B› by (simp add: nole)
finally show ?thesis .
qed
show ?thesis
by (rule_tac x=X in bexI)
(auto simp: fbx_def prj1_idem mem_box conj_le_eq inner_add inner_diff fle ‹X ∈ 𝒟›)
qed
then show "f ` S ⊆ (⋃D∈𝒟. fbx D)" by auto
next
have 1: "⋀D. D ∈ 𝒟 ⟹ fbx D ∈ lmeasurable"
by (auto simp: fbx_def)
have 2: "I' ⊆ 𝒟 ⟹ finite I' ⟹ measure lebesgue (⋃D∈I'. fbx D) ≤ e/2" for I'
by (rule order_trans[OF measure_Union_le e2]) (auto simp: fbx_def)
show "(⋃D∈𝒟. fbx D) ∈ lmeasurable"
by (intro fmeasurable_UN_bound[OF ‹countable 𝒟› 1 2])
have "measure lebesgue (⋃D∈𝒟. fbx D) ≤ e/2"
by (intro measure_UN_bound[OF ‹countable 𝒟› 1 2])
then show "measure lebesgue (⋃D∈𝒟. fbx D) < e"
using ‹0 < e› by linarith
qed
qed
proposition negligible_locally_Lipschitz_image:
fixes f :: "'M::euclidean_space ⇒ 'N::euclidean_space"
assumes MleN: "DIM('M) ≤ DIM('N)" "negligible S"
and lips: "⋀x. x ∈ S
⟹ ∃T B. open T ∧ x ∈ T ∧
(∀y ∈ S ∩ T. norm(f y - f x) ≤ B * norm(y - x))"
shows "negligible (f ` S)"
proof -
let ?S = "λn. ({x ∈ S. norm x ≤ n ∧
(∃T. open T ∧ x ∈ T ∧
(∀y∈S ∩ T. norm (f y - f x) ≤ (real n + 1) * norm (y - x)))})"
have negfn: "f ` ?S n ∈ null_sets lebesgue" for n::nat
unfolding negligible_iff_null_sets[symmetric]
apply (rule_tac B = "real n + 1" in locally_Lipschitz_negl_bounded)
by (auto simp: MleN bounded_iff intro: negligible_subset [OF ‹negligible S›])
have "S = (⋃n. ?S n)"
proof (intro set_eqI iffI)
fix x assume "x ∈ S"
with lips obtain T B where T: "open T" "x ∈ T"
and B: "⋀y. y ∈ S ∩ T ⟹ norm(f y - f x) ≤ B * norm(y - x)"
by metis+
have no: "norm (f y - f x) ≤ (nat ⌈max B (norm x)⌉ + 1) * norm (y - x)" if "y ∈ S ∩ T" for y
proof -
have "B * norm(y - x) ≤ (nat ⌈max B (norm x)⌉ + 1) * norm (y - x)"
by (meson max.cobounded1 mult_right_mono nat_ceiling_le_eq nat_le_iff_add norm_ge_zero order_trans)
then show ?thesis
using B order_trans that by blast
qed
have "norm x ≤ real (nat ⌈max B (norm x)⌉)"
by linarith
then have "x ∈ ?S (nat (ceiling (max B (norm x))))"
using T no by (force simp: ‹x ∈ S› algebra_simps)
then show "x ∈ (⋃n. ?S n)" by force
qed auto
then show ?thesis
by (rule ssubst) (auto simp: image_Union negligible_iff_null_sets intro: negfn)
qed
corollary negligible_differentiable_image_negligible:
fixes f :: "'M::euclidean_space ⇒ 'N::euclidean_space"
assumes MleN: "DIM('M) ≤ DIM('N)" "negligible S"
and diff_f: "f differentiable_on S"
shows "negligible (f ` S)"
proof -
have "∃T B. open T ∧ x ∈ T ∧ (∀y ∈ S ∩ T. norm(f y - f x) ≤ B * norm(y - x))"
if "x ∈ S" for x
proof -
obtain f' where "linear f'"
and f': "⋀e. e>0 ⟹
∃d>0. ∀y∈S. norm (y - x) < d ⟶
norm (f y - f x - f' (y - x)) ≤ e * norm (y - x)"
using diff_f ‹x ∈ S›
by (auto simp: linear_linear differentiable_on_def differentiable_def has_derivative_within_alt)
obtain B where "B > 0" and B: "∀x. norm (f' x) ≤ B * norm x"
using linear_bounded_pos ‹linear f'› by blast
obtain d where "d>0"
and d: "⋀y. ⟦y ∈ S; norm (y - x) < d⟧ ⟹
norm (f y - f x - f' (y - x)) ≤ norm (y - x)"
using f' [of 1] by (force simp:)
show ?thesis
proof (intro exI conjI ballI)
show "norm (f y - f x) ≤ (B + 1) * norm (y - x)"
if "y ∈ S ∩ ball x d" for y
proof -
have "norm (f y - f x) - B * norm (y - x) ≤ norm (f y - f x) - norm (f' (y - x))"
by (simp add: B)
also have "… ≤ norm (f y - f x - f' (y - x))"
by (rule norm_triangle_ineq2)
also have "... ≤ norm (y - x)"
by (metis IntE d dist_norm mem_ball norm_minus_commute that)
finally show ?thesis
by (simp add: algebra_simps)
qed
qed (use ‹d>0› in auto)
qed
with negligible_locally_Lipschitz_image assms show ?thesis by metis
qed
corollary negligible_differentiable_image_lowdim:
fixes f :: "'M::euclidean_space ⇒ 'N::euclidean_space"
assumes MlessN: "DIM('M) < DIM('N)" and diff_f: "f differentiable_on S"
shows "negligible (f ` S)"
proof -
have "x ≤ DIM('M) ⟹ x ≤ DIM('N)" for x
using MlessN by linarith
obtain lift :: "'M * real ⇒ 'N" and drop :: "'N ⇒ 'M * real" and j :: 'N
where "linear lift" "linear drop" and dropl [simp]: "⋀z. drop (lift z) = z"
and "j ∈ Basis" and j: "⋀x. lift(x,0) ∙ j = 0"
using lowerdim_embeddings [OF MlessN] by metis
have "negligible ((λx. lift (x, 0)) ` S)"
proof -
have "negligible {x. x∙j = 0}"
by (metis ‹j ∈ Basis› negligible_standard_hyperplane)
moreover have "(λm. lift (m, 0)) ` S ⊆ {n. n ∙ j = 0}"
using j by force
ultimately show ?thesis
using negligible_subset by auto
qed
moreover
have "f ∘ fst ∘ drop differentiable_on (λx. lift (x, 0)) ` S"
using diff_f
apply (clarsimp simp add: differentiable_on_def)
apply (intro differentiable_chain_within linear_imp_differentiable [OF ‹linear drop›]
linear_imp_differentiable [OF linear_fst])
apply (force simp: image_comp o_def)
done
moreover
have "f = f ∘ fst ∘ drop ∘ (λx. lift (x, 0))"
by (simp add: o_def)
ultimately show ?thesis
by (metis (no_types) image_comp negligible_differentiable_image_negligible order_refl)
qed
subsection‹Measurability of countable unions and intersections of various kinds.›
lemma
assumes S: "⋀n. S n ∈ lmeasurable"
and leB: "⋀n. measure lebesgue (S n) ≤ B"
and nest: "⋀n. S n ⊆ S(Suc n)"
shows measurable_nested_Union: "(⋃n. S n) ∈ lmeasurable"
and measure_nested_Union: "(λn. measure lebesgue (S n)) ⇢ measure lebesgue (⋃n. S n)" (is ?Lim)
proof -
have "indicat_real (⋃ (range S)) integrable_on UNIV ∧
(λn. integral UNIV (indicat_real (S n)))
⇢ integral UNIV (indicat_real (⋃ (range S)))"
proof (rule monotone_convergence_increasing)
show "⋀n. (indicat_real (S n)) integrable_on UNIV"
using S measurable_integrable by blast
show "⋀n x::'a. indicat_real (S n) x ≤ (indicat_real (S (Suc n)) x)"
by (simp add: indicator_leI nest rev_subsetD)
have "⋀x. (∃n. x ∈ S n) ⟶ (∀⇩F n in sequentially. x ∈ S n)"
by (metis eventually_sequentiallyI lift_Suc_mono_le nest subsetCE)
then
show "⋀x. (λn. indicat_real (S n) x) ⇢ (indicat_real (⋃(S ` UNIV)) x)"
by (simp add: indicator_def tendsto_eventually)
show "bounded (range (λn. integral UNIV (indicat_real (S n))))"
using leB by (auto simp: lmeasure_integral_UNIV [symmetric] S bounded_iff)
qed
then have "(⋃n. S n) ∈ lmeasurable ∧ ?Lim"
by (simp add: lmeasure_integral_UNIV S cong: conj_cong) (simp add: measurable_integrable)
then show "(⋃n. S n) ∈ lmeasurable" "?Lim"
by auto
qed
lemma
assumes S: "⋀n. S n ∈ lmeasurable"
and djointish: "pairwise (λm n. negligible (S m ∩ S n)) UNIV"
and leB: "⋀n. (∑k≤n. measure lebesgue (S k)) ≤ B"
shows measurable_countable_negligible_Union: "(⋃n. S n) ∈ lmeasurable"
and measure_countable_negligible_Union: "(λn. (measure lebesgue (S n))) sums measure lebesgue (⋃n. S n)" (is ?Sums)
proof -
have 1: "⋃ (S ` {..n}) ∈ lmeasurable" for n
using S by blast
have 2: "measure lebesgue (⋃ (S ` {..n})) ≤ B" for n
proof -
have "measure lebesgue (⋃ (S ` {..n})) ≤ (∑k≤n. measure lebesgue (S k))"
by (simp add: S fmeasurableD measure_UNION_le)
with leB show ?thesis
using order_trans by blast
qed
have 3: "⋀n. ⋃ (S ` {..n}) ⊆ ⋃ (S ` {..Suc n})"
by (simp add: SUP_subset_mono)
have eqS: "(⋃n. S n) = (⋃n. ⋃ (S ` {..n}))"
using atLeastAtMost_iff by blast
also have "(⋃n. ⋃ (S ` {..n})) ∈ lmeasurable"
by (intro measurable_nested_Union [OF 1 2] 3)
finally show "(⋃n. S n) ∈ lmeasurable" .
have eqm: "(∑i≤n. measure lebesgue (S i)) = measure lebesgue (⋃ (S ` {..n}))" for n
using assms by (simp add: measure_negligible_finite_Union_image pairwise_mono)
have "(λn. (measure lebesgue (S n))) sums measure lebesgue (⋃n. ⋃ (S ` {..n}))"
by (simp add: sums_def' eqm atLeast0AtMost) (intro measure_nested_Union [OF 1 2] 3)
then show ?Sums
by (simp add: eqS)
qed
lemma negligible_countable_Union [intro]:
assumes "countable ℱ" and meas: "⋀S. S ∈ ℱ ⟹ negligible S"
shows "negligible (⋃ℱ)"
proof (cases "ℱ = {}")
case False
then show ?thesis
by (metis from_nat_into range_from_nat_into assms negligible_Union_nat)
qed simp
lemma
assumes S: "⋀n. (S n) ∈ lmeasurable"
and djointish: "pairwise (λm n. negligible (S m ∩ S n)) UNIV"
and bo: "bounded (⋃n. S n)"
shows measurable_countable_negligible_Union_bounded: "(⋃n. S n) ∈ lmeasurable"
and measure_countable_negligible_Union_bounded: "(λn. (measure lebesgue (S n))) sums measure lebesgue (⋃n. S n)" (is ?Sums)
proof -
obtain a b where ab: "(⋃n. S n) ⊆ cbox a b"
using bo bounded_subset_cbox_symmetric by metis
then have B: "(∑k≤n. measure lebesgue (S k)) ≤ measure lebesgue (cbox a b)" for n
proof -
have "(∑k≤n. measure lebesgue (S k)) = measure lebesgue (⋃ (S ` {..n}))"
using measure_negligible_finite_Union_image [OF _ _ pairwise_subset] djointish
by (metis S finite_atMost subset_UNIV)
also have "… ≤ measure lebesgue (cbox a b)"
proof (rule measure_mono_fmeasurable)
show "⋃ (S ` {..n}) ∈ sets lebesgue" using S by blast
qed (use ab in auto)
finally show ?thesis .
qed
show "(⋃n. S n) ∈ lmeasurable"
by (rule measurable_countable_negligible_Union [OF S djointish B])
show ?Sums
by (rule measure_countable_negligible_Union [OF S djointish B])
qed
lemma measure_countable_Union_approachable:
assumes "countable 𝒟" "e > 0" and measD: "⋀d. d ∈ 𝒟 ⟹ d ∈ lmeasurable"
and B: "⋀D'. ⟦D' ⊆ 𝒟; finite D'⟧ ⟹ measure lebesgue (⋃D') ≤ B"
obtains D' where "D' ⊆ 𝒟" "finite D'" "measure lebesgue (⋃𝒟) - e < measure lebesgue (⋃D')"
proof (cases "𝒟 = {}")
case True
then show ?thesis
by (simp add: ‹e > 0› that)
next
case False
let ?S = "λn. ⋃k ≤ n. from_nat_into 𝒟 k"
have "(λn. measure lebesgue (?S n)) ⇢ measure lebesgue (⋃n. ?S n)"
proof (rule measure_nested_Union)
show "?S n ∈ lmeasurable" for n
by (simp add: False fmeasurable.finite_UN from_nat_into measD)
show "measure lebesgue (?S n) ≤ B" for n
by (metis (mono_tags, lifting) B False finite_atMost finite_imageI from_nat_into image_iff subsetI)
show "?S n ⊆ ?S (Suc n)" for n
by force
qed
then obtain N where N: "⋀n. n ≥ N ⟹ dist (measure lebesgue (?S n)) (measure lebesgue (⋃n. ?S n)) < e"
using metric_LIMSEQ_D ‹e > 0› by blast
show ?thesis
proof
show "from_nat_into 𝒟 ` {..N} ⊆ 𝒟"
by (auto simp: False from_nat_into)
have eq: "(⋃n. ⋃k≤n. from_nat_into 𝒟 k) = (⋃𝒟)"
using ‹countable 𝒟› False
by (auto intro: from_nat_into dest: from_nat_into_surj [OF ‹countable 𝒟›])
show "measure lebesgue (⋃𝒟) - e < measure lebesgue (⋃ (from_nat_into 𝒟 ` {..N}))"
using N [OF order_refl]
by (auto simp: eq algebra_simps dist_norm)
qed auto
qed
subsection‹Negligibility is a local property›
lemma locally_negligible_alt:
"negligible S ⟷ (∀x ∈ S. ∃U. openin (top_of_set S) U ∧ x ∈ U ∧ negligible U)"
(is "_ = ?rhs")
proof
assume "negligible S"
then show ?rhs
using openin_subtopology_self by blast
next
assume ?rhs
then obtain U where ope: "⋀x. x ∈ S ⟹ openin (top_of_set S) (U x)"
and cov: "⋀x. x ∈ S ⟹ x ∈ U x"
and neg: "⋀x. x ∈ S ⟹ negligible (U x)"
by metis
obtain ℱ where "ℱ ⊆ U ` S" "countable ℱ" and eq: "⋃ℱ = ⋃(U ` S)"
using ope by (force intro: Lindelof_openin [of "U ` S" S])
then have "negligible (⋃ℱ)"
by (metis imageE neg negligible_countable_Union subset_eq)
with eq have "negligible (⋃(U ` S))"
by metis
moreover have "S ⊆ ⋃(U ` S)"
using cov by blast
ultimately show "negligible S"
using negligible_subset by blast
qed
lemma locally_negligible: "locally negligible S ⟷ negligible S"
unfolding locally_def
by (metis locally_negligible_alt negligible_subset openin_imp_subset openin_subtopology_self)
subsection‹Integral bounds›
lemma set_integral_norm_bound:
fixes f :: "_ ⇒ 'a :: {banach, second_countable_topology}"
shows "set_integrable M k f ⟹ norm (LINT x:k|M. f x) ≤ (LINT x:k|M. norm (f x))"
using integral_norm_bound[of M "λx. indicator k x *⇩R f x"] by (simp add: set_lebesgue_integral_def)
lemma set_integral_finite_UN_AE:
fixes f :: "_ ⇒ _ :: {banach, second_countable_topology}"
assumes "finite I"
and ae: "⋀i j. i ∈ I ⟹ j ∈ I ⟹ AE x in M. (x ∈ A i ∧ x ∈ A j) ⟶ i = j"
and [measurable]: "⋀i. i ∈ I ⟹ A i ∈ sets M"
and f: "⋀i. i ∈ I ⟹ set_integrable M (A i) f"
shows "(LINT x:(⋃i∈I. A i)|M. f x) = (∑i∈I. LINT x:A i|M. f x)"
using ‹finite I› order_refl[of I]
proof (induction I rule: finite_subset_induct')
case (insert i I')
have "AE x in M. (∀j∈I'. x ∈ A i ⟶ x ∉ A j)"
proof (intro AE_ball_countable[THEN iffD2] ballI)
fix j assume "j ∈ I'"
with ‹I' ⊆ I› ‹i ∉ I'› have "i ≠ j" "j ∈ I"
by auto
then show "AE x in M. x ∈ A i ⟶ x ∉ A j"
using ae[of i j] ‹i ∈ I› by auto
qed (use ‹finite I'› in ‹rule countable_finite›)
then have "AE x∈A i in M. ∀xa∈I'. x ∉ A xa "
by auto
with insert.hyps insert.IH[symmetric]
show ?case
by (auto intro!: set_integral_Un_AE sets.finite_UN f set_integrable_UN)
qed (simp add: set_lebesgue_integral_def)
lemma set_integrable_norm:
fixes f :: "'a ⇒ 'b::{banach, second_countable_topology}"
assumes f: "set_integrable M k f" shows "set_integrable M k (λx. norm (f x))"
using integrable_norm f by (force simp add: set_integrable_def)
lemma absolutely_integrable_bounded_variation:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "f absolutely_integrable_on UNIV"
obtains B where "∀d. d division_of (⋃d) ⟶ sum (λk. norm (integral k f)) d ≤ B"
proof (rule that[of "integral UNIV (λx. norm (f x))"]; safe)
fix d :: "'a set set" assume d: "d division_of ⋃d"
have *: "k ∈ d ⟹ f absolutely_integrable_on k" for k
using f[THEN set_integrable_subset, of k] division_ofD(2,4)[OF d, of k] by auto
note d' = division_ofD[OF d]
have "(∑k∈d. norm (integral k f)) = (∑k∈d. norm (LINT x:k|lebesgue. f x))"
by (intro sum.cong refl arg_cong[where f=norm] set_lebesgue_integral_eq_integral(2)[symmetric] *)
also have "… ≤ (∑k∈d. LINT x:k|lebesgue. norm (f x))"
by (intro sum_mono set_integral_norm_bound *)
also have "… = (∑k∈d. integral k (λx. norm (f x)))"
by (intro sum.cong refl set_lebesgue_integral_eq_integral(2) set_integrable_norm *)
also have "… ≤ integral (⋃d) (λx. norm (f x))"
using integrable_on_subdivision[OF d] assms f unfolding absolutely_integrable_on_def
by (subst integral_combine_division_topdown[OF _ d]) auto
also have "… ≤ integral UNIV (λx. norm (f x))"
using integrable_on_subdivision[OF d] assms unfolding absolutely_integrable_on_def
by (intro integral_subset_le) auto
finally show "(∑k∈d. norm (integral k f)) ≤ integral UNIV (λx. norm (f x))" .
qed
lemma absdiff_norm_less:
assumes "sum (λx. norm (f x - g x)) S < e"
shows "¦sum (λx. norm(f x)) S - sum (λx. norm(g x)) S¦ < e" (is "?lhs < e")
proof -
have "?lhs ≤ (∑i∈S. ¦norm (f i) - norm (g i)¦)"
by (metis (no_types) sum_abs sum_subtractf)
also have "... ≤ (∑x∈S. norm (f x - g x))"
by (simp add: norm_triangle_ineq3 sum_mono)
also have "... < e"
using assms(1) by blast
finally show ?thesis .
qed
proposition bounded_variation_absolutely_integrable_interval:
fixes f :: "'n::euclidean_space ⇒ 'm::euclidean_space"
assumes f: "f integrable_on cbox a b"
and *: "⋀d. d division_of (cbox a b) ⟹ sum (λK. norm(integral K f)) d ≤ B"
shows "f absolutely_integrable_on cbox a b"
proof -
let ?f = "λd. ∑K∈d. norm (integral K f)" and ?D = "{d. d division_of (cbox a b)}"
have D_1: "?D ≠ {}"
by (rule elementary_interval[of a b]) auto
have D_2: "bdd_above (?f`?D)"
by (metis * mem_Collect_eq bdd_aboveI2)
note D = D_1 D_2
let ?S = "SUP x∈?D. ?f x"
have *: "∃γ. gauge γ ∧
(∀p. p tagged_division_of cbox a b ∧
γ fine p ⟶
norm ((∑(x,k) ∈ p. content k *⇩R norm (f x)) - ?S) < e)"
if e: "e > 0" for e
proof -
have "?S - e/2 < ?S" using ‹e > 0› by simp
then obtain d where d: "d division_of (cbox a b)" "?S - e/2 < (∑k∈d. norm (integral k f))"
unfolding less_cSUP_iff[OF D] by auto
note d' = division_ofD[OF this(1)]
have "∃e>0. ∀i∈d. x ∉ i ⟶ ball x e ∩ i = {}" for x
proof -
have "∃d'>0. ∀x'∈⋃{i ∈ d. x ∉ i}. d' ≤ dist x x'"
proof (rule separate_point_closed)
show "closed (⋃{i ∈ d. x ∉ i})"
using d' by force
show "x ∉ ⋃{i ∈ d. x ∉ i}"
by auto
qed
then show ?thesis
by force
qed
then obtain k where k: "⋀x. 0 < k x" "⋀i x. ⟦i ∈ d; x ∉ i⟧ ⟹ ball x (k x) ∩ i = {}"
by metis
have "e/2 > 0"
using e by auto
with Henstock_lemma[OF f]
obtain γ where g: "gauge γ"
"⋀p. ⟦p tagged_partial_division_of cbox a b; γ fine p⟧
⟹ (∑(x,k) ∈ p. norm (content k *⇩R f x - integral k f)) < e/2"
by (metis (no_types, lifting))
let ?g = "λx. γ x ∩ ball x (k x)"
show ?thesis
proof (intro exI conjI allI impI)
show "gauge ?g"
using g(1) k(1) by (auto simp: gauge_def)
next
fix p
assume "p tagged_division_of (cbox a b) ∧ ?g fine p"
then have p: "p tagged_division_of cbox a b" "γ fine p" "(λx. ball x (k x)) fine p"
by (auto simp: fine_Int)
note p' = tagged_division_ofD[OF p(1)]
define p' where "p' = {(x,k) | x k. ∃i l. x ∈ i ∧ i ∈ d ∧ (x,l) ∈ p ∧ k = i ∩ l}"
have gp': "γ fine p'"
using p(2) by (auto simp: p'_def fine_def)
have p'': "p' tagged_division_of (cbox a b)"
proof (rule tagged_division_ofI)
show "finite p'"
proof (rule finite_subset)
show "p' ⊆ (λ(k, x, l). (x, k ∩ l)) ` (d × p)"
by (force simp: p'_def image_iff)
show "finite ((λ(k, x, l). (x, k ∩ l)) ` (d × p))"
by (simp add: d'(1) p'(1))
qed
next
fix x K
assume "(x, K) ∈ p'"
then have "∃i l. x ∈ i ∧ i ∈ d ∧ (x, l) ∈ p ∧ K = i ∩ l"
unfolding p'_def by auto
then obtain i l where il: "x ∈ i" "i ∈ d" "(x, l) ∈ p" "K = i ∩ l" by blast
show "x ∈ K" and "K ⊆ cbox a b"
using p'(2-3)[OF il(3)] il by auto
show "∃a b. K = cbox a b"
unfolding il using p'(4)[OF il(3)] d'(4)[OF il(2)] by (meson Int_interval)
next
fix x1 K1
assume "(x1, K1) ∈ p'"
then have "∃i l. x1 ∈ i ∧ i ∈ d ∧ (x1, l) ∈ p ∧ K1 = i ∩ l"
unfolding p'_def by auto
then obtain i1 l1 where il1: "x1 ∈ i1" "i1 ∈ d" "(x1, l1) ∈ p" "K1 = i1 ∩ l1" by blast
fix x2 K2
assume "(x2,K2) ∈ p'"
then have "∃i l. x2 ∈ i ∧ i ∈ d ∧ (x2, l) ∈ p ∧ K2 = i ∩ l"
unfolding p'_def by auto
then obtain i2 l2 where il2: "x2 ∈ i2" "i2 ∈ d" "(x2, l2) ∈ p" "K2 = i2 ∩ l2" by blast
assume "(x1, K1) ≠ (x2, K2)"
then have "interior i1 ∩ interior i2 = {} ∨ interior l1 ∩ interior l2 = {}"
using d'(5)[OF il1(2) il2(2)] p'(5)[OF il1(3) il2(3)] by (auto simp: il1 il2)
then show "interior K1 ∩ interior K2 = {}"
unfolding il1 il2 by auto
next
have *: "∀(x, X) ∈ p'. X ⊆ cbox a b"
unfolding p'_def using d' by blast
show "⋃{K. ∃x. (x, K) ∈ p'} = cbox a b"
proof
show "⋃{k. ∃x. (x, k) ∈ p'} ⊆ cbox a b"
using * by auto
next
show "cbox a b ⊆ ⋃{k. ∃x. (x, k) ∈ p'}"
proof
fix y
assume y: "y ∈ cbox a b"
obtain x L where xl: "(x, L) ∈ p" "y ∈ L"
using y unfolding p'(6)[symmetric] by auto
obtain I where i: "I ∈ d" "y ∈ I"
using y unfolding d'(6)[symmetric] by auto
have "x ∈ I"
using fineD[OF p(3) xl(1)] using k(2) i xl by auto
then show "y ∈ ⋃{K. ∃x. (x, K) ∈ p'}"
proof -
obtain x l where xl: "(x, l) ∈ p" "y ∈ l"
using y unfolding p'(6)[symmetric] by auto
obtain i where i: "i ∈ d" "y ∈ i"
using y unfolding d'(6)[symmetric] by auto
have "x ∈ i"
using fineD[OF p(3) xl(1)] using k(2) i xl by auto
then show ?thesis
unfolding p'_def by (rule_tac X="i ∩ l" in UnionI) (use i xl in auto)
qed
qed
qed
qed
then have sum_less_e2: "(∑(x,K) ∈ p'. norm (content K *⇩R f x - integral K f)) < e/2"
using g(2) gp' tagged_division_of_def by blast
have in_p': "(x, I ∩ L) ∈ p'" if x: "(x, L) ∈ p" "I ∈ d" and y: "y ∈ I" "y ∈ L"
for x I L y
proof -
have "x ∈ I"
using fineD[OF p(3) that(1)] k(2)[OF ‹I ∈ d›] y by auto
with x have "(∃i l. x ∈ i ∧ i ∈ d ∧ (x, l) ∈ p ∧ I ∩ L = i ∩ l)"
by blast
then have "(x, I ∩ L) ∈ p'"
by (simp add: p'_def)
with y show ?thesis by auto
qed
moreover
have Ex_p_p': "∃y i l. (x, K) = (y, i ∩ l) ∧ (y, l) ∈ p ∧ i ∈ d ∧ i ∩ l ≠ {}"
if xK: "(x,K) ∈ p'" for x K
proof -
obtain i l where il: "x ∈ i" "i ∈ d" "(x, l) ∈ p" "K = i ∩ l"
using xK unfolding p'_def by auto
then show ?thesis
using p'(2) by fastforce
qed
ultimately have p'alt: "p' = {(x, I ∩ L) | x I L. (x,L) ∈ p ∧ I ∈ d ∧ I ∩ L ≠ {}}"
by auto
have sum_p': "(∑(x,K) ∈ p'. norm (integral K f)) = (∑k∈snd ` p'. norm (integral k f))"
proof (rule sum.over_tagged_division_lemma[OF p''])
show "⋀u v. box u v = {} ⟹ norm (integral (cbox u v) f) = 0"
by (auto intro: integral_null simp: content_eq_0_interior)
qed
have snd_p_div: "snd ` p division_of cbox a b"
by (rule division_of_tagged_division[OF p(1)])
note snd_p = division_ofD[OF snd_p_div]
have fin_d_sndp: "finite (d × snd ` p)"
by (simp add: d'(1) snd_p(1))
have *: "⋀sni sni' sf sf'. ⟦¦sf' - sni'¦ < e/2; ?S - e/2 < sni; sni' ≤ ?S;
sni ≤ sni'; sf' = sf⟧ ⟹ ¦sf - ?S¦ < e"
by arith
show "norm ((∑(x,k) ∈ p. content k *⇩R norm (f x)) - ?S) < e"
unfolding real_norm_def
proof (rule *)
show "¦(∑(x,K)∈p'. norm (content K *⇩R f x)) - (∑(x,k)∈p'. norm (integral k f))¦ < e/2"
using p'' sum_less_e2 unfolding split_def by (force intro!: absdiff_norm_less)
show "(∑(x,k) ∈ p'. norm (integral k f)) ≤?S"
by (auto simp: sum_p' division_of_tagged_division[OF p''] D intro!: cSUP_upper)
show "(∑k∈d. norm (integral k f)) ≤ (∑(x,k) ∈ p'. norm (integral k f))"
proof -
have *: "{k ∩ l | k l. k ∈ d ∧ l ∈ snd ` p} = (λ(k,l). k ∩ l) ` (d × snd ` p)"
by auto
have "(∑K∈d. norm (integral K f)) ≤ (∑i∈d. ∑l∈snd ` p. norm (integral (i ∩ l) f))"
proof (rule sum_mono)
fix K assume k: "K ∈ d"
from d'(4)[OF this] obtain u v where uv: "K = cbox u v" by metis
define d' where "d' = {cbox u v ∩ l |l. l ∈ snd ` p ∧ cbox u v ∩ l ≠ {}}"
have uvab: "cbox u v ⊆ cbox a b"
using d(1) k uv by blast
have d'_div: "d' division_of cbox u v"
unfolding d'_def by (rule division_inter_1 [OF snd_p_div uvab])
moreover have "norm (∑i∈d'. integral i f) ≤ (∑k∈d'. norm (integral k f))"
by (simp add: sum_norm_le)
moreover have "f integrable_on K"
using f integrable_on_subcbox uv uvab by blast
moreover have "d' division_of K"
using d'_div uv by blast
ultimately have "norm (integral K f) ≤ sum (λk. norm (integral k f)) d'"
by (simp add: integral_combine_division_topdown)
also have "… = (∑I∈{K ∩ L |L. L ∈ snd ` p}. norm (integral I f))"
proof (rule sum.mono_neutral_left)
show "finite {K ∩ L |L. L ∈ snd ` p}"
by (simp add: snd_p(1))
show "∀i∈{K ∩ L |L. L ∈ snd ` p} - d'. norm (integral i f) = 0"
"d' ⊆ {K ∩ L |L. L ∈ snd ` p}"
using d'_def image_eqI uv by auto
qed
also have "… = (∑l∈snd ` p. norm (integral (K ∩ l) f))"
unfolding Setcompr_eq_image
proof (rule sum.reindex_nontrivial [unfolded o_def])
show "finite (snd ` p)"
using snd_p(1) by blast
show "norm (integral (K ∩ l) f) = 0"
if "l ∈ snd ` p" "y ∈ snd ` p" "l ≠ y" "K ∩ l = K ∩ y" for l y
proof -
have "interior (K ∩ l) ⊆ interior (l ∩ y)"
by (metis Int_lower2 interior_mono le_inf_iff that(4))
then have "interior (K ∩ l) = {}"
by (simp add: snd_p(5) that)
moreover from d'(4)[OF k] snd_p(4)[OF that(1)]
obtain u1 v1 u2 v2
where uv: "K = cbox u1 u2" "l = cbox v1 v2" by metis
ultimately show ?thesis
using that integral_null
unfolding uv Int_interval content_eq_0_interior
by (metis (mono_tags, lifting) norm_eq_zero)
qed
qed
finally show "norm (integral K f) ≤ (∑l∈snd ` p. norm (integral (K ∩ l) f))" .
qed
also have "… = (∑(i,l) ∈ d × snd ` p. norm (integral (i∩l) f))"
by (simp add: sum.cartesian_product)
also have "… = (∑x ∈ d × snd ` p. norm (integral (case_prod (∩) x) f))"
by (force simp: split_def intro!: sum.cong)
also have "… = (∑k∈{i ∩ l |i l. i ∈ d ∧ l ∈ snd ` p}. norm (integral k f))"
proof -
have eq0: " (integral (l1 ∩ k1) f) = 0"
if "l1 ∩ k1 = l2 ∩ k2" "(l1, k1) ≠ (l2, k2)"
"l1 ∈ d" "(j1,k1) ∈ p" "l2 ∈ d" "(j2,k2) ∈ p"
for l1 l2 k1 k2 j1 j2
proof -
obtain u1 v1 u2 v2 where uv: "l1 = cbox u1 u2" "k1 = cbox v1 v2"
using ‹(j1, k1) ∈ p› ‹l1 ∈ d› d'(4) p'(4) by blast
have "l1 ≠ l2 ∨ k1 ≠ k2"
using that by auto
then have "interior k1 ∩ interior k2 = {} ∨ interior l1 ∩ interior l2 = {}"
by (meson d'(5) old.prod.inject p'(5) that(3) that(4) that(5) that(6))
moreover have "interior (l1 ∩ k1) = interior (l2 ∩ k2)"
by (simp add: that(1))
ultimately have "interior(l1 ∩ k1) = {}"
by auto
then show ?thesis
unfolding uv Int_interval content_eq_0_interior[symmetric] by auto
qed
show ?thesis
unfolding *
apply (rule sum.reindex_nontrivial [OF fin_d_sndp, symmetric, unfolded o_def])
apply clarsimp
by (metis eq0 fst_conv snd_conv)
qed
also have "… = (∑(x,k) ∈ p'. norm (integral k f))"
unfolding sum_p'
proof (rule sum.mono_neutral_right)
show "finite {i ∩ l |i l. i ∈ d ∧ l ∈ snd ` p}"
by (metis * finite_imageI[OF fin_d_sndp])
show "snd ` p' ⊆ {i ∩ l |i l. i ∈ d ∧ l ∈ snd ` p}"
by (clarsimp simp: p'_def) (metis image_eqI snd_conv)
show "∀i∈{i ∩ l |i l. i ∈ d ∧ l ∈ snd ` p} - snd ` p'. norm (integral i f) = 0"
by clarsimp (metis Henstock_Kurzweil_Integration.integral_empty disjoint_iff image_eqI in_p' snd_conv)
qed
finally show ?thesis .
qed
show "(∑(x,k) ∈ p'. norm (content k *⇩R f x)) = (∑(x,k) ∈ p. content k *⇩R norm (f x))"
proof -
let ?S = "{(x, i ∩ l) |x i l. (x, l) ∈ p ∧ i ∈ d}"
have *: "?S = (λ(xl,i). (fst xl, snd xl ∩ i)) ` (p × d)"
by force
have fin_pd: "finite (p × d)"
using finite_cartesian_product[OF p'(1) d'(1)] by metis
have "(∑(x,k) ∈ p'. norm (content k *⇩R f x)) = (∑(x,k) ∈ ?S. ¦content k¦ * norm (f x))"
unfolding norm_scaleR
proof (rule sum.mono_neutral_left)
show "finite {(x, i ∩ l) |x i l. (x, l) ∈ p ∧ i ∈ d}"
by (simp add: "*" fin_pd)
qed (use p'alt in ‹force+›)
also have "… = (∑((x,l),i)∈p × d. ¦content (l ∩ i)¦ * norm (f x))"
proof -
have "¦content (l1 ∩ k1)¦ * norm (f x1) = 0"
if "(x1, l1) ∈ p" "(x2, l2) ∈ p" "k1 ∈ d" "k2 ∈ d"
"x1 = x2" "l1 ∩ k1 = l2 ∩ k2" "x1 ≠ x2 ∨ l1 ≠ l2 ∨ k1 ≠ k2"
for x1 l1 k1 x2 l2 k2
proof -
obtain u1 v1 u2 v2 where uv: "k1 = cbox u1 u2" "l1 = cbox v1 v2"
by (meson ‹(x1, l1) ∈ p› ‹k1 ∈ d› d(1) division_ofD(4) p'(4))
have "l1 ≠ l2 ∨ k1 ≠ k2"
using that by auto
then have "interior k1 ∩ interior k2 = {} ∨ interior l1 ∩ interior l2 = {}"
using that p'(5) d'(5) by (metis snd_conv)
moreover have "interior (l1 ∩ k1) = interior (l2 ∩ k2)"
unfolding that ..
ultimately have "interior (l1 ∩ k1) = {}"
by auto
then show "¦content (l1 ∩ k1)¦ * norm (f x1) = 0"
unfolding uv Int_interval content_eq_0_interior[symmetric] by auto
qed
then show ?thesis
unfolding *
apply (subst sum.reindex_nontrivial [OF fin_pd])
unfolding split_paired_all o_def split_def prod.inject
by force+
qed
also have "… = (∑(x,k) ∈ p. content k *⇩R norm (f x))"
proof -
have sumeq: "(∑i∈d. content (l ∩ i) * norm (f x)) = content l * norm (f x)"
if "(x, l) ∈ p" for x l
proof -
note xl = p'(2-4)[OF that]
then obtain u v where uv: "l = cbox u v" by blast
have "(∑i∈d. ¦content (l ∩ i)¦) = (∑k∈d. content (k ∩ cbox u v))"
by (simp add: Int_commute uv)
also have "… = sum content {k ∩ cbox u v| k. k ∈ d}"
proof -
have eq0: "content (k ∩ cbox u v) = 0"
if "k ∈ d" "y ∈ d" "k ≠ y" and eq: "k ∩ cbox u v = y ∩ cbox u v" for k y
proof -
from d'(4)[OF that(1)] d'(4)[OF that(2)]
obtain α β where α: "k ∩ cbox u v = cbox α β"
by (meson Int_interval)
have "{} = interior ((k ∩ y) ∩ cbox u v)"
by (simp add: d'(5) that)
also have "… = interior (y ∩ (k ∩ cbox u v))"
by auto
also have "… = interior (k ∩ cbox u v)"
unfolding eq by auto
finally show ?thesis
unfolding α content_eq_0_interior ..
qed
then show ?thesis
unfolding Setcompr_eq_image
by (fastforce intro: sum.reindex_nontrivial [OF ‹finite d›, unfolded o_def, symmetric])
qed
also have "… = sum content {cbox u v ∩ k |k. k ∈ d ∧ cbox u v ∩ k ≠ {}}"
proof (rule sum.mono_neutral_right)
show "finite {k ∩ cbox u v |k. k ∈ d}"
by (simp add: d'(1))
qed (fastforce simp: inf.commute)+
finally have "(∑i∈d. ¦content (l ∩ i)¦) = content (cbox u v)"
using additive_content_division[OF division_inter_1[OF d(1)]] uv xl(2) by auto
then show "(∑i∈d. content (l ∩ i) * norm (f x)) = content l * norm (f x)"
unfolding sum_distrib_right[symmetric] using uv by auto
qed
show ?thesis
by (subst sum_Sigma_product[symmetric]) (auto intro!: sumeq sum.cong p' d')
qed
finally show ?thesis .
qed
qed (rule d)
qed
qed
then show ?thesis
using absolutely_integrable_onI [OF f has_integral_integrable] has_integral[of _ ?S]
by blast
qed
lemma bounded_variation_absolutely_integrable:
fixes f :: "'n::euclidean_space ⇒ 'm::euclidean_space"
assumes "f integrable_on UNIV"
and "∀d. d division_of (⋃d) ⟶ sum (λk. norm (integral k f)) d ≤ B"
shows "f absolutely_integrable_on UNIV"
proof (rule absolutely_integrable_onI, fact)
let ?f = "λD. ∑k∈D. norm (integral k f)" and ?D = "{d. d division_of (⋃d)}"
define SDF where "SDF ≡ SUP d∈?D. ?f d"
have D_1: "?D ≠ {}"
by (rule elementary_interval) auto
have D_2: "bdd_above (?f`?D)"
using assms(2) by auto
have f_int: "⋀a b. f absolutely_integrable_on cbox a b"
using assms integrable_on_subcbox
by (blast intro!: bounded_variation_absolutely_integrable_interval)
have "∃B>0. ∀a b. ball 0 B ⊆ cbox a b ⟶
¦integral (cbox a b) (λx. norm (f x)) - SDF¦ < e"
if "0 < e" for e
proof -
have "∃y ∈ ?f ` ?D. ¬ y ≤ SDF - e"
proof (rule ccontr)
assume "¬ ?thesis"
then have "SDF ≤ SDF - e"
unfolding SDF_def
by (metis (mono_tags) D_1 cSUP_least image_eqI)
then show False
using that by auto
qed
then obtain d K where ddiv: "d division_of ⋃d" and "K = ?f d" "SDF - e < K"
by (auto simp add: image_iff not_le)
then have d: "SDF - e < ?f d"
by auto
note d'=division_ofD[OF ddiv]
have "bounded (⋃d)"
using ddiv by blast
then obtain K where K: "0 < K" "∀x∈⋃d. norm x ≤ K"
using bounded_pos by blast
show ?thesis
proof (intro conjI impI allI exI)
fix a b :: 'n
assume ab: "ball 0 (K + 1) ⊆ cbox a b"
have *: "⋀s s1. ⟦SDF - e < s1; s1 ≤ s; s < SDF + e⟧ ⟹ ¦s - SDF¦ < e"
by arith
show "¦integral (cbox a b) (λx. norm (f x)) - SDF¦ < e"
unfolding real_norm_def
proof (rule * [OF d])
have "?f d ≤ sum (λk. integral k (λx. norm (f x))) d"
proof (intro sum_mono)
fix k assume "k ∈ d"
with d'(4) f_int show "norm (integral k f) ≤ integral k (λx. norm (f x))"
by (force simp: absolutely_integrable_on_def integral_norm_bound_integral)
qed
also have "… = integral (⋃d) (λx. norm (f x))"
by (metis (full_types) absolutely_integrable_on_def d'(4) ddiv f_int integral_combine_division_bottomup)
also have "… ≤ integral (cbox a b) (λx. norm (f x))"
proof -
have "⋃d ⊆ cbox a b"
using K(2) ab by fastforce
then show ?thesis
using integrable_on_subdivision[OF ddiv] f_int[of a b] unfolding absolutely_integrable_on_def
by (auto intro!: integral_subset_le)
qed
finally show "?f d ≤ integral (cbox a b) (λx. norm (f x))" .
next
have "e/2>0"
using ‹e > 0› by auto
moreover
have f: "f integrable_on cbox a b" "(λx. norm (f x)) integrable_on cbox a b"
using f_int by (auto simp: absolutely_integrable_on_def)
ultimately obtain d1 where "gauge d1"
and d1: "⋀p. ⟦p tagged_division_of (cbox a b); d1 fine p⟧ ⟹
norm ((∑(x,k) ∈ p. content k *⇩R norm (f x)) - integral (cbox a b) (λx. norm (f x))) < e/2"
unfolding has_integral_integral has_integral by meson
obtain d2 where "gauge d2"
and d2: "⋀p. ⟦p tagged_partial_division_of (cbox a b); d2 fine p⟧ ⟹
(∑(x,k) ∈ p. norm (content k *⇩R f x - integral k f)) < e/2"
by (blast intro: Henstock_lemma [OF f(1) ‹e/2>0›])
obtain p where
p: "p tagged_division_of (cbox a b)" "d1 fine p" "d2 fine p"
by (rule fine_division_exists [OF gauge_Int [OF ‹gauge d1› ‹gauge d2›], of a b])
(auto simp add: fine_Int)
have *: "⋀sf sf' si di. ⟦sf' = sf; si ≤ SDF; ¦sf - si¦ < e/2;
¦sf' - di¦ < e/2⟧ ⟹ di < SDF + e"
by arith
have "integral (cbox a b) (λx. norm (f x)) < SDF + e"
proof (rule *)
show "¦(∑(x,k)∈p. norm (content k *⇩R f x)) - (∑(x,k)∈p. norm (integral k f))¦ < e/2"
unfolding split_def
proof (rule absdiff_norm_less)
show "(∑p∈p. norm (content (snd p) *⇩R f (fst p) - integral (snd p) f)) < e/2"
using d2[of p] p(1,3) by (auto simp: tagged_division_of_def split_def)
qed
show "¦(∑(x,k) ∈ p. content k *⇩R norm (f x)) - integral (cbox a b) (λx. norm(f x))¦ < e/2"
using d1[OF p(1,2)] by (simp only: real_norm_def)
show "(∑(x,k) ∈ p. content k *⇩R norm (f x)) = (∑(x,k) ∈ p. norm (content k *⇩R f x))"
by (auto simp: split_paired_all sum.cong [OF refl])
have "(∑(x,k) ∈ p. norm (integral k f)) = (∑k∈snd ` p. norm (integral k f))"
apply (rule sum.over_tagged_division_lemma[OF p(1)])
by (metis Henstock_Kurzweil_Integration.integral_empty integral_open_interval norm_zero)
also have "... ≤ SDF"
using partial_division_of_tagged_division[of p "cbox a b"] p(1)
by (auto simp: SDF_def tagged_partial_division_of_def intro!: cSUP_upper2 D_1 D_2)
finally show "(∑(x,k) ∈ p. norm (integral k f)) ≤ SDF" .
qed
then show "integral (cbox a b) (λx. norm (f x)) < SDF + e"
by simp
qed
qed (use K in auto)
qed
moreover have "⋀a b. (λx. norm (f x)) integrable_on cbox a b"
using absolutely_integrable_on_def f_int by auto
ultimately
have "((λx. norm (f x)) has_integral SDF) UNIV"
by (auto simp: has_integral_alt')
then show "(λx. norm (f x)) integrable_on UNIV"
by blast
qed
subsection‹Outer and inner approximation of measurable sets by well-behaved sets.›
proposition measurable_outer_intervals_bounded:
assumes "S ∈ lmeasurable" "S ⊆ cbox a b" "e > 0"
obtains 𝒟
where "countable 𝒟"
"⋀K. K ∈ 𝒟 ⟹ K ⊆ cbox a b ∧ K ≠ {} ∧ (∃c d. K = cbox c d)"
"pairwise (λA B. interior A ∩ interior B = {}) 𝒟"
"⋀u v. cbox u v ∈ 𝒟 ⟹ ∃n. ∀i ∈ Basis. v ∙ i - u ∙ i = (b ∙ i - a ∙ i)/2^n"
"⋀K. ⟦K ∈ 𝒟; box a b ≠ {}⟧ ⟹ interior K ≠ {}"
"S ⊆ ⋃𝒟" "⋃𝒟 ∈ lmeasurable" "measure lebesgue (⋃𝒟) ≤ measure lebesgue S + e"
proof (cases "box a b = {}")
case True
show ?thesis
proof (cases "cbox a b = {}")
case True
with assms have [simp]: "S = {}"
by auto
show ?thesis
proof
show "countable {}"
by simp
qed (use ‹e > 0› in auto)
next
case False
show ?thesis
proof
show "countable {cbox a b}"
by simp
show "⋀u v. cbox u v ∈ {cbox a b} ⟹ ∃n. ∀i∈Basis. v ∙ i - u ∙ i = (b ∙ i - a ∙ i)/2 ^ n"
using False by (force simp: eq_cbox intro: exI [where x=0])
show "measure lebesgue (⋃{cbox a b}) ≤ measure lebesgue S + e"
using assms by (simp add: sum_content.box_empty_imp [OF True])
qed (use assms ‹cbox a b ≠ {}› in auto)
qed
next
case False
let ?μ = "measure lebesgue"
have "S ∩ cbox a b ∈ lmeasurable"
using ‹S ∈ lmeasurable› by blast
then have indS_int: "(indicator S has_integral (?μ S)) (cbox a b)"
by (metis integral_indicator ‹S ⊆ cbox a b› has_integral_integrable_integral inf.orderE integrable_on_indicator)
with ‹e > 0› obtain γ where "gauge γ" and γ:
"⋀𝒟. ⟦𝒟 tagged_division_of (cbox a b); γ fine 𝒟⟧ ⟹ norm ((∑(x,K)∈𝒟. content(K) *⇩R indicator S x) - ?μ S) < e"
by (force simp: has_integral)
have inteq: "integral (cbox a b) (indicat_real S) = integral UNIV (indicator S)"
using assms by (metis has_integral_iff indS_int lmeasure_integral_UNIV)
obtain 𝒟 where 𝒟: "countable 𝒟" "⋃𝒟 ⊆ cbox a b"
and cbox: "⋀K. K ∈ 𝒟 ⟹ interior K ≠ {} ∧ (∃c d. K = cbox c d)"
and djointish: "pairwise (λA B. interior A ∩ interior B = {}) 𝒟"
and covered: "⋀K. K ∈ 𝒟 ⟹ ∃x ∈ S ∩ K. K ⊆ γ x"
and close: "⋀u v. cbox u v ∈ 𝒟 ⟹ ∃n. ∀i ∈ Basis. v∙i - u∙i = (b∙i - a∙i)/2^n"
and covers: "S ⊆ ⋃𝒟"
using covering_lemma [of S a b γ] ‹gauge γ› ‹box a b ≠ {}› assms by force
show ?thesis
proof
show "⋀K. K ∈ 𝒟 ⟹ K ⊆ cbox a b ∧ K ≠ {} ∧ (∃c d. K = cbox c d)"
by (meson Sup_le_iff 𝒟(2) cbox interior_empty)
have negl_int: "negligible(K ∩ L)" if "K ∈ 𝒟" "L ∈ 𝒟" "K ≠ L" for K L
proof -
have "interior K ∩ interior L = {}"
using djointish pairwiseD that by fastforce
moreover obtain u v x y where "K = cbox u v" "L = cbox x y"
using cbox ‹K ∈ 𝒟› ‹L ∈ 𝒟› by blast
ultimately show ?thesis
by (simp add: Int_interval box_Int_box negligible_interval(1))
qed
have fincase: "⋃ℱ ∈ lmeasurable ∧ ?μ (⋃ℱ) ≤ ?μ S + e" if "finite ℱ" "ℱ ⊆ 𝒟" for ℱ
proof -
obtain t where t: "⋀K. K ∈ ℱ ⟹ t K ∈ S ∩ K ∧ K ⊆ γ(t K)"
using covered ‹ℱ ⊆ 𝒟› subsetD by metis
have "∀K ∈ ℱ. ∀L ∈ ℱ. K ≠ L ⟶ interior K ∩ interior L = {}"
using that djointish by (simp add: pairwise_def) (metis subsetD)
with cbox that 𝒟 have ℱdiv: "ℱ division_of (⋃ℱ)"
by (fastforce simp: division_of_def dest: cbox)
then have 1: "⋃ℱ ∈ lmeasurable"
by blast
have norme: "⋀p. ⟦p tagged_division_of cbox a b; γ fine p⟧
⟹ norm ((∑(x,K)∈p. content K * indicator S x) - integral (cbox a b) (indicator S)) < e"
by (auto simp: lmeasure_integral_UNIV assms inteq dest: γ)
have "∀x K y L. (x,K) ∈ (λK. (t K,K)) ` ℱ ∧ (y,L) ∈ (λK. (t K,K)) ` ℱ ∧ (x,K) ≠ (y,L) ⟶ interior K ∩ interior L = {}"
using that djointish by (clarsimp simp: pairwise_def) (metis subsetD)
with that 𝒟 have tagged: "(λK. (t K, K)) ` ℱ tagged_partial_division_of cbox a b"
by (auto simp: tagged_partial_division_of_def dest: t cbox)
have fine: "γ fine (λK. (t K, K)) ` ℱ"
using t by (auto simp: fine_def)
have *: "y ≤ ?μ S ⟹ ¦x - y¦ ≤ e ⟹ x ≤ ?μ S + e" for x y
by arith
have "?μ (⋃ℱ) ≤ ?μ S + e"
proof (rule *)
have "(∑K∈ℱ. ?μ (K ∩ S)) = ?μ (⋃C∈ℱ. C ∩ S)"
proof (rule measure_negligible_finite_Union_image [OF ‹finite ℱ›, symmetric])
show "⋀K. K ∈ ℱ ⟹ K ∩ S ∈ lmeasurable"
using ℱdiv ‹S ∈ lmeasurable› by blast
show "pairwise (λK y. negligible (K ∩ S ∩ (y ∩ S))) ℱ"
unfolding pairwise_def
by (metis inf.commute inf_sup_aci(3) negligible_Int subsetCE negl_int ‹ℱ ⊆ 𝒟›)
qed
also have "… = ?μ (⋃ℱ ∩ S)"
by simp
also have "… ≤ ?μ S"
by (simp add: "1" ‹S ∈ lmeasurable› fmeasurableD measure_mono_fmeasurable sets.Int)
finally show "(∑K∈ℱ. ?μ (K ∩ S)) ≤ ?μ S" .
next
have "?μ (⋃ℱ) = sum ?μ ℱ"
by (metis ℱdiv content_division)
also have "… = (∑K∈ℱ. content K)"
using ℱdiv by (force intro: sum.cong)
also have "… = (∑x∈ℱ. content x * indicator S (t x))"
using t by auto
finally have eq1: "?μ (⋃ℱ) = (∑x∈ℱ. content x * indicator S (t x))" .
have eq2: "(∑K∈ℱ. ?μ (K ∩ S)) = (∑K∈ℱ. integral K (indicator S))"
apply (rule sum.cong [OF refl])
by (metis integral_indicator ℱdiv ‹S ∈ lmeasurable› division_ofD(4) fmeasurable.Int inf.commute lmeasurable_cbox)
have "¦∑(x,K)∈(λK. (t K, K)) ` ℱ. content K * indicator S x - integral K (indicator S)¦ ≤ e"
using Henstock_lemma_part1 [of "indicator S::'a⇒real", OF _ ‹e > 0› ‹gauge γ› _ tagged fine]
indS_int norme by auto
then show "¦?μ (⋃ℱ) - (∑K∈ℱ. ?μ (K ∩ S))¦ ≤ e"
by (simp add: eq1 eq2 comm_monoid_add_class.sum.reindex inj_on_def sum_subtractf)
qed
with 1 show ?thesis by blast
qed
have "⋃𝒟 ∈ lmeasurable ∧ ?μ (⋃𝒟) ≤ ?μ S + e"
proof (cases "finite 𝒟")
case True
with fincase show ?thesis
by blast
next
case False
let ?T = "from_nat_into 𝒟"
have T: "bij_betw ?T UNIV 𝒟"
by (simp add: False 𝒟(1) bij_betw_from_nat_into)
have TM: "⋀n. ?T n ∈ lmeasurable"
by (metis False cbox finite.emptyI from_nat_into lmeasurable_cbox)
have TN: "⋀m n. m ≠ n ⟹ negligible (?T m ∩ ?T n)"
by (simp add: False 𝒟(1) from_nat_into infinite_imp_nonempty negl_int)
have TB: "(∑k≤n. ?μ (?T k)) ≤ ?μ S + e" for n
proof -
have "(∑k≤n. ?μ (?T k)) = ?μ (⋃ (?T ` {..n}))"
by (simp add: pairwise_def TM TN measure_negligible_finite_Union_image)
also have "?μ (⋃ (?T ` {..n})) ≤ ?μ S + e"
using fincase [of "?T ` {..n}"] T by (auto simp: bij_betw_def)
finally show ?thesis .
qed
have "⋃𝒟 ∈ lmeasurable"
by (metis lmeasurable_compact T 𝒟(2) bij_betw_def cbox compact_cbox countable_Un_Int(1) fmeasurableD fmeasurableI2 rangeI)
moreover
have "?μ (⋃x. from_nat_into 𝒟 x) ≤ ?μ S + e"
proof (rule measure_countable_Union_le [OF TM])
show "?μ (⋃x≤n. from_nat_into 𝒟 x) ≤ ?μ S + e" for n
by (metis (mono_tags, lifting) False fincase finite.emptyI finite_atMost finite_imageI from_nat_into imageE subsetI)
qed
ultimately show ?thesis by (metis T bij_betw_def)
qed
then show "⋃𝒟 ∈ lmeasurable" "measure lebesgue (⋃𝒟) ≤ ?μ S + e" by blast+
qed (use 𝒟 cbox djointish close covers in auto)
qed
subsection‹Transformation of measure by linear maps›
lemma emeasure_lebesgue_ball_conv_unit_ball:
fixes c :: "'a :: euclidean_space"
assumes "r ≥ 0"
shows "emeasure lebesgue (ball c r) =
ennreal (r ^ DIM('a)) * emeasure lebesgue (ball (0 :: 'a) 1)"
proof (cases "r = 0")
case False
with assms have r: "r > 0" by auto
have "emeasure lebesgue ((λx. c + x) ` (λx. r *⇩R x) ` ball (0 :: 'a) 1) =
r ^ DIM('a) * emeasure lebesgue (ball (0 :: 'a) 1)"
unfolding image_image using emeasure_lebesgue_affine[of r c "ball 0 1"] assms
by (simp add: add_ac)
also have "(λx. r *⇩R x) ` ball 0 1 = ball (0 :: 'a) r"
using r by (subst ball_scale) auto
also have "(λx. c + x) ` … = ball c r"
by (subst image_add_ball) (simp_all add: algebra_simps)
finally show ?thesis by simp
qed auto
lemma content_ball_conv_unit_ball:
fixes c :: "'a :: euclidean_space"
assumes "r ≥ 0"
shows "content (ball c r) = r ^ DIM('a) * content (ball (0 :: 'a) 1)"
proof -
have "ennreal (content (ball c r)) = emeasure lebesgue (ball c r)"
using emeasure_lborel_ball_finite[of c r] by (subst emeasure_eq_ennreal_measure) auto
also have "… = ennreal (r ^ DIM('a)) * emeasure lebesgue (ball (0 :: 'a) 1)"
using assms by (intro emeasure_lebesgue_ball_conv_unit_ball) auto
also have "… = ennreal (r ^ DIM('a) * content (ball (0::'a) 1))"
using emeasure_lborel_ball_finite[of "0::'a" 1] assms
by (subst emeasure_eq_ennreal_measure) (auto simp: ennreal_mult')
finally show ?thesis
using assms by (subst (asm) ennreal_inj) auto
qed
lemma measurable_linear_image_interval:
"linear f ⟹ f ` (cbox a b) ∈ lmeasurable"
by (metis bounded_linear_image linear_linear bounded_cbox closure_bounded_linear_image closure_cbox compact_closure lmeasurable_compact)
proposition measure_linear_sufficient:
fixes f :: "'n::euclidean_space ⇒ 'n"
assumes "linear f" and S: "S ∈ lmeasurable"
and im: "⋀a b. measure lebesgue (f ` (cbox a b)) = m * measure lebesgue (cbox a b)"
shows "f ` S ∈ lmeasurable ∧ m * measure lebesgue S = measure lebesgue (f ` S)"
using le_less_linear [of 0 m]
proof
assume "m < 0"
then show ?thesis
using im [of 0 One] by auto
next
assume "m ≥ 0"
let ?μ = "measure lebesgue"
show ?thesis
proof (cases "inj f")
case False
then have "?μ (f ` S) = 0"
using ‹linear f› negligible_imp_measure0 negligible_linear_singular_image by blast
then have "m * ?μ (cbox 0 (One)) = 0"
by (metis False ‹linear f› cbox_borel content_unit im measure_completion negligible_imp_measure0 negligible_linear_singular_image sets_lborel)
then show ?thesis
using ‹linear f› negligible_linear_singular_image negligible_imp_measure0 False
by (auto simp: lmeasurable_iff_has_integral negligible_UNIV)
next
case True
then obtain h where "linear h" and hf: "⋀x. h (f x) = x" and fh: "⋀x. f (h x) = x"
using ‹linear f› linear_injective_isomorphism by blast
have fBS: "(f ` S) ∈ lmeasurable ∧ m * ?μ S = ?μ (f ` S)"
if "bounded S" "S ∈ lmeasurable" for S
proof -
obtain a b where "S ⊆ cbox a b"
using ‹bounded S› bounded_subset_cbox_symmetric by metis
have fUD: "(f ` ⋃𝒟) ∈ lmeasurable ∧ ?μ (f ` ⋃𝒟) = (m * ?μ (⋃𝒟))"
if "countable 𝒟"
and cbox: "⋀K. K ∈ 𝒟 ⟹ K ⊆ cbox a b ∧ K ≠ {} ∧ (∃c d. K = cbox c d)"
and intint: "pairwise (λA B. interior A ∩ interior B = {}) 𝒟"
for 𝒟
proof -
have conv: "⋀K. K ∈ 𝒟 ⟹ convex K"
using cbox convex_box(1) by blast
have neg: "negligible (g ` K ∩ g ` L)" if "linear g" "K ∈ 𝒟" "L ∈ 𝒟" "K ≠ L"
for K L and g :: "'n⇒'n"
proof (cases "inj g")
case True
have "negligible (frontier(g ` K ∩ g ` L) ∪ interior(g ` K ∩ g ` L))"
proof (rule negligible_Un)
show "negligible (frontier (g ` K ∩ g ` L))"
by (simp add: negligible_convex_frontier convex_Int conv convex_linear_image that)
next
have "∀p N. pairwise p N = (∀Na. (Na::'n set) ∈ N ⟶ (∀Nb. Nb ∈ N ∧ Na ≠ Nb ⟶ p Na Nb))"
by (metis pairwise_def)
then have "interior K ∩ interior L = {}"
using intint that(2) that(3) that(4) by presburger
then show "negligible (interior (g ` K ∩ g ` L))"
by (metis True empty_imp_negligible image_Int image_empty interior_Int interior_injective_linear_image that(1))
qed
moreover have "g ` K ∩ g ` L ⊆ frontier (g ` K ∩ g ` L) ∪ interior (g ` K ∩ g ` L)"
by (metis Diff_partition Int_commute calculation closure_Un_frontier frontier_def inf.absorb_iff2 inf_bot_right inf_sup_absorb negligible_Un_eq open_interior open_not_negligible sup_commute)
ultimately show ?thesis
by (rule negligible_subset)
next
case False
then show ?thesis
by (simp add: negligible_Int negligible_linear_singular_image ‹linear g›)
qed
have negf: "negligible ((f ` K) ∩ (f ` L))"
and negid: "negligible (K ∩ L)" if "K ∈ 𝒟" "L ∈ 𝒟" "K ≠ L" for K L
using neg [OF ‹linear f›] neg [OF linear_id] that by auto
show ?thesis
proof (cases "finite 𝒟")
case True
then have "?μ (⋃x∈𝒟. f ` x) = (∑x∈𝒟. ?μ (f ` x))"
using ‹linear f› cbox measurable_linear_image_interval negf
by (blast intro: measure_negligible_finite_Union_image [unfolded pairwise_def])
also have "… = (∑k∈𝒟. m * ?μ k)"
by (metis (no_types, lifting) cbox im sum.cong)
also have "… = m * ?μ (⋃𝒟)"
unfolding sum_distrib_left [symmetric]
by (metis True cbox lmeasurable_cbox measure_negligible_finite_Union [unfolded pairwise_def] negid)
finally show ?thesis
by (metis True ‹linear f› cbox image_Union fmeasurable.finite_UN measurable_linear_image_interval)
next
case False
with ‹countable 𝒟› obtain X :: "nat ⇒ 'n set" where S: "bij_betw X UNIV 𝒟"
using bij_betw_from_nat_into by blast
then have eq: "(⋃𝒟) = (⋃n. X n)" "(f ` ⋃𝒟) = (⋃n. f ` X n)"
by (auto simp: bij_betw_def)
have meas: "⋀K. K ∈ 𝒟 ⟹ K ∈ lmeasurable"
using cbox by blast
with S have 1: "⋀n. X n ∈ lmeasurable"
by (auto simp: bij_betw_def)
have 2: "pairwise (λm n. negligible (X m ∩ X n)) UNIV"
using S unfolding bij_betw_def pairwise_def by (metis injD negid range_eqI)
have "bounded (⋃𝒟)"
by (meson Sup_least bounded_cbox bounded_subset cbox)
then have 3: "bounded (⋃n. X n)"
using S unfolding bij_betw_def by blast
have "(⋃n. X n) ∈ lmeasurable"
by (rule measurable_countable_negligible_Union_bounded [OF 1 2 3])
with S have f1: "⋀n. f ` (X n) ∈ lmeasurable"
unfolding bij_betw_def by (metis assms(1) cbox measurable_linear_image_interval rangeI)
have f2: "pairwise (λm n. negligible (f ` (X m) ∩ f ` (X n))) UNIV"
using S unfolding bij_betw_def pairwise_def by (metis injD negf rangeI)
have "bounded (⋃𝒟)"
by (meson Sup_least bounded_cbox bounded_subset cbox)
then have f3: "bounded (⋃n. f ` X n)"
using S unfolding bij_betw_def
by (metis bounded_linear_image linear_linear assms(1) image_Union range_composition)
have "(λn. ?μ (X n)) sums ?μ (⋃n. X n)"
by (rule measure_countable_negligible_Union_bounded [OF 1 2 3])
have meq: "?μ (⋃n. f ` X n) = m * ?μ (⋃(X ` UNIV))"
proof (rule sums_unique2 [OF measure_countable_negligible_Union_bounded [OF f1 f2 f3]])
have m: "⋀n. ?μ (f ` X n) = (m * ?μ (X n))"
using S unfolding bij_betw_def by (metis cbox im rangeI)
show "(λn. ?μ (f ` X n)) sums (m * ?μ (⋃(X ` UNIV)))"
unfolding m
using measure_countable_negligible_Union_bounded [OF 1 2 3] sums_mult by blast
qed
show ?thesis
using measurable_countable_negligible_Union_bounded [OF f1 f2 f3] meq
by (auto simp: eq [symmetric])
qed
qed
show ?thesis
unfolding completion.fmeasurable_measure_inner_outer_le
proof (intro conjI allI impI)
fix e :: real
assume "e > 0"
have 1: "cbox a b - S ∈ lmeasurable"
by (simp add: fmeasurable.Diff that)
have 2: "0 < e / (1 + ¦m¦)"
using ‹e > 0› by (simp add: field_split_simps abs_add_one_gt_zero)
obtain 𝒟
where "countable 𝒟"
and cbox: "⋀K. K ∈ 𝒟 ⟹ K ⊆ cbox a b ∧ K ≠ {} ∧ (∃c d. K = cbox c d)"
and intdisj: "pairwise (λA B. interior A ∩ interior B = {}) 𝒟"
and DD: "cbox a b - S ⊆ ⋃𝒟" "⋃𝒟 ∈ lmeasurable"
and le: "?μ (⋃𝒟) ≤ ?μ (cbox a b - S) + e/(1 + ¦m¦)"
by (rule measurable_outer_intervals_bounded [of "cbox a b - S" a b "e/(1 + ¦m¦)"]; use 1 2 pairwise_def in force)
show "∃T ∈ lmeasurable. T ⊆ f ` S ∧ m * ?μ S - e ≤ ?μ T"
proof (intro bexI conjI)
show "f ` (cbox a b) - f ` (⋃𝒟) ⊆ f ` S"
using ‹cbox a b - S ⊆ ⋃𝒟› by force
have "m * ?μ S - e ≤ m * (?μ S - e / (1 + ¦m¦))"
using ‹m ≥ 0› ‹e > 0› by (simp add: field_simps)
also have "… ≤ ?μ (f ` cbox a b) - ?μ (f ` (⋃𝒟))"
proof -
have "?μ (cbox a b - S) = ?μ (cbox a b) - ?μ S"
by (simp add: measurable_measure_Diff ‹S ⊆ cbox a b› fmeasurableD that(2))
then have "(?μ S - e / (1 + m)) ≤ (content (cbox a b) - ?μ (⋃ 𝒟))"
using ‹m ≥ 0› le by auto
then show ?thesis
using ‹m ≥ 0› ‹e > 0›
by (simp add: mult_left_mono im fUD [OF ‹countable 𝒟› cbox intdisj] flip: right_diff_distrib)
qed
also have "… = ?μ (f ` cbox a b - f ` ⋃𝒟)"
proof (rule measurable_measure_Diff [symmetric])
show "f ` cbox a b ∈ lmeasurable"
by (simp add: assms(1) measurable_linear_image_interval)
show "f ` ⋃ 𝒟 ∈ sets lebesgue"
by (simp add: ‹countable 𝒟› cbox fUD fmeasurableD intdisj)
show "f ` ⋃ 𝒟 ⊆ f ` cbox a b"
by (simp add: Sup_le_iff cbox image_mono)
qed
finally show "m * ?μ S - e ≤ ?μ (f ` cbox a b - f ` ⋃𝒟)" .
show "f ` cbox a b - f ` ⋃𝒟 ∈ lmeasurable"
by (simp add: fUD ‹countable 𝒟› ‹linear f› cbox fmeasurable.Diff intdisj measurable_linear_image_interval)
qed
next
fix e :: real
assume "e > 0"
have em: "0 < e / (1 + ¦m¦)"
using ‹e > 0› by (simp add: field_split_simps abs_add_one_gt_zero)
obtain 𝒟
where "countable 𝒟"
and cbox: "⋀K. K ∈ 𝒟 ⟹ K ⊆ cbox a b ∧ K ≠ {} ∧ (∃c d. K = cbox c d)"
and intdisj: "pairwise (λA B. interior A ∩ interior B = {}) 𝒟"
and DD: "S ⊆ ⋃𝒟" "⋃𝒟 ∈ lmeasurable"
and le: "?μ (⋃𝒟) ≤ ?μ S + e/(1 + ¦m¦)"
by (rule measurable_outer_intervals_bounded [of S a b "e/(1 + ¦m¦)"]; use ‹S ∈ lmeasurable› ‹S ⊆ cbox a b› em in force)
show "∃U ∈ lmeasurable. f ` S ⊆ U ∧ ?μ U ≤ m * ?μ S + e"
proof (intro bexI conjI)
show "f ` S ⊆ f ` (⋃𝒟)"
by (simp add: DD(1) image_mono)
have "?μ (f ` ⋃𝒟) ≤ m * (?μ S + e / (1 + ¦m¦))"
using ‹m ≥ 0› le mult_left_mono
by (auto simp: fUD ‹countable 𝒟› ‹linear f› cbox fmeasurable.Diff intdisj measurable_linear_image_interval)
also have "… ≤ m * ?μ S + e"
using ‹m ≥ 0› ‹e > 0› by (simp add: fUD [OF ‹countable 𝒟› cbox intdisj] field_simps)
finally show "?μ (f ` ⋃𝒟) ≤ m * ?μ S + e" .
show "f ` ⋃𝒟 ∈ lmeasurable"
by (simp add: ‹countable 𝒟› cbox fUD intdisj)
qed
qed
qed
show ?thesis
unfolding has_measure_limit_iff
proof (intro allI impI)
fix e :: real
assume "e > 0"
obtain B where "B > 0" and B:
"⋀a b. ball 0 B ⊆ cbox a b ⟹ ¦?μ (S ∩ cbox a b) - ?μ S¦ < e / (1 + ¦m¦)"
using has_measure_limit [OF S] ‹e > 0› by (metis abs_add_one_gt_zero zero_less_divide_iff)
obtain c d::'n where cd: "ball 0 B ⊆ cbox c d"
by (metis bounded_subset_cbox_symmetric bounded_ball)
with B have less: "¦?μ (S ∩ cbox c d) - ?μ S¦ < e / (1 + ¦m¦)" .
obtain D where "D > 0" and D: "cbox c d ⊆ ball 0 D"
by (metis bounded_cbox bounded_subset_ballD)
obtain C where "C > 0" and C: "⋀x. norm (f x) ≤ C * norm x"
using linear_bounded_pos ‹linear f› by blast
have "f ` S ∩ cbox a b ∈ lmeasurable ∧
¦?μ (f ` S ∩ cbox a b) - m * ?μ S¦ < e"
if "ball 0 (D*C) ⊆ cbox a b" for a b
proof -
have "bounded (S ∩ h ` cbox a b)"
by (simp add: bounded_linear_image linear_linear ‹linear h› bounded_Int)
moreover have Shab: "S ∩ h ` cbox a b ∈ lmeasurable"
by (simp add: S ‹linear h› fmeasurable.Int measurable_linear_image_interval)
moreover have fim: "f ` (S ∩ h ` (cbox a b)) = (f ` S) ∩ cbox a b"
by (auto simp: hf rev_image_eqI fh)
ultimately have 1: "(f ` S) ∩ cbox a b ∈ lmeasurable"
and 2: "?μ ((f ` S) ∩ cbox a b) = m * ?μ (S ∩ h ` cbox a b)"
using fBS [of "S ∩ (h ` (cbox a b))"] by auto
have *: "⟦¦z - m¦ < e; z ≤ w; w ≤ m⟧ ⟹ ¦w - m¦ ≤ e"
for w z m and e::real by auto
have meas_adiff: "¦?μ (S ∩ h ` cbox a b) - ?μ S¦ ≤ e / (1 + ¦m¦)"
proof (rule * [OF less])
show "?μ (S ∩ cbox c d) ≤ ?μ (S ∩ h ` cbox a b)"
proof (rule measure_mono_fmeasurable [OF _ _ Shab])
have "f ` ball 0 D ⊆ ball 0 (C * D)"
using C ‹C > 0›
apply (clarsimp simp: algebra_simps)
by (meson le_less_trans linordered_comm_semiring_strict_class.comm_mult_strict_left_mono)
then have "f ` ball 0 D ⊆ cbox a b"
by (metis mult.commute order_trans that)
have "ball 0 D ⊆ h ` cbox a b"
by (metis ‹f ` ball 0 D ⊆ cbox a b› hf image_subset_iff subsetI)
then show "S ∩ cbox c d ⊆ S ∩ h ` cbox a b"
using D by blast
next
show "S ∩ cbox c d ∈ sets lebesgue"
using S fmeasurable_cbox by blast
qed
next
show "?μ (S ∩ h ` cbox a b) ≤ ?μ S"
by (simp add: S Shab fmeasurableD measure_mono_fmeasurable)
qed
have "¦?μ (f ` S ∩ cbox a b) - m * ?μ S¦ ≤ ¦?μ S - ?μ (S ∩ h ` cbox a b)¦ * m"
by (metis "2" ‹m ≥ 0› abs_minus_commute abs_mult_pos mult.commute order_refl right_diff_distrib')
also have "… ≤ e / (1 + m) * m"
by (metis ‹m ≥ 0› abs_minus_commute abs_of_nonneg meas_adiff mult.commute mult_left_mono)
also have "… < e"
using ‹e > 0› ‹m ≥ 0› by (simp add: field_simps)
finally have "¦?μ (f ` S ∩ cbox a b) - m * ?μ S¦ < e" .
with 1 show ?thesis by auto
qed
then show "∃B>0. ∀a b. ball 0 B ⊆ cbox a b ⟶
f ` S ∩ cbox a b ∈ lmeasurable ∧
¦?μ (f ` S ∩ cbox a b) - m * ?μ S¦ < e"
using ‹C>0› ‹D>0› by (metis mult_zero_left mult_less_cancel_right_pos)
qed
qed
qed
subsection‹Lemmas about absolute integrability›
lemma absolutely_integrable_linear:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
and h :: "'n::euclidean_space ⇒ 'p::euclidean_space"
shows "f absolutely_integrable_on s ⟹ bounded_linear h ⟹ (h ∘ f) absolutely_integrable_on s"
using integrable_bounded_linear[of h lebesgue "λx. indicator s x *⇩R f x"]
by (simp add: linear_simps[of h] set_integrable_def)
lemma absolutely_integrable_sum:
fixes f :: "'a ⇒ 'n::euclidean_space ⇒ 'm::euclidean_space"
assumes "finite T" and "⋀a. a ∈ T ⟹ (f a) absolutely_integrable_on S"
shows "(λx. sum (λa. f a x) T) absolutely_integrable_on S"
using assms by induction auto
lemma absolutely_integrable_integrable_bound:
fixes f :: "'n::euclidean_space ⇒ 'm::euclidean_space"
assumes le: "⋀x. x∈S ⟹ norm (f x) ≤ g x" and f: "f integrable_on S" and g: "g integrable_on S"
shows "f absolutely_integrable_on S"
unfolding set_integrable_def
proof (rule Bochner_Integration.integrable_bound)
have "g absolutely_integrable_on S"
unfolding absolutely_integrable_on_def
proof
show "(λx. norm (g x)) integrable_on S"
using le norm_ge_zero[of "f _"]
by (intro integrable_spike_finite[OF _ _ g, of "{}"])
(auto intro!: abs_of_nonneg intro: order_trans simp del: norm_ge_zero)
qed fact
then show "integrable lebesgue (λx. indicat_real S x *⇩R g x)"
by (simp add: set_integrable_def)
show "(λx. indicat_real S x *⇩R f x) ∈ borel_measurable lebesgue"
using f by (auto intro: has_integral_implies_lebesgue_measurable simp: integrable_on_def)
qed (use le in ‹force intro!: always_eventually split: split_indicator›)
corollary absolutely_integrable_on_const [simp]:
fixes c :: "'a::euclidean_space"
assumes "S ∈ lmeasurable"
shows "(λx. c) absolutely_integrable_on S"
by (metis (full_types) assms absolutely_integrable_integrable_bound integrable_on_const order_refl)
lemma absolutely_integrable_continuous:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "continuous_on (cbox a b) f ⟹ f absolutely_integrable_on cbox a b"
using absolutely_integrable_integrable_bound
by (simp add: absolutely_integrable_on_def continuous_on_norm integrable_continuous)
lemma absolutely_integrable_continuous_real:
fixes f :: "real ⇒ 'b::euclidean_space"
shows "continuous_on {a..b} f ⟹ f absolutely_integrable_on {a..b}"
by (metis absolutely_integrable_continuous box_real(2))
lemma continuous_imp_integrable:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "continuous_on (cbox a b) f"
shows "integrable (lebesgue_on (cbox a b)) f"
proof -
have "f absolutely_integrable_on cbox a b"
by (simp add: absolutely_integrable_continuous assms)
then show ?thesis
by (simp add: integrable_restrict_space set_integrable_def)
qed
lemma continuous_imp_integrable_real:
fixes f :: "real ⇒ 'b::euclidean_space"
assumes "continuous_on {a..b} f"
shows "integrable (lebesgue_on {a..b}) f"
by (metis assms continuous_imp_integrable interval_cbox)
subsection ‹Componentwise›
proposition absolutely_integrable_componentwise_iff:
shows "f absolutely_integrable_on A ⟷ (∀b∈Basis. (λx. f x ∙ b) absolutely_integrable_on A)"
proof -
have *: "(λx. norm (f x)) integrable_on A ⟷ (∀b∈Basis. (λx. norm (f x ∙ b)) integrable_on A)" (is "?lhs = ?rhs")
if "f integrable_on A"
proof
assume ?lhs
then show ?rhs
by (metis absolutely_integrable_on_def Topology_Euclidean_Space.norm_nth_le absolutely_integrable_integrable_bound integrable_component that)
next
assume R: ?rhs
have "f absolutely_integrable_on A"
proof (rule absolutely_integrable_integrable_bound)
show "(λx. ∑i∈Basis. norm (f x ∙ i)) integrable_on A"
using R by (force intro: integrable_sum)
qed (use that norm_le_l1 in auto)
then show ?lhs
using absolutely_integrable_on_def by auto
qed
show ?thesis
unfolding absolutely_integrable_on_def
by (simp add: integrable_componentwise_iff [symmetric] ball_conj_distrib * cong: conj_cong)
qed
lemma absolutely_integrable_componentwise:
shows "(⋀b. b ∈ Basis ⟹ (λx. f x ∙ b) absolutely_integrable_on A) ⟹ f absolutely_integrable_on A"
using absolutely_integrable_componentwise_iff by blast
lemma absolutely_integrable_component:
"f absolutely_integrable_on A ⟹ (λx. f x ∙ (b :: 'b :: euclidean_space)) absolutely_integrable_on A"
by (drule absolutely_integrable_linear[OF _ bounded_linear_inner_left[of b]]) (simp add: o_def)
lemma absolutely_integrable_scaleR_left:
fixes f :: "'n::euclidean_space ⇒ 'm::euclidean_space"
assumes "f absolutely_integrable_on S"
shows "(λx. c *⇩R f x) absolutely_integrable_on S"
proof -
have "(λx. c *⇩R x) o f absolutely_integrable_on S"
by (simp add: absolutely_integrable_linear assms bounded_linear_scaleR_right)
then show ?thesis
using assms by blast
qed
lemma absolutely_integrable_scaleR_right:
assumes "f absolutely_integrable_on S"
shows "(λx. f x *⇩R c) absolutely_integrable_on S"
using assms by blast
lemma absolutely_integrable_norm:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
assumes "f absolutely_integrable_on S"
shows "(norm o f) absolutely_integrable_on S"
using assms by (simp add: absolutely_integrable_on_def o_def)
lemma absolutely_integrable_abs:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
assumes "f absolutely_integrable_on S"
shows "(λx. ∑i∈Basis. ¦f x ∙ i¦ *⇩R i) absolutely_integrable_on S"
(is "?g absolutely_integrable_on S")
proof -
have *: "(λy. ∑j∈Basis. if j = i then y *⇩R j else 0) ∘
(λx. norm (∑j∈Basis. if j = i then (x ∙ i) *⇩R j else 0)) ∘ f
absolutely_integrable_on S"
if "i ∈ Basis" for i
proof -
have "bounded_linear (λy. ∑j∈Basis. if j = i then y *⇩R j else 0)"
by (simp add: linear_linear algebra_simps linearI)
moreover have "(λx. norm (∑j∈Basis. if j = i then (x ∙ i) *⇩R j else 0)) ∘ f
absolutely_integrable_on S"
using assms ‹i ∈ Basis›
unfolding o_def
by (intro absolutely_integrable_norm [unfolded o_def])
(auto simp: algebra_simps dest: absolutely_integrable_component)
ultimately show ?thesis
by (subst comp_assoc) (blast intro: absolutely_integrable_linear)
qed
have eq: "?g =
(λx. ∑i∈Basis. ((λy. ∑j∈Basis. if j = i then y *⇩R j else 0) ∘
(λx. norm(∑j∈Basis. if j = i then (x ∙ i) *⇩R j else 0)) ∘ f) x)"
by (simp)
show ?thesis
unfolding eq
by (rule absolutely_integrable_sum) (force simp: intro!: *)+
qed
lemma abs_absolutely_integrableI_1:
fixes f :: "'a :: euclidean_space ⇒ real"
assumes f: "f integrable_on A" and "(λx. ¦f x¦) integrable_on A"
shows "f absolutely_integrable_on A"
by (rule absolutely_integrable_integrable_bound [OF _ assms]) auto
lemma abs_absolutely_integrableI:
assumes f: "f integrable_on S" and fcomp: "(λx. ∑i∈Basis. ¦f x ∙ i¦ *⇩R i) integrable_on S"
shows "f absolutely_integrable_on S"
proof -
have "(λx. (f x ∙ i) *⇩R i) absolutely_integrable_on S" if "i ∈ Basis" for i
proof -
have "(λx. ¦f x ∙ i¦) integrable_on S"
using assms integrable_component [OF fcomp, where y=i] that by simp
then have "(λx. f x ∙ i) absolutely_integrable_on S"
using abs_absolutely_integrableI_1 f integrable_component by blast
then show ?thesis
by (rule absolutely_integrable_scaleR_right)
qed
then have "(λx. ∑i∈Basis. (f x ∙ i) *⇩R i) absolutely_integrable_on S"
by (simp add: absolutely_integrable_sum)
then show ?thesis
by (simp add: euclidean_representation)
qed
lemma absolutely_integrable_abs_iff:
"f absolutely_integrable_on S ⟷
f integrable_on S ∧ (λx. ∑i∈Basis. ¦f x ∙ i¦ *⇩R i) integrable_on S"
(is "?lhs = ?rhs")
proof
assume ?lhs then show ?rhs
using absolutely_integrable_abs absolutely_integrable_on_def by blast
next
assume ?rhs
moreover
have "(λx. if x ∈ S then ∑i∈Basis. ¦f x ∙ i¦ *⇩R i else 0) = (λx. ∑i∈Basis. ¦(if x ∈ S then f x else 0) ∙ i¦ *⇩R i)"
by force
ultimately show ?lhs
by (simp only: absolutely_integrable_restrict_UNIV [of S, symmetric] integrable_restrict_UNIV [of S, symmetric] abs_absolutely_integrableI)
qed
lemma absolutely_integrable_max:
fixes f :: "'n::euclidean_space ⇒ 'm::euclidean_space"
assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
shows "(λx. ∑i∈Basis. max (f x ∙ i) (g x ∙ i) *⇩R i)
absolutely_integrable_on S"
proof -
have "(λx. ∑i∈Basis. max (f x ∙ i) (g x ∙ i) *⇩R i) =
(λx. (1/2) *⇩R (f x + g x + (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i)))"
proof (rule ext)
fix x
have "(∑i∈Basis. max (f x ∙ i) (g x ∙ i) *⇩R i) = (∑i∈Basis. ((f x ∙ i + g x ∙ i + ¦f x ∙ i - g x ∙ i¦) / 2) *⇩R i)"
by (force intro: sum.cong)
also have "... = (1 / 2) *⇩R (∑i∈Basis. (f x ∙ i + g x ∙ i + ¦f x ∙ i - g x ∙ i¦) *⇩R i)"
by (simp add: scaleR_right.sum)
also have "... = (1 / 2) *⇩R (f x + g x + (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i))"
by (simp add: sum.distrib algebra_simps euclidean_representation)
finally
show "(∑i∈Basis. max (f x ∙ i) (g x ∙ i) *⇩R i) =
(1 / 2) *⇩R (f x + g x + (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i))" .
qed
moreover have "(λx. (1 / 2) *⇩R (f x + g x + (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i)))
absolutely_integrable_on S"
using absolutely_integrable_abs [OF set_integral_diff(1) [OF assms]]
by (intro set_integral_add absolutely_integrable_scaleR_left assms) (simp add: algebra_simps)
ultimately show ?thesis by metis
qed
corollary absolutely_integrable_max_1:
fixes f :: "'n::euclidean_space ⇒ real"
assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
shows "(λx. max (f x) (g x)) absolutely_integrable_on S"
using absolutely_integrable_max [OF assms] by simp
lemma absolutely_integrable_min:
fixes f :: "'n::euclidean_space ⇒ 'm::euclidean_space"
assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
shows "(λx. ∑i∈Basis. min (f x ∙ i) (g x ∙ i) *⇩R i)
absolutely_integrable_on S"
proof -
have "(λx. ∑i∈Basis. min (f x ∙ i) (g x ∙ i) *⇩R i) =
(λx. (1/2) *⇩R (f x + g x - (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i)))"
proof (rule ext)
fix x
have "(∑i∈Basis. min (f x ∙ i) (g x ∙ i) *⇩R i) = (∑i∈Basis. ((f x ∙ i + g x ∙ i - ¦f x ∙ i - g x ∙ i¦) / 2) *⇩R i)"
by (force intro: sum.cong)
also have "... = (1 / 2) *⇩R (∑i∈Basis. (f x ∙ i + g x ∙ i - ¦f x ∙ i - g x ∙ i¦) *⇩R i)"
by (simp add: scaleR_right.sum)
also have "... = (1 / 2) *⇩R (f x + g x - (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i))"
by (simp add: sum.distrib sum_subtractf algebra_simps euclidean_representation)
finally
show "(∑i∈Basis. min (f x ∙ i) (g x ∙ i) *⇩R i) =
(1 / 2) *⇩R (f x + g x - (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i))" .
qed
moreover have "(λx. (1 / 2) *⇩R (f x + g x - (∑i∈Basis. ¦f x ∙ i - g x ∙ i¦ *⇩R i)))
absolutely_integrable_on S"
using absolutely_integrable_abs [OF set_integral_diff(1) [OF assms]]
by (intro set_integral_add set_integral_diff absolutely_integrable_scaleR_left assms)
(simp add: algebra_simps)
ultimately show ?thesis by metis
qed
corollary absolutely_integrable_min_1:
fixes f :: "'n::euclidean_space ⇒ real"
assumes "f absolutely_integrable_on S" "g absolutely_integrable_on S"
shows "(λx. min (f x) (g x)) absolutely_integrable_on S"
using absolutely_integrable_min [OF assms] by simp
lemma nonnegative_absolutely_integrable:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
assumes "f integrable_on A" and comp: "⋀x b. ⟦x ∈ A; b ∈ Basis⟧ ⟹ 0 ≤ f x ∙ b"
shows "f absolutely_integrable_on A"
proof -
have "(λx. (f x ∙ i) *⇩R i) absolutely_integrable_on A" if "i ∈ Basis" for i
proof -
have "(λx. f x ∙ i) integrable_on A"
by (simp add: assms(1) integrable_component)
then have "(λx. f x ∙ i) absolutely_integrable_on A"
by (metis that comp nonnegative_absolutely_integrable_1)
then show ?thesis
by (rule absolutely_integrable_scaleR_right)
qed
then have "(λx. ∑i∈Basis. (f x ∙ i) *⇩R i) absolutely_integrable_on A"
by (simp add: absolutely_integrable_sum)
then show ?thesis
by (simp add: euclidean_representation)
qed
lemma absolutely_integrable_component_ubound:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
assumes f: "f integrable_on A" and g: "g absolutely_integrable_on A"
and comp: "⋀x b. ⟦x ∈ A; b ∈ Basis⟧ ⟹ f x ∙ b ≤ g x ∙ b"
shows "f absolutely_integrable_on A"
proof -
have "(λx. g x - (g x - f x)) absolutely_integrable_on A"
proof (rule set_integral_diff [OF g nonnegative_absolutely_integrable])
show "(λx. g x - f x) integrable_on A"
using Henstock_Kurzweil_Integration.integrable_diff absolutely_integrable_on_def f g by blast
qed (simp add: comp inner_diff_left)
then show ?thesis
by simp
qed
lemma absolutely_integrable_component_lbound:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
assumes f: "f absolutely_integrable_on A" and g: "g integrable_on A"
and comp: "⋀x b. ⟦x ∈ A; b ∈ Basis⟧ ⟹ f x ∙ b ≤ g x ∙ b"
shows "g absolutely_integrable_on A"
proof -
have "(λx. f x + (g x - f x)) absolutely_integrable_on A"
proof (rule set_integral_add [OF f nonnegative_absolutely_integrable])
show "(λx. g x - f x) integrable_on A"
using Henstock_Kurzweil_Integration.integrable_diff absolutely_integrable_on_def f g by blast
qed (simp add: comp inner_diff_left)
then show ?thesis
by simp
qed
lemma integrable_on_1_iff:
fixes f :: "'a::euclidean_space ⇒ real^1"
shows "f integrable_on S ⟷ (λx. f x $ 1) integrable_on S"
by (auto simp: integrable_componentwise_iff [of f] Basis_vec_def cart_eq_inner_axis)
lemma integral_on_1_eq:
fixes f :: "'a::euclidean_space ⇒ real^1"
shows "integral S f = vec (integral S (λx. f x $ 1))"
by (cases "f integrable_on S") (simp_all add: integrable_on_1_iff vec_eq_iff not_integrable_integral)
lemma absolutely_integrable_on_1_iff:
fixes f :: "'a::euclidean_space ⇒ real^1"
shows "f absolutely_integrable_on S ⟷ (λx. f x $ 1) absolutely_integrable_on S"
unfolding absolutely_integrable_on_def
by (auto simp: integrable_on_1_iff norm_real)
lemma absolutely_integrable_absolutely_integrable_lbound:
fixes f :: "'m::euclidean_space ⇒ real"
assumes f: "f integrable_on S" and g: "g absolutely_integrable_on S"
and *: "⋀x. x ∈ S ⟹ g x ≤ f x"
shows "f absolutely_integrable_on S"
by (rule absolutely_integrable_component_lbound [OF g f]) (simp add: *)
lemma absolutely_integrable_absolutely_integrable_ubound:
fixes f :: "'m::euclidean_space ⇒ real"
assumes fg: "f integrable_on S" "g absolutely_integrable_on S"
and *: "⋀x. x ∈ S ⟹ f x ≤ g x"
shows "f absolutely_integrable_on S"
by (rule absolutely_integrable_component_ubound [OF fg]) (simp add: *)
lemma has_integral_vec1_I_cbox:
fixes f :: "real^1 ⇒ 'a::real_normed_vector"
assumes "(f has_integral y) (cbox a b)"
shows "((f ∘ vec) has_integral y) {a$1..b$1}"
proof -
have "((λx. f(vec x)) has_integral (1 / 1) *⇩R y) ((λx. x $ 1) ` cbox a b)"
proof (rule has_integral_twiddle)
show "∃w z::real^1. vec ` cbox u v = cbox w z"
"content (vec ` cbox u v :: (real^1) set) = 1 * content (cbox u v)" for u v
unfolding vec_cbox_1_eq
by (auto simp: content_cbox_if_cart interval_eq_empty_cart)
show "∃w z. (λx. x $ 1) ` cbox u v = cbox w z" for u v :: "real^1"
using vec_nth_cbox_1_eq by blast
qed (auto simp: continuous_vec assms)
then show ?thesis
by (simp add: o_def)
qed
lemma has_integral_vec1_I:
fixes f :: "real^1 ⇒ 'a::real_normed_vector"
assumes "(f has_integral y) S"
shows "(f ∘ vec has_integral y) ((λx. x $ 1) ` S)"
proof -
have *: "∃z. ((λx. if x ∈ (λx. x $ 1) ` S then (f ∘ vec) x else 0) has_integral z) {a..b} ∧ norm (z - y) < e"
if int: "⋀a b. ball 0 B ⊆ cbox a b ⟹
(∃z. ((λx. if x ∈ S then f x else 0) has_integral z) (cbox a b) ∧ norm (z - y) < e)"
and B: "ball 0 B ⊆ {a..b}" for e B a b
proof -
have [simp]: "(∃y∈S. x = y $ 1) ⟷ vec x ∈ S" for x
by force
have B': "ball (0::real^1) B ⊆ cbox (vec a) (vec b)"
using B by (simp add: Basis_vec_def cart_eq_inner_axis [symmetric] mem_box norm_real subset_iff)
show ?thesis
using int [OF B'] by (auto simp: image_iff o_def cong: if_cong dest!: has_integral_vec1_I_cbox)
qed
show ?thesis
using assms
apply (subst has_integral_alt)
apply (subst (asm) has_integral_alt)
apply (simp add: has_integral_vec1_I_cbox split: if_split_asm)
subgoal by (metis vector_one_nth)
subgoal
apply (erule all_forward imp_forward ex_forward asm_rl)+
by (blast intro!: *)+
done
qed
lemma has_integral_vec1_nth_cbox:
fixes f :: "real ⇒ 'a::real_normed_vector"
assumes "(f has_integral y) {a..b}"
shows "((λx::real^1. f(x$1)) has_integral y) (cbox (vec a) (vec b))"
proof -
have "((λx::real^1. f(x$1)) has_integral (1 / 1) *⇩R y) (vec ` cbox a b)"
proof (rule has_integral_twiddle)
show "∃w z::real. (λx. x $ 1) ` cbox u v = cbox w z"
"content ((λx. x $ 1) ` cbox u v) = 1 * content (cbox u v)" for u v::"real^1"
unfolding vec_cbox_1_eq by (auto simp: content_cbox_if_cart interval_eq_empty_cart)
show "∃w z::real^1. vec ` cbox u v = cbox w z" for u v :: "real"
using vec_cbox_1_eq by auto
qed (auto simp: continuous_vec assms)
then show ?thesis
using vec_cbox_1_eq by auto
qed
lemma has_integral_vec1_D_cbox:
fixes f :: "real^1 ⇒ 'a::real_normed_vector"
assumes "((f ∘ vec) has_integral y) {a$1..b$1}"
shows "(f has_integral y) (cbox a b)"
by (metis (mono_tags, lifting) assms comp_apply has_integral_eq has_integral_vec1_nth_cbox vector_one_nth)
lemma has_integral_vec1_D:
fixes f :: "real^1 ⇒ 'a::real_normed_vector"
assumes "((f ∘ vec) has_integral y) ((λx. x $ 1) ` S)"
shows "(f has_integral y) S"
proof -
have *: "∃z. ((λx. if x ∈ S then f x else 0) has_integral z) (cbox a b) ∧ norm (z - y) < e"
if int: "⋀a b. ball 0 B ⊆ {a..b} ⟹
(∃z. ((λx. if x ∈ (λx. x $ 1) ` S then (f ∘ vec) x else 0) has_integral z) {a..b} ∧ norm (z - y) < e)"
and B: "ball 0 B ⊆ cbox a b" for e B and a b::"real^1"
proof -
have B': "ball 0 B ⊆ {a$1..b$1}"
proof (clarsimp)
fix t
assume "¦t¦ < B" then show "a $ 1 ≤ t ∧ t ≤ b $ 1"
using subsetD [OF B]
by (metis (mono_tags, opaque_lifting) mem_ball_0 mem_box_cart(2) norm_real vec_component)
qed
have eq: "(λx. if vec x ∈ S then f (vec x) else 0) = (λx. if x ∈ S then f x else 0) ∘ vec"
by force
have [simp]: "(∃y∈S. x = y $ 1) ⟷ vec x ∈ S" for x
by force
show ?thesis
using int [OF B'] by (auto simp: image_iff eq cong: if_cong dest!: has_integral_vec1_D_cbox)
qed
show ?thesis
using assms
apply (subst has_integral_alt)
apply (subst (asm) has_integral_alt)
apply (simp add: has_integral_vec1_D_cbox eq_cbox split: if_split_asm, blast)
apply (intro conjI impI)
subgoal by (metis vector_one_nth)
apply (erule thin_rl)
apply (erule all_forward ex_forward conj_forward)+
by (blast intro!: *)+
qed
lemma integral_vec1_eq:
fixes f :: "real^1 ⇒ 'a::real_normed_vector"
shows "integral S f = integral ((λx. x $ 1) ` S) (f ∘ vec)"
using has_integral_vec1_I [of f] has_integral_vec1_D [of f]
by (metis has_integral_iff not_integrable_integral)
lemma absolutely_integrable_drop:
fixes f :: "real^1 ⇒ 'b::euclidean_space"
shows "f absolutely_integrable_on S ⟷ (f ∘ vec) absolutely_integrable_on (λx. x $ 1) ` S"
unfolding absolutely_integrable_on_def integrable_on_def
proof safe
fix y r
assume "(f has_integral y) S" "((λx. norm (f x)) has_integral r) S"
then show "∃y. (f ∘ vec has_integral y) ((λx. x $ 1) ` S)"
"∃y. ((λx. norm ((f ∘ vec) x)) has_integral y) ((λx. x $ 1) ` S)"
by (force simp: o_def dest!: has_integral_vec1_I)+
next
fix y :: "'b" and r :: "real"
assume "(f ∘ vec has_integral y) ((λx. x $ 1) ` S)"
"((λx. norm ((f ∘ vec) x)) has_integral r) ((λx. x $ 1) ` S)"
then show "∃y. (f has_integral y) S" "∃y. ((λx. norm (f x)) has_integral y) S"
by (force simp: o_def intro: has_integral_vec1_D)+
qed
subsection ‹Dominated convergence›
lemma dominated_convergence:
fixes f :: "nat ⇒ 'n::euclidean_space ⇒ 'm::euclidean_space"
assumes f: "⋀k. (f k) integrable_on S" and h: "h integrable_on S"
and le: "⋀k x. x ∈ S ⟹ norm (f k x) ≤ h x"
and conv: "⋀x. x ∈ S ⟹ (λk. f k x) ⇢ g x"
shows "g integrable_on S" "(λk. integral S (f k)) ⇢ integral S g"
proof -
have 3: "h absolutely_integrable_on S"
unfolding absolutely_integrable_on_def
proof
show "(λx. norm (h x)) integrable_on S"
proof (intro integrable_spike_finite[OF _ _ h, of "{}"] ballI)
fix x assume "x ∈ S - {}" then show "norm (h x) = h x"
by (metis Diff_empty abs_of_nonneg bot_set_def le norm_ge_zero order_trans real_norm_def)
qed auto
qed fact
have 2: "set_borel_measurable lebesgue S (f k)" for k
unfolding set_borel_measurable_def
using f by (auto intro: has_integral_implies_lebesgue_measurable simp: integrable_on_def)
then have 1: "set_borel_measurable lebesgue S g"
unfolding set_borel_measurable_def
by (rule borel_measurable_LIMSEQ_metric) (use conv in ‹auto split: split_indicator›)
have 4: "AE x in lebesgue. (λi. indicator S x *⇩R f i x) ⇢ indicator S x *⇩R g x"
"AE x in lebesgue. norm (indicator S x *⇩R f k x) ≤ indicator S x *⇩R h x" for k
using conv le by (auto intro!: always_eventually split: split_indicator)
have g: "g absolutely_integrable_on S"
using 1 2 3 4 unfolding set_borel_measurable_def set_integrable_def
by (rule integrable_dominated_convergence)
then show "g integrable_on S"
by (auto simp: absolutely_integrable_on_def)
have "(λk. (LINT x:S|lebesgue. f k x)) ⇢ (LINT x:S|lebesgue. g x)"
unfolding set_borel_measurable_def set_lebesgue_integral_def
using 1 2 3 4 unfolding set_borel_measurable_def set_lebesgue_integral_def set_integrable_def
by (rule integral_dominated_convergence)
then show "(λk. integral S (f k)) ⇢ integral S g"
using g absolutely_integrable_integrable_bound[OF le f h]
by (subst (asm) (1 2) set_lebesgue_integral_eq_integral) auto
qed
lemma has_integral_dominated_convergence:
fixes f :: "nat ⇒ 'n::euclidean_space ⇒ 'm::euclidean_space"
assumes "⋀k. (f k has_integral y k) S" "h integrable_on S"
"⋀k. ∀x∈S. norm (f k x) ≤ h x" "∀x∈S. (λk. f k x) ⇢ g x"
and x: "y ⇢ x"
shows "(g has_integral x) S"
proof -
have int_f: "⋀k. (f k) integrable_on S"
using assms by (auto simp: integrable_on_def)
have "(g has_integral (integral S g)) S"
by (metis assms(2-4) dominated_convergence(1) has_integral_integral int_f)
moreover have "integral S g = x"
proof (rule LIMSEQ_unique)
show "(λi. integral S (f i)) ⇢ x"
using integral_unique[OF assms(1)] x by simp
show "(λi. integral S (f i)) ⇢ integral S g"
by (metis assms(2) assms(3) assms(4) dominated_convergence(2) int_f)
qed
ultimately show ?thesis
by simp
qed
lemma dominated_convergence_integrable_1:
fixes f :: "nat ⇒ 'n::euclidean_space ⇒ real"
assumes f: "⋀k. f k absolutely_integrable_on S"
and h: "h integrable_on S"
and normg: "⋀x. x ∈ S ⟹ norm(g x) ≤ (h x)"
and lim: "⋀x. x ∈ S ⟹ (λk. f k x) ⇢ g x"
shows "g integrable_on S"
proof -
have habs: "h absolutely_integrable_on S"
using h normg nonnegative_absolutely_integrable_1 norm_ge_zero order_trans by blast
let ?f = "λn x. (min (max (- h x) (f n x)) (h x))"
have h0: "h x ≥ 0" if "x ∈ S" for x
using normg that by force
have leh: "norm (?f k x) ≤ h x" if "x ∈ S" for k x
using h0 that by force
have limf: "(λk. ?f k x) ⇢ g x" if "x ∈ S" for x
proof -
have "⋀e y. ¦f y x - g x¦ < e ⟹ ¦min (max (- h x) (f y x)) (h x) - g x¦ < e"
using h0 [OF that] normg [OF that] by simp
then show ?thesis
using lim [OF that] by (auto simp add: tendsto_iff dist_norm elim!: eventually_mono)
qed
show ?thesis
proof (rule dominated_convergence [of ?f S h g])
have "(λx. - h x) absolutely_integrable_on S"
using habs unfolding set_integrable_def by auto
then show "?f k integrable_on S" for k
by (intro set_lebesgue_integral_eq_integral absolutely_integrable_min_1 absolutely_integrable_max_1 f habs)
qed (use assms leh limf in auto)
qed
lemma dominated_convergence_integrable:
fixes f :: "nat ⇒ 'n::euclidean_space ⇒ 'm::euclidean_space"
assumes f: "⋀k. f k absolutely_integrable_on S"
and h: "h integrable_on S"
and normg: "⋀x. x ∈ S ⟹ norm(g x) ≤ (h x)"
and lim: "⋀x. x ∈ S ⟹ (λk. f k x) ⇢ g x"
shows "g integrable_on S"
using f
unfolding integrable_componentwise_iff [of g] absolutely_integrable_componentwise_iff [where f = "f k" for k]
proof clarify
fix b :: "'m"
assume fb [rule_format]: "⋀k. ∀b∈Basis. (λx. f k x ∙ b) absolutely_integrable_on S" and b: "b ∈ Basis"
show "(λx. g x ∙ b) integrable_on S"
proof (rule dominated_convergence_integrable_1 [OF fb h])
fix x
assume "x ∈ S"
show "norm (g x ∙ b) ≤ h x"
using norm_nth_le ‹x ∈ S› b normg order.trans by blast
show "(λk. f k x ∙ b) ⇢ g x ∙ b"
using ‹x ∈ S› b lim tendsto_componentwise_iff by fastforce
qed (use b in auto)
qed
lemma dominated_convergence_absolutely_integrable:
fixes f :: "nat ⇒ 'n::euclidean_space ⇒ 'm::euclidean_space"
assumes f: "⋀k. f k absolutely_integrable_on S"
and h: "h integrable_on S"
and normg: "⋀x. x ∈ S ⟹ norm(g x) ≤ (h x)"
and lim: "⋀x. x ∈ S ⟹ (λk. f k x) ⇢ g x"
shows "g absolutely_integrable_on S"
proof -
have "g integrable_on S"
by (rule dominated_convergence_integrable [OF assms])
with assms show ?thesis
by (blast intro: absolutely_integrable_integrable_bound [where g=h])
qed
proposition integral_countable_UN:
fixes f :: "real^'m ⇒ real^'n"
assumes f: "f absolutely_integrable_on (⋃(range s))"
and s: "⋀m. s m ∈ sets lebesgue"
shows "⋀n. f absolutely_integrable_on (⋃m≤n. s m)"
and "(λn. integral (⋃m≤n. s m) f) ⇢ integral (⋃(s ` UNIV)) f" (is "?F ⇢ ?I")
proof -
show fU: "f absolutely_integrable_on (⋃m≤n. s m)" for n
using assms by (blast intro: set_integrable_subset [OF f])
have fint: "f integrable_on (⋃ (range s))"
using absolutely_integrable_on_def f by blast
let ?h = "λx. if x ∈ ⋃(s ` UNIV) then norm(f x) else 0"
have "(λn. integral UNIV (λx. if x ∈ (⋃m≤n. s m) then f x else 0))
⇢ integral UNIV (λx. if x ∈ ⋃(s ` UNIV) then f x else 0)"
proof (rule dominated_convergence)
show "(λx. if x ∈ (⋃m≤n. s m) then f x else 0) integrable_on UNIV" for n
unfolding integrable_restrict_UNIV
using fU absolutely_integrable_on_def by blast
show "(λx. if x ∈ ⋃(s ` UNIV) then norm(f x) else 0) integrable_on UNIV"
by (metis (no_types) absolutely_integrable_on_def f integrable_restrict_UNIV)
show "⋀x. (λn. if x ∈ (⋃m≤n. s m) then f x else 0)
⇢ (if x ∈ ⋃(s ` UNIV) then f x else 0)"
by (force intro: tendsto_eventually eventually_sequentiallyI)
qed auto
then show "?F ⇢ ?I"
by (simp only: integral_restrict_UNIV)
qed
subsection ‹Fundamental Theorem of Calculus for the Lebesgue integral›
text ‹
For the positive integral we replace continuity with Borel-measurability.
›
lemma
fixes f :: "real ⇒ real"
assumes [measurable]: "f ∈ borel_measurable borel"
assumes f: "⋀x. x ∈ {a..b} ⟹ DERIV F x :> f x" "⋀x. x ∈ {a..b} ⟹ 0 ≤ f x" and "a ≤ b"
shows nn_integral_FTC_Icc: "(∫⇧+x. ennreal (f x) * indicator {a .. b} x ∂lborel) = F b - F a" (is ?nn)
and has_bochner_integral_FTC_Icc_nonneg:
"has_bochner_integral lborel (λx. f x * indicator {a .. b} x) (F b - F a)" (is ?has)
and integral_FTC_Icc_nonneg: "(∫x. f x * indicator {a .. b} x ∂lborel) = F b - F a" (is ?eq)
and integrable_FTC_Icc_nonneg: "integrable lborel (λx. f x * indicator {a .. b} x)" (is ?int)
proof -
have *: "(λx. f x * indicator {a..b} x) ∈ borel_measurable borel" "⋀x. 0 ≤ f x * indicator {a..b} x"
using f(2) by (auto split: split_indicator)
have F_mono: "a ≤ x ⟹ x ≤ y ⟹ y ≤ b⟹ F x ≤ F y" for x y
using f by (intro DERIV_nonneg_imp_nondecreasing[of x y F]) (auto intro: order_trans)
have "(f has_integral F b - F a) {a..b}"
by (intro fundamental_theorem_of_calculus)
(auto simp: has_real_derivative_iff_has_vector_derivative[symmetric]
intro: has_field_derivative_subset[OF f(1)] ‹a ≤ b›)
then have i: "((λx. f x * indicator {a .. b} x) has_integral F b - F a) UNIV"
unfolding indicator_def of_bool_def if_distrib[where f="λx. a * x" for a]
by (simp cong del: if_weak_cong del: atLeastAtMost_iff)
then have nn: "(∫⇧+x. f x * indicator {a .. b} x ∂lborel) = F b - F a"
by (rule nn_integral_has_integral_lborel[OF *])
then show ?has
by (rule has_bochner_integral_nn_integral[rotated 3]) (simp_all add: * F_mono ‹a ≤ b›)
then show ?eq ?int
unfolding has_bochner_integral_iff by auto
show ?nn
by (subst nn[symmetric])
(auto intro!: nn_integral_cong simp add: ennreal_mult f split: split_indicator)
qed
lemma
fixes f :: "real ⇒ 'a :: euclidean_space"
assumes "a ≤ b"
assumes "⋀x. a ≤ x ⟹ x ≤ b ⟹ (F has_vector_derivative f x) (at x within {a .. b})"
assumes cont: "continuous_on {a .. b} f"
shows has_bochner_integral_FTC_Icc:
"has_bochner_integral lborel (λx. indicator {a .. b} x *⇩R f x) (F b - F a)" (is ?has)
and integral_FTC_Icc: "(∫x. indicator {a .. b} x *⇩R f x ∂lborel) = F b - F a" (is ?eq)
proof -
let ?f = "λx. indicator {a .. b} x *⇩R f x"
have int: "integrable lborel ?f"
using borel_integrable_compact[OF _ cont] by auto
have "(f has_integral F b - F a) {a..b}"
using assms(1,2) by (intro fundamental_theorem_of_calculus) auto
moreover
have "(f has_integral integral⇧L lborel ?f) {a..b}"
using has_integral_integral_lborel[OF int]
unfolding indicator_def of_bool_def if_distrib[where f="λx. x *⇩R a" for a]
by (simp cong del: if_weak_cong del: atLeastAtMost_iff)
ultimately show ?eq
by (auto dest: has_integral_unique)
then show ?has
using int by (auto simp: has_bochner_integral_iff)
qed
lemma
fixes f :: "real ⇒ real"
assumes "a ≤ b"
assumes deriv: "⋀x. a ≤ x ⟹ x ≤ b ⟹ DERIV F x :> f x"
assumes cont: "⋀x. a ≤ x ⟹ x ≤ b ⟹ isCont f x"
shows has_bochner_integral_FTC_Icc_real:
"has_bochner_integral lborel (λx. f x * indicator {a .. b} x) (F b - F a)" (is ?has)
and integral_FTC_Icc_real: "(∫x. f x * indicator {a .. b} x ∂lborel) = F b - F a" (is ?eq)
proof -
have 1: "⋀x. a ≤ x ⟹ x ≤ b ⟹ (F has_vector_derivative f x) (at x within {a .. b})"
unfolding has_real_derivative_iff_has_vector_derivative[symmetric]
using deriv by (auto intro: DERIV_subset)
have 2: "continuous_on {a .. b} f"
using cont by (intro continuous_at_imp_continuous_on) auto
show ?has ?eq
using has_bochner_integral_FTC_Icc[OF ‹a ≤ b› 1 2] integral_FTC_Icc[OF ‹a ≤ b› 1 2]
by (auto simp: mult.commute)
qed
lemma nn_integral_FTC_atLeast:
fixes f :: "real ⇒ real"
assumes f_borel: "f ∈ borel_measurable borel"
assumes f: "⋀x. a ≤ x ⟹ DERIV F x :> f x"
assumes nonneg: "⋀x. a ≤ x ⟹ 0 ≤ f x"
assumes lim: "(F ⤏ T) at_top"
shows "(∫⇧+x. ennreal (f x) * indicator {a ..} x ∂lborel) = T - F a"
proof -
let ?f = "λ(i::nat) (x::real). ennreal (f x) * indicator {a..a + real i} x"
let ?fR = "λx. ennreal (f x) * indicator {a ..} x"
have F_mono: "a ≤ x ⟹ x ≤ y ⟹ F x ≤ F y" for x y
using f nonneg by (intro DERIV_nonneg_imp_nondecreasing[of x y F]) (auto intro: order_trans)
then have F_le_T: "a ≤ x ⟹ F x ≤ T" for x
by (intro tendsto_lowerbound[OF lim])
(auto simp: eventually_at_top_linorder)
have "(SUP i. ?f i x) = ?fR x" for x
proof (rule LIMSEQ_unique[OF LIMSEQ_SUP])
obtain n where "x - a < real n"
using reals_Archimedean2[of "x - a"] ..
then have "eventually (λn. ?f n x = ?fR x) sequentially"
by (auto simp: frequently_def intro!: eventually_sequentiallyI[where c=n] split: split_indicator)
then show "(λn. ?f n x) ⇢ ?fR x"
by (rule tendsto_eventually)
qed (auto simp: nonneg incseq_def le_fun_def split: split_indicator)
then have "integral⇧N lborel ?fR = (∫⇧+ x. (SUP i. ?f i x) ∂lborel)"
by simp
also have "… = (SUP i. (∫⇧+ x. ?f i x ∂lborel))"
proof (rule nn_integral_monotone_convergence_SUP)
show "incseq ?f"
using nonneg by (auto simp: incseq_def le_fun_def split: split_indicator)
show "⋀i. (?f i) ∈ borel_measurable lborel"
using f_borel by auto
qed
also have "… = (SUP i. ennreal (F (a + real i) - F a))"
by (subst nn_integral_FTC_Icc[OF f_borel f nonneg]) auto
also have "… = T - F a"
proof (rule LIMSEQ_unique[OF LIMSEQ_SUP])
have "(λx. F (a + real x)) ⇢ T"
by (auto intro: filterlim_compose[OF lim filterlim_tendsto_add_at_top] filterlim_real_sequentially)
then show "(λn. ennreal (F (a + real n) - F a)) ⇢ ennreal (T - F a)"
by (simp add: F_mono F_le_T tendsto_diff)
qed (auto simp: incseq_def intro!: ennreal_le_iff[THEN iffD2] F_mono)
finally show ?thesis .
qed
lemma integral_power:
"a ≤ b ⟹ (∫x. x^k * indicator {a..b} x ∂lborel) = (b^Suc k - a^Suc k) / Suc k"
proof (subst integral_FTC_Icc_real)
fix x show "DERIV (λx. x^Suc k / Suc k) x :> x^k"
by (intro derivative_eq_intros) auto
qed (auto simp: field_simps simp del: of_nat_Suc)
subsection ‹Integration by parts›
lemma integral_by_parts_integrable:
fixes f g F G::"real ⇒ real"
assumes "a ≤ b"
assumes cont_f[intro]: "!!x. a ≤x ⟹ x≤b ⟹ isCont f x"
assumes cont_g[intro]: "!!x. a ≤x ⟹ x≤b ⟹ isCont g x"
assumes [intro]: "!!x. DERIV F x :> f x"
assumes [intro]: "!!x. DERIV G x :> g x"
shows "integrable lborel (λx.((F x) * (g x) + (f x) * (G x)) * indicator {a .. b} x)"
by (auto intro!: borel_integrable_atLeastAtMost continuous_intros) (auto intro!: DERIV_isCont)
lemma integral_by_parts:
fixes f g F G::"real ⇒ real"
assumes [arith]: "a ≤ b"
assumes cont_f[intro]: "!!x. a ≤x ⟹ x≤b ⟹ isCont f x"
assumes cont_g[intro]: "!!x. a ≤x ⟹ x≤b ⟹ isCont g x"
assumes [intro]: "!!x. DERIV F x :> f x"
assumes [intro]: "!!x. DERIV G x :> g x"
shows "(∫x. (F x * g x) * indicator {a .. b} x ∂lborel)
= F b * G b - F a * G a - ∫x. (f x * G x) * indicator {a .. b} x ∂lborel"
proof-
have "(∫x. (F x * g x + f x * G x) * indicator {a .. b} x ∂lborel)
= (LBINT x. F x * g x * indicat_real {a..b} x + f x * G x * indicat_real {a..b} x)"
by (meson vector_space_over_itself.scale_left_distrib)
also have "... = (∫x. (F x * g x) * indicator {a .. b} x ∂lborel) + ∫x. (f x * G x) * indicator {a .. b} x ∂lborel"
proof (intro Bochner_Integration.integral_add borel_integrable_atLeastAtMost cont_f cont_g continuous_intros)
show "⋀x. ⟦a ≤ x; x ≤ b⟧ ⟹ isCont F x" "⋀x. ⟦a ≤ x; x ≤ b⟧ ⟹ isCont G x"
using DERIV_isCont by blast+
qed
finally have "(∫x. (F x * g x + f x * G x) * indicator {a .. b} x ∂lborel) =
(∫x. (F x * g x) * indicator {a .. b} x ∂lborel) + ∫x. (f x * G x) * indicator {a .. b} x ∂lborel" .
moreover have "(∫x. (F x * g x + f x * G x) * indicator {a .. b} x ∂lborel) = F b * G b - F a * G a"
proof (intro integral_FTC_Icc_real derivative_eq_intros cont_f cont_g continuous_intros)
show "⋀x. ⟦a ≤ x; x ≤ b⟧ ⟹ isCont F x" "⋀x. ⟦a ≤ x; x ≤ b⟧ ⟹ isCont G x"
using DERIV_isCont by blast+
qed auto
ultimately show ?thesis by auto
qed
lemma integral_by_parts':
fixes f g F G::"real ⇒ real"
assumes "a ≤ b"
assumes "!!x. a ≤x ⟹ x≤b ⟹ isCont f x"
assumes "!!x. a ≤x ⟹ x≤b ⟹ isCont g x"
assumes "!!x. DERIV F x :> f x"
assumes "!!x. DERIV G x :> g x"
shows "(∫x. indicator {a .. b} x *⇩R (F x * g x) ∂lborel)
= F b * G b - F a * G a - ∫x. indicator {a .. b} x *⇩R (f x * G x) ∂lborel"
using integral_by_parts[OF assms] by (simp add: ac_simps)
lemma has_bochner_integral_even_function:
fixes f :: "real ⇒ 'a :: {banach, second_countable_topology}"
assumes f: "has_bochner_integral lborel (λx. indicator {0..} x *⇩R f x) x"
assumes even: "⋀x. f (- x) = f x"
shows "has_bochner_integral lborel f (2 *⇩R x)"
proof -
have indicator: "⋀x::real. indicator {..0} (- x) = indicator {0..} x"
by (auto split: split_indicator)
have "has_bochner_integral lborel (λx. indicator {.. 0} x *⇩R f x) x"
by (subst lborel_has_bochner_integral_real_affine_iff[where c="-1" and t=0])
(auto simp: indicator even f)
with f have "has_bochner_integral lborel (λx. indicator {0..} x *⇩R f x + indicator {.. 0} x *⇩R f x) (x + x)"
by (rule has_bochner_integral_add)
then have "has_bochner_integral lborel f (x + x)"
by (rule has_bochner_integral_discrete_difference[where X="{0}", THEN iffD1, rotated 4])
(auto split: split_indicator)
then show ?thesis
by (simp add: scaleR_2)
qed
lemma has_bochner_integral_odd_function:
fixes f :: "real ⇒ 'a :: {banach, second_countable_topology}"
assumes f: "has_bochner_integral lborel (λx. indicator {0..} x *⇩R f x) x"
assumes odd: "⋀x. f (- x) = - f x"
shows "has_bochner_integral lborel f 0"
proof -
have indicator: "⋀x::real. indicator {..0} (- x) = indicator {0..} x"
by (auto split: split_indicator)
have "has_bochner_integral lborel (λx. - indicator {.. 0} x *⇩R f x) x"
by (subst lborel_has_bochner_integral_real_affine_iff[where c="-1" and t=0])
(auto simp: indicator odd f)
from has_bochner_integral_minus[OF this]
have "has_bochner_integral lborel (λx. indicator {.. 0} x *⇩R f x) (- x)"
by simp
with f have "has_bochner_integral lborel (λx. indicator {0..} x *⇩R f x + indicator {.. 0} x *⇩R f x) (x + - x)"
by (rule has_bochner_integral_add)
then have "has_bochner_integral lborel f (x + - x)"
by (rule has_bochner_integral_discrete_difference[where X="{0}", THEN iffD1, rotated 4])
(auto split: split_indicator)
then show ?thesis
by simp
qed
subsection ‹A non-negative continuous function whose integral is zero must be zero›
lemma has_integral_0_closure_imp_0:
fixes f :: "'a::euclidean_space ⇒ real"
assumes f: "continuous_on (closure S) f"
and nonneg_interior: "⋀x. x ∈ S ⟹ 0 ≤ f x"
and pos: "0 < emeasure lborel S"
and finite: "emeasure lborel S < ∞"
and regular: "emeasure lborel (closure S) = emeasure lborel S"
and opn: "open S"
assumes int: "(f has_integral 0) (closure S)"
assumes x: "x ∈ closure S"
shows "f x = 0"
proof -
have zero: "emeasure lborel (frontier S) = 0"
using finite closure_subset regular
unfolding frontier_def
by (subst emeasure_Diff) (auto simp: frontier_def interior_open ‹open S› )
have nonneg: "0 ≤ f x" if "x ∈ closure S" for x
using continuous_ge_on_closure[OF f that nonneg_interior] by simp
have "0 = integral (closure S) f"
by (blast intro: int sym)
also
note intl = has_integral_integrable[OF int]
have af: "f absolutely_integrable_on (closure S)"
using nonneg
by (intro absolutely_integrable_onI intl integrable_eq[OF intl]) simp
then have "integral (closure S) f = set_lebesgue_integral lebesgue (closure S) f"
by (intro set_lebesgue_integral_eq_integral(2)[symmetric])
also have "… = 0 ⟷ (AE x in lebesgue. indicator (closure S) x *⇩R f x = 0)"
unfolding set_lebesgue_integral_def
proof (rule integral_nonneg_eq_0_iff_AE)
show "integrable lebesgue (λx. indicat_real (closure S) x *⇩R f x)"
by (metis af set_integrable_def)
qed (use nonneg in ‹auto simp: indicator_def›)
also have "… ⟷ (AE x in lebesgue. x ∈ {x. x ∈ closure S ⟶ f x = 0})"
by (auto simp: indicator_def)
finally have "(AE x in lebesgue. x ∈ {x. x ∈ closure S ⟶ f x = 0})" by simp
moreover have "(AE x in lebesgue. x ∈ - frontier S)"
using zero
by (auto simp: eventually_ae_filter null_sets_def intro!: exI[where x="frontier S"])
ultimately have ae: "AE x ∈ S in lebesgue. x ∈ {x ∈ closure S. f x = 0}" (is ?th)
by eventually_elim (use closure_subset in ‹auto simp: ›)
have "closed {0::real}" by simp
with continuous_on_closed_vimage[OF closed_closure, of S f] f
have "closed (f -` {0} ∩ closure S)" by blast
then have "closed {x ∈ closure S. f x = 0}" by (auto simp: vimage_def Int_def conj_commute)
with ‹open S› have "x ∈ {x ∈ closure S. f x = 0}" if "x ∈ S" for x using ae that
by (rule mem_closed_if_AE_lebesgue_open)
then have "f x = 0" if "x ∈ S" for x using that by auto
from continuous_constant_on_closure[OF f this ‹x ∈ closure S›]
show "f x = 0" .
qed
lemma has_integral_0_cbox_imp_0:
fixes f :: "'a::euclidean_space ⇒ real"
assumes "continuous_on (cbox a b) f" and "⋀x. x ∈ box a b ⟹ 0 ≤ f x"
assumes "(f has_integral 0) (cbox a b)"
assumes ne: "box a b ≠ {}"
assumes x: "x ∈ cbox a b"
shows "f x = 0"
proof -
have "0 < emeasure lborel (box a b)"
using ne x unfolding emeasure_lborel_box_eq
by (force intro!: prod_pos simp: mem_box algebra_simps)
then show ?thesis using assms
by (intro has_integral_0_closure_imp_0[of "box a b" f x])
(auto simp: emeasure_lborel_box_eq emeasure_lborel_cbox_eq algebra_simps mem_box)
qed
corollary integral_cbox_eq_0_iff:
fixes f :: "'a::euclidean_space ⇒ real"
assumes "continuous_on (cbox a b) f" and "box a b ≠ {}"
and "⋀x. x ∈ cbox a b ⟹ f x ≥ 0"
shows "integral (cbox a b) f = 0 ⟷ (∀x ∈ cbox a b. f x = 0)" (is "?lhs = ?rhs")
proof
assume int0: ?lhs
show ?rhs
using has_integral_0_cbox_imp_0 [of a b f] assms
by (metis box_subset_cbox eq_integralD int0 integrable_continuous subsetD)
next
assume ?rhs then show ?lhs
by (meson has_integral_is_0_cbox integral_unique)
qed
lemma integral_eq_0_iff:
fixes f :: "real ⇒ real"
assumes "continuous_on {a..b} f" and "a < b"
and "⋀x. x ∈ {a..b} ⟹ f x ≥ 0"
shows "integral {a..b} f = 0 ⟷ (∀x ∈ {a..b}. f x = 0)"
using integral_cbox_eq_0_iff [of a b f] assms by simp
lemma integralL_eq_0_iff:
fixes f :: "real ⇒ real"
assumes contf: "continuous_on {a..b} f" and "a < b"
and "⋀x. x ∈ {a..b} ⟹ f x ≥ 0"
shows "integral⇧L (lebesgue_on {a..b}) f = 0 ⟷ (∀x ∈ {a..b}. f x = 0)"
using integral_eq_0_iff [OF assms]
by (simp add: contf continuous_imp_integrable_real lebesgue_integral_eq_integral)
text ‹In fact, strict inequality is required only at a single point within the box.›
lemma integral_less:
fixes f :: "'n::euclidean_space ⇒ real"
assumes cont: "continuous_on (cbox a b) f" "continuous_on (cbox a b) g" and "box a b ≠ {}"
and fg: "⋀x. x ∈ box a b ⟹ f x < g x"
shows "integral (cbox a b) f < integral (cbox a b) g"
proof -
obtain int: "f integrable_on (cbox a b)" "g integrable_on (cbox a b)"
using cont integrable_continuous by blast
then have "integral (cbox a b) f ≤ integral (cbox a b) g"
by (metis fg integrable_on_open_interval integral_le integral_open_interval less_eq_real_def)
moreover have "integral (cbox a b) f ≠ integral (cbox a b) g"
proof (rule ccontr)
assume "¬ integral (cbox a b) f ≠ integral (cbox a b) g"
then have 0: "((λx. g x - f x) has_integral 0) (cbox a b)"
by (metis (full_types) cancel_comm_monoid_add_class.diff_cancel has_integral_diff int integrable_integral)
have cgf: "continuous_on (cbox a b) (λx. g x - f x)"
using cont continuous_on_diff by blast
show False
using has_integral_0_cbox_imp_0 [OF cgf _ 0] assms(3) box_subset_cbox fg less_eq_real_def by fastforce
qed
ultimately show ?thesis
by linarith
qed
lemma integral_less_real:
fixes f :: "real ⇒ real"
assumes "continuous_on {a..b} f" "continuous_on {a..b} g" and "{a<..<b} ≠ {}"
and "⋀x. x ∈ {a<..<b} ⟹ f x < g x"
shows "integral {a..b} f < integral {a..b} g"
by (metis assms box_real integral_less)
subsection‹Various common equivalent forms of function measurability›
lemma indicator_sum_eq:
fixes m::real and f :: "'a ⇒ real"
assumes "¦m¦ ≤ 2 ^ (2*n)" "m/2^n ≤ f x" "f x < (m+1)/2^n" "m ∈ ℤ"
shows "(∑k::real | k ∈ ℤ ∧ ¦k¦ ≤ 2 ^ (2*n).
k/2^n * indicator {y. k/2^n ≤ f y ∧ f y < (k+1)/2^n} x) = m/2^n"
(is "sum ?f ?S = _")
proof -
have "sum ?f ?S = sum (λk. k/2^n * indicator {y. k/2^n ≤ f y ∧ f y < (k+1)/2^n} x) {m}"
proof (rule comm_monoid_add_class.sum.mono_neutral_right)
show "finite ?S"
by (rule finite_abs_int_segment)
show "{m} ⊆ {k ∈ ℤ. ¦k¦ ≤ 2 ^ (2*n)}"
using assms by auto
show "∀i∈{k ∈ ℤ. ¦k¦ ≤ 2 ^ (2*n)} - {m}. ?f i = 0"
using assms by (auto simp: indicator_def Ints_def abs_le_iff field_split_simps)
qed
also have "… = m/2^n"
using assms by (auto simp: indicator_def not_less)
finally show ?thesis .
qed
lemma measurable_on_sf_limit_lemma1:
fixes f :: "'a::euclidean_space ⇒ real"
assumes "⋀a b. {x ∈ S. a ≤ f x ∧ f x < b} ∈ sets (lebesgue_on S)"
obtains g where "⋀n. g n ∈ borel_measurable (lebesgue_on S)"
"⋀n. finite(range (g n))"
"⋀x. (λn. g n x) ⇢ f x"
proof
show "(λx. sum (λk::real. k/2^n * indicator {y. k/2^n ≤ f y ∧ f y < (k+1)/2^n} x)
{k ∈ ℤ. ¦k¦ ≤ 2 ^ (2*n)}) ∈ borel_measurable (lebesgue_on S)"
(is "?g ∈ _") for n
proof -
have "⋀k. ⟦k ∈ ℤ; ¦k¦ ≤ 2 ^ (2*n)⟧
⟹ Measurable.pred (lebesgue_on S) (λx. k / (2^n) ≤ f x ∧ f x < (k+1) / (2^n))"
using assms by (force simp: pred_def space_restrict_space)
then show ?thesis
by (simp add: field_class.field_divide_inverse)
qed
show "finite (range (?g n))" for n
proof -
have "range (?g n) ⊆ (λk. k/2^n) ` {k ∈ ℤ. ¦k¦ ≤ 2 ^ (2*n)}"
proof clarify
fix x
show "?g n x ∈ (λk. k/2^n) ` {k ∈ ℤ. ¦k¦ ≤ 2 ^ (2*n)}"
proof (cases "∃k::real. k ∈ ℤ ∧ ¦k¦ ≤ 2 ^ (2*n) ∧ k/2^n ≤ (f x) ∧ (f x) < (k+1)/2^n")
case True
then show ?thesis
apply clarify
by (subst indicator_sum_eq) auto
next
case False
then have "?g n x = 0" by auto
then show ?thesis by force
qed
qed
moreover have "finite ((λk::real. (k/2^n)) ` {k ∈ ℤ. ¦k¦ ≤ 2 ^ (2*n)})"
by (simp add: finite_abs_int_segment)
ultimately show ?thesis
using finite_subset by blast
qed
show "(λn. ?g n x) ⇢ f x" for x
proof (rule LIMSEQ_I)
fix e::real
assume "e > 0"
obtain N1 where N1: "¦f x¦ < 2 ^ N1"
using real_arch_pow by fastforce
obtain N2 where N2: "(1/2) ^ N2 < e"
using real_arch_pow_inv ‹e > 0› by force
have "norm (?g n x - f x) < e" if n: "n ≥ max N1 N2" for n
proof -
define m where "m ≡ floor(2^n * (f x))"
have "1 ≤ ¦2^n¦ * e"
using n N2 ‹e > 0› less_eq_real_def less_le_trans by (fastforce simp add: field_split_simps)
then have *: "⟦x ≤ y; y < x + 1⟧ ⟹ abs(x - y) < ¦2^n¦ * e" for x y::real
by linarith
have "¦2^n¦ * ¦m/2^n - f x¦ = ¦2^n * (m/2^n - f x)¦"
by (simp add: abs_mult)
also have "… = ¦real_of_int ⌊2^n * f x⌋ - f x * 2^n¦"
by (simp add: algebra_simps m_def)
also have "… < ¦2^n¦ * e"
by (rule *; simp add: mult.commute)
finally have "¦2^n¦ * ¦m/2^n - f x¦ < ¦2^n¦ * e" .
then have me: "¦m/2^n - f x¦ < e"
by simp
have "¦real_of_int m¦ ≤ 2 ^ (2*n)"
proof (cases "f x < 0")
case True
then have "-⌊f x⌋ ≤ ⌊(2::real) ^ N1⌋"
using N1 le_floor_iff minus_le_iff by fastforce
with n True have "¦real_of_int⌊f x⌋¦ ≤ 2 ^ N1"
by linarith
also have "… ≤ 2^n"
using n by (simp add: m_def)
finally have "¦real_of_int ⌊f x⌋¦ * 2^n ≤ 2^n * 2^n"
by simp
moreover
have "¦real_of_int ⌊2^n * f x⌋¦ ≤ ¦real_of_int ⌊f x⌋¦ * 2^n"
proof -
have "¦real_of_int ⌊2^n * f x⌋¦ = - (real_of_int ⌊2^n * f x⌋)"
using True by (simp add: abs_if mult_less_0_iff)
also have "… ≤ - (real_of_int (⌊(2::real) ^ n⌋ * ⌊f x⌋))"
using le_mult_floor_Ints [of "(2::real)^n"] by simp
also have "… ≤ ¦real_of_int ⌊f x⌋¦ * 2^n"
using True
by simp
finally show ?thesis .
qed
ultimately show ?thesis
by (metis (no_types, opaque_lifting) m_def order_trans power2_eq_square power_even_eq)
next
case False
with n N1 have "f x ≤ 2^n"
by (simp add: not_less) (meson less_eq_real_def one_le_numeral order_trans power_increasing)
moreover have "0 ≤ m"
using False m_def by force
ultimately show ?thesis
by (metis abs_of_nonneg floor_mono le_floor_iff m_def of_int_0_le_iff power2_eq_square power_mult mult_le_cancel_right_pos zero_less_numeral mult.commute zero_less_power)
qed
then have "?g n x = m/2^n"
by (rule indicator_sum_eq) (auto simp add: m_def field_split_simps, linarith)
then have "norm (?g n x - f x) = norm (m/2^n - f x)"
by simp
also have "… < e"
by (simp add: me)
finally show ?thesis .
qed
then show "∃no. ∀n≥no. norm (?g n x - f x) < e"
by blast
qed
qed
lemma borel_measurable_simple_function_limit:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
shows "f ∈ borel_measurable (lebesgue_on S) ⟷
(∃g. (∀n. (g n) ∈ borel_measurable (lebesgue_on S)) ∧
(∀n. finite (range (g n))) ∧ (∀x. (λn. g n x) ⇢ f x))"
proof -
have "∃g. (∀n. (g n) ∈ borel_measurable (lebesgue_on S)) ∧
(∀n. finite (range (g n))) ∧ (∀x. (λn. g n x) ⇢ f x)"
if f: "⋀a i. i ∈ Basis ⟹ {x ∈ S. f x ∙ i < a} ∈ sets (lebesgue_on S)"
proof -
have "∃g. (∀n. (g n) ∈ borel_measurable (lebesgue_on S)) ∧
(∀n. finite(image (g n) UNIV)) ∧
(∀x. ((λn. g n x) ⇢ f x ∙ i))" if "i ∈ Basis" for i
proof (rule measurable_on_sf_limit_lemma1 [of S "λx. f x ∙ i"])
show "{x ∈ S. a ≤ f x ∙ i ∧ f x ∙ i < b} ∈ sets (lebesgue_on S)" for a b
proof -
have "{x ∈ S. a ≤ f x ∙ i ∧ f x ∙ i < b} = {x ∈ S. f x ∙ i < b} - {x ∈ S. a > f x ∙ i}"
by auto
also have "… ∈ sets (lebesgue_on S)"
using f that by blast
finally show ?thesis .
qed
qed blast
then obtain g where g:
"⋀i n. i ∈ Basis ⟹ g i n ∈ borel_measurable (lebesgue_on S)"
"⋀i n. i ∈ Basis ⟹ finite(range (g i n))"
"⋀i x. i ∈ Basis ⟹ ((λn. g i n x) ⇢ f x ∙ i)"
by metis
show ?thesis
proof (intro conjI allI exI)
show "(λx. ∑i∈Basis. g i n x *⇩R i) ∈ borel_measurable (lebesgue_on S)" for n
by (intro borel_measurable_sum borel_measurable_scaleR) (auto intro: g)
show "finite (range (λx. ∑i∈Basis. g i n x *⇩R i))" for n
proof -
have "range (λx. ∑i∈Basis. g i n x *⇩R i) ⊆ (λh. ∑i∈Basis. h i *⇩R i) ` PiE Basis (λi. range (g i n))"
proof clarify
fix x
show "(∑i∈Basis. g i n x *⇩R i) ∈ (λh. ∑i∈Basis. h i *⇩R i) ` (Π⇩E i∈Basis. range (g i n))"
by (rule_tac x="λi∈Basis. g i n x" in image_eqI) auto
qed
moreover have "finite(PiE Basis (λi. range (g i n)))"
by (simp add: g finite_PiE)
ultimately show ?thesis
by (metis (mono_tags, lifting) finite_surj)
qed
show "(λn. ∑i∈Basis. g i n x *⇩R i) ⇢ f x" for x
proof -
have "(λn. ∑i∈Basis. g i n x *⇩R i) ⇢ (∑i∈Basis. (f x ∙ i) *⇩R i)"
by (auto intro!: tendsto_sum tendsto_scaleR g)
moreover have "(∑i∈Basis. (f x ∙ i) *⇩R i) = f x"
using euclidean_representation by blast
ultimately show ?thesis
by metis
qed
qed
qed
moreover have "f ∈ borel_measurable (lebesgue_on S)"
if meas_g: "⋀n. g n ∈ borel_measurable (lebesgue_on S)"
and fin: "⋀n. finite (range (g n))"
and to_f: "⋀x. (λn. g n x) ⇢ f x" for g
by (rule borel_measurable_LIMSEQ_metric [OF meas_g to_f])
ultimately show ?thesis
using borel_measurable_vimage_halfspace_component_lt by blast
qed
subsection ‹Lebesgue sets and continuous images›
proposition lebesgue_regular_inner:
assumes "S ∈ sets lebesgue"
obtains K C where "negligible K" "⋀n::nat. compact(C n)" "S = (⋃n. C n) ∪ K"
proof -
have "∃T. closed T ∧ T ⊆ S ∧ (S - T) ∈ lmeasurable ∧ emeasure lebesgue (S - T) < ennreal ((1/2)^n)" for n
using sets_lebesgue_inner_closed assms
by (metis sets_lebesgue_inner_closed zero_less_divide_1_iff zero_less_numeral zero_less_power)
then obtain C where clo: "⋀n. closed (C n)" and subS: "⋀n. C n ⊆ S"
and mea: "⋀n. (S - C n) ∈ lmeasurable"
and less: "⋀n. emeasure lebesgue (S - C n) < ennreal ((1/2)^n)"
by metis
have "∃F. (∀n::nat. compact(F n)) ∧ (⋃n. F n) = C m" for m::nat
by (metis clo closed_Union_compact_subsets)
then obtain D :: "[nat,nat] ⇒ 'a set" where D: "⋀m n. compact(D m n)" "⋀m. (⋃n. D m n) = C m"
by metis
let ?C = "from_nat_into (⋃m. range (D m))"
have "countable (⋃m. range (D m))"
by blast
have "range (from_nat_into (⋃m. range (D m))) = (⋃m. range (D m))"
using range_from_nat_into by simp
then have CD: "∃m n. ?C k = D m n" for k
by (metis (mono_tags, lifting) UN_iff rangeE range_eqI)
show thesis
proof
show "negligible (S - (⋃n. C n))"
proof (clarsimp simp: negligible_outer_le)
fix e :: "real"
assume "e > 0"
then obtain n where n: "(1/2)^n < e"
using real_arch_pow_inv [of e "1/2"] by auto
show "∃T. S - (⋃n. C n) ⊆ T ∧ T ∈ lmeasurable ∧ measure lebesgue T ≤ e"
proof (intro exI conjI)
show "S - (⋃n. C n) ⊆ S - C n"
by blast
show "S - C n ∈ lmeasurable"
by (simp add: mea)
show "measure lebesgue (S - C n) ≤ e"
using less [of n] n
by (simp add: emeasure_eq_measure2 less_le mea)
qed
qed
show "compact (?C n)" for n
using CD D by metis
show "S = (⋃n. ?C n) ∪ (S - (⋃n. C n))" (is "_ = ?rhs")
proof
show "S ⊆ ?rhs"
using D by fastforce
show "?rhs ⊆ S"
using subS D CD by auto (metis Sup_upper range_eqI subsetCE)
qed
qed
qed
lemma sets_lebesgue_continuous_image:
assumes T: "T ∈ sets lebesgue" and contf: "continuous_on S f"
and negim: "⋀T. ⟦negligible T; T ⊆ S⟧ ⟹ negligible(f ` T)" and "T ⊆ S"
shows "f ` T ∈ sets lebesgue"
proof -
obtain K C where "negligible K" and com: "⋀n::nat. compact(C n)" and Teq: "T = (⋃n. C n) ∪ K"
using lebesgue_regular_inner [OF T] by metis
then have comf: "⋀n::nat. compact(f ` C n)"
by (metis Un_subset_iff Union_upper ‹T ⊆ S› compact_continuous_image contf continuous_on_subset rangeI)
have "((⋃n. f ` C n) ∪ f ` K) ∈ sets lebesgue"
proof (rule sets.Un)
have "K ⊆ S"
using Teq ‹T ⊆ S› by blast
show "(⋃n. f ` C n) ∈ sets lebesgue"
proof (rule sets.countable_Union)
show "range (λn. f ` C n) ⊆ sets lebesgue"
using borel_compact comf by (auto simp: borel_compact)
qed auto
show "f ` K ∈ sets lebesgue"
by (simp add: ‹K ⊆ S› ‹negligible K› negim negligible_imp_sets)
qed
then show ?thesis
by (simp add: Teq image_Un image_Union)
qed
lemma differentiable_image_in_sets_lebesgue:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
assumes S: "S ∈ sets lebesgue" and dim: "DIM('m) ≤ DIM('n)" and f: "f differentiable_on S"
shows "f`S ∈ sets lebesgue"
proof (rule sets_lebesgue_continuous_image [OF S])
show "continuous_on S f"
by (meson differentiable_imp_continuous_on f)
show "⋀T. ⟦negligible T; T ⊆ S⟧ ⟹ negligible (f ` T)"
using differentiable_on_subset f
by (auto simp: intro!: negligible_differentiable_image_negligible [OF dim])
qed auto
lemma sets_lebesgue_on_continuous_image:
assumes S: "S ∈ sets lebesgue" and X: "X ∈ sets (lebesgue_on S)" and contf: "continuous_on S f"
and negim: "⋀T. ⟦negligible T; T ⊆ S⟧ ⟹ negligible(f ` T)"
shows "f ` X ∈ sets (lebesgue_on (f ` S))"
proof -
have "X ⊆ S"
by (metis S X sets.Int_space_eq2 sets_restrict_space_iff)
moreover have "f ` S ∈ sets lebesgue"
using S contf negim sets_lebesgue_continuous_image by blast
moreover have "f ` X ∈ sets lebesgue"
by (metis S X contf negim sets_lebesgue_continuous_image sets_restrict_space_iff space_restrict_space space_restrict_space2)
ultimately show ?thesis
by (auto simp: sets_restrict_space_iff)
qed
lemma differentiable_image_in_sets_lebesgue_on:
fixes f :: "'m::euclidean_space ⇒ 'n::euclidean_space"
assumes S: "S ∈ sets lebesgue" and X: "X ∈ sets (lebesgue_on S)" and dim: "DIM('m) ≤ DIM('n)"
and f: "f differentiable_on S"
shows "f ` X ∈ sets (lebesgue_on (f`S))"
proof (rule sets_lebesgue_on_continuous_image [OF S X])
show "continuous_on S f"
by (meson differentiable_imp_continuous_on f)
show "⋀T. ⟦negligible T; T ⊆ S⟧ ⟹ negligible (f ` T)"
using differentiable_on_subset f
by (auto simp: intro!: negligible_differentiable_image_negligible [OF dim])
qed
subsection ‹Affine lemmas›
lemma borel_measurable_affine:
fixes f :: "'a :: euclidean_space ⇒ 'b :: euclidean_space"
assumes f: "f ∈ borel_measurable lebesgue" and "c ≠ 0"
shows "(λx. f(t + c *⇩R x)) ∈ borel_measurable lebesgue"
proof -
{ fix a b
have "{x. f x ∈ cbox a b} ∈ sets lebesgue"
using f cbox_borel lebesgue_measurable_vimage_borel by blast
then have "(λx. (x - t) /⇩R c) ` {x. f x ∈ cbox a b} ∈ sets lebesgue"
proof (rule differentiable_image_in_sets_lebesgue)
show "(λx. (x - t) /⇩R c) differentiable_on {x. f x ∈ cbox a b}"
unfolding differentiable_on_def differentiable_def
by (rule ‹c ≠ 0› derivative_eq_intros strip exI | simp)+
qed auto
moreover
have "{x. f(t + c *⇩R x) ∈ cbox a b} = (λx. (x-t) /⇩R c) ` {x. f x ∈ cbox a b}"
using ‹c ≠ 0› by (auto simp: image_def)
ultimately have "{x. f(t + c *⇩R x) ∈ cbox a b} ∈ sets lebesgue"
by (auto simp: borel_measurable_vimage_closed_interval) }
then show ?thesis
by (subst lebesgue_on_UNIV_eq [symmetric]; auto simp: borel_measurable_vimage_closed_interval)
qed
lemma lebesgue_integrable_real_affine:
fixes f :: "real ⇒ 'a :: euclidean_space"
assumes f: "integrable lebesgue f" and "c ≠ 0"
shows "integrable lebesgue (λx. f(t + c * x))"
proof -
have "(λx. norm (f x)) ∈ borel_measurable lebesgue"
by (simp add: borel_measurable_integrable f)
then show ?thesis
using assms borel_measurable_affine [of f c]
unfolding integrable_iff_bounded
by (subst (asm) nn_integral_real_affine_lebesgue[where c=c and t=t]) (auto simp: ennreal_mult_less_top)
qed
lemma lebesgue_integrable_real_affine_iff:
fixes f :: "real ⇒ 'a :: euclidean_space"
shows "c ≠ 0 ⟹ integrable lebesgue (λx. f(t + c * x)) ⟷ integrable lebesgue f"
using lebesgue_integrable_real_affine[of f c t]
lebesgue_integrable_real_affine[of "λx. f(t + c * x)" "1/c" "-t/c"]
by (auto simp: field_simps)
lemma lebesgue_integral_real_affine:
fixes f :: "real ⇒ 'a :: euclidean_space" and c :: real
assumes c: "c ≠ 0" shows "(∫x. f x ∂ lebesgue) = ¦c¦ *⇩R (∫x. f(t + c * x) ∂lebesgue)"
proof cases
have "(λx. t + c * x) ∈ lebesgue →⇩M lebesgue"
using lebesgue_affine_measurable[where c= "λx::real. c"] ‹c ≠ 0› by simp
moreover
assume "integrable lebesgue f"
ultimately show ?thesis
by (subst lebesgue_real_affine[OF c, of t]) (auto simp: integral_density integral_distr)
next
assume "¬ integrable lebesgue f" with c show ?thesis
by (simp add: lebesgue_integrable_real_affine_iff not_integrable_integral_eq)
qed
lemma has_bochner_integral_lebesgue_real_affine_iff:
fixes i :: "'a :: euclidean_space"
shows "c ≠ 0 ⟹
has_bochner_integral lebesgue f i ⟷
has_bochner_integral lebesgue (λx. f(t + c * x)) (i /⇩R ¦c¦)"
unfolding has_bochner_integral_iff lebesgue_integrable_real_affine_iff
by (simp_all add: lebesgue_integral_real_affine[symmetric] divideR_right cong: conj_cong)
lemma has_bochner_integral_reflect_real_lemma[intro]:
fixes f :: "real ⇒ 'a::euclidean_space"
assumes "has_bochner_integral (lebesgue_on {a..b}) f i"
shows "has_bochner_integral (lebesgue_on {-b..-a}) (λx. f(-x)) i"
proof -
have eq: "indicat_real {a..b} (- x) *⇩R f(- x) = indicat_real {- b..- a} x *⇩R f(- x)" for x
by (auto simp: indicator_def)
have i: "has_bochner_integral lebesgue (λx. indicator {a..b} x *⇩R f x) i"
using assms by (auto simp: has_bochner_integral_restrict_space)
then have "has_bochner_integral lebesgue (λx. indicator {-b..-a} x *⇩R f(-x)) i"
using has_bochner_integral_lebesgue_real_affine_iff [of "-1" "(λx. indicator {a..b} x *⇩R f x)" i 0]
by (auto simp: eq)
then show ?thesis
by (auto simp: has_bochner_integral_restrict_space)
qed
lemma has_bochner_integral_reflect_real[simp]:
fixes f :: "real ⇒ 'a::euclidean_space"
shows "has_bochner_integral (lebesgue_on {-b..-a}) (λx. f(-x)) i ⟷ has_bochner_integral (lebesgue_on {a..b}) f i"
by (auto simp: dest: has_bochner_integral_reflect_real_lemma)
lemma integrable_reflect_real[simp]:
fixes f :: "real ⇒ 'a::euclidean_space"
shows "integrable (lebesgue_on {-b..-a}) (λx. f(-x)) ⟷ integrable (lebesgue_on {a..b}) f"
by (metis has_bochner_integral_iff has_bochner_integral_reflect_real)
lemma integral_reflect_real[simp]:
fixes f :: "real ⇒ 'a::euclidean_space"
shows "integral⇧L (lebesgue_on {-b .. -a}) (λx. f(-x)) = integral⇧L (lebesgue_on {a..b::real}) f"
using has_bochner_integral_reflect_real [of b a f]
by (metis has_bochner_integral_iff not_integrable_integral_eq)
subsection‹More results on integrability›
lemma integrable_on_all_intervals_UNIV:
fixes f :: "'a::euclidean_space ⇒ 'b::banach"
assumes intf: "⋀a b. f integrable_on cbox a b"
and normf: "⋀x. norm(f x) ≤ g x" and g: "g integrable_on UNIV"
shows "f integrable_on UNIV"
proof -
have intg: "(∀a b. g integrable_on cbox a b)"
and gle_e: "∀e>0. ∃B>0. ∀a b c d.
ball 0 B ⊆ cbox a b ∧ cbox a b ⊆ cbox c d ⟶
¦integral (cbox a b) g - integral (cbox c d) g¦
< e"
using g
by (auto simp: integrable_alt_subset [of _ UNIV] intf)
have le: "norm (integral (cbox a b) f - integral (cbox c d) f) ≤ ¦integral (cbox a b) g - integral (cbox c d) g¦"
if "cbox a b ⊆ cbox c d" for a b c d
proof -
have "norm (integral (cbox a b) f - integral (cbox c d) f) = norm (integral (cbox c d - cbox a b) f)"
using intf that by (simp add: norm_minus_commute integral_setdiff)
also have "… ≤ integral (cbox c d - cbox a b) g"
proof (rule integral_norm_bound_integral [OF _ _ normf])
show "f integrable_on cbox c d - cbox a b" "g integrable_on cbox c d - cbox a b"
by (meson integrable_integral integrable_setdiff intf intg negligible_setdiff that)+
qed
also have "… = integral (cbox c d) g - integral (cbox a b) g"
using intg that by (simp add: integral_setdiff)
also have "… ≤ ¦integral (cbox a b) g - integral (cbox c d) g¦"
by simp
finally show ?thesis .
qed
show ?thesis
using gle_e
apply (simp add: integrable_alt_subset [of _ UNIV] intf)
apply (erule imp_forward all_forward ex_forward asm_rl)+
by (meson not_less order_trans le)
qed
lemma integrable_on_all_intervals_integrable_bound:
fixes f :: "'a::euclidean_space ⇒ 'b::banach"
assumes intf: "⋀a b. (λx. if x ∈ S then f x else 0) integrable_on cbox a b"
and normf: "⋀x. x ∈ S ⟹ norm(f x) ≤ g x" and g: "g integrable_on S"
shows "f integrable_on S"
using integrable_on_all_intervals_UNIV [OF intf, of "(λx. if x ∈ S then g x else 0)"]
by (simp add: g integrable_restrict_UNIV normf)
lemma measurable_bounded_lemma:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "f ∈ borel_measurable lebesgue" and g: "g integrable_on cbox a b"
and normf: "⋀x. x ∈ cbox a b ⟹ norm(f x) ≤ g x"
shows "f integrable_on cbox a b"
proof -
have "g absolutely_integrable_on cbox a b"
by (metis (full_types) add_increasing g le_add_same_cancel1 nonnegative_absolutely_integrable_1 norm_ge_zero normf)
then have "integrable (lebesgue_on (cbox a b)) g"
by (simp add: integrable_restrict_space set_integrable_def)
then have "integrable (lebesgue_on (cbox a b)) f"
proof (rule Bochner_Integration.integrable_bound)
show "AE x in lebesgue_on (cbox a b). norm (f x) ≤ norm (g x)"
by (rule AE_I2) (auto intro: normf order_trans)
qed (simp add: f measurable_restrict_space1)
then show ?thesis
by (simp add: integrable_on_lebesgue_on)
qed
proposition measurable_bounded_by_integrable_imp_integrable:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "f ∈ borel_measurable (lebesgue_on S)" and g: "g integrable_on S"
and normf: "⋀x. x ∈ S ⟹ norm(f x) ≤ g x" and S: "S ∈ sets lebesgue"
shows "f integrable_on S"
proof (rule integrable_on_all_intervals_integrable_bound [OF _ normf g])
show "(λx. if x ∈ S then f x else 0) integrable_on cbox a b" for a b
proof (rule measurable_bounded_lemma)
show "(λx. if x ∈ S then f x else 0) ∈ borel_measurable lebesgue"
by (simp add: S borel_measurable_if f)
show "(λx. if x ∈ S then g x else 0) integrable_on cbox a b"
by (simp add: g integrable_altD(1))
show "norm (if x ∈ S then f x else 0) ≤ (if x ∈ S then g x else 0)" for x
using normf by simp
qed
qed
lemma measurable_bounded_by_integrable_imp_lebesgue_integrable:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes f: "f ∈ borel_measurable (lebesgue_on S)" and g: "integrable (lebesgue_on S) g"
and normf: "⋀x. x ∈ S ⟹ norm(f x) ≤ g x" and S: "S ∈ sets lebesgue"
shows "integrable (lebesgue_on S) f"
proof -
have "f absolutely_integrable_on S"
by (metis (no_types) S absolutely_integrable_integrable_bound f g integrable_on_lebesgue_on measurable_bounded_by_integrable_imp_integrable normf)
then show ?thesis
by (simp add: S integrable_restrict_space set_integrable_def)
qed
lemma measurable_bounded_by_integrable_imp_integrable_real:
fixes f :: "'a::euclidean_space ⇒ real"
assumes "f ∈ borel_measurable (lebesgue_on S)" "g integrable_on S" "⋀x. x ∈ S ⟹ abs(f x) ≤ g x" "S ∈ sets lebesgue"
shows "f integrable_on S"
using measurable_bounded_by_integrable_imp_integrable [of f S g] assms by simp
subsection‹ Relation between Borel measurability and integrability.›
lemma integrable_imp_measurable_weak:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "S ∈ sets lebesgue" "f integrable_on S"
shows "f ∈ borel_measurable (lebesgue_on S)"
by (metis (mono_tags, lifting) assms has_integral_implies_lebesgue_measurable borel_measurable_restrict_space_iff integrable_on_def sets.Int_space_eq2)
lemma integrable_imp_measurable:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "f integrable_on S"
shows "f ∈ borel_measurable (lebesgue_on S)"
proof -
have "(UNIV::'a set) ∈ sets lborel"
by simp
then show ?thesis
by (metis (mono_tags, lifting) assms borel_measurable_if_D integrable_imp_measurable_weak integrable_restrict_UNIV lebesgue_on_UNIV_eq sets_lebesgue_on_refl)
qed
lemma integrable_iff_integrable_on:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "S ∈ sets lebesgue" "(∫⇧+ x. ennreal (norm (f x)) ∂lebesgue_on S) < ∞"
shows "integrable (lebesgue_on S) f ⟷ f integrable_on S"
using assms integrable_iff_bounded integrable_imp_measurable integrable_on_lebesgue_on by blast
lemma absolutely_integrable_measurable:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "S ∈ sets lebesgue"
shows "f absolutely_integrable_on S ⟷ f ∈ borel_measurable (lebesgue_on S) ∧ integrable (lebesgue_on S) (norm ∘ f)"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
then have "f ∈ borel_measurable (lebesgue_on S)"
by (simp add: absolutely_integrable_on_def integrable_imp_measurable)
then show ?rhs
using assms set_integrable_norm [of lebesgue S f] L
by (simp add: integrable_restrict_space set_integrable_def)
next
assume ?rhs then show ?lhs
using assms integrable_on_lebesgue_on
by (metis absolutely_integrable_integrable_bound comp_def eq_iff measurable_bounded_by_integrable_imp_integrable)
qed
lemma absolutely_integrable_measurable_real:
fixes f :: "'a::euclidean_space ⇒ real"
assumes "S ∈ sets lebesgue"
shows "f absolutely_integrable_on S ⟷
f ∈ borel_measurable (lebesgue_on S) ∧ integrable (lebesgue_on S) (λx. ¦f x¦)"
by (simp add: absolutely_integrable_measurable assms o_def)
lemma absolutely_integrable_measurable_real':
fixes f :: "'a::euclidean_space ⇒ real"
assumes "S ∈ sets lebesgue"
shows "f absolutely_integrable_on S ⟷ f ∈ borel_measurable (lebesgue_on S) ∧ (λx. ¦f x¦) integrable_on S"
by (metis abs_absolutely_integrableI_1 absolutely_integrable_measurable_real assms
measurable_bounded_by_integrable_imp_integrable order_refl real_norm_def set_integrable_abs set_lebesgue_integral_eq_integral(1))
lemma absolutely_integrable_imp_borel_measurable:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "f absolutely_integrable_on S" "S ∈ sets lebesgue"
shows "f ∈ borel_measurable (lebesgue_on S)"
using absolutely_integrable_measurable assms by blast
lemma measurable_bounded_by_integrable_imp_absolutely_integrable:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "f ∈ borel_measurable (lebesgue_on S)" "S ∈ sets lebesgue"
and "g integrable_on S" and "⋀x. x ∈ S ⟹ norm(f x) ≤ (g x)"
shows "f absolutely_integrable_on S"
using assms absolutely_integrable_integrable_bound measurable_bounded_by_integrable_imp_integrable by blast
proposition negligible_differentiable_vimage:
fixes f :: "'a ⇒ 'a::euclidean_space"
assumes "negligible T"
and f': "⋀x. x ∈ S ⟹ inj(f' x)"
and derf: "⋀x. x ∈ S ⟹ (f has_derivative f' x) (at x within S)"
shows "negligible {x ∈ S. f x ∈ T}"
proof -
define U where
"U ≡ λn::nat. {x ∈ S. ∀y. y ∈ S ∧ norm(y - x) < 1/n
⟶ norm(y - x) ≤ n * norm(f y - f x)}"
have "negligible {x ∈ U n. f x ∈ T}" if "n > 0" for n
proof (subst locally_negligible_alt, clarify)
fix a
assume a: "a ∈ U n" and fa: "f a ∈ T"
define V where "V ≡ {x. x ∈ U n ∧ f x ∈ T} ∩ ball a (1 / n / 2)"
show "∃V. openin (top_of_set {x ∈ U n. f x ∈ T}) V ∧ a ∈ V ∧ negligible V"
proof (intro exI conjI)
have noxy: "norm(x - y) ≤ n * norm(f x - f y)" if "x ∈ V" "y ∈ V" for x y
using that unfolding U_def V_def mem_Collect_eq Int_iff mem_ball dist_norm
by (meson norm_triangle_half_r)
then have "inj_on f V"
by (force simp: inj_on_def)
then obtain g where g: "⋀x. x ∈ V ⟹ g(f x) = x"
by (metis inv_into_f_f)
have "∃T' B. open T' ∧ f x ∈ T' ∧
(∀y∈f ` V ∩ T ∩ T'. norm (g y - g (f x)) ≤ B * norm (y - f x))"
if "f x ∈ T" "x ∈ V" for x
using that noxy
by (rule_tac x = "ball (f x) 1" in exI) (force simp: g)
then have "negligible (g ` (f ` V ∩ T))"
by (force simp: ‹negligible T› negligible_Int intro!: negligible_locally_Lipschitz_image)
moreover have "V ⊆ g ` (f ` V ∩ T)"
by (force simp: g image_iff V_def)
ultimately show "negligible V"
by (rule negligible_subset)
qed (use a fa V_def that in auto)
qed
with negligible_countable_Union have "negligible (⋃n ∈ {0<..}. {x. x ∈ U n ∧ f x ∈ T})"
by auto
moreover have "{x ∈ S. f x ∈ T} ⊆ (⋃n ∈ {0<..}. {x. x ∈ U n ∧ f x ∈ T})"
proof clarsimp
fix x
assume "x ∈ S" and "f x ∈ T"
then obtain inj: "inj(f' x)" and der: "(f has_derivative f' x) (at x within S)"
using assms by metis
moreover have "linear(f' x)"
and eps: "⋀ε. ε > 0 ⟹ ∃δ>0. ∀y∈S. norm (y - x) < δ ⟶
norm (f y - f x - f' x (y - x)) ≤ ε * norm (y - x)"
using der by (auto simp: has_derivative_within_alt linear_linear)
ultimately obtain g where "linear g" and g: "g ∘ f' x = id"
using linear_injective_left_inverse by metis
then obtain B where "B > 0" and B: "⋀z. B * norm z ≤ norm(f' x z)"
using linear_invertible_bounded_below_pos ‹linear (f' x)› by blast
then obtain i where "i ≠ 0" and i: "1 / real i < B"
by (metis (full_types) inverse_eq_divide real_arch_invD)
then obtain δ where "δ > 0"
and δ: "⋀y. ⟦y∈S; norm (y - x) < δ⟧ ⟹
norm (f y - f x - f' x (y - x)) ≤ (B - 1 / real i) * norm (y - x)"
using eps [of "B - 1/i"] by auto
then obtain j where "j ≠ 0" and j: "inverse (real j) < δ"
using real_arch_inverse by blast
have "norm (y - x)/(max i j) ≤ norm (f y - f x)"
if "y ∈ S" and less: "norm (y - x) < 1 / (max i j)" for y
proof -
have "1 / real (max i j) < δ"
using j ‹j ≠ 0› ‹0 < δ›
by (auto simp: field_split_simps max_mult_distrib_left of_nat_max)
then have "norm (y - x) < δ"
using less by linarith
with δ ‹y ∈ S› have le: "norm (f y - f x - f' x (y - x)) ≤ B * norm (y - x) - norm (y - x)/i"
by (auto simp: algebra_simps)
have "norm (y - x) / real (max i j) ≤ norm (y - x) / real i"
using ‹i ≠ 0› ‹j ≠ 0› by (simp add: field_split_simps max_mult_distrib_left of_nat_max less_max_iff_disj)
also have "... ≤ norm (f y - f x)"
using B [of "y-x"] le norm_triangle_ineq3 [of "f y - f x" "f' x (y - x)"]
by linarith
finally show ?thesis .
qed
with ‹x ∈ S› ‹i ≠ 0› ‹j ≠ 0› show "∃n∈{0<..}. x ∈ U n"
by (rule_tac x="max i j" in bexI) (auto simp: field_simps U_def less_max_iff_disj)
qed
ultimately show ?thesis
by (rule negligible_subset)
qed
lemma absolutely_integrable_Un:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes S: "f absolutely_integrable_on S" and T: "f absolutely_integrable_on T"
shows "f absolutely_integrable_on (S ∪ T)"
proof -
have [simp]: "{x. (if x ∈ A then f x else 0) ≠ 0} = {x ∈ A. f x ≠ 0}" for A
by auto
let ?ST = "{x ∈ S. f x ≠ 0} ∩ {x ∈ T. f x ≠ 0}"
have "?ST ∈ sets lebesgue"
proof (rule Sigma_Algebra.sets.Int)
have "f integrable_on S"
using S absolutely_integrable_on_def by blast
then have "(λx. if x ∈ S then f x else 0) integrable_on UNIV"
by (simp add: integrable_restrict_UNIV)
then have borel: "(λx. if x ∈ S then f x else 0) ∈ borel_measurable (lebesgue_on UNIV)"
using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
then show "{x ∈ S. f x ≠ 0} ∈ sets lebesgue"
unfolding borel_measurable_vimage_open
by (rule allE [where x = "-{0}"]) auto
next
have "f integrable_on T"
using T absolutely_integrable_on_def by blast
then have "(λx. if x ∈ T then f x else 0) integrable_on UNIV"
by (simp add: integrable_restrict_UNIV)
then have borel: "(λx. if x ∈ T then f x else 0) ∈ borel_measurable (lebesgue_on UNIV)"
using integrable_imp_measurable lebesgue_on_UNIV_eq by blast
then show "{x ∈ T. f x ≠ 0} ∈ sets lebesgue"
unfolding borel_measurable_vimage_open
by (rule allE [where x = "-{0}"]) auto
qed
then have "f absolutely_integrable_on ?ST"
by (rule set_integrable_subset [OF S]) auto
then have Int: "(λx. if x ∈ ?ST then f x else 0) absolutely_integrable_on UNIV"
using absolutely_integrable_restrict_UNIV by blast
have "(λx. if x ∈ S then f x else 0) absolutely_integrable_on UNIV"
"(λx. if x ∈ T then f x else 0) absolutely_integrable_on UNIV"
using S T absolutely_integrable_restrict_UNIV by blast+
then have "(λx. (if x ∈ S then f x else 0) + (if x ∈ T then f x else 0)) absolutely_integrable_on UNIV"
by (rule set_integral_add)
then have "(λx. ((if x ∈ S then f x else 0) + (if x ∈ T then f x else 0)) - (if x ∈ ?ST then f x else 0)) absolutely_integrable_on UNIV"
using Int by (rule set_integral_diff)
then have "(λx. if x ∈ S ∪ T then f x else 0) absolutely_integrable_on UNIV"
by (rule absolutely_integrable_spike) (auto intro: empty_imp_negligible)
then show ?thesis
unfolding absolutely_integrable_restrict_UNIV .
qed
lemma absolutely_integrable_on_combine:
fixes f :: "real ⇒ 'a::euclidean_space"
assumes "f absolutely_integrable_on {a..c}"
and "f absolutely_integrable_on {c..b}"
and "a ≤ c"
and "c ≤ b"
shows "f absolutely_integrable_on {a..b}"
by (metis absolutely_integrable_Un assms ivl_disj_un_two_touch(4))
lemma uniform_limit_set_lebesgue_integral_at_top:
fixes f :: "'a ⇒ real ⇒ 'b::{banach, second_countable_topology}"
and g :: "real ⇒ real"
assumes bound: "⋀x y. x ∈ A ⟹ y ≥ a ⟹ norm (f x y) ≤ g y"
assumes integrable: "set_integrable M {a..} g"
assumes measurable: "⋀x. x ∈ A ⟹ set_borel_measurable M {a..} (f x)"
assumes "sets borel ⊆ sets M"
shows "uniform_limit A (λb x. LINT y:{a..b}|M. f x y) (λx. LINT y:{a..}|M. f x y) at_top"
proof (cases "A = {}")
case False
then obtain x where x: "x ∈ A" by auto
have g_nonneg: "g y ≥ 0" if "y ≥ a" for y
proof -
have "0 ≤ norm (f x y)" by simp
also have "… ≤ g y" using bound[OF x that] by simp
finally show ?thesis .
qed
have integrable': "set_integrable M {a..} (λy. f x y)" if "x ∈ A" for x
unfolding set_integrable_def
proof (rule Bochner_Integration.integrable_bound)
show "integrable M (λx. indicator {a..} x * g x)"
using integrable by (simp add: set_integrable_def)
show "(λy. indicat_real {a..} y *⇩R f x y) ∈ borel_measurable M" using measurable[OF that]
by (simp add: set_borel_measurable_def)
show "AE y in M. norm (indicat_real {a..} y *⇩R f x y) ≤ norm (indicat_real {a..} y * g y)"
using bound[OF that] by (intro AE_I2) (auto simp: indicator_def g_nonneg)
qed
show ?thesis
proof (rule uniform_limitI)
fix e :: real assume e: "e > 0"
have sets [intro]: "A ∈ sets M" if "A ∈ sets borel" for A
using that assms by blast
have "((λb. LINT y:{a..b}|M. g y) ⤏ (LINT y:{a..}|M. g y)) at_top"
by (intro tendsto_set_lebesgue_integral_at_top assms sets) auto
with e obtain b0 :: real where b0: "∀b≥b0. ¦(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)¦ < e"
by (auto simp: tendsto_iff eventually_at_top_linorder dist_real_def abs_minus_commute)
define b where "b = max a b0"
have "a ≤ b" by (simp add: b_def)
from b0 have "¦(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)¦ < e"
by (auto simp: b_def)
also have "{a..} = {a..b} ∪ {b<..}" by (auto simp: b_def)
also have "¦(LINT y:…|M. g y) - (LINT y:{a..b}|M. g y)¦ = ¦(LINT y:{b<..}|M. g y)¦"
using ‹a ≤ b› by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable])
also have "(LINT y:{b<..}|M. g y) ≥ 0"
using g_nonneg ‹a ≤ b› unfolding set_lebesgue_integral_def
by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
hence "¦(LINT y:{b<..}|M. g y)¦ = (LINT y:{b<..}|M. g y)" by simp
finally have less: "(LINT y:{b<..}|M. g y) < e" .
have "eventually (λb. b ≥ b0) at_top" by (rule eventually_ge_at_top)
moreover have "eventually (λb. b ≥ a) at_top" by (rule eventually_ge_at_top)
ultimately show "eventually (λb. ∀x∈A.
dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) < e) at_top"
proof eventually_elim
case (elim b)
show ?case
proof
fix x assume x: "x ∈ A"
have "dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) =
norm ((LINT y:{a..}|M. f x y) - (LINT y:{a..b}|M. f x y))"
by (simp add: dist_norm norm_minus_commute)
also have "{a..} = {a..b} ∪ {b<..}" using elim by auto
also have "(LINT y:…|M. f x y) - (LINT y:{a..b}|M. f x y) = (LINT y:{b<..}|M. f x y)"
using elim x
by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable'])
also have "norm … ≤ (LINT y:{b<..}|M. norm (f x y))" using elim x
by (intro set_integral_norm_bound set_integrable_subset[OF integrable']) auto
also have "… ≤ (LINT y:{b<..}|M. g y)" using elim x bound g_nonneg
by (intro set_integral_mono set_integrable_norm set_integrable_subset[OF integrable']
set_integrable_subset[OF integrable]) auto
also have "(LINT y:{b<..}|M. g y) ≥ 0"
using g_nonneg ‹a ≤ b› unfolding set_lebesgue_integral_def
by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
hence "(LINT y:{b<..}|M. g y) = ¦(LINT y:{b<..}|M. g y)¦" by simp
also have "… = ¦(LINT y:{a..b} ∪ {b<..}|M. g y) - (LINT y:{a..b}|M. g y)¦"
using elim by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable])
also have "{a..b} ∪ {b<..} = {a..}" using elim by auto
also have "¦(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)¦ < e"
using b0 elim by blast
finally show "dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) < e" .
qed
qed
qed
qed auto
subsubsection‹Differentiability of inverse function (most basic form)›
proposition has_derivative_inverse_within:
fixes f :: "'a::real_normed_vector ⇒ 'b::euclidean_space"
assumes der_f: "(f has_derivative f') (at a within S)"
and cont_g: "continuous (at (f a) within f ` S) g"
and "a ∈ S" "linear g'" and id: "g' ∘ f' = id"
and gf: "⋀x. x ∈ S ⟹ g(f x) = x"
shows "(g has_derivative g') (at (f a) within f ` S)"
proof -
have [simp]: "g' (f' x) = x" for x
by (simp add: local.id pointfree_idE)
have "bounded_linear f'"
and f': "⋀e. e>0 ⟹ ∃d>0. ∀y∈S. norm (y - a) < d ⟶
norm (f y - f a - f' (y - a)) ≤ e * norm (y - a)"
using der_f by (auto simp: has_derivative_within_alt)
obtain C where "C > 0" and C: "⋀x. norm (g' x) ≤ C * norm x"
using linear_bounded_pos [OF ‹linear g'›] by metis
obtain B k where "B > 0" "k > 0"
and Bk: "⋀x. ⟦x ∈ S; norm(f x - f a) < k⟧ ⟹ norm(x - a) ≤ B * norm(f x - f a)"
proof -
obtain B where "B > 0" and B: "⋀x. B * norm x ≤ norm (f' x)"
using linear_inj_bounded_below_pos [of f'] ‹linear g'› id der_f has_derivative_linear
linear_invertible_bounded_below_pos by blast
then obtain d where "d>0"
and d: "⋀y. ⟦y ∈ S; norm (y - a) < d⟧ ⟹
norm (f y - f a - f' (y - a)) ≤ B / 2 * norm (y - a)"
using f' [of "B/2"] by auto
then obtain e where "e > 0"
and e: "⋀x. ⟦x ∈ S; norm (f x - f a) < e⟧ ⟹ norm (g (f x) - g (f a)) < d"
using cont_g by (auto simp: continuous_within_eps_delta dist_norm)
show thesis
proof
show "2/B > 0"
using ‹B > 0› by simp
show "norm (x - a) ≤ 2 / B * norm (f x - f a)"
if "x ∈ S" "norm (f x - f a) < e" for x
proof -
have xa: "norm (x - a) < d"
using e [OF that] gf by (simp add: ‹a ∈ S› that)
have *: "⟦norm(y - f') ≤ B / 2 * norm x; B * norm x ≤ norm f'⟧
⟹ norm y ≥ B / 2 * norm x" for y f'::'b and x::'a
using norm_triangle_ineq3 [of y f'] by linarith
show ?thesis
using * [OF d [OF ‹x ∈ S› xa] B] ‹B > 0› by (simp add: field_simps)
qed
qed (use ‹e > 0› in auto)
qed
show ?thesis
unfolding has_derivative_within_alt
proof (intro conjI impI allI)
show "bounded_linear g'"
using ‹linear g'› by (simp add: linear_linear)
next
fix e :: "real"
assume "e > 0"
then obtain d where "d>0"
and d: "⋀y. ⟦y ∈ S; norm (y - a) < d⟧ ⟹
norm (f y - f a - f' (y - a)) ≤ e / (B * C) * norm (y - a)"
using f' [of "e / (B * C)"] ‹B > 0› ‹C > 0› by auto
have "norm (x - a - g' (f x - f a)) ≤ e * norm (f x - f a)"
if "x ∈ S" and lt_k: "norm (f x - f a) < k" and lt_dB: "norm (f x - f a) < d/B" for x
proof -
have "norm (x - a) ≤ B * norm(f x - f a)"
using Bk lt_k ‹x ∈ S› by blast
also have "… < d"
by (metis ‹0 < B› lt_dB mult.commute pos_less_divide_eq)
finally have lt_d: "norm (x - a) < d" .
have "norm (x - a - g' (f x - f a)) ≤ norm(g'(f x - f a - (f' (x - a))))"
by (simp add: linear_diff [OF ‹linear g'›] norm_minus_commute)
also have "… ≤ C * norm (f x - f a - f' (x - a))"
using C by blast
also have "… ≤ e * norm (f x - f a)"
proof -
have "norm (f x - f a - f' (x - a)) ≤ e / (B * C) * norm (x - a)"
using d [OF ‹x ∈ S› lt_d] .
also have "… ≤ (norm (f x - f a) * e) / C"
using ‹B > 0› ‹C > 0› ‹e > 0› by (simp add: field_simps Bk lt_k ‹x ∈ S›)
finally show ?thesis
using ‹C > 0› by (simp add: field_simps)
qed
finally show ?thesis .
qed
with ‹k > 0› ‹B > 0› ‹d > 0› ‹a ∈ S›
show "∃d>0. ∀y∈f ` S.
norm (y - f a) < d ⟶
norm (g y - g (f a) - g' (y - f a)) ≤ e * norm (y - f a)"
by (rule_tac x="min k (d / B)" in exI) (auto simp: gf)
qed
qed
end