Theory Information

(*  Title:      HOL/Probability/Information.thy
    Author:     Johannes Hölzl, TU München
    Author:     Armin Heller, TU München
*)

section ‹Information theory›

theory Information
imports
  Independent_Family
begin

lemma log_le: "1 < a  0 < x  x  y  log a x  log a y"
  by simp

lemma log_less: "1 < a  0 < x  x < y  log a x < log a y"
  by simp

lemma sum_cartesian_product':
  "(xA × B. f x) = (xA. sum (λy. f (x, y)) B)"
  unfolding sum.cartesian_product by simp

lemma split_pairs:
  "((A, B) = X)  (fst X = A  snd X = B)" and
  "(X = (A, B))  (fst X = A  snd X = B)" by auto

subsection "Information theory"

locale information_space = prob_space +
  fixes b :: real assumes b_gt_1: "1 < b"

context information_space
begin

text ‹Introduce some simplification rules for logarithm of base termb.›

lemma log_neg_const:
  assumes "x  0"
  shows "log b x = log b 0"
proof -
  { fix u :: real
    have "x  0" by fact
    also have "0 < exp u"
      using exp_gt_zero .
    finally have "exp u  x"
      by auto }
  then show "log b x = log b 0"
    by (simp add: log_def ln_real_def)
qed

lemma log_mult_eq:
  "log b (A * B) = (if 0 < A * B then log b ¦A¦ + log b ¦B¦ else log b 0)"
  using log_mult[of b "¦A¦" "¦B¦"] b_gt_1 log_neg_const[of "A * B"]
  by (auto simp: zero_less_mult_iff mult_le_0_iff)

lemma log_inverse_eq:
  "log b (inverse B) = (if 0 < B then - log b B else log b 0)"
  using log_inverse[of b B] log_neg_const[of "inverse B"] b_gt_1 by simp

lemma log_divide_eq:
  "log b (A / B) = (if 0 < A * B then log b ¦A¦ - log b ¦B¦ else log b 0)"
  unfolding divide_inverse log_mult_eq log_inverse_eq abs_inverse
  by (auto simp: zero_less_mult_iff mult_le_0_iff)

lemmas log_simps = log_mult_eq log_inverse_eq log_divide_eq

end

subsection "Kullback$-$Leibler divergence"

text ‹The Kullback$-$Leibler divergence is also known as relative entropy or
Kullback$-$Leibler distance.›

definition
  "entropy_density b M N = log b  enn2real  RN_deriv M N"

definition
  "KL_divergence b M N = integralL N (entropy_density b M N)"

lemma measurable_entropy_density[measurable]: "entropy_density b M N  borel_measurable M"
  unfolding entropy_density_def by auto

lemma (in sigma_finite_measure) KL_density:
  fixes f :: "'a  real"
  assumes "1 < b"
  assumes f[measurable]: "f  borel_measurable M" and nn: "AE x in M. 0  f x"
  shows "KL_divergence b M (density M f) = (x. f x * log b (f x) M)"
  unfolding KL_divergence_def
proof (subst integral_real_density)
  show [measurable]: "entropy_density b M (density M (λx. ennreal (f x)))  borel_measurable M"
    using f
    by (auto simp: comp_def entropy_density_def)
  have "density M (RN_deriv M (density M f)) = density M f"
    using f nn by (intro density_RN_deriv_density) auto
  then have eq: "AE x in M. RN_deriv M (density M f) x = f x"
    using f nn by (intro density_unique) auto
  have "AE x in M. f x * entropy_density b M (density M (λx. ennreal (f x))) x =
               f x * log b (f x)"
    using eq nn by (auto simp: entropy_density_def)
  then show "(x. f x * entropy_density b M (density M (λx. ennreal (f x))) x M) = (x. f x * log b (f x) M)"
    by (intro integral_cong_AE) measurable
qed fact+

lemma (in sigma_finite_measure) KL_density_density:
  fixes f g :: "'a  real"
  assumes "1 < b"
  assumes f: "f  borel_measurable M" "AE x in M. 0  f x"
  assumes g: "g  borel_measurable M" "AE x in M. 0  g x"
  assumes ac: "AE x in M. f x = 0  g x = 0"
  shows "KL_divergence b (density M f) (density M g) = (x. g x * log b (g x / f x) M)"
proof -
  interpret Mf: sigma_finite_measure "density M f"
    using f by (subst sigma_finite_iff_density_finite) auto
  have "KL_divergence b (density M f) (density M g) =
    KL_divergence b (density M f) (density (density M f) (λx. g x / f x))"
    using f g ac by (subst density_density_divide) simp_all
  also have " = (x. (g x / f x) * log b (g x / f x) density M f)"
    using f g 1 < b by (intro Mf.KL_density) (auto simp: AE_density)
  also have " = (x. g x * log b (g x / f x) M)"
    using ac f g 1 < b by (subst integral_density) (auto intro!: integral_cong_AE)
  finally show ?thesis .
qed

lemma (in information_space) KL_gt_0:
  fixes D :: "'a  real"
  assumes "prob_space (density M D)"
  assumes D: "D  borel_measurable M" "AE x in M. 0  D x"
  assumes int: "integrable M (λx. D x * log b (D x))"
  assumes A: "density M D  M"
  shows "0 < KL_divergence b M (density M D)"
proof -
  interpret N: prob_space "density M D" by fact

  obtain A where "A  sets M" "emeasure (density M D) A  emeasure M A"
    using measure_eqI[of "density M D" M] density M D  M by auto

  let ?D_set = "{xspace M. D x  0}"
  have [simp, intro]: "?D_set  sets M"
    using D by auto

  have D_neg: "(+ x. ennreal (- D x) M) = 0"
    using D by (subst nn_integral_0_iff_AE) (auto simp: ennreal_neg)

  have "(+ x. ennreal (D x) M) = emeasure (density M D) (space M)"
    using D by (simp add: emeasure_density cong: nn_integral_cong)
  then have D_pos: "(+ x. ennreal (D x) M) = 1"
    using N.emeasure_space_1 by simp

  have "integrable M D"
    using D D_pos D_neg unfolding real_integrable_def real_lebesgue_integral_def by simp_all
  then have "integralL M D = 1"
    using D D_pos D_neg by (simp add: real_lebesgue_integral_def)

  have "0  1 - measure M ?D_set"
    using prob_le_1 by (auto simp: field_simps)
  also have " = ( x. D x - indicator ?D_set x M)"
    using integrable M D integralL M D = 1
    by (simp add: emeasure_eq_measure)
  also have " < ( x. D x * (ln b * log b (D x)) M)"
  proof (rule integral_less_AE)
    show "integrable M (λx. D x - indicator ?D_set x)"
      using integrable M D by (auto simp: less_top[symmetric])
  next
    from integrable_mult_left(1)[OF int, of "ln b"]
    show "integrable M (λx. D x * (ln b * log b (D x)))"
      by (simp add: ac_simps)
  next
    show "emeasure M {xspace M. D x  1  D x  0}  0"
    proof
      assume eq_0: "emeasure M {xspace M. D x  1  D x  0} = 0"
      then have disj: "AE x in M. D x = 1  D x = 0"
        using D(1) by (auto intro!: AE_I[OF subset_refl] sets.sets_Collect)

      have "emeasure M {xspace M. D x = 1} = (+ x. indicator {xspace M. D x = 1} x M)"
        using D(1) by auto
      also have " = (+ x. ennreal (D x) M)"
        using disj by (auto intro!: nn_integral_cong_AE simp: indicator_def one_ennreal_def)
      finally have "AE x in M. D x = 1"
        using D D_pos by (intro AE_I_eq_1) auto
      then have "(+x. indicator A xM) = (+x. ennreal (D x) * indicator A xM)"
        by (intro nn_integral_cong_AE) (auto simp: one_ennreal_def[symmetric])
      also have " = density M D A"
        using A  sets M D by (simp add: emeasure_density)
      finally show False using A  sets M emeasure (density M D) A  emeasure M A by simp
    qed
    show "{xspace M. D x  1  D x  0}  sets M"
      using D(1) by (auto intro: sets.sets_Collect_conj)

    show "AE t in M. t  {xspace M. D x  1  D x  0} 
      D t - indicator ?D_set t  D t * (ln b * log b (D t))"
      using D(2)
    proof (eventually_elim, safe)
      fix t assume Dt: "t  space M" "D t  1" "D t  0" "0  D t"
        and eq: "D t - indicator ?D_set t = D t * (ln b * log b (D t))"

      have "D t - 1 = D t - indicator ?D_set t"
        using Dt by simp
      also note eq
      also have "D t * (ln b * log b (D t)) = - D t * ln (1 / D t)"
        using b_gt_1 D t  0 0  D t
        by (simp add: log_def ln_div less_le)
      finally have "ln (1 / D t) = 1 / D t - 1"
        using D t  0 by (auto simp: field_simps)
      from ln_eq_minus_one[OF _ this] D t  0 0  D t D t  1
      show False by auto
    qed

    show "AE t in M. D t - indicator ?D_set t  D t * (ln b * log b (D t))"
      using D(2) AE_space
    proof eventually_elim
      fix t assume "t  space M" "0  D t"
      show "D t - indicator ?D_set t  D t * (ln b * log b (D t))"
      proof cases
        assume asm: "D t  0"
        then have "0 < D t" using 0  D t by auto
        then have "0 < 1 / D t" by auto
        have "D t - indicator ?D_set t  - D t * (1 / D t - 1)"
          using asm t  space M by (simp add: field_simps)
        also have "- D t * (1 / D t - 1)  - D t * ln (1 / D t)"
          using ln_le_minus_one 0 < 1 / D t by (intro mult_left_mono_neg) auto
        also have " = D t * (ln b * log b (D t))"
          using 0 < D t b_gt_1
          by (simp_all add: log_def ln_div)
        finally show ?thesis by simp
      qed simp
    qed
  qed
  also have " = ( x. ln b * (D x * log b (D x)) M)"
    by (simp add: ac_simps)
  also have " = ln b * ( x. D x * log b (D x) M)"
    using int by simp
  finally show ?thesis
    using b_gt_1 D by (subst KL_density) (auto simp: zero_less_mult_iff)
qed

lemma (in sigma_finite_measure) KL_same_eq_0: "KL_divergence b M M = 0"
proof -
  have "AE x in M. 1 = RN_deriv M M x"
  proof (rule RN_deriv_unique)
    show "density M (λx. 1) = M"
      by (simp add: density_1)
  qed auto
  then have "AE x in M. log b (enn2real (RN_deriv M M x)) = 0"
    by (elim AE_mp) simp
  from integral_cong_AE[OF _ _ this]
  have "integralL M (entropy_density b M M) = 0"
    by (simp add: entropy_density_def comp_def)
  then show "KL_divergence b M M = 0"
    unfolding KL_divergence_def
    by auto
qed

lemma (in information_space) KL_eq_0_iff_eq:
  fixes D :: "'a  real"
  assumes "prob_space (density M D)"
  assumes D: "D  borel_measurable M" "AE x in M. 0  D x"
  assumes int: "integrable M (λx. D x * log b (D x))"
  shows "KL_divergence b M (density M D) = 0  density M D = M"
  using KL_same_eq_0[of b] KL_gt_0[OF assms]
  by (auto simp: less_le)

lemma (in information_space) KL_eq_0_iff_eq_ac:
  fixes D :: "'a  real"
  assumes "prob_space N"
  assumes ac: "absolutely_continuous M N" "sets N = sets M"
  assumes int: "integrable N (entropy_density b M N)"
  shows "KL_divergence b M N = 0  N = M"
proof -
  interpret N: prob_space N by fact
  have "finite_measure N" by unfold_locales
  from real_RN_deriv[OF this ac] obtain D
    where D:
      "random_variable borel D"
      "AE x in M. RN_deriv M N x = ennreal (D x)"
      "AE x in N. 0 < D x"
      "x. 0  D x"
    by this auto

  have "N = density M (RN_deriv M N)"
    using ac by (rule density_RN_deriv[symmetric])
  also have " = density M D"
    using D by (auto intro!: density_cong)
  finally have N: "N = density M D" .

  from absolutely_continuous_AE[OF ac(2,1) D(2)] D b_gt_1 ac measurable_entropy_density
  have "integrable N (λx. log b (D x))"
    by (intro integrable_cong_AE[THEN iffD2, OF _ _ _ int])
       (auto simp: N entropy_density_def)
  with D b_gt_1 have "integrable M (λx. D x * log b (D x))"
    by (subst integrable_real_density[symmetric]) (auto simp: N[symmetric] comp_def)
  with prob_space N D show ?thesis
    unfolding N
    by (intro KL_eq_0_iff_eq) auto
qed

lemma (in information_space) KL_nonneg:
  assumes "prob_space (density M D)"
  assumes D: "D  borel_measurable M" "AE x in M. 0  D x"
  assumes int: "integrable M (λx. D x * log b (D x))"
  shows "0  KL_divergence b M (density M D)"
  using KL_gt_0[OF assms] by (cases "density M D = M") (auto simp: KL_same_eq_0)

lemma (in sigma_finite_measure) KL_density_density_nonneg:
  fixes f g :: "'a  real"
  assumes "1 < b"
  assumes f: "f  borel_measurable M" "AE x in M. 0  f x" "prob_space (density M f)"
  assumes g: "g  borel_measurable M" "AE x in M. 0  g x" "prob_space (density M g)"
  assumes ac: "AE x in M. f x = 0  g x = 0"
  assumes int: "integrable M (λx. g x * log b (g x / f x))"
  shows "0  KL_divergence b (density M f) (density M g)"
proof -
  interpret Mf: prob_space "density M f" by fact
  interpret Mf: information_space "density M f" b by standard fact
  have eq: "density (density M f) (λx. g x / f x) = density M g" (is "?DD = _")
    using f g ac by (subst density_density_divide) simp_all

  have "0  KL_divergence b (density M f) (density (density M f) (λx. g x / f x))"
  proof (rule Mf.KL_nonneg)
    show "prob_space ?DD" unfolding eq by fact
    from f g show "(λx. g x / f x)  borel_measurable (density M f)"
      by auto
    show "AE x in density M f. 0  g x / f x"
      using f g by (auto simp: AE_density)
    show "integrable (density M f) (λx. g x / f x * log b (g x / f x))"
      using 1 < b f g ac
      by (subst integrable_density)
         (auto intro!: integrable_cong_AE[THEN iffD2, OF _ _ _ int] measurable_If)
  qed
  also have " = KL_divergence b (density M f) (density M g)"
    using f g ac by (subst density_density_divide) simp_all
  finally show ?thesis .
qed

subsection ‹Finite Entropy›

definition (in information_space) finite_entropy :: "'b measure  ('a  'b)  ('b  real)  bool"
where
  "finite_entropy S X f 
    distributed M S X f 
    integrable S (λx. f x * log b (f x)) 
    (xspace S. 0  f x)"

lemma (in information_space) finite_entropy_simple_function:
  assumes X: "simple_function M X"
  shows "finite_entropy (count_space (X`space M)) X (λa. measure M {x  space M. X x = a})"
  unfolding finite_entropy_def
proof safe
  have [simp]: "finite (X ` space M)"
    using X by (auto simp: simple_function_def)
  then show "integrable (count_space (X ` space M))
     (λx. prob {xa  space M. X xa = x} * log b (prob {xa  space M. X xa = x}))"
    by (rule integrable_count_space)
  have d: "distributed M (count_space (X ` space M)) X (λx. ennreal (if x  X`space M then prob {xa  space M. X xa = x} else 0))"
    by (rule distributed_simple_function_superset[OF X]) (auto intro!: arg_cong[where f=prob])
  show "distributed M (count_space (X ` space M)) X (λx. ennreal (prob {xa  space M. X xa = x}))"
    by (rule distributed_cong_density[THEN iffD1, OF _ _ _ d]) auto
qed (rule measure_nonneg)

lemma ac_fst:
  assumes "sigma_finite_measure T"
  shows "absolutely_continuous S (distr (S M T) S fst)"
proof -
  interpret sigma_finite_measure T by fact
  { fix A assume A: "A  sets S" "emeasure S A = 0"
    then have "fst -` A  space (S M T) = A × space T"
      by (auto simp: space_pair_measure dest!: sets.sets_into_space)
    with A have "emeasure (S M T) (fst -` A  space (S M T)) = 0"
      by (simp add: emeasure_pair_measure_Times) }
  then show ?thesis
    unfolding absolutely_continuous_def
    by (metis emeasure_distr measurable_fst null_setsD1 null_setsD2 null_setsI sets_distr subsetI)
qed

lemma ac_snd:
  assumes "sigma_finite_measure T"
  shows "absolutely_continuous T (distr (S M T) T snd)"
proof -
  interpret sigma_finite_measure T by fact
  { fix A assume A: "A  sets T" "emeasure T A = 0"
    then have "snd -` A  space (S M T) = space S × A"
      by (auto simp: space_pair_measure dest!: sets.sets_into_space)
    with A have "emeasure (S M T) (snd -` A  space (S M T)) = 0"
      by (simp add: emeasure_pair_measure_Times) }
  then show ?thesis
    unfolding absolutely_continuous_def
    by (metis emeasure_distr measurable_snd null_setsD1 null_setsD2 null_setsI sets_distr subsetI)
qed

lemma (in information_space) finite_entropy_integrable:
  "finite_entropy S X Px  integrable S (λx. Px x * log b (Px x))"
  unfolding finite_entropy_def by auto

lemma (in information_space) finite_entropy_distributed:
  "finite_entropy S X Px  distributed M S X Px"
  unfolding finite_entropy_def by auto

lemma (in information_space) finite_entropy_nn:
  "finite_entropy S X Px  x  space S  0  Px x"
  by (auto simp: finite_entropy_def)

lemma (in information_space) finite_entropy_measurable:
  "finite_entropy S X Px  Px  S M borel"
  using distributed_real_measurable[of S Px M X]
    finite_entropy_nn[of S X Px] finite_entropy_distributed[of S X Px] by auto

lemma (in information_space) subdensity_finite_entropy:
  fixes g :: "'b  real" and f :: "'c  real"
  assumes T: "T  measurable P Q"
  assumes f: "finite_entropy P X f"
  assumes g: "finite_entropy Q Y g"
  assumes Y: "Y = T  X"
  shows "AE x in P. g (T x) = 0  f x = 0"
  using subdensity[OF T, of M X "λx. ennreal (f x)" Y "λx. ennreal (g x)"]
    finite_entropy_distributed[OF f] finite_entropy_distributed[OF g]
    finite_entropy_nn[OF f] finite_entropy_nn[OF g]
    assms
  by auto

lemma (in information_space) finite_entropy_integrable_transform:
  "finite_entropy S X Px  distributed M T Y Py  (x. x  space T  0  Py x) 
    X = (λx. f (Y x))  f  measurable T S  integrable T (λx. Py x * log b (Px (f x)))"
  using distributed_transform_integrable[of M T Y Py S X Px f "λx. log b (Px x)"]
  using distributed_real_measurable[of S Px M X]
  by (auto simp: finite_entropy_def)

subsection ‹Mutual Information›

definition (in prob_space)
  "mutual_information b S T X Y =
    KL_divergence b (distr M S X M distr M T Y) (distr M (S M T) (λx. (X x, Y x)))"

lemma (in information_space) mutual_information_indep_vars:
  fixes S T X Y
  defines "P  distr M S X M distr M T Y"
  defines "Q  distr M (S M T) (λx. (X x, Y x))"
  shows "indep_var S X T Y 
    (random_variable S X  random_variable T Y 
      absolutely_continuous P Q  integrable Q (entropy_density b P Q) 
      mutual_information b S T X Y = 0)"
  unfolding indep_var_distribution_eq
proof safe
  assume rv[measurable]: "random_variable S X" "random_variable T Y"

  interpret X: prob_space "distr M S X"
    by (rule prob_space_distr) fact
  interpret Y: prob_space "distr M T Y"
    by (rule prob_space_distr) fact
  interpret XY: pair_prob_space "distr M S X" "distr M T Y" by standard
  interpret P: information_space P b unfolding P_def by standard (rule b_gt_1)

  interpret Q: prob_space Q unfolding Q_def
    by (rule prob_space_distr) simp

  { assume "distr M S X M distr M T Y = distr M (S M T) (λx. (X x, Y x))"
    then have [simp]: "Q = P"  unfolding Q_def P_def by simp

    show ac: "absolutely_continuous P Q" by (simp add: absolutely_continuous_def)
    then have ed: "entropy_density b P Q  borel_measurable P"
      by simp

    have "AE x in P. 1 = RN_deriv P Q x"
    proof (rule P.RN_deriv_unique)
      show "density P (λx. 1) = Q"
        unfolding Q = P by (intro measure_eqI) (auto simp: emeasure_density)
    qed auto
    then have ae_0: "AE x in P. entropy_density b P Q x = 0"
      by (auto simp: entropy_density_def)
    then have "integrable P (entropy_density b P Q)  integrable Q (λx. 0::real)"
      using ed unfolding Q = P by (intro integrable_cong_AE) auto
    then show "integrable Q (entropy_density b P Q)" by simp

    from ae_0 have "mutual_information b S T X Y = (x. 0 P)"
      unfolding mutual_information_def KL_divergence_def P_def[symmetric] Q_def[symmetric] Q = P
      by (intro integral_cong_AE) auto
    then show "mutual_information b S T X Y = 0"
      by simp }

  { assume ac: "absolutely_continuous P Q"
    assume int: "integrable Q (entropy_density b P Q)"
    assume I_eq_0: "mutual_information b S T X Y = 0"

    have eq: "Q = P"
    proof (rule P.KL_eq_0_iff_eq_ac[THEN iffD1])
      show "prob_space Q" by unfold_locales
      show "absolutely_continuous P Q" by fact
      show "integrable Q (entropy_density b P Q)" by fact
      show "sets Q = sets P" by (simp add: P_def Q_def sets_pair_measure)
      show "KL_divergence b P Q = 0"
        using I_eq_0 unfolding mutual_information_def by (simp add: P_def Q_def)
    qed
    then show "distr M S X M distr M T Y = distr M (S M T) (λx. (X x, Y x))"
      unfolding P_def Q_def .. }
qed

abbreviation (in information_space)
  mutual_information_Pow ("ℐ'(_ ; _')") where
  "ℐ(X ; Y)  mutual_information b (count_space (X`space M)) (count_space (Y`space M)) X Y"

lemma (in information_space)
  fixes Pxy :: "'b × 'c  real" and Px :: "'b  real" and Py :: "'c  real"
  assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"
  assumes Fx: "finite_entropy S X Px" and Fy: "finite_entropy T Y Py"
  assumes Fxy: "finite_entropy (S M T) (λx. (X x, Y x)) Pxy"
  defines "f  λx. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))"
  shows mutual_information_distr': "mutual_information b S T X Y = integralL (S M T) f" (is "?M = ?R")
    and mutual_information_nonneg': "0  mutual_information b S T X Y"
proof -
  have Px: "distributed M S X Px" and Px_nn: "x. x  space S  0  Px x"
    using Fx by (auto simp: finite_entropy_def)
  have Py: "distributed M T Y Py" and Py_nn: "x. x  space T  0  Py x"
    using Fy by (auto simp: finite_entropy_def)
  have Pxy: "distributed M (S M T) (λx. (X x, Y x)) Pxy"
    and Pxy_nn: "x. x  space (S M T)  0  Pxy x"
      "x y. x  space S  y  space T  0  Pxy (x, y)"
    using Fxy by (auto simp: finite_entropy_def space_pair_measure)

  have [measurable]: "Px  S M borel"
    using Px Px_nn by (intro distributed_real_measurable)
  have [measurable]: "Py  T M borel"
    using Py Py_nn by (intro distributed_real_measurable)
  have measurable_Pxy[measurable]: "Pxy  (S M T) M borel"
    using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)

  have X[measurable]: "random_variable S X"
    using Px by auto
  have Y[measurable]: "random_variable T Y"
    using Py by auto
  interpret S: sigma_finite_measure S by fact
  interpret T: sigma_finite_measure T by fact
  interpret ST: pair_sigma_finite S T ..
  interpret X: prob_space "distr M S X" using X by (rule prob_space_distr)
  interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr)
  interpret XY: pair_prob_space "distr M S X" "distr M T Y" ..
  let ?P = "S M T"
  let ?D = "distr M ?P (λx. (X x, Y x))"

  { fix A assume "A  sets S"
    with X[THEN measurable_space] Y[THEN measurable_space]
    have "emeasure (distr M S X) A = emeasure ?D (A × space T)"
      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
  note marginal_eq1 = this
  { fix A assume "A  sets T"
    with X[THEN measurable_space] Y[THEN measurable_space]
    have "emeasure (distr M T Y) A = emeasure ?D (space S × A)"
      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
  note marginal_eq2 = this

  have distr_eq: "distr M S X M distr M T Y = density ?P (λx. ennreal (Px (fst x) * Py (snd x)))"
    unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density]
  proof (subst pair_measure_density)
    show "(λx. ennreal (Px x))  borel_measurable S" "(λy. ennreal (Py y))  borel_measurable T"
      using Px Py by (auto simp: distributed_def)
    show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] ..
    show "density (S M T) (λ(x, y). ennreal (Px x) * ennreal (Py y)) =
      density (S M T) (λx. ennreal (Px (fst x) * Py (snd x)))"
      using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure)
  qed fact

  have M: "?M = KL_divergence b (density ?P (λx. ennreal (Px (fst x) * Py (snd x)))) (density ?P (λx. ennreal (Pxy x)))"
    unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] ..

  from Px Py have f: "(λx. Px (fst x) * Py (snd x))  borel_measurable ?P"
    by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'')
  have PxPy_nonneg: "AE x in ?P. 0  Px (fst x) * Py (snd x)"
    using Px_nn Py_nn by (auto simp: space_pair_measure)

  have A: "(AE x in ?P. Px (fst x) = 0  Pxy x = 0)"
    by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure)
  moreover
  have B: "(AE x in ?P. Py (snd x) = 0  Pxy x = 0)"
    by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure)
  ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0  Pxy x = 0"
    by auto

  show "?M = ?R"
    unfolding M f_def using Pxy_nn Px_nn Py_nn
    by (intro ST.KL_density_density b_gt_1 f PxPy_nonneg ac) (auto simp: space_pair_measure)

  have X: "X = fst  (λx. (X x, Y x))" and Y: "Y = snd  (λx. (X x, Y x))"
    by auto

  have "integrable (S M T) (λx. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)))"
    using finite_entropy_integrable[OF Fxy]
    using finite_entropy_integrable_transform[OF Fx Pxy, of fst]
    using finite_entropy_integrable_transform[OF Fy Pxy, of snd]
    by (simp add: Pxy_nn)
  moreover have "f  borel_measurable (S M T)"
    unfolding f_def using Px Py Pxy
    by (auto intro: distributed_real_measurable measurable_fst'' measurable_snd''
      intro!: borel_measurable_times borel_measurable_log borel_measurable_divide)
  ultimately have int: "integrable (S M T) f"
    apply (rule integrable_cong_AE_imp)
    using A B
    by  (auto simp: f_def log_divide_eq log_mult_eq field_simps space_pair_measure Px_nn Py_nn Pxy_nn
                  less_le)

  show "0  ?M" unfolding M
  proof (intro ST.KL_density_density_nonneg)
    show "prob_space (density (S M T) (λx. ennreal (Pxy x))) "
      unfolding distributed_distr_eq_density[OF Pxy, symmetric]
      using distributed_measurable[OF Pxy] by (rule prob_space_distr)
    show "prob_space (density (S M T) (λx. ennreal (Px (fst x) * Py (snd x))))"
      unfolding distr_eq[symmetric] by unfold_locales
    show "integrable (S M T) (λx. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))"
      using int unfolding f_def .
  qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure)
qed

lemma (in information_space)
  fixes Pxy :: "'b × 'c  real" and Px :: "'b  real" and Py :: "'c  real"
  assumes "sigma_finite_measure S" "sigma_finite_measure T"
  assumes Px: "distributed M S X Px" and Px_nn: "x. x  space S  0  Px x"
    and Py: "distributed M T Y Py" and Py_nn: "y. y  space T  0  Py y"
    and Pxy: "distributed M (S M T) (λx. (X x, Y x)) Pxy"
    and Pxy_nn: "x y. x  space S  y  space T  0  Pxy (x, y)"
  defines "f  λx. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))"
  shows mutual_information_distr: "mutual_information b S T X Y = integralL (S M T) f" (is "?M = ?R")
    and mutual_information_nonneg: "integrable (S M T) f  0  mutual_information b S T X Y"
proof -
  have X[measurable]: "random_variable S X"
    using Px by (auto simp: distributed_def)
  have Y[measurable]: "random_variable T Y"
    using Py by (auto simp: distributed_def)
  have [measurable]: "Px  S M borel"
    using Px Px_nn by (intro distributed_real_measurable)
  have [measurable]: "Py  T M borel"
    using Py Py_nn by (intro distributed_real_measurable)
  have measurable_Pxy[measurable]: "Pxy  (S M T) M borel"
    using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)

  interpret S: sigma_finite_measure S by fact
  interpret T: sigma_finite_measure T by fact
  interpret ST: pair_sigma_finite S T ..
  interpret X: prob_space "distr M S X" using X by (rule prob_space_distr)
  interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr)
  interpret XY: pair_prob_space "distr M S X" "distr M T Y" ..
  let ?P = "S M T"
  let ?D = "distr M ?P (λx. (X x, Y x))"

  { fix A assume "A  sets S"
    with X[THEN measurable_space] Y[THEN measurable_space]
    have "emeasure (distr M S X) A = emeasure ?D (A × space T)"
      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
  note marginal_eq1 = this
  { fix A assume "A  sets T"
    with X[THEN measurable_space] Y[THEN measurable_space]
    have "emeasure (distr M T Y) A = emeasure ?D (space S × A)"
      by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) }
  note marginal_eq2 = this

  have distr_eq: "distr M S X M distr M T Y = density ?P (λx. ennreal (Px (fst x) * Py (snd x)))"
    unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density]
  proof (subst pair_measure_density)
    show "(λx. ennreal (Px x))  borel_measurable S" "(λy. ennreal (Py y))  borel_measurable T"
      using Px Py by (auto simp: distributed_def)
    show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] ..
    show "density (S M T) (λ(x, y). ennreal (Px x) * ennreal (Py y)) =
      density (S M T) (λx. ennreal (Px (fst x) * Py (snd x)))"
      using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure)
  qed fact

  have M: "?M = KL_divergence b (density ?P (λx. ennreal (Px (fst x) * Py (snd x)))) (density ?P (λx. ennreal (Pxy x)))"
    unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] ..

  from Px Py have f: "(λx. Px (fst x) * Py (snd x))  borel_measurable ?P"
    by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'')
  have PxPy_nonneg: "AE x in ?P. 0  Px (fst x) * Py (snd x)"
    using Px_nn Py_nn by (auto simp: space_pair_measure)

  have "(AE x in ?P. Px (fst x) = 0  Pxy x = 0)"
    by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure)
  moreover
  have "(AE x in ?P. Py (snd x) = 0  Pxy x = 0)"
    by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure)
  ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0  Pxy x = 0"
    by auto

  show "?M = ?R"
    unfolding M f_def
    using b_gt_1 f PxPy_nonneg ac Pxy_nn
    by (intro ST.KL_density_density) (auto simp: space_pair_measure)

  assume int: "integrable (S M T) f"
  show "0  ?M" unfolding M
  proof (intro ST.KL_density_density_nonneg)
    show "prob_space (density (S M T) (λx. ennreal (Pxy x))) "
      unfolding distributed_distr_eq_density[OF Pxy, symmetric]
      using distributed_measurable[OF Pxy] by (rule prob_space_distr)
    show "prob_space (density (S M T) (λx. ennreal (Px (fst x) * Py (snd x))))"
      unfolding distr_eq[symmetric] by unfold_locales
    show "integrable (S M T) (λx. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))"
      using int unfolding f_def .
  qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure)
qed

lemma (in information_space)
  fixes Pxy :: "'b × 'c  real" and Px :: "'b  real" and Py :: "'c  real"
  assumes "sigma_finite_measure S" "sigma_finite_measure T"
  assumes Px[measurable]: "distributed M S X Px" and Px_nn: "x. x  space S  0  Px x"
    and Py[measurable]: "distributed M T Y Py" and Py_nn:  "x. x  space T  0  Py x"
    and Pxy[measurable]: "distributed M (S M T) (λx. (X x, Y x)) Pxy"
    and Pxy_nn: "x. x  space (S M T)  0  Pxy x"
  assumes ae: "AE x in S. AE y in T. Pxy (x, y) = Px x * Py y"
  shows mutual_information_eq_0: "mutual_information b S T X Y = 0"
proof -
  interpret S: sigma_finite_measure S by fact
  interpret T: sigma_finite_measure T by fact
  interpret ST: pair_sigma_finite S T ..
  note
    distributed_real_measurable[OF Px_nn Px, measurable]
    distributed_real_measurable[OF Py_nn Py, measurable]
    distributed_real_measurable[OF Pxy_nn Pxy, measurable]

  have "AE x in S M T. Px (fst x) = 0  Pxy x = 0"
    by (rule subdensity_real[OF measurable_fst Pxy Px]) (auto simp: Px_nn Pxy_nn space_pair_measure)
  moreover
  have "AE x in S M T. Py (snd x) = 0  Pxy x = 0"
    by (rule subdensity_real[OF measurable_snd Pxy Py]) (auto simp: Py_nn Pxy_nn space_pair_measure)
  moreover
  have "AE x in S M T. Pxy x = Px (fst x) * Py (snd x)"
    by (intro ST.AE_pair_measure) (auto simp: ae intro!: measurable_snd'' measurable_fst'')
  ultimately have "AE x in S M T. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) = 0"
    by eventually_elim simp
  then have "(x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) (S M T)) = (x. 0 (S M T))"
    by (intro integral_cong_AE) auto
  then show ?thesis
    by (subst mutual_information_distr[OF assms(1-8)]) (auto simp add: space_pair_measure)
qed

lemma (in information_space) mutual_information_simple_distributed:
  assumes X: "simple_distributed M X Px" and Y: "simple_distributed M Y Py"
  assumes XY: "simple_distributed M (λx. (X x, Y x)) Pxy"
  shows "ℐ(X ; Y) = ((x, y)(λx. (X x, Y x))`space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))"
proof (subst mutual_information_distr[OF _ _ simple_distributed[OF X] _ simple_distributed[OF Y] _ simple_distributed_joint[OF XY]])
  note fin = simple_distributed_joint_finite[OF XY, simp]
  show "sigma_finite_measure (count_space (X ` space M))"
    by (simp add: sigma_finite_measure_count_space_finite)
  show "sigma_finite_measure (count_space (Y ` space M))"
    by (simp add: sigma_finite_measure_count_space_finite)
  let ?Pxy = "λx. (if x  (λx. (X x, Y x)) ` space M then Pxy x else 0)"
  let ?f = "λx. ?Pxy x * log b (?Pxy x / (Px (fst x) * Py (snd x)))"
  have "x. ?f x = (if x  (λx. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) else 0)"
    by auto
  with fin show "( x. ?f x (count_space (X ` space M) M count_space (Y ` space M))) =
    ((x, y)(λx. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))"
    by (auto simp add: pair_measure_count_space lebesgue_integral_count_space_finite sum.If_cases split_beta'
             intro!: sum.cong)
qed (insert X Y XY, auto simp: simple_distributed_def)

lemma (in information_space)
  fixes Pxy :: "'b × 'c  real" and Px :: "'b  real" and Py :: "'c  real"
  assumes Px: "simple_distributed M X Px" and Py: "simple_distributed M Y Py"
  assumes Pxy: "simple_distributed M (λx. (X x, Y x)) Pxy"
  assumes ae: "xspace M. Pxy (X x, Y x) = Px (X x) * Py (Y x)"
  shows mutual_information_eq_0_simple: "ℐ(X ; Y) = 0"
proof (subst mutual_information_simple_distributed[OF Px Py Pxy])
  have "((x, y)(λx. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) =
    ((x, y)(λx. (X x, Y x)) ` space M. 0)"
    by (intro sum.cong) (auto simp: ae)
  then show "((x, y)(λx. (X x, Y x)) ` space M.
    Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = 0" by simp
qed

subsection ‹Entropy›

definition (in prob_space) entropy :: "real  'b measure  ('a  'b)  real" where
  "entropy b S X = - KL_divergence b S (distr M S X)"

abbreviation (in information_space)
  entropy_Pow ("ℋ'(_')") where
  "ℋ(X)  entropy b (count_space (X`space M)) X"

lemma (in prob_space) distributed_RN_deriv:
  assumes X: "distributed M S X Px"
  shows "AE x in S. RN_deriv S (density S Px) x = Px x"
proof -
  have "distributed M S X (RN_deriv S (density S Px))"
    by (metis RN_derivI assms borel_measurable_RN_deriv distributed_def)
  then show ?thesis
    using assms distributed_unique by blast
qed

lemma (in information_space)
  fixes X :: "'a  'b"
  assumes X[measurable]: "distributed M MX X f" and nn: "x. x  space MX  0  f x"
  shows entropy_distr: "entropy b MX X = - (x. f x * log b (f x) MX)" (is ?eq)
proof -
  note D = distributed_measurable[OF X] distributed_borel_measurable[OF X]
  note ae = distributed_RN_deriv[OF X]
  note distributed_real_measurable[OF nn X, measurable]

  have ae_eq: "AE x in distr M MX X. log b (enn2real (RN_deriv MX (distr M MX X) x)) = log b (f x)"
    unfolding distributed_distr_eq_density[OF X]
    using D ae by (auto simp: AE_density)

  have int_eq: "( x. f x * log b (f x) MX) = ( x. log b (f x) distr M MX X)"
    unfolding distributed_distr_eq_density[OF X]
    using D
    by (subst integral_density) (auto simp: nn)

  show ?eq
    unfolding entropy_def KL_divergence_def entropy_density_def comp_def int_eq neg_equal_iff_equal
    using ae_eq by (intro integral_cong_AE) (auto simp: nn)
qed

lemma (in information_space) entropy_le:
  fixes Px :: "'b  real" and MX :: "'b measure"
  assumes X[measurable]: "distributed M MX X Px" and Px_nn[simp]: "x. x  space MX  0  Px x"
  and fin: "emeasure MX {x  space MX. Px x  0}  top"
  and int: "integrable MX (λx. - Px x * log b (Px x))"
  shows "entropy b MX X  log b (measure MX {x  space MX. Px x  0})"
proof -
  note Px = distributed_borel_measurable[OF X]
  interpret X: prob_space "distr M MX X"
    using distributed_measurable[OF X] by (rule prob_space_distr)

  have " - log b (measure MX {x  space MX. Px x  0}) =
    - log b ( x. indicator {x  space MX. Px x  0} x MX)"
    using Px Px_nn fin by (auto simp: measure_def)
  also have "- log b ( x. indicator {x  space MX. Px x  0} x MX) = - log b ( x. 1 / Px x distr M MX X)"
  proof -
    have "integralL MX (indicator {x  space MX. Px x  0}) = LINT x|MX. Px x *R (1 / Px x)"
      by (rule Bochner_Integration.integral_cong) auto
    also have "... = LINT x|density MX (λx. ennreal (Px x)). 1 / Px x"
      by (rule integral_density [symmetric]) (use Px Px_nn in auto)
    finally show ?thesis
      unfolding distributed_distr_eq_density[OF X] by simp
  qed
  also have "  ( x. - log b (1 / Px x) distr M MX X)"
  proof (rule X.jensens_inequality[of "λx. 1 / Px x" "{0<..}" 0 1 "λx. - log b x"])
    show "AE x in distr M MX X. 1 / Px x  {0<..}"
      unfolding distributed_distr_eq_density[OF X]
      using Px by (auto simp: AE_density)
    have [simp]: "x. x  space MX  ennreal (if Px x = 0 then 0 else 1) = indicator {x  space MX. Px x  0} x"
      by (auto simp: one_ennreal_def)
    have "(+ x. ennreal (- (if Px x = 0 then 0 else 1)) MX) = (+ x. 0 MX)"
      by (intro nn_integral_cong) (auto simp: ennreal_neg)
    then show "integrable (distr M MX X) (λx. 1 / Px x)"
      unfolding distributed_distr_eq_density[OF X] using Px
      by (auto simp: nn_integral_density real_integrable_def fin ennreal_neg ennreal_mult[symmetric]
              cong: nn_integral_cong)
    have "integrable MX (λx. Px x * log b (1 / Px x)) =
      integrable MX (λx. - Px x * log b (Px x))"
      using Px
      by (intro integrable_cong_AE) (auto simp: log_divide_eq less_le)
    then show "integrable (distr M MX X) (λx. - log b (1 / Px x))"
      unfolding distributed_distr_eq_density[OF X]
      using Px int
      by (subst integrable_real_density) auto
  qed (auto simp: minus_log_convex[OF b_gt_1])
  also have " = ( x. log b (Px x) distr M MX X)"
    unfolding distributed_distr_eq_density[OF X] using Px
    by (intro integral_cong_AE) (auto simp: AE_density log_divide_eq)
  also have " = - entropy b MX X"
    unfolding distributed_distr_eq_density[OF X] using Px
    by (subst entropy_distr[OF X]) (auto simp: integral_density)
  finally show ?thesis
    by simp
qed

lemma (in information_space) entropy_le_space:
  fixes Px :: "'b  real" and MX :: "'b measure"
  assumes X: "distributed M MX X Px" and Px_nn[simp]: "x. x  space MX  0  Px x"
  and fin: "finite_measure MX"
  and int: "integrable MX (λx. - Px x * log b (Px x))"
  shows "entropy b MX X  log b (measure MX (space MX))"
proof -
  note Px = distributed_borel_measurable[OF X]
  interpret finite_measure MX by fact
  have "entropy b MX X  log b (measure MX {x  space MX. Px x  0})"
    using int X by (intro entropy_le) auto
  also have "  log b (measure MX (space MX))"
    using Px distributed_imp_emeasure_nonzero[OF X]
    by (intro log_le)
       (auto intro!: finite_measure_mono b_gt_1 less_le[THEN iffD2]
             simp: emeasure_eq_measure cong: conj_cong)
  finally show ?thesis .
qed

lemma (in information_space) entropy_uniform:
  assumes X: "distributed M MX X (λx. indicator A x / measure MX A)" (is "distributed _ _ _ ?f")
  shows "entropy b MX X = log b (measure MX A)"
proof (subst entropy_distr[OF X])
  have [simp]: "emeasure MX A  "
    using uniform_distributed_params[OF X] by (auto simp add: measure_def)
  have eq: "( x. indicator A x / measure MX A * log b (indicator A x / measure MX A) MX) =
    ( x. (- log b (measure MX A) / measure MX A) * indicator A x MX)"
    using uniform_distributed_params[OF X]
    by (intro Bochner_Integration.integral_cong) (auto split: split_indicator simp: log_divide_eq zero_less_measure_iff)
  show "- ( x. indicator A x / measure MX A * log b (indicator A x / measure MX A) MX) =
    log b (measure MX A)"
    unfolding eq using uniform_distributed_params[OF X]
    by (subst Bochner_Integration.integral_mult_right) (auto simp: measure_def less_top[symmetric] intro!: integrable_real_indicator)
qed simp

lemma (in information_space) entropy_simple_distributed:
  "simple_distributed M X f  ℋ(X) = - (xX`space M. f x * log b (f x))"
  by (subst entropy_distr[OF simple_distributed])
     (auto simp add: lebesgue_integral_count_space_finite)

lemma (in information_space) entropy_le_card_not_0:
  assumes X: "simple_distributed M X f"
  shows "ℋ(X)  log b (card (X ` space M  {x. f x  0}))"
proof -
  let ?X = "count_space (X`space M)"
  have "ℋ(X)  log b (measure ?X {x  space ?X. f x  0})"
    by (rule entropy_le[OF simple_distributed[OF X]])
       (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space)
  also have "measure ?X {x  space ?X. f x  0} = card (X ` space M  {x. f x  0})"
    by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def Int_def)
  finally show ?thesis .
qed

lemma (in information_space) entropy_le_card:
  assumes X: "simple_distributed M X f"
  shows "ℋ(X)  log b (real (card (X ` space M)))"
proof -
  let ?X = "count_space (X`space M)"
  have "ℋ(X)  log b (measure ?X (space ?X))"
    by (rule entropy_le_space[OF simple_distributed[OF X]])
       (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space finite_measure_count_space)
  also have "measure ?X (space ?X) = card (X ` space M)"
    by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def)
  finally show ?thesis .
qed

subsection ‹Conditional Mutual Information›

definition (in prob_space)
  "conditional_mutual_information b MX MY MZ X Y Z 
    mutual_information b MX (MY M MZ) X (λx. (Y x, Z x)) -
    mutual_information b MX MZ X Z"

abbreviation (in information_space)
  conditional_mutual_information_Pow ("ℐ'( _ ; _ | _ ')") where
  "ℐ(X ; Y | Z)  conditional_mutual_information b
    (count_space (X ` space M)) (count_space (Y ` space M)) (count_space (Z ` space M)) X Y Z"

lemma (in information_space)
  assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P"
  assumes Px[measurable]: "distributed M S X Px"
    and Px_nn[simp]: "x. x  space S  0  Px x"
  assumes Pz[measurable]: "distributed M P Z Pz"
    and Pz_nn[simp]: "z. z  space P  0  Pz z"
  assumes Pyz[measurable]: "distributed M (T M P) (λx. (Y x, Z x)) Pyz"
    and Pyz_nn[simp]: "y z. y  space T  z  space P  0  Pyz (y, z)"
  assumes Pxz[measurable]: "distributed M (S M P) (λx. (X x, Z x)) Pxz"
    and Pxz_nn[simp]: "x z. x  space S  z  space P  0  Pxz (x, z)"
  assumes Pxyz[measurable]: "distributed M (S M T M P) (λx. (X x, Y x, Z x)) Pxyz"
    and Pxyz_nn[simp]: "x y z. x  space S  y  space T  z  space P  0  Pxyz (x, y, z)"
  assumes I1: "integrable (S M T M P) (λ(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))"
  assumes I2: "integrable (S M T M P) (λ(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))"
  shows conditional_mutual_information_generic_eq: "conditional_mutual_information b S T P X Y Z
    = ((x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) (S M T M P))" (is "?eq")
    and conditional_mutual_information_generic_nonneg: "0  conditional_mutual_information b S T P X Y Z" (is "?nonneg")
proof -
  have [measurable]: "Px  S M borel"
    using Px Px_nn by (intro distributed_real_measurable)
  have [measurable]: "Pz  P M borel"
    using Pz Pz_nn by (intro distributed_real_measurable)
  have measurable_Pyz[measurable]: "Pyz  (T M P) M borel"
    using Pyz Pyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
  have measurable_Pxz[measurable]: "Pxz  (S M P) M borel"
    using Pxz Pxz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)
  have measurable_Pxyz[measurable]: "Pxyz  (S M T M P) M borel"
    using Pxyz Pxyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure)

  interpret S: sigma_finite_measure S by fact
  interpret T: sigma_finite_measure T by fact
  interpret P: sigma_finite_measure P by fact
  interpret TP: pair_sigma_finite T P ..
  interpret SP: pair_sigma_finite S P ..
  interpret ST: pair_sigma_finite S T ..
  interpret SPT: pair_sigma_finite "S M P" T ..
  interpret STP: pair_sigma_finite S "T M P" ..
  interpret TPS: pair_sigma_finite "T M P" S ..
  have TP: "sigma_finite_measure (T M P)" ..
  have SP: "sigma_finite_measure (S M P)" ..
  have YZ: "random_variable (T M P) (λx. (Y x, Z x))"
    using Pyz by (simp add: distributed_measurable)

  from Pxz Pxyz have distr_eq: "distr M (S M P) (λx. (X x, Z x)) =
    distr (distr M (S M T M P) (λx. (X x, Y x, Z x))) (S M P) (λ(x, y, z). (x, z))"
    by (simp add: comp_def distr_distr)

  have "mutual_information b S P X Z =
    (x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) (S M P))"
    by (rule mutual_information_distr[OF S P Px Px_nn Pz Pz_nn Pxz Pxz_nn])
  also have " = ((x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) (S M T M P))"
    using b_gt_1 Pxz Px Pz
    by (subst distributed_transform_integral[OF Pxyz _ Pxz _, where T="λ(x, y, z). (x, z)"])
       (auto simp: split_beta' space_pair_measure)
  finally have mi_eq:
    "mutual_information b S P X Z = ((x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) (S M T M P))" .

  have ae1: "AE x in S M T M P. Px (fst x) = 0  Pxyz x = 0"
    by (intro subdensity_real[of fst, OF _ Pxyz Px]) (auto simp: space_pair_measure)
  moreover have ae2: "AE x in S M T M P. Pz (snd (snd x)) = 0  Pxyz x = 0"
    by (intro subdensity_real[of "λx. snd (snd x)", OF _ Pxyz Pz]) (auto simp: space_pair_measure)
  moreover have ae3: "AE x in S M T M P. Pxz (fst x, snd (snd x)) = 0  Pxyz x = 0"
    by (intro subdensity_real[of "λx. (fst x, snd (snd x))", OF _ Pxyz Pxz]) (auto simp: space_pair_measure)
  moreover have ae4: "AE x in S M T M P. Pyz (snd x) = 0  Pxyz x = 0"
    by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) (auto simp: space_pair_measure)
  ultimately have ae: "AE x in S M T M P.
    Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) -
    Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) =
    Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) "
    using AE_space
  proof eventually_elim
    case (elim x)
    show ?case
    proof cases
      assume "Pxyz x  0"
      with elim have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))"
        "0 < Pyz (snd x)" "0 < Pxyz x"
        by (auto simp: space_pair_measure less_le)
      then show ?thesis
        using b_gt_1 by (simp add: log_simps less_imp_le field_simps)
    qed simp
  qed
  with I1 I2 show ?eq
    unfolding conditional_mutual_information_def
    apply (subst mi_eq)
    apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz _ Pxyz])
    apply (auto simp: space_pair_measure)
    apply (subst Bochner_Integration.integral_diff[symmetric])
    apply (auto intro!: integral_cong_AE simp: split_beta' simp del: Bochner_Integration.integral_diff)
    done

  let ?P = "density (S M T M P) Pxyz"
  interpret P: prob_space ?P
    unfolding distributed_distr_eq_density[OF Pxyz, symmetric]
    by (rule prob_space_distr) simp

  let ?Q = "density (T M P) Pyz"
  interpret Q: prob_space ?Q
    unfolding distributed_distr_eq_density[OF Pyz, symmetric]
    by (rule prob_space_distr) simp

  let ?f = "λ(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)"

  from subdensity_real[of snd, OF _ Pyz Pz _ AE_I2 AE_I2]
  have aeX1: "AE x in T M P. Pz (snd x) = 0  Pyz x = 0"
    by (auto simp: comp_def space_pair_measure)
  have aeX2: "AE x in T M P. 0  Pz (snd x)"
    using Pz by (intro TP.AE_pair_measure) (auto simp: comp_def)

  have aeX3: "AE y in T M P. (+ x. ennreal (Pxz (x, snd y)) S) = ennreal (Pz (snd y))"
    using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz]
    by (intro TP.AE_pair_measure) auto

  have "(+ x. ?f x ?P)  (+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) (S M T M P))"
    by (subst nn_integral_density)
       (auto intro!: nn_integral_mono simp: space_pair_measure ennreal_mult[symmetric])
  also have " = (+(y, z). (+ x. ennreal (Pxz (x, z)) * ennreal (Pyz (y, z) / Pz z) S) (T M P))"
    by (subst STP.nn_integral_snd[symmetric])
       (auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong)
  also have " = (+x. ennreal (Pyz x) * 1 T M P)"
  proof -
    have D: "(+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) S) = ennreal (Pyz (a, b))"
      if "Pz b = 0  Pyz (a, b) = 0" "a  space T  b  space P"
        "(+ x. ennreal (Pxz (x, b)) S) = ennreal (Pz b)"
      for a b
      using that by (subst nn_integral_multc) (auto split: prod.split simp: ennreal_mult[symmetric])
    show ?thesis
      apply (rule nn_integral_cong_AE)
      using aeX1 aeX2 aeX3 
      by (force simp add: space_pair_measure D)
  qed
  also have " = 1"
    using Q.emeasure_space_1 distributed_distr_eq_density[OF Pyz]
    by (subst nn_integral_density[symmetric]) auto
  finally have le1: "(+ x. ?f x ?P)  1" .
  also have " < " by simp
  finally have fin: "(+ x. ?f x ?P)  " by simp

  have pos: "(+x. ?f x ?P)  0"
    apply (subst nn_integral_density)
    apply (simp_all add: split_beta')
  proof
    let ?g = "λx. ennreal (Pxyz x) * (Pxz (fst x, snd (snd x)) * Pyz (snd x) / (Pz (snd (snd x)) * Pxyz x))"
    assume "(+x. ?g x (S M T M P)) = 0"
    then have "AE x in S M T M P. ?g x = 0"
      by (intro nn_integral_0_iff_AE[THEN iffD1]) auto
    then have "AE x in S M T M P. Pxyz x = 0"
      using ae1 ae2 ae3 ae4 
      by (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure)
    then have "(+ x. ennreal (Pxyz x) S M T M P) = 0"
      by (subst nn_integral_cong_AE[of _ "λx. 0"]) auto
    with P.emeasure_space_1 show False
      by (subst (asm) emeasure_density) (auto cong: nn_integral_cong)
  qed

  have neg: "(+ x. - ?f x ?P) = 0"
    by (subst nn_integral_0_iff_AE) (auto simp: space_pair_measure ennreal_neg)

  have I3: "integrable (S M T M P) (λ(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"
    apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ Bochner_Integration.integrable_diff[OF I1 I2]])
    using ae
    apply (auto simp: split_beta')
    done

  have "- log b 1  - log b (integralL ?P ?f)"
  proof (intro le_imp_neg_le log_le[OF b_gt_1])
    have If: "integrable ?P ?f"
      unfolding real_integrable_def
    proof (intro conjI)
      from neg show "(+ x. - ?f x ?P)  "
        by simp
      from fin show "(+ x. ?f x ?P)  "
        by simp
    qed simp
    then have "(+ x. ?f x ?P) = (x. ?f x ?P)"
      apply (rule nn_integral_eq_integral)
      apply (auto simp: space_pair_measure ennreal_neg)
      done
    with pos le1
    show "0 < (x. ?f x ?P)" "(x. ?f x ?P)  1"
      by (simp_all add: one_ennreal.rep_eq zero_less_iff_neq_zero[symmetric])
  qed
  also have "- log b (integralL ?P ?f)  ( x. - log b (?f x) ?P)"
  proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
    show "AE x in ?P. ?f x  {0<..}"
      unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]]
      using ae1 ae2 ae3 ae4 
      by (auto simp: space_pair_measure less_le)
    show "integrable ?P ?f"
      unfolding real_integrable_def
      using fin neg by (auto simp: split_beta')
    have "integrable (S M T M P) (λx. Pxyz x *