Theory Cauchy_Integral_Formula

section ‹Cauchy's Integral Formula›
theory Cauchy_Integral_Formula
  imports Winding_Numbers
begin

subsection‹Proof›

lemma Cauchy_integral_formula_weak:
    assumes S: "convex S" and "finite k" and conf: "continuous_on S f"
        and fcd: "(x. x  interior S - k  f field_differentiable at x)"
        and z: "z  interior S - k" and vpg: "valid_path γ"
        and pasz: "path_image γ  S - {z}" and loop: "pathfinish γ = pathstart γ"
      shows "((λw. f w / (w - z)) has_contour_integral (2*pi * 𝗂 * winding_number γ z * f z)) γ"
proof -
  let ?fz = "λw. (f w - f z)/(w - z)"
  obtain f' where f': "(f has_field_derivative f') (at z)"
    using fcd [OF z] by (auto simp: field_differentiable_def)
  have pas: "path_image γ  S" and znotin: "z  path_image γ" using pasz by blast+
  have c: "continuous (at x within S) (λw. if w = z then f' else (f w - f z) / (w - z))" if "x  S" for x
  proof (cases "x = z")
    case True then show ?thesis
      using LIM_equal [of "z" ?fz "λw. if w = z then f' else ?fz w"] has_field_derivativeD [OF f'] 
      by (force simp add: continuous_within Lim_at_imp_Lim_at_within)
  next
    case False
    then have dxz: "dist x z > 0" by auto
    have cf: "continuous (at x within S) f"
      using conf continuous_on_eq_continuous_within that by blast
    have "continuous (at x within S) (λw. (f w - f z) / (w - z))"
      by (rule cf continuous_intros | simp add: False)+
    then show ?thesis
      using continuous_transform_within [OF _ dxz that] by (force simp: dist_commute)
  qed
  have fink': "finite (insert z k)" using finite k by blast
  have *: "((λw. if w = z then f' else ?fz w) has_contour_integral 0) γ"
  proof (rule Cauchy_theorem_convex [OF _ S fink' _ vpg pas loop])
    show "(λw. if w = z then f' else ?fz w) field_differentiable at w" 
      if "w  interior S - insert z k" for w
    proof (rule field_differentiable_transform_within)
      show "(λw. ?fz w) field_differentiable at w"
        using that by (intro derivative_intros fcd; simp)
    qed (use that in auto simp add: dist_pos_lt dist_commute)
  qed (use c in force simp: continuous_on_eq_continuous_within)
  show ?thesis
    apply (rule has_contour_integral_eq)
    using znotin has_contour_integral_add [OF has_contour_integral_lmul [OF has_contour_integral_winding_number [OF vpg znotin], of "f z"] *]
    apply (auto simp: ac_simps divide_simps)
    done
qed

theorem Cauchy_integral_formula_convex_simple:
  assumes "convex S" and holf: "f holomorphic_on S" and "z  interior S" "valid_path γ" "path_image γ  S - {z}"
      "pathfinish γ = pathstart γ"
    shows "((λw. f w / (w - z)) has_contour_integral (2*pi * 𝗂 * winding_number γ z * f z)) γ"
proof -
  have "x. x  interior S  f field_differentiable at x"
    using holf at_within_interior holomorphic_onD interior_subset by fastforce
  then show ?thesis
    using assms
    by (intro Cauchy_integral_formula_weak [where k = "{}"]) (auto simp: holomorphic_on_imp_continuous_on)
qed

text‹ Hence the Cauchy formula for points inside a circle.›

theorem Cauchy_integral_circlepath:
  assumes contf: "continuous_on (cball z r) f" and holf: "f holomorphic_on (ball z r)" and wz: "norm(w - z) < r"
  shows "((λu. f u/(u - w)) has_contour_integral (2 * of_real pi * 𝗂 * f w))
         (circlepath z r)"
proof -
  have "r > 0"
    using assms le_less_trans norm_ge_zero by blast
  have "((λu. f u / (u - w)) has_contour_integral (2 * pi) * 𝗂 * winding_number (circlepath z r) w * f w)
        (circlepath z r)"
  proof (rule Cauchy_integral_formula_weak [where S = "cball z r" and k = "{}"])
    show "x. x  interior (cball z r) - {} 
         f field_differentiable at x"
      using holf holomorphic_on_imp_differentiable_at by auto
    have "w  sphere z r"
      by simp (metis dist_commute dist_norm not_le order_refl wz)
    then show "path_image (circlepath z r)  cball z r - {w}"
      using r > 0 by (auto simp add: cball_def sphere_def)
  qed (use wz in simp_all add: dist_norm norm_minus_commute contf)
  then show ?thesis
    by (simp add: winding_number_circlepath assms)
qed

corollarytag unimportant› Cauchy_integral_circlepath_simple:
  assumes "f holomorphic_on cball z r" "norm(w - z) < r"
  shows "((λu. f u/(u - w)) has_contour_integral (2 * of_real pi * 𝗂 * f w))
         (circlepath z r)"
using assms by (force simp: holomorphic_on_imp_continuous_on holomorphic_on_subset Cauchy_integral_circlepath)

subsectiontag unimportant› ‹General stepping result for derivative formulas›

lemma Cauchy_next_derivative:
  assumes "continuous_on (path_image γ) f'"
      and leB: "t. t  {0..1}  norm (vector_derivative γ (at t))  B"
      and int: "w. w  S - path_image γ  ((λu. f' u / (u - w)^k) has_contour_integral f w) γ"
      and k: "k  0"
      and "open S"
      and γ: "valid_path γ"
      and w: "w  S - path_image γ"
    shows "(λu. f' u / (u - w)^(Suc k)) contour_integrable_on γ"
      and "(f has_field_derivative (k * contour_integral γ (λu. f' u/(u - w)^(Suc k))))
           (at w)"  (is "?thes2")
proof -
  have "open (S - path_image γ)" using open S closed_valid_path_image γ by blast
  then obtain d where "d>0" and d: "ball w d  S - path_image γ" using w
    using open_contains_ball by blast
  have [simp]: "n. cmod (1 + of_nat n) = 1 + of_nat n"
    by (metis norm_of_nat of_nat_Suc)
  have cint: "(λz. (f' z / (z - x) ^ k - f' z / (z - w) ^ k) / (x * k - w * k)) contour_integrable_on γ"
    if "x  w" "cmod (x - w) < d" for x
  proof -
    have "x  S - path_image γ"
      by (metis d dist_commute dist_norm mem_ball subsetD that(2))
    then show ?thesis
      using contour_integrable_diff contour_integrable_div contour_integrable_on_def int w
      by meson
  qed
  have 1: "F n in at w. (λx. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k)
                         contour_integrable_on γ"
    unfolding eventually_at
    apply (rule_tac x=d in exI)
    apply (simp add: d > 0 dist_norm field_simps cint)
    done
  have bim_g: "bounded (image f' (path_image γ))"
    by (simp add: compact_imp_bounded compact_continuous_image compact_valid_path_image assms)
  then obtain C where "C > 0" and C: "x. 0  x; x  1  cmod (f' (γ x))  C"
    by (force simp: bounded_pos path_image_def)
  have twom: "F n in at w.
               xpath_image γ.
                cmod ((inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k - inverse (x - w) ^ Suc k) < e"
         if "0 < e" for e
  proof -
    have *: "cmod ((inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k) - inverse (x - w) ^ Suc k)   < e"
            if x: "x  path_image γ" and "u  w" and uwd: "cmod (u - w) < d/2"
                and uw_less: "cmod (u - w) < e * (d/2) ^ (k+2) / (1 + real k)"
            for u x
    proof -
      define ff where [abs_def]:
        "ff n w =
          (if n = 0 then inverse(x - w)^k
           else if n = 1 then k / (x - w)^(Suc k)
           else (k * of_real(Suc k)) / (x - w)^(k + 2))" for n :: nat and w
      have km1: "z::complex. z  0  z ^ (k - Suc 0) = z ^ k / z"
        by (simp add: field_simps) (metis Suc_pred k  0 neq0_conv power_Suc)
      have ff1: "(ff i has_field_derivative ff (Suc i) z) (at z within ball w (d/2))"
              if "z  ball w (d/2)" "i  1" for i z
      proof -
        have "z  path_image γ"
          using x  path_image γ d that ball_divide_subset_numeral by blast
        then have xz[simp]: "x  z" using x  path_image γ by blast
        then have neq: "x * x + z * z  x * (z * 2)"
          by (blast intro: dest!: sum_sqs_eq)
        with xz have "v. v  0  (x * x + z * z) * v  (x * (z * 2) * v)" by auto
        then have neqq: "v. v  0  x * (x * v) + z * (z * v)  x * (z * (2 * v))"
          by (simp add: algebra_simps)
        show ?thesis using i  1
          apply (simp add: ff_def dist_norm Nat.le_Suc_eq km1, safe)
          apply (rule derivative_eq_intros | simp add: km1 | simp add: field_simps neq neqq)+
          done
      qed
      { fix a::real and b::real assume ab: "a > 0" "b > 0"
        then have "k * (1 + real k) * (1 / a)  k * (1 + real k) * (4 / b)  b  4 * a"
          by (subst mult_le_cancel_left_pos)
            (use k  0 in auto simp: divide_simps)
        with ab have "real k * (1 + real k) / a  (real k * 4 + real k * real k * 4) / b  b  4 * a"
          by (simp add: field_simps)
      } note canc = this
      have ff2: "cmod (ff (Suc 1) v)  real (k * (k + 1)) / (d/2) ^ (k + 2)"
                if "v  ball w (d/2)" for v
      proof -
        have lessd: "z. cmod (γ z - v) < d/2  cmod (w - γ z) < d"
          by (metis that norm_minus_commute norm_triangle_half_r dist_norm mem_ball)
        have "d/2  cmod (x - v)" using d x that
          using lessd d x
          by (auto simp add: dist_norm path_image_def ball_def not_less [symmetric] del: divide_const_simps)
        then have "d  cmod (x - v) * 2"
          by (simp add: field_split_simps)
        then have dpow_le: "d ^ (k+2)  (cmod (x - v) * 2) ^ (k+2)"
          using 0 < d order_less_imp_le power_mono by blast
        have "x  v" using that
          using x  path_image γ ball_divide_subset_numeral d by fastforce
        then show ?thesis
        using d > 0 apply (simp add: ff_def norm_mult norm_divide norm_power dist_norm canc)
        using dpow_le apply (simp add: field_split_simps)
        done
      qed
      have ub: "u  ball w (d/2)"
        using uwd by (simp add: dist_commute dist_norm)
      have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
                   (real k * 4 + real k * real k * 4) * (cmod (u - w) * cmod (u - w)) / (d * (d * (d/2) ^ k))"
        using complex_Taylor [OF _ ff1 ff2 _ ub, of w, simplified]
        by (simp add: ff_def 0 < d)
      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
                   (cmod (u - w) * real k) * (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
        by (simp add: field_simps)
      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
                 / (cmod (u - w) * real k)
                   (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
        using k  0 u  w by (simp add: mult_ac zero_less_mult_iff pos_divide_le_eq)
      also have " < e"
        using uw_less 0 < d by (simp add: mult_ac divide_simps)
      finally have e: "cmod (inverse (x-u)^k - (inverse (x-w)^k + of_nat k * (u-w) / ((x-w) * (x-w)^k)))
                        / cmod ((u - w) * real k)   <   e"
        by (simp add: norm_mult)
      have "x  u"
        using uwd 0 < d x d by (force simp: dist_norm ball_def norm_minus_commute)
      show ?thesis
        apply (rule le_less_trans [OF _ e])
        using k  0 x  u u  w
        apply (simp add: field_simps norm_divide [symmetric])
        done
    qed
    show ?thesis
      unfolding eventually_at
      apply (rule_tac x = "min (d/2) ((e*(d/2)^(k + 2))/(Suc k))" in exI)
      apply (force simp: d > 0 dist_norm that simp del: power_Suc intro: *)
      done
  qed
  have 2: "uniform_limit (path_image γ) (λn x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k) (λx. f' x / (x - w) ^ Suc k) (at w)"
    unfolding uniform_limit_iff dist_norm
  proof clarify
    fix e::real
    assume "0 < e"
    have *: "cmod (f' (γ x) * (inverse (γ x - u) ^ k - inverse (γ x - w) ^ k) / ((u - w) * k) -
                        f' (γ x) / ((γ x - w) * (γ x - w) ^ k)) < e"
              if ec: "cmod ((inverse (γ x - u) ^ k - inverse (γ x - w) ^ k) / ((u - w) * k) -
                      inverse (γ x - w) * inverse (γ x - w) ^ k) < e / C"
                 and x: "0  x" "x  1"
              for u x
    proof (cases "(f' (γ x)) = 0")
      case True then show ?thesis by (simp add: 0 < e)
    next
      case False
      have "cmod (f' (γ x) * (inverse (γ x - u) ^ k - inverse (γ x - w) ^ k) / ((u - w) * k) -
                        f' (γ x) / ((γ x - w) * (γ x - w) ^ k)) =
            cmod (f' (γ x) * ((inverse (γ x - u) ^ k - inverse (γ x - w) ^ k) / ((u - w) * k) -
                             inverse (γ x - w) * inverse (γ x - w) ^ k))"
        by (simp add: field_simps)
      also have " = cmod (f' (γ x)) *
                       cmod ((inverse (γ x - u) ^ k - inverse (γ x - w) ^ k) / ((u - w) * k) -
                             inverse (γ x - w) * inverse (γ x - w) ^ k)"
        by (simp add: norm_mult)
      also have " < cmod (f' (γ x)) * (e/C)"
        using False mult_strict_left_mono [OF ec] by force
      also have "  e" using C
        by (metis False 0 < e frac_le less_eq_real_def mult.commute pos_le_divide_eq x zero_less_norm_iff)
      finally show ?thesis .
    qed
    show "F n in at w.
              xpath_image γ.
               cmod (f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k - f' x / (x - w) ^ Suc k) < e"
      using twom [OF divide_pos_pos [OF 0 < e C > 0]]   unfolding path_image_def
      by (force intro: * elim: eventually_mono)
  qed
  show "(λu. f' u / (u - w) ^ (Suc k)) contour_integrable_on γ"
    by (rule contour_integral_uniform_limit [OF 1 2 leB γ]) auto
  have *: "(λn. contour_integral γ (λx. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k))
           w contour_integral γ (λu. f' u / (u - w) ^ (Suc k))"
    by (rule contour_integral_uniform_limit [OF 1 2 leB γ]) auto
  have **: "contour_integral γ (λx. f' x * (inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k)) =
              (f u - f w) / (u - w) / k"
    if "dist u w < d" for u
  proof -
    have u: "u  S - path_image γ"
      by (metis subsetD d dist_commute mem_ball that)
    have §: "((λx. f' x * inverse (x - u) ^ k) has_contour_integral f u) γ"
            "((λx. f' x * inverse (x - w) ^ k) has_contour_integral f w) γ"
      using u w by (simp_all add: field_simps int)
    show ?thesis
      apply (rule contour_integral_unique)
      apply (simp add: diff_divide_distrib algebra_simps § has_contour_integral_diff has_contour_integral_div)
      done
  qed
  show ?thes2
    apply (simp add: has_field_derivative_iff del: power_Suc)
    apply (rule Lim_transform_within [OF tendsto_mult_left [OF *] 0 < d ])
    apply (simp add: k  0 **)
    done
qed

lemma Cauchy_next_derivative_circlepath:
  assumes contf: "continuous_on (path_image (circlepath z r)) f"
      and int: "w. w  ball z r  ((λu. f u / (u - w)^k) has_contour_integral g w) (circlepath z r)"
      and k: "k  0"
      and w: "w  ball z r"
    shows "(λu. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
           (is "?thes1")
      and "(g has_field_derivative (k * contour_integral (circlepath z r) (λu. f u/(u - w)^(Suc k)))) (at w)"
           (is "?thes2")
proof -
  have "r > 0" using w
    using ball_eq_empty by fastforce
  have wim: "w  ball z r - path_image (circlepath z r)"
    using w by (auto simp: dist_norm)
  show ?thes1 ?thes2
    by (rule Cauchy_next_derivative [OF contf _ int k open_ball valid_path_circlepath wim, where B = "2 * pi * ¦r¦"];
        auto simp: vector_derivative_circlepath norm_mult)+
qed


text‹ In particular, the first derivative formula.›

lemma Cauchy_derivative_integral_circlepath:
  assumes contf: "continuous_on (cball z r) f"
      and holf: "f holomorphic_on ball z r"
      and w: "w  ball z r"
    shows "(λu. f u/(u - w)^2) contour_integrable_on (circlepath z r)"
           (is "?thes1")
      and "(f has_field_derivative (1 / (2 * of_real pi * 𝗂) * contour_integral(circlepath z r) (λu. f u / (u - w)^2))) (at w)"
           (is "?thes2")
proof -
  have [simp]: "r  0" using w
    using ball_eq_empty by fastforce
  have f: "continuous_on (path_image (circlepath z r)) f"
    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def)
  have int: "w. dist z w < r 
                 ((λu. f u / (u - w)) has_contour_integral (λx. 2 * of_real pi * 𝗂 * f x) w) (circlepath z r)"
    by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm norm_minus_commute)
  show ?thes1
    unfolding power2_eq_square
    using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1]
    by fastforce
  have "((λx. 2 * of_real pi * 𝗂 * f x) has_field_derivative contour_integral (circlepath z r) (λu. f u / (u - w)^2)) (at w)"
    unfolding power2_eq_square
    using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "λx. 2 * of_real pi * 𝗂 * f x"]
    by fastforce
  then have fder: "(f has_field_derivative contour_integral (circlepath z r) (λu. f u / (u - w)^2) / (2 * of_real pi * 𝗂)) (at w)"
    by (rule DERIV_cdivide [where f = "λx. 2 * of_real pi * 𝗂 * f x" and c = "2 * of_real pi * 𝗂", simplified])
  show ?thes2
    by simp (rule fder)
qed

subsection‹Existence of all higher derivatives›

proposition derivative_is_holomorphic:
  assumes "open S"
      and fder: "z. z  S  (f has_field_derivative f' z) (at z)"
    shows "f' holomorphic_on S"
proof -
  have *: "h. (f' has_field_derivative h) (at z)" if "z  S" for z
  proof -
    obtain r where "r > 0" and r: "cball z r  S"
      using open_contains_cball z  S open S by blast
    then have holf_cball: "f holomorphic_on cball z r"
      unfolding holomorphic_on_def
      using field_differentiable_at_within field_differentiable_def fder by fastforce
    then have "continuous_on (path_image (circlepath z r)) f"
      using r > 0 by (force elim: holomorphic_on_subset [THEN holomorphic_on_imp_continuous_on])
    then have contfpi: "continuous_on (path_image (circlepath z r)) (λx. 1/(2 * of_real pi*𝗂) * f x)"
      by (auto intro: continuous_intros)+
    have contf_cball: "continuous_on (cball z r) f" using holf_cball
      by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_subset)
    have holf_ball: "f holomorphic_on ball z r" using holf_cball
      using ball_subset_cball holomorphic_on_subset by blast
    { fix w  assume w: "w  ball z r"
      have intf: "(λu. f u / (u - w)2) contour_integrable_on circlepath z r"
        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
      have fder': "(f has_field_derivative 1 / (2 * of_real pi * 𝗂) * contour_integral (circlepath z r) (λu. f u / (u - w)2))
                  (at w)"
        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
      have f'_eq: "f' w = contour_integral (circlepath z r) (λu. f u / (u - w)2) / (2 * of_real pi * 𝗂)"
        using fder' ball_subset_cball r w by (force intro: DERIV_unique [OF fder])
      have "((λu. f u / (u - w)2 / (2 * of_real pi * 𝗂)) has_contour_integral
                contour_integral (circlepath z r) (λu. f u / (u - w)2) / (2 * of_real pi * 𝗂))
                (circlepath z r)"
        by (rule has_contour_integral_div [OF has_contour_integral_integral [OF intf]])
      then have "((λu. f u / (2 * of_real pi * 𝗂 * (u - w)2)) has_contour_integral
                contour_integral (circlepath z r) (λu. f u / (u - w)2) / (2 * of_real pi * 𝗂))
                (circlepath z r)"
        by (simp add: algebra_simps)
      then have "((λu. f u / (2 * of_real pi * 𝗂 * (u - w)2)) has_contour_integral f' w) (circlepath z r)"
        by (simp add: f'_eq)
    } note * = this
    show ?thesis
      using Cauchy_next_derivative_circlepath [OF contfpi, of 2 f'] 0 < r *
      using centre_in_ball mem_ball by force
  qed
  show ?thesis
    by (simp add: holomorphic_on_open [OF open S] *)
qed

lemma holomorphic_deriv [holomorphic_intros]:
  "f holomorphic_on S; open S  (deriv f) holomorphic_on S"
  by (metis DERIV_deriv_iff_field_differentiable at_within_open derivative_is_holomorphic holomorphic_on_def)

lemma holomorphic_deriv_compose:
  assumes g: "g holomorphic_on B" and f: "f holomorphic_on A" and "f ` A  B" "open B"
  shows   "(λx. deriv g (f x)) holomorphic_on A"
  using holomorphic_on_compose_gen [OF f holomorphic_deriv[OF g]] assms
  by (auto simp: o_def)

lemma analytic_deriv [analytic_intros]: "f analytic_on S  (deriv f) analytic_on S"
  using analytic_on_holomorphic holomorphic_deriv by auto

lemma holomorphic_higher_deriv [holomorphic_intros]: "f holomorphic_on S; open S  (deriv ^^ n) f holomorphic_on S"
  by (induction n) (auto simp: holomorphic_deriv)

lemma analytic_higher_deriv [analytic_intros]: "f analytic_on S  (deriv ^^ n) f analytic_on S"
  unfolding analytic_on_def using holomorphic_higher_deriv by blast

lemma has_field_derivative_higher_deriv:
     "f holomorphic_on S; open S; x  S
       ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)"
  using holomorphic_derivI holomorphic_higher_deriv by fastforce
  
lemma higher_deriv_cmult:
  assumes "f holomorphic_on A" "x  A" "open A"
  shows   "(deriv ^^ j) (λx. c * f x) x = c * (deriv ^^ j) f x"
  using assms
proof (induction j arbitrary: f x)
  case (Suc j f x)
  have "deriv ((deriv ^^ j) (λx. c * f x)) x = deriv (λx. c * (deriv ^^ j) f x) x"
    using eventually_nhds_in_open[of A x] assms(2,3) Suc.prems
    by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: Suc.IH)
  also have " = c * deriv ((deriv ^^ j) f) x" using Suc.prems assms(2,3)
    by (intro deriv_cmult holomorphic_on_imp_differentiable_at holomorphic_higher_deriv) auto
  finally show ?case by simp
qed simp_all

lemma valid_path_compose_holomorphic:
  assumes "valid_path g" and holo:"f holomorphic_on S" and "open S" "path_image g  S"
  shows "valid_path (f  g)"
  by (meson assms holomorphic_deriv holomorphic_on_imp_continuous_on holomorphic_on_imp_differentiable_at
      holomorphic_on_subset subsetD valid_path_compose)

subsection‹Morera's theorem›

lemma Morera_local_triangle_ball:
  assumes "z. z  S
           e a. 0 < e  z  ball a e  continuous_on (ball a e) f 
                    (b c. closed_segment b c  ball a e
                            contour_integral (linepath a b) f +
                               contour_integral (linepath b c) f +
                               contour_integral (linepath c a) f = 0)"
  shows "f analytic_on S"
proof -
  { fix z  assume "z  S"
    with assms obtain e a where
            "0 < e" and z: "z  ball a e" and contf: "continuous_on (ball a e) f"
        and 0: "b c. closed_segment b c  ball a e
                       contour_integral (linepath a b) f +
                          contour_integral (linepath b c) f +
                          contour_integral (linepath c a) f = 0"
      by blast
    have az: "dist a z < e" using mem_ball z by blast
    have "e>0. f holomorphic_on ball z e"
    proof (intro exI conjI)
      show "f holomorphic_on ball z (e - dist a z)"
      proof (rule holomorphic_on_subset)
        show "ball z (e - dist a z)  ball a e"
          by (simp add: dist_commute ball_subset_ball_iff)
        have sub_ball: "y. dist a y < e  closed_segment a y  ball a e"
          by (meson 0 < e centre_in_ball convex_ball convex_contains_segment mem_ball)
        show "f holomorphic_on ball a e"
          using triangle_contour_integrals_starlike_primitive [OF contf _ open_ball, of a]
            derivative_is_holomorphic[OF open_ball]
          by (force simp add: 0 0 < e sub_ball)
      qed
    qed (simp add: az)
  }
  then show ?thesis
    by (simp add: analytic_on_def)
qed

lemma Morera_local_triangle:
  assumes "z. z  S
           t. open t  z  t  continuous_on t f 
                  (a b c. convex hull {a,b,c}  t
                               contour_integral (linepath a b) f +
                                  contour_integral (linepath b c) f +
                                  contour_integral (linepath c a) f = 0)"
  shows "f analytic_on S"
proof -
  { fix z  assume "z  S"
    with assms obtain t where
            "open t" and z: "z  t" and contf: "continuous_on t f"
        and 0: "a b c. convex hull {a,b,c}  t
                       contour_integral (linepath a b) f +
                          contour_integral (linepath b c) f +
                          contour_integral (linepath c a) f = 0"
      by force
    then obtain e where "e>0" and e: "ball z e  t"
      using open_contains_ball by blast
    have [simp]: "continuous_on (ball z e) f" using contf
      using continuous_on_subset e by blast
    have eq0: "b c. closed_segment b c  ball z e 
                         contour_integral (linepath z b) f +
                         contour_integral (linepath b c) f +
                         contour_integral (linepath c z) f = 0"
      by (meson 0 z 0 < e centre_in_ball closed_segment_subset convex_ball dual_order.trans e starlike_convex_subset)
    have "e a. 0 < e  z  ball a e  continuous_on (ball a e) f 
                (b c. closed_segment b c  ball a e 
                       contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = 0)"
      using e > 0 eq0 by force
  }
  then show ?thesis
    by (simp add: Morera_local_triangle_ball)
qed

proposition Morera_triangle:
    "continuous_on S f; open S;
      a b c. convex hull {a,b,c}  S
               contour_integral (linepath a b) f +
                  contour_integral (linepath b c) f +
                  contour_integral (linepath c a) f = 0
      f analytic_on S"
  using Morera_local_triangle by blast

subsection‹Combining theorems for higher derivatives including Leibniz rule›

lemma higher_deriv_linear [simp]:
    "(deriv ^^ n) (λw. c*w) = (λz. if n = 0 then c*z else if n = 1 then c else 0)"
  by (induction n) auto

lemma higher_deriv_const [simp]: "(deriv ^^ n) (λw. c) = (λw. if n=0 then c else 0)"
  by (induction n) auto

lemma higher_deriv_ident [simp]:
     "(deriv ^^ n) (λw. w) z = (if n = 0 then z else if n = 1 then 1 else 0)"
proof (induction n)
  case (Suc n)
  then show ?case by (metis higher_deriv_linear lambda_one)
qed auto

lemma higher_deriv_id [simp]:
     "(deriv ^^ n) id z = (if n = 0 then z else if n = 1 then 1 else 0)"
  by (simp add: id_def)

lemma has_complex_derivative_funpow_1:
     "(f has_field_derivative 1) (at z); f z = z  (f^^n has_field_derivative 1) (at z)"
proof (induction n)
  case 0
  then show ?case
    by (simp add: id_def)
next
  case (Suc n)
  then show ?case
    by (metis DERIV_chain funpow_Suc_right mult.right_neutral)
qed

lemma higher_deriv_uminus:
  assumes "f holomorphic_on S" "open S" and z: "z  S"
    shows "(deriv ^^ n) (λw. -(f w)) z = - ((deriv ^^ n) f z)"
using z
proof (induction n arbitrary: z)
  case 0 then show ?case by simp
next
  case (Suc n z)
  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
    using Suc.prems assms has_field_derivative_higher_deriv by auto
  have "x. x  S  - (deriv ^^ n) f x = (deriv ^^ n) (λw. - f w) x"
    by (auto simp add: Suc)
  then have "((deriv ^^ n) (λw. - f w) has_field_derivative - deriv ((deriv ^^ n) f) z) (at z)"
    using  has_field_derivative_transform_within_open [of "λw. -((deriv ^^ n) f w)"]
    using "*" DERIV_minus Suc.prems open S by blast
  then show ?case
    by (simp add: DERIV_imp_deriv)
qed

lemma higher_deriv_add:
  fixes z::complex
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z  S"
    shows "(deriv ^^ n) (λw. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
using z
proof (induction n arbitrary: z)
  case 0 then show ?case by simp
next
  case (Suc n z)
  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
          "((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
    using Suc.prems assms has_field_derivative_higher_deriv by auto
  have "x. x  S  (deriv ^^ n) f x + (deriv ^^ n) g x = (deriv ^^ n) (λw. f w + g w) x"
    by (auto simp add: Suc)
  then have "((deriv ^^ n) (λw. f w + g w) has_field_derivative
        deriv ((deriv ^^ n) f) z + deriv ((deriv ^^ n) g) z) (at z)"
    using  has_field_derivative_transform_within_open [of "λw. (deriv ^^ n) f w + (deriv ^^ n) g w"]
    using "*" Deriv.field_differentiable_add Suc.prems open S by blast
  then show ?case
    by (simp add: DERIV_imp_deriv)
qed

lemma higher_deriv_diff:
  fixes z::complex
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" "z  S"
    shows "(deriv ^^ n) (λw. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
  unfolding diff_conv_add_uminus higher_deriv_add
  using assms higher_deriv_add higher_deriv_uminus holomorphic_on_minus by presburger

lemma Suc_choose: "Suc n choose k = (n choose k) + (if k = 0 then 0 else (n choose (k - 1)))"
  by (cases k) simp_all

lemma higher_deriv_mult:
  fixes z::complex
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z  S"
    shows "(deriv ^^ n) (λw. f w * g w) z =
           (i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
using z
proof (induction n arbitrary: z)
  case 0 then show ?case by simp
next
  case (Suc n z)
  have *: "n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
          "n. ((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
    using Suc.prems assms has_field_derivative_higher_deriv by auto
  have sumeq: "(i = 0..n.
               of_nat (n choose i) * (deriv ((deriv ^^ i) f) z * (deriv ^^ (n - i)) g z + deriv ((deriv ^^ (n - i)) g) z * (deriv ^^ i) f z)) =
            g z * deriv ((deriv ^^ n) f) z + (i = 0..n. (deriv ^^ i) f z * (of_nat (Suc n choose i) * (deriv ^^ (Suc n - i)) g z))"
    apply (simp add: Suc_choose algebra_simps sum.distrib)
    apply (subst (4) sum_Suc_reindex)
    apply (auto simp: algebra_simps Suc_diff_le intro: sum.cong)
    done
  have "((deriv ^^ n) (λw. f w * g w) has_field_derivative
         (i = 0..Suc n. (Suc n choose i) * (deriv ^^ i) f z * (deriv ^^ (Suc n - i)) g z))
        (at z)"
    apply (rule has_field_derivative_transform_within_open
        [of "λw. (i = 0..n. of_nat (n choose i) * (deriv ^^ i) f w * (deriv ^^ (n - i)) g w)" _ _ S])
       apply (simp add: algebra_simps)
       apply (rule derivative_eq_intros | simp)+
           apply (auto intro: DERIV_mult * open S Suc.prems Suc.IH [symmetric])
    by (metis (no_types, lifting) mult.commute sum.cong sumeq)
  then show ?case
    unfolding funpow.simps o_apply
    by (simp add: DERIV_imp_deriv)
qed

lemma higher_deriv_transform_within_open:
  fixes z::complex
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z  S"
      and fg: "w. w  S  f w = g w"
    shows "(deriv ^^ i) f z = (deriv ^^ i) g z"
using z
by (induction i arbitrary: z)
   (auto simp: fg intro: complex_derivative_transform_within_open holomorphic_higher_deriv assms)

lemma higher_deriv_compose_linear':
  fixes z::complex
  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z  S"
      and fg: "w. w  S  u*w + c  T"
    shows "(deriv ^^ n) (λw. f (u*w + c)) z = u^n * (deriv ^^ n) f (u*z + c)"
using z
proof (induction n arbitrary: z)
  case 0 then show ?case by simp
next
  case (Suc n z)
  have holo0: "f holomorphic_on (λw. u * w+c) ` S"
    by (meson fg f holomorphic_on_subset image_subset_iff)
  have holo2: "(deriv ^^ n) f holomorphic_on (λw. u * w+c) ` S"
    by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T)
  have holo3: "(λz. u ^ n * (deriv ^^ n) f (u * z+c)) holomorphic_on S"
    by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros)
  have "(λw. u * w+c) holomorphic_on S" "f holomorphic_on (λw. u * w+c) ` S"
    by (rule holo0 holomorphic_intros)+
  then have holo1: "(λw. f (u * w+c)) holomorphic_on S"
    by (rule holomorphic_on_compose [where g=f, unfolded o_def])
  have "deriv ((deriv ^^ n) (λw. f (u * w+c))) z = deriv (λz. u^n * (deriv ^^ n) f (u*z+c)) z"
  proof (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems])
    show "(deriv ^^ n) (λw. f (u * w+c)) holomorphic_on S"
      by (rule holomorphic_higher_deriv [OF holo1 S])
  qed (simp add: Suc.IH)
  also have " = u^n * deriv (λz. (deriv ^^ n) f (u * z+c)) z"
  proof -
    have "(deriv ^^ n) f analytic_on T"
      by (simp add: analytic_on_open f holomorphic_higher_deriv T)
    then have "(λw. (deriv ^^ n) f (u * w+c)) analytic_on S"
    proof -
      have "(deriv ^^ n) f  (λw. u * w+c) holomorphic_on S"
        using holomorphic_on_compose[OF _ holo2] (λw. u * w+c) holomorphic_on S
        by simp
      then show ?thesis
        by (simp add: S analytic_on_open o_def)
    qed
    then show ?thesis
      by (intro deriv_cmult analytic_on_imp_differentiable_at [OF _ Suc.prems])
  qed
  also have " = u * u ^ n * deriv ((deriv ^^ n) f) (u * z+c)"
  proof -
    have "(deriv ^^ n) f field_differentiable at (u * z+c)"
      using Suc.prems T f fg holomorphic_higher_deriv holomorphic_on_imp_differentiable_at by blast
    then show ?thesis
      by (simp add: deriv_compose_linear')
  qed
  finally show ?case
    by simp
qed

lemma higher_deriv_compose_linear:
  fixes z::complex
  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z  S"
      and fg: "w. w  S  u * w  T"
    shows "(deriv ^^ n) (λw. f (u * w)) z = u^n * (deriv ^^ n) f (u * z)"
  using higher_deriv_compose_linear' [where c=0] assms by simp

lemma higher_deriv_add_at:
  assumes "f analytic_on {z}" "g analytic_on {z}"
    shows "(deriv ^^ n) (λw. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
  using analytic_at_two assms higher_deriv_add by blast

lemma higher_deriv_diff_at:
  assumes "f analytic_on {z}" "g analytic_on {z}"
    shows "(deriv ^^ n) (λw. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
  using analytic_at_two assms higher_deriv_diff by blast

lemma higher_deriv_uminus_at:
   "f analytic_on {z}   (deriv ^^ n) (λw. -(f w)) z = - ((deriv ^^ n) f z)"
  using higher_deriv_uminus by (auto simp: analytic_at)

lemma higher_deriv_mult_at:
  assumes "f analytic_on {z}" "g analytic_on {z}"
    shows "(deriv ^^ n) (λw. f w * g w) z =
           (i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
  using analytic_at_two assms higher_deriv_mult by blast


text‹ Nonexistence of isolated singularities and a stronger integral formula.›

proposition no_isolated_singularity:
  fixes z::complex
  assumes f: "continuous_on S f" and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
    shows "f holomorphic_on S"
proof -
  { fix z
    assume "z  S" and cdf: "x. x  S - K  f field_differentiable at x"
    have "f field_differentiable at z"
    proof (cases "z  K")
      case False then show ?thesis by (blast intro: cdf z  S)
    next
      case True
      with finite_set_avoid [OF K, of z]
      obtain d where "d>0" and d: "x. xK; x  z  d  dist z x"
        by blast
      obtain e where "e>0" and e: "ball z e  S"
        using  S z  S by (force simp: open_contains_ball)
      have fde: "continuous_on (ball z (min d e)) f"
        by (metis Int_iff ball_min_Int continuous_on_subset e f subsetI)
      have cont: "{a,b,c}  ball z (min d e)  continuous_on (convex hull {a, b, c}) f" for a b c
        by (simp add: hull_minimal continuous_on_subset [OF fde])
      have fd: "{a,b,c}  ball z (min d e); x  interior (convex hull {a, b, c}) - K
             f field_differentiable at x" for a b c x
        by (metis cdf Diff_iff Int_iff ball_min_Int subsetD convex_ball e interior_mono interior_subset subset_hull)
      obtain g where "w. w  ball z (min d e)  (g has_field_derivative f w) (at w within ball z (min d e))"
        apply (rule contour_integral_convex_primitive
                     [OF convex_ball fde Cauchy_theorem_triangle_cofinite [OF _ K]])
        using cont fd by auto
      then have "f holomorphic_on ball z (min d e)"
        by (metis open_ball at_within_open derivative_is_holomorphic)
      then show ?thesis
        unfolding holomorphic_on_def
        by (metis open_ball 0 < d 0 < e at_within_open centre_in_ball min_less_iff_conj)
    qed
  }
  with holf S K show ?thesis
    by (simp add: holomorphic_on_open open_Diff finite_imp_closed field_differentiable_def [symmetric])
qed

lemma no_isolated_singularity':
  fixes z::complex
  assumes f: "z. z  K  (f  f z) (at z within S)"
      and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
    shows "f holomorphic_on S"
proof (rule no_isolated_singularity[OF _ assms(2-)])
  show "continuous_on S f" unfolding continuous_on_def
  proof
    fix z assume z: "z  S"
    have "continuous_on (S - K) f"
      using holf holomorphic_on_imp_continuous_on by auto
    then show "(f  f z) (at z within S)"
      by (metis Diff_iff K S at_within_interior continuous_on_def f finite_imp_closed interior_eq open_Diff z)
  qed
qed

proposition Cauchy_integral_formula_convex:
  assumes S: "convex S" and K: "finite K" and contf: "continuous_on S f"
    and fcd: "(x. x  interior S - K  f field_differentiable at x)"
    and z: "z  interior S" and vpg: "valid_path γ"
    and pasz: "path_image γ  S - {z}" and loop: "pathfinish γ = pathstart γ"
  shows "((λw. f w / (w - z)) has_contour_integral (2*pi * 𝗂 * winding_number γ z * f z)) γ"
proof -
  have *: "x. x  interior S  f field_differentiable at x"
    unfolding holomorphic_on_open [symmetric] field_differentiable_def
    using no_isolated_singularity [where S = "interior S"]
    by (meson K contf continuous_at_imp_continuous_on continuous_on_interior fcd
          field_differentiable_at_within field_differentiable_def holomorphic_onI
          holomorphic_on_imp_differentiable_at open_interior)
  show ?thesis
    by (rule Cauchy_integral_formula_weak [OF S finite.emptyI contf]) (use * assms in auto)
qed

text‹ Formula for higher derivatives.›

lemma Cauchy_has_contour_integral_higher_derivative_circlepath:
  assumes contf: "continuous_on (cball z r) f"
      and holf: "f holomorphic_on ball z r"
      and w: "w  ball z r"
    shows "((λu. f u / (u - w) ^ (Suc k)) has_contour_integral ((2 * pi * 𝗂) / (fact k) * (deriv ^^ k) f w))
           (circlepath z r)"
using w
proof (induction k arbitrary: w)
  case 0 then show ?case
    using assms by (auto simp: Cauchy_integral_circlepath dist_commute dist_norm)
next
  case (Suc k)
  have [simp]: "r > 0" using w
    using ball_eq_empty by fastforce
  have f: "continuous_on (path_image (circlepath z r)) f"
    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def less_imp_le)
  obtain X where X: "((λu. f u / (u - w) ^ Suc (Suc k)) has_contour_integral X) (circlepath z r)"
    using Cauchy_next_derivative_circlepath(1) [OF f Suc.IH _ Suc.prems]
    by (auto simp: contour_integrable_on_def)
  then have con: "contour_integral (circlepath z r) ((λu. f u / (u - w) ^ Suc (Suc k))) = X"
    by (rule contour_integral_unique)
  have "n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) w) (at w)"
    using Suc.prems assms has_field_derivative_higher_deriv by auto
  then have dnf_diff: "n. (deriv ^^ n) f field_differentiable (at w)"
    by (force simp: field_differentiable_def)
  have "deriv (λw. complex_of_real (2 * pi) * 𝗂 / (fact k) * (deriv ^^ k) f w) w =
          of_nat (Suc k) * contour_integral (circlepath z r) (λu. f u / (u - w) ^ Suc (Suc k))"
    by (force intro!: DERIV_imp_deriv Cauchy_next_derivative_circlepath [OF f Suc.IH _ Suc.prems])
  also have " = of_nat (Suc k) * X"
    by (simp only: con)
  finally have "deriv (λw. ((2 * pi) * 𝗂 / (fact k)) * (deriv ^^ k) f w) w = of_nat (Suc k) * X" .
  then have "((2 * pi) * 𝗂 / (fact k)) * deriv (λw. (deriv ^^ k) f w) w = of_nat (Suc k) * X"
    by (metis deriv_cmult dnf_diff)
  then have "deriv (λw. (deriv ^^ k) f w) w = of_nat (Suc k) * X / ((2 * pi) * 𝗂 / (fact k))"
    by (simp add: field_simps)
  then show ?case
  using of_nat_eq_0_iff X by fastforce
qed

lemma Cauchy_higher_derivative_integral_circlepath:
  assumes contf: "continuous_on (cball z r) f"
      and holf: "f holomorphic_on ball z r"
      and w: "w  ball z r"
    shows "(λu. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
           (is "?thes1")
      and "(deriv ^^ k) f w = (fact k) / (2 * pi * 𝗂) * contour_integral(circlepath z r) (λu. f u/(u - w)^(Suc k))"
           (is "?thes2")
proof -
  have *: "((λu. f u / (u - w) ^ Suc k) has_contour_integral (2 * pi) * 𝗂 / (fact k) * (deriv ^^ k) f w)
           (circlepath z r)"
    using Cauchy_has_contour_integral_higher_derivative_circlepath [OF assms]
    by simp
  show ?thes1 using *
    using contour_integrable_on_def by blast
  show ?thes2
    unfolding contour_integral_unique [OF *] by (simp add: field_split_simps)
qed

corollary Cauchy_contour_integral_circlepath:
  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w  ball z r"
  shows "contour_integral(circlepath z r) (λu. f u/(u - w)^(Suc k)) = (2 * pi * 𝗂) * (deriv ^^ k) f w / (fact k)"
  by (simp add: Cauchy_higher_derivative_integral_circlepath [OF assms])

lemma Cauchy_contour_integral_circlepath_2:
  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w  ball z r"
    shows "contour_integral(circlepath z r) (λu. f u/(u - w)^2) = (2 * pi * 𝗂) * deriv f w"
  using Cauchy_contour_integral_circlepath [OF assms, of 1]
  by (simp add: power2_eq_square)


subsection‹A holomorphic function is analytic, i.e. has local power series›

theorem holomorphic_power_series:
  assumes holf: "f holomorphic_on ball z r"
      and w: "w  ball z r"
    shows "((λn. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
proof -
  ― ‹Replacing termr and the original (weak) premises with stronger ones›
  obtain r where "r > 0" and holfc: "f holomorphic_on cball z r" and w: "w  ball z r"
  proof
    have "cball z ((r + dist w z) / 2)  ball z r"
      using w by (simp add: dist_commute field_sum_of_halves subset_eq)
    then show "f holomorphic_on cball z ((r + dist w z) / 2)"
      by (rule holomorphic_on_subset [OF holf])
    have "r > 0"
      using w by clarsimp (metis dist_norm le_less_trans norm_ge_zero)
    then show "0 < (r + dist w z) / 2"
      by simp (use zero_le_dist [of w z] in linarith)
  qed (use w in auto simp: dist_commute)
  then have holf: "f holomorphic_on ball z r"
    using ball_subset_cball holomorphic_on_subset by blast
  have contf: "continuous_on (cball z r) f"
    by (simp add: holfc holomorphic_on_imp_continuous_on)
  have cint: "k. (λu. f u / (u - z) ^ Suc k) contour_integrable_on circlepath z r"
    by (rule Cauchy_higher_derivative_integral_circlepath [OF contf holf]) (simp add: 0 < r)
  obtain B where "0 < B" and B: "u. u  cball z r  norm(f u)  B"
    by (metis (no_types) bounded_pos compact_cball compact_continuous_image compact_imp_bounded contf image_eqI)
  obtain k where k: "0 < k" "k  r" and wz_eq: "norm(w - z) = r - k"
             and kle: "u. norm(u - z) = r  k  norm(u - w)"
  proof
    show "u. cmod (u - z) = r  r - dist z w  cmod (u - w)"
      by (metis add_diff_eq diff_add_cancel dist_norm norm_diff_ineq)
  qed (use w in auto simp: dist_norm norm_minus_commute)
  have ul: "uniform_limit (sphere z r) (λn x. (k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k))) (λx. f x / (x - w)) sequentially"
    unfolding uniform_limit_iff dist_norm
  proof clarify
    fix e::real
    assume "0 < e"
    have rr: "0  (r - k) / r" "(r - k) / r < 1" using  k by auto
    obtain n where n: "((r - k) / r) ^ n < e / B * k"
      using real_arch_pow_inv [of "e/B*k" "(r - k)/r"] 0 < e 0 < B k by force
    have "norm ((k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) - f u / (u - w)) < e"
         if "n  N" and r: "r = dist z u"  for N u
    proof -
      have N: "((r - k) / r) ^ N < e / B * k"
        using le_less_trans [OF power_decreasing n]
        using n  N k by auto
      have u [simp]: "(u  z)  (u  w)"
        using 0 < r r w by auto
      have wzu_not1: "(w - z) / (u - z)  1"
        by (metis (no_types) dist_norm divide_eq_1_iff less_irrefl mem_ball norm_minus_commute r w)
      have "norm ((k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) * (u - w) - f u)
            = norm ((k<N. (((w - z) / (u - z)) ^ k)) * f u * (u - w) / (u - z) - f u)"
        unfolding sum_distrib_right sum_divide_distrib power_divide by (simp add: algebra_simps)
      also have " = norm ((((w - z) / (u - z)) ^ N - 1) * (u - w) / (((w - z) / (u - z) - 1) * (u - z)) - 1) * norm (f u)"
        using 0 < B
        apply (auto simp: geometric_sum [OF wzu_not1])
        apply (simp add: field_simps norm_mult [symmetric])
        done
      also have " = norm ((u-z) ^ N * (w - u) - ((w - z) ^ N - (u-z) ^ N) * (u-w)) / (r ^ N * norm (u-w)) * norm (f u)"
        using 0 < r r by (simp add: divide_simps norm_mult norm_divide norm_power dist_norm norm_minus_commute)
      also have " = norm ((w - z) ^ N * (w - u)) / (r ^ N * norm (u - w)) * norm (f u)"
        by (simp add: algebra_simps)
      also have " = norm (w - z) ^ N * norm (f u) / r ^ N"
        by (simp add: norm_mult norm_power norm_minus_commute)
      also have "  (((r - k)/r)^N) * B"
        using 0 < r w k
        by (simp add: B divide_simps mult_mono r wz_eq)
      also have " < e * k"
        using 0 < B N by (simp add: divide_simps)
      also have "  e * norm (u - w)"
        using r kle 0 < e by (simp add: dist_commute dist_norm)
      finally show ?thesis
        by (simp add: field_split_simps norm_divide del: power_Suc)
    qed
    with 0 < r show "F n in sequentially. xsphere z r.
                norm ((k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k)) - f x / (x - w)) < e"
      by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def)
  qed
  have §: "x k. k {..<x} 
           (λu. (w - z) ^ k * (f u / (u - z) ^ Suc k)) contour_integrable_on circlepath z r"
    using contour_integrable_lmul [OF cint, of "(w - z) ^ a" for a] by (simp add: field_simps)
  have eq: "F x in sequentially.
             contour_integral (circlepath z r) (λu. k<x. (w - z) ^ k * (f u / (u - z) ^ Suc k)) =
             (k<x. contour_integral (circlepath z r) (λu. f u / (u - z) ^ Suc k) * (w - z) ^ k)"
    apply (rule eventuallyI)
    apply (subst contour_integral_sum, simp)
    apply (simp_all only: § contour_integral_lmul cint algebra_simps)
    done
  have "u k. k  {..<u}  (λx. f x / (x - z) ^ Suc k) contour_integrable_on circlepath z r"
    using 0 < r by (force intro!: Cauchy_higher_derivative_integral_circlepath [OF contf holf])
  then have "u. (λy. k<u. (w - z) ^ k * (f y / (y - z) ^ Suc k)) contour_integrable_on circlepath z r"
    by (intro contour_integrable_sum contour_integrable_lmul, simp)
  then have "(λk. contour_integral (circlepath z r) (λu. f u/(u - z)^(Suc k)) * (w - z)^k)
        sums contour_integral (circlepath z r) (λu. f u/(u - w))"
    unfolding sums_def using 0 < r 
    by (intro Lim_transform_eventually [OF _ eq] contour_integral_uniform_limit_circlepath [OF eventuallyI ul]) auto
  then have "(λk. contour_integral (circlepath z r) (λu. f u/(u - z)^(Suc k)) * (w - z)^k)
             sums (2 * of_real pi * 𝗂 * f w)"
    using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF Cauchy_integral_circlepath_simple [OF holfc]])
  then have "(λk. contour_integral (circlepath z r) (λu. f u / (u - z) ^ Suc k) * (w - z)^k / (𝗂 * (of_real pi * 2)))
            sums ((2 * of_real pi * 𝗂 * f w) / (𝗂 * (complex_of_real pi * 2)))"
    by (rule sums_divide)
  then have "(λn. (w - z) ^ n * contour_integral (circlepath z r) (λu. f u / (u - z) ^ Suc n) / (𝗂 * (of_real pi * 2)))
            sums f w"
    by (simp add: field_simps)
  then show ?thesis
    by (simp add: field_simps 0 < r Cauchy_higher_derivative_integral_circlepath [OF contf holf])
qed

subsection‹The Liouville theorem and the Fundamental Theorem of Algebra›

text‹ These weak Liouville versions don't even need the derivative formula.›

lemma Liouville_weak_0:
  assumes holf: "f holomorphic_on UNIV" and inf: "(f  0) at_infinity"
    shows "f z = 0"
proof (rule ccontr)
  assume fz: "f z  0"
  with inf [unfolded Lim_at_infinity, rule_format, of "norm(f z)/2"]
  obtain B where B: "x. B  cmod x  norm (f x) * 2 < cmod (f z)"
    by (auto simp: dist_norm)
  define R where "R = 1 + ¦B¦ + norm z"
  have "R > 0"
    unfolding R_def by (smt (verit) norm_ge_zero)
  have *: "((λu. f u / (u - z)) has_contour_integral 2 * complex_of_real pi * 𝗂 * f z) (circlepath z R)"
    using continuous_on_subset holf  holomorphic_on_subset 0 < R
    by (force intro: holomorphic_on_imp_continuous_on Cauchy_integral_circlepath)
  have "cmod (x - z) = R  cmod (f x) * 2 < cmod (f z)" for x
    unfolding R_def by (rule B) (use norm_triangle_ineq4 [of x z] in auto)
  with R > 0 fz show False
    using has_contour_integral_bound_circlepath [OF *, of "norm(f z)/2/R"]
    by (auto simp: less_imp_le norm_mult norm_divide field_split_simps)
qed

proposition Liouville_weak:
  assumes "f holomorphic_on UNIV" and "(f  l) at_infinity"
    shows "f z = l"
  using Liouville_weak_0 [of "λz. f z - l"]
  by (simp add: assms holomorphic_on_diff LIM_zero)

proposition Liouville_weak_inverse:
  assumes "f holomorphic_on UNIV" and unbounded: "B. eventually (λx. norm (f x)  B) at_infinity"
    obtains z where "f z = 0"
proof -
  { assume f: "z. f z  0"
    have 1: "(λx. 1 / f x) holomorphic_on UNIV"
      by (simp add: holomorphic_on_divide assms f)
    have 2: "((λx. 1 / f x)  0) at_infinity"
    proof (rule tendstoI [OF eventually_mono])
      fix e::real
      assume "