Theory Topology_Euclidean_Space
chapter ‹Vector Analysis›
theory Topology_Euclidean_Space
imports
Elementary_Normed_Spaces
Linear_Algebra
Norm_Arith
begin
section ‹Elementary Topology in Euclidean Space›
lemma euclidean_dist_l2:
fixes x y :: "'a :: euclidean_space"
shows "dist x y = L2_set (λi. dist (x ∙ i) (y ∙ i)) Basis"
unfolding dist_norm norm_eq_sqrt_inner L2_set_def
by (subst euclidean_inner) (simp add: power2_eq_square inner_diff_left)
lemma norm_nth_le: "norm (x ∙ i) ≤ norm x" if "i ∈ Basis"
proof -
have "(x ∙ i)⇧2 = (∑i∈{i}. (x ∙ i)⇧2)"
by simp
also have "… ≤ (∑i∈Basis. (x ∙ i)⇧2)"
by (intro sum_mono2) (auto simp: that)
finally show ?thesis
unfolding norm_conv_dist euclidean_dist_l2[of x] L2_set_def
by (auto intro!: real_le_rsqrt)
qed
subsection ‹Continuity of the representation WRT an orthogonal basis›
lemma orthogonal_Basis: "pairwise orthogonal Basis"
by (simp add: inner_not_same_Basis orthogonal_def pairwise_def)
lemma representation_bound:
fixes B :: "'N::real_inner set"
assumes "finite B" "independent B" "b ∈ B" and orth: "pairwise orthogonal B"
obtains m where "m > 0" "⋀x. x ∈ span B ⟹ ¦representation B x b¦ ≤ m * norm x"
proof
fix x
assume x: "x ∈ span B"
have "b ≠ 0"
using ‹independent B› ‹b ∈ B› dependent_zero by blast
have [simp]: "b ∙ b' = (if b' = b then (norm b)⇧2 else 0)"
if "b ∈ B" "b' ∈ B" for b b'
using orth by (simp add: orthogonal_def pairwise_def norm_eq_sqrt_inner that)
have "norm x = norm (∑b∈B. representation B x b *⇩R b)"
using real_vector.sum_representation_eq [OF ‹independent B› x ‹finite B› order_refl]
by simp
also have "… = sqrt ((∑b∈B. representation B x b *⇩R b) ∙ (∑b∈B. representation B x b *⇩R b))"
by (simp add: norm_eq_sqrt_inner)
also have "… = sqrt (∑b∈B. (representation B x b *⇩R b) ∙ (representation B x b *⇩R b))"
using ‹finite B›
by (simp add: inner_sum_left inner_sum_right if_distrib [of "λx. _ * x"] cong: if_cong sum.cong_simp)
also have "… = sqrt (∑b∈B. (norm (representation B x b *⇩R b))⇧2)"
by (simp add: mult.commute mult.left_commute power2_eq_square)
also have "… = sqrt (∑b∈B. (representation B x b)⇧2 * (norm b)⇧2)"
by (simp add: norm_mult power_mult_distrib)
finally have "norm x = sqrt (∑b∈B. (representation B x b)⇧2 * (norm b)⇧2)" .
moreover
have "sqrt ((representation B x b)⇧2 * (norm b)⇧2) ≤ sqrt (∑b∈B. (representation B x b)⇧2 * (norm b)⇧2)"
using ‹b ∈ B› ‹finite B› by (auto intro: member_le_sum)
then have "¦representation B x b¦ ≤ (1 / norm b) * sqrt (∑b∈B. (representation B x b)⇧2 * (norm b)⇧2)"
using ‹b ≠ 0› by (simp add: field_split_simps real_sqrt_mult del: real_sqrt_le_iff)
ultimately show "¦representation B x b¦ ≤ (1 / norm b) * norm x"
by simp
next
show "0 < 1 / norm b"
using ‹independent B› ‹b ∈ B› dependent_zero by auto
qed
lemma continuous_on_representation:
fixes B :: "'N::euclidean_space set"
assumes "finite B" "independent B" "b ∈ B" "pairwise orthogonal B"
shows "continuous_on (span B) (λx. representation B x b)"
proof
show "∃d>0. ∀x'∈span B. dist x' x < d ⟶ dist (representation B x' b) (representation B x b) ≤ e"
if "e > 0" "x ∈ span B" for x e
proof -
obtain m where "m > 0" and m: "⋀x. x ∈ span B ⟹ ¦representation B x b¦ ≤ m * norm x"
using assms representation_bound by blast
show ?thesis
unfolding dist_norm
proof (intro exI conjI ballI impI)
show "e/m > 0"
by (simp add: ‹e > 0› ‹m > 0›)
show "norm (representation B x' b - representation B x b) ≤ e"
if x': "x' ∈ span B" and less: "norm (x'-x) < e/m" for x'
proof -
have "¦representation B (x'-x) b¦ ≤ m * norm (x'-x)"
using m [of "x'-x"] ‹x ∈ span B› span_diff x' by blast
also have "… < e"
by (metis ‹m > 0› less mult.commute pos_less_divide_eq)
finally have "¦representation B (x'-x) b¦ ≤ e" by simp
then show ?thesis
by (simp add: ‹x ∈ span B› ‹independent B› representation_diff x')
qed
qed
qed
qed
subsection‹Balls in Euclidean Space›
lemma cball_subset_cball_iff:
fixes a :: "'a :: euclidean_space"
shows "cball a r ⊆ cball a' r' ⟷ dist a a' + r ≤ r' ∨ r < 0"
(is "?lhs ⟷ ?rhs")
proof
assume ?lhs
then show ?rhs
proof (cases "r < 0")
case True
then show ?rhs by simp
next
case False
then have [simp]: "r ≥ 0" by simp
have "norm (a - a') + r ≤ r'"
proof (cases "a = a'")
case True
then show ?thesis
using subsetD [where c = "a + r *⇩R (SOME i. i ∈ Basis)", OF ‹?lhs›] subsetD [where c = a, OF ‹?lhs›]
by (force simp: SOME_Basis dist_norm)
next
case False
have "norm (a' - (a + (r / norm (a - a')) *⇩R (a - a'))) = norm ((-1 - (r / norm (a - a'))) *⇩R (a - a'))"
by (simp add: algebra_simps)
also from ‹a ≠ a'› have "... = ¦- norm (a - a') - r¦"
by (simp add: divide_simps)
finally have [simp]: "norm (a' - (a + (r / norm (a - a')) *⇩R (a - a'))) = ¦norm (a - a') + r¦"
by linarith
from ‹a ≠ a'› show ?thesis
using subsetD [where c = "a' + (1 + r / norm(a - a')) *⇩R (a - a')", OF ‹?lhs›]
by (simp add: dist_norm scaleR_add_left)
qed
then show ?rhs
by (simp add: dist_norm)
qed
qed metric
lemma cball_subset_ball_iff: "cball a r ⊆ ball a' r' ⟷ dist a a' + r < r' ∨ r < 0"
(is "?lhs ⟷ ?rhs")
for a :: "'a::euclidean_space"
proof
assume ?lhs
then show ?rhs
proof (cases "r < 0")
case True then
show ?rhs by simp
next
case False
then have [simp]: "r ≥ 0" by simp
have "norm (a - a') + r < r'"
proof (cases "a = a'")
case True
then show ?thesis
using subsetD [where c = "a + r *⇩R (SOME i. i ∈ Basis)", OF ‹?lhs›] subsetD [where c = a, OF ‹?lhs›]
by (force simp: SOME_Basis dist_norm)
next
case False
have False if "norm (a - a') + r ≥ r'"
proof -
from that have "¦r' - norm (a - a')¦ ≤ r"
by (smt (verit, best) ‹0 ≤ r› ‹?lhs› ball_subset_cball cball_subset_cball_iff dist_norm order_trans)
then show ?thesis
using subsetD [where c = "a + (r' / norm(a - a') - 1) *⇩R (a - a')", OF ‹?lhs›] ‹a ≠ a'›
apply (simp add: dist_norm)
apply (simp add: scaleR_left_diff_distrib)
apply (simp add: field_simps)
done
qed
then show ?thesis by force
qed
then show ?rhs by (simp add: dist_norm)
qed
next
assume ?rhs
then show ?lhs
by metric
qed
lemma ball_subset_cball_iff: "ball a r ⊆ cball a' r' ⟷ dist a a' + r ≤ r' ∨ r ≤ 0"
(is "?lhs = ?rhs")
for a :: "'a::euclidean_space"
proof (cases "r ≤ 0")
case True
then show ?thesis
by metric
next
case False
show ?thesis
proof
assume ?lhs
then have "(cball a r ⊆ cball a' r')"
by (metis False closed_cball closure_ball closure_closed closure_mono not_less)
with False show ?rhs
by (fastforce iff: cball_subset_cball_iff)
next
assume ?rhs
with False show ?lhs
by metric
qed
qed
lemma ball_subset_ball_iff:
fixes a :: "'a :: euclidean_space"
shows "ball a r ⊆ ball a' r' ⟷ dist a a' + r ≤ r' ∨ r ≤ 0"
(is "?lhs = ?rhs")
proof (cases "r ≤ 0")
case True then show ?thesis
by metric
next
case False show ?thesis
proof
assume ?lhs
then have "0 < r'"
using False by metric
then have "cball a r ⊆ cball a' r'"
by (metis False ‹?lhs› closure_ball closure_mono not_less)
then show ?rhs
using False cball_subset_cball_iff by fastforce
qed metric
qed
lemma ball_eq_ball_iff:
fixes x :: "'a :: euclidean_space"
shows "ball x d = ball y e ⟷ d ≤ 0 ∧ e ≤ 0 ∨ x=y ∧ d=e"
by (smt (verit, del_insts) ball_empty ball_subset_cball_iff dist_norm norm_pths(2))
lemma cball_eq_cball_iff:
fixes x :: "'a :: euclidean_space"
shows "cball x d = cball y e ⟷ d < 0 ∧ e < 0 ∨ x=y ∧ d=e"
by (smt (verit, ccfv_SIG) cball_empty cball_subset_cball_iff dist_norm norm_pths(2) zero_le_dist)
lemma ball_eq_cball_iff:
fixes x :: "'a :: euclidean_space"
shows "ball x d = cball y e ⟷ d ≤ 0 ∧ e < 0" (is "?lhs = ?rhs")
by (smt (verit) ball_eq_empty ball_subset_cball_iff cball_eq_empty cball_subset_ball_iff order.refl)
lemma cball_eq_ball_iff:
fixes x :: "'a :: euclidean_space"
shows "cball x d = ball y e ⟷ d < 0 ∧ e ≤ 0"
using ball_eq_cball_iff by blast
lemma finite_ball_avoid:
fixes S :: "'a :: euclidean_space set"
assumes "open S" "finite X" "p ∈ S"
shows "∃e>0. ∀w∈ball p e. w∈S ∧ (w≠p ⟶ w∉X)"
proof -
obtain e1 where "0 < e1" and e1_b:"ball p e1 ⊆ S"
using open_contains_ball_eq[OF ‹open S›] assms by auto
obtain e2 where "0 < e2" and "∀x∈X. x ≠ p ⟶ e2 ≤ dist p x"
using finite_set_avoid[OF ‹finite X›,of p] by auto
hence "∀w∈ball p (min e1 e2). w∈S ∧ (w≠p ⟶ w∉X)" using e1_b by auto
thus "∃e>0. ∀w∈ball p e. w ∈ S ∧ (w ≠ p ⟶ w ∉ X)"
using ‹e2>0› ‹e1>0› by (rule_tac x="min e1 e2" in exI) auto
qed
lemma finite_cball_avoid:
fixes S :: "'a :: euclidean_space set"
assumes "open S" "finite X" "p ∈ S"
shows "∃e>0. ∀w∈cball p e. w∈S ∧ (w≠p ⟶ w∉X)"
proof -
obtain e1 where "e1>0" and e1: "∀w∈ball p e1. w∈S ∧ (w≠p ⟶ w∉X)"
using finite_ball_avoid[OF assms] by auto
define e2 where "e2 ≡ e1/2"
have "e2>0" and "e2 < e1" unfolding e2_def using ‹e1>0› by auto
then have "cball p e2 ⊆ ball p e1" by (subst cball_subset_ball_iff,auto)
then show "∃e>0. ∀w∈cball p e. w ∈ S ∧ (w ≠ p ⟶ w ∉ X)" using ‹e2>0› e1 by auto
qed
lemma dim_cball:
assumes "e > 0"
shows "dim (cball (0 :: 'n::euclidean_space) e) = DIM('n)"
proof -
{
fix x :: "'n::euclidean_space"
define y where "y = (e / norm x) *⇩R x"
then have "y ∈ cball 0 e"
using assms by auto
moreover have *: "x = (norm x / e) *⇩R y"
using y_def assms by simp
moreover from * have "x = (norm x/e) *⇩R y"
by auto
ultimately have "x ∈ span (cball 0 e)"
using span_scale[of y "cball 0 e" "norm x/e"]
span_superset[of "cball 0 e"]
by (simp add: span_base)
}
then have "span (cball 0 e) = (UNIV :: 'n::euclidean_space set)"
by auto
then show ?thesis
using dim_span[of "cball (0 :: 'n::euclidean_space) e"] by (auto)
qed
subsection ‹Boxes›
abbreviation One :: "'a::euclidean_space" where
"One ≡ ∑Basis"
lemma One_non_0: assumes "One = (0::'a::euclidean_space)" shows False
proof -
have "dependent (Basis :: 'a set)"
apply (simp add: dependent_finite)
apply (rule_tac x="λi. 1" in exI)
using SOME_Basis apply (auto simp: assms)
done
with independent_Basis show False by force
qed
corollary One_neq_0[iff]: "One ≠ 0"
by (metis One_non_0)
corollary Zero_neq_One[iff]: "0 ≠ One"
by (metis One_non_0)
definition (in euclidean_space) eucl_less (infix "<e" 50) where
"eucl_less a b ⟷ (∀i∈Basis. a ∙ i < b ∙ i)"
definition box_eucl_less: "box a b = {x. a <e x ∧ x <e b}"
definition "cbox a b = {x. ∀i∈Basis. a ∙ i ≤ x ∙ i ∧ x ∙ i ≤ b ∙ i}"
lemma box_def: "box a b = {x. ∀i∈Basis. a ∙ i < x ∙ i ∧ x ∙ i < b ∙ i}"
and in_box_eucl_less: "x ∈ box a b ⟷ a <e x ∧ x <e b"
and mem_box: "x ∈ box a b ⟷ (∀i∈Basis. a ∙ i < x ∙ i ∧ x ∙ i < b ∙ i)"
"x ∈ cbox a b ⟷ (∀i∈Basis. a ∙ i ≤ x ∙ i ∧ x ∙ i ≤ b ∙ i)"
by (auto simp: box_eucl_less eucl_less_def cbox_def)
lemma cbox_Pair_eq: "cbox (a, c) (b, d) = cbox a b × cbox c d"
by (force simp: cbox_def Basis_prod_def)
lemma cbox_Pair_iff [iff]: "(x, y) ∈ cbox (a, c) (b, d) ⟷ x ∈ cbox a b ∧ y ∈ cbox c d"
by (force simp: cbox_Pair_eq)
lemma cbox_Complex_eq: "cbox (Complex a c) (Complex b d) = (λ(x,y). Complex x y) ` (cbox a b × cbox c d)"
by (force simp: cbox_def Basis_complex_def)
lemma cbox_Pair_eq_0: "cbox (a, c) (b, d) = {} ⟷ cbox a b = {} ∨ cbox c d = {}"
by (force simp: cbox_Pair_eq)
lemma swap_cbox_Pair [simp]: "prod.swap ` cbox (c, a) (d, b) = cbox (a,c) (b,d)"
by auto
lemma mem_box_real[simp]:
"(x::real) ∈ box a b ⟷ a < x ∧ x < b"
"(x::real) ∈ cbox a b ⟷ a ≤ x ∧ x ≤ b"
by (auto simp: mem_box)
lemma box_real[simp]:
fixes a b:: real
shows "box a b = {a <..< b}" "cbox a b = {a .. b}"
by auto
lemma box_Int_box:
fixes a :: "'a::euclidean_space"
shows "box a b ∩ box c d =
box (∑i∈Basis. max (a∙i) (c∙i) *⇩R i) (∑i∈Basis. min (b∙i) (d∙i) *⇩R i)"
unfolding set_eq_iff and Int_iff and mem_box by auto
lemma rational_boxes:
fixes x :: "'a::euclidean_space"
assumes "e > 0"
shows "∃a b. (∀i∈Basis. a ∙ i ∈ ℚ ∧ b ∙ i ∈ ℚ) ∧ x ∈ box a b ∧ box a b ⊆ ball x e"
proof -
define e' where "e' = e / (2 * sqrt (real (DIM ('a))))"
then have e: "e' > 0"
using assms by (auto)
have "∃y. y ∈ ℚ ∧ y < x ∙ i ∧ x ∙ i - y < e'" for i
using Rats_dense_in_real[of "x ∙ i - e'" "x ∙ i"] e by force
then obtain a where
a: "⋀u. a u ∈ ℚ ∧ a u < x ∙ u ∧ x ∙ u - a u < e'" by metis
have "∃y. y ∈ ℚ ∧ x ∙ i < y ∧ y - x ∙ i < e'" for i
using Rats_dense_in_real[of "x ∙ i" "x ∙ i + e'"] e by force
then obtain b where
b: "⋀u. b u ∈ ℚ ∧ x ∙ u < b u ∧ b u - x ∙ u < e'" by metis
let ?a = "∑i∈Basis. a i *⇩R i" and ?b = "∑i∈Basis. b i *⇩R i"
show ?thesis
proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
fix y :: 'a
assume *: "y ∈ box ?a ?b"
have "dist x y = sqrt (∑i∈Basis. (dist (x ∙ i) (y ∙ i))⇧2)"
unfolding L2_set_def[symmetric] by (rule euclidean_dist_l2)
also have "… < sqrt (∑(i::'a)∈Basis. e^2 / real (DIM('a)))"
proof (rule real_sqrt_less_mono, rule sum_strict_mono)
fix i :: "'a"
assume i: "i ∈ Basis"
have "a i < y∙i ∧ y∙i < b i"
using * i by (auto simp: box_def)
moreover have "a i < x∙i" "x∙i - a i < e'" "x∙i < b i" "b i - x∙i < e'"
using a b by auto
ultimately have "¦x∙i - y∙i¦ < 2 * e'"
by auto
then have "dist (x ∙ i) (y ∙ i) < e/sqrt (real (DIM('a)))"
unfolding e'_def by (auto simp: dist_real_def)
then have "(dist (x ∙ i) (y ∙ i))⇧2 < (e/sqrt (real (DIM('a))))⇧2"
by (rule power_strict_mono) auto
then show "(dist (x ∙ i) (y ∙ i))⇧2 < e⇧2 / real DIM('a)"
by (simp add: power_divide)
qed auto
also have "… = e"
using ‹0 < e› by simp
finally show "y ∈ ball x e"
by (auto simp: ball_def)
qed (use a b in ‹auto simp: box_def›)
qed
lemma open_UNION_box:
fixes M :: "'a::euclidean_space set"
assumes "open M"
defines "a' ≡ λf :: 'a ⇒ real × real. (∑(i::'a)∈Basis. fst (f i) *⇩R i)"
defines "b' ≡ λf :: 'a ⇒ real × real. (∑(i::'a)∈Basis. snd (f i) *⇩R i)"
defines "I ≡ {f∈Basis →⇩E ℚ × ℚ. box (a' f) (b' f) ⊆ M}"
shows "M = (⋃f∈I. box (a' f) (b' f))"
proof -
have "x ∈ (⋃f∈I. box (a' f) (b' f))" if "x ∈ M" for x
proof -
obtain e where e: "e > 0" "ball x e ⊆ M"
using openE[OF ‹open M› ‹x ∈ M›] by auto
moreover obtain a b where ab:
"x ∈ box a b"
"∀i ∈ Basis. a ∙ i ∈ ℚ"
"∀i∈Basis. b ∙ i ∈ ℚ"
"box a b ⊆ ball x e"
using rational_boxes[OF e(1)] by metis
ultimately show ?thesis
by (intro UN_I[of "λi∈Basis. (a ∙ i, b ∙ i)"])
(auto simp: euclidean_representation I_def a'_def b'_def)
qed
then show ?thesis by (auto simp: I_def)
qed
corollary open_countable_Union_open_box:
fixes S :: "'a :: euclidean_space set"
assumes "open S"
obtains 𝒟 where "countable 𝒟" "𝒟 ⊆ Pow S" "⋀X. X ∈ 𝒟 ⟹ ∃a b. X = box a b" "⋃𝒟 = S"
proof -
let ?a = "λf. (∑(i::'a)∈Basis. fst (f i) *⇩R i)"
let ?b = "λf. (∑(i::'a)∈Basis. snd (f i) *⇩R i)"
let ?I = "{f∈Basis →⇩E ℚ × ℚ. box (?a f) (?b f) ⊆ S}"
let ?𝒟 = "(λf. box (?a f) (?b f)) ` ?I"
show ?thesis
proof
have "countable ?I"
by (simp add: countable_PiE countable_rat)
then show "countable ?𝒟"
by blast
show "⋃?𝒟 = S"
using open_UNION_box [OF assms] by metis
qed auto
qed
lemma rational_cboxes:
fixes x :: "'a::euclidean_space"
assumes "e > 0"
shows "∃a b. (∀i∈Basis. a ∙ i ∈ ℚ ∧ b ∙ i ∈ ℚ) ∧ x ∈ cbox a b ∧ cbox a b ⊆ ball x e"
proof -
define e' where "e' = e / (2 * sqrt (real (DIM ('a))))"
then have e: "e' > 0"
using assms by auto
have "∃y. y ∈ ℚ ∧ y < x ∙ i ∧ x ∙ i - y < e'" for i
using Rats_dense_in_real[of "x ∙ i - e'" "x ∙ i"] e by force
then obtain a where
a: "∀u. a u ∈ ℚ ∧ a u < x ∙ u ∧ x ∙ u - a u < e'" by metis
have "∃y. y ∈ ℚ ∧ x ∙ i < y ∧ y - x ∙ i < e'" for i
using Rats_dense_in_real[of "x ∙ i" "x ∙ i + e'"] e by force
then obtain b where
b: "∀u. b u ∈ ℚ ∧ x ∙ u < b u ∧ b u - x ∙ u < e'" by metis
let ?a = "∑i∈Basis. a i *⇩R i" and ?b = "∑i∈Basis. b i *⇩R i"
show ?thesis
proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
fix y :: 'a
assume *: "y ∈ cbox ?a ?b"
have "dist x y = sqrt (∑i∈Basis. (dist (x ∙ i) (y ∙ i))⇧2)"
unfolding L2_set_def[symmetric] by (rule euclidean_dist_l2)
also have "… < sqrt (∑(i::'a)∈Basis. e^2 / real (DIM('a)))"
proof (rule real_sqrt_less_mono, rule sum_strict_mono)
fix i :: "'a"
assume i: "i ∈ Basis"
have "a i ≤ y∙i ∧ y∙i ≤ b i"
using * i by (auto simp: cbox_def)
moreover have "a i < x∙i" "x∙i - a i < e'" "x∙i < b i" "b i - x∙i < e'"
using a b by auto
ultimately have "¦x∙i - y∙i¦ < 2 * e'"
by auto
then have "dist (x ∙ i) (y ∙ i) < e/sqrt (real (DIM('a)))"
unfolding e'_def by (auto simp: dist_real_def)
then have "(dist (x ∙ i) (y ∙ i))⇧2 < (e/sqrt (real (DIM('a))))⇧2"
by (rule power_strict_mono) auto
then show "(dist (x ∙ i) (y ∙ i))⇧2 < e⇧2 / real DIM('a)"
by (simp add: power_divide)
qed auto
also have "… = e"
using ‹0 < e› by simp
finally show "y ∈ ball x e"
by (auto simp: ball_def)
next
show "x ∈ cbox (∑i∈Basis. a i *⇩R i) (∑i∈Basis. b i *⇩R i)"
using a b less_imp_le by (auto simp: cbox_def)
qed (use a b cbox_def in auto)
qed
lemma open_UNION_cbox:
fixes M :: "'a::euclidean_space set"
assumes "open M"
defines "a' ≡ λf. (∑(i::'a)∈Basis. fst (f i) *⇩R i)"
defines "b' ≡ λf. (∑(i::'a)∈Basis. snd (f i) *⇩R i)"
defines "I ≡ {f∈Basis →⇩E ℚ × ℚ. cbox (a' f) (b' f) ⊆ M}"
shows "M = (⋃f∈I. cbox (a' f) (b' f))"
proof -
have "x ∈ (⋃f∈I. cbox (a' f) (b' f))" if "x ∈ M" for x
proof -
obtain e where e: "e > 0" "ball x e ⊆ M"
using openE[OF ‹open M› ‹x ∈ M›] by auto
moreover obtain a b where ab: "x ∈ cbox a b" "∀i ∈ Basis. a ∙ i ∈ ℚ"
"∀i ∈ Basis. b ∙ i ∈ ℚ" "cbox a b ⊆ ball x e"
using rational_cboxes[OF e(1)] by metis
ultimately show ?thesis
by (intro UN_I[of "λi∈Basis. (a ∙ i, b ∙ i)"])
(auto simp: euclidean_representation I_def a'_def b'_def)
qed
then show ?thesis by (auto simp: I_def)
qed
corollary open_countable_Union_open_cbox:
fixes S :: "'a :: euclidean_space set"
assumes "open S"
obtains 𝒟 where "countable 𝒟" "𝒟 ⊆ Pow S" "⋀X. X ∈ 𝒟 ⟹ ∃a b. X = cbox a b" "⋃𝒟 = S"
proof -
let ?a = "λf. (∑(i::'a)∈Basis. fst (f i) *⇩R i)"
let ?b = "λf. (∑(i::'a)∈Basis. snd (f i) *⇩R i)"
let ?I = "{f∈Basis →⇩E ℚ × ℚ. cbox (?a f) (?b f) ⊆ S}"
let ?𝒟 = "(λf. cbox (?a f) (?b f)) ` ?I"
show ?thesis
proof
have "countable ?I"
by (simp add: countable_PiE countable_rat)
then show "countable ?𝒟"
by blast
show "⋃?𝒟 = S"
using open_UNION_cbox [OF assms] by metis
qed auto
qed
lemma box_eq_empty:
fixes a :: "'a::euclidean_space"
shows "(box a b = {} ⟷ (∃i∈Basis. b∙i ≤ a∙i))" (is ?th1)
and "(cbox a b = {} ⟷ (∃i∈Basis. b∙i < a∙i))" (is ?th2)
proof -
have False if "i ∈ Basis" and "b∙i ≤ a∙i" and "x ∈ box a b" for i x
by (smt (verit, ccfv_SIG) mem_box(1) that)
moreover
{ assume as: "∀i∈Basis. ¬ (b∙i ≤ a∙i)"
let ?x = "(1/2) *⇩R (a + b)"
{ fix i :: 'a
assume i: "i ∈ Basis"
have "a∙i < b∙i"
using as i by fastforce
then have "a∙i < ((1/2) *⇩R (a+b)) ∙ i" "((1/2) *⇩R (a+b)) ∙ i < b∙i"
by (auto simp: inner_add_left)
}
then have "box a b ≠ {}"
by (metis (no_types, opaque_lifting) emptyE mem_box(1))
}
ultimately show ?th1 by blast
have False if "i∈Basis" and "b∙i < a∙i" and "x ∈ cbox a b" for i x
using mem_box(2) that by force
moreover
have "cbox a b ≠ {}" if "∀i∈Basis. ¬ (b∙i < a∙i)"
by (metis emptyE linorder_linear mem_box(2) order.strict_iff_not that)
ultimately show ?th2 by blast
qed
lemma box_ne_empty:
fixes a :: "'a::euclidean_space"
shows "cbox a b ≠ {} ⟷ (∀i∈Basis. a∙i ≤ b∙i)"
and "box a b ≠ {} ⟷ (∀i∈Basis. a∙i < b∙i)"
unfolding box_eq_empty[of a b] by fastforce+
lemma
fixes a :: "'a::euclidean_space"
shows cbox_idem [simp]: "cbox a a = {a}"
and box_idem [simp]: "box a a = {}"
unfolding set_eq_iff mem_box eq_iff [symmetric] using euclidean_eq_iff by fastforce+
lemma subset_box_imp:
fixes a :: "'a::euclidean_space"
shows "(∀i∈Basis. a∙i ≤ c∙i ∧ d∙i ≤ b∙i) ⟹ cbox c d ⊆ cbox a b"
and "(∀i∈Basis. a∙i < c∙i ∧ d∙i < b∙i) ⟹ cbox c d ⊆ box a b"
and "(∀i∈Basis. a∙i ≤ c∙i ∧ d∙i ≤ b∙i) ⟹ box c d ⊆ cbox a b"
and "(∀i∈Basis. a∙i ≤ c∙i ∧ d∙i ≤ b∙i) ⟹ box c d ⊆ box a b"
unfolding subset_eq[unfolded Ball_def] unfolding mem_box
by (best intro: order_trans less_le_trans le_less_trans less_imp_le)+
lemma box_subset_cbox:
fixes a :: "'a::euclidean_space"
shows "box a b ⊆ cbox a b"
unfolding subset_eq [unfolded Ball_def] mem_box
by (fast intro: less_imp_le)
lemma subset_box:
fixes a :: "'a::euclidean_space"
shows "cbox c d ⊆ cbox a b ⟷ (∀i∈Basis. c∙i ≤ d∙i) ⟶ (∀i∈Basis. a∙i ≤ c∙i ∧ d∙i ≤ b∙i)" (is ?th1)
and "cbox c d ⊆ box a b ⟷ (∀i∈Basis. c∙i ≤ d∙i) ⟶ (∀i∈Basis. a∙i < c∙i ∧ d∙i < b∙i)" (is ?th2)
and "box c d ⊆ cbox a b ⟷ (∀i∈Basis. c∙i < d∙i) ⟶ (∀i∈Basis. a∙i ≤ c∙i ∧ d∙i ≤ b∙i)" (is ?th3)
and "box c d ⊆ box a b ⟷ (∀i∈Basis. c∙i < d∙i) ⟶ (∀i∈Basis. a∙i ≤ c∙i ∧ d∙i ≤ b∙i)" (is ?th4)
proof -
let ?lesscd = "∀i∈Basis. c∙i < d∙i"
let ?lerhs = "∀i∈Basis. a∙i ≤ c∙i ∧ d∙i ≤ b∙i"
show ?th1 ?th2
by (fastforce simp: mem_box)+
have acdb: "a∙i ≤ c∙i ∧ d∙i ≤ b∙i"
if i: "i ∈ Basis" and box: "box c d ⊆ cbox a b" and cd: "⋀i. i ∈ Basis ⟹ c∙i < d∙i" for i
proof -
have "box c d ≠ {}"
using that
unfolding box_eq_empty by force
{ let ?x = "(∑j∈Basis. (if j=i then ((min (a∙j) (d∙j))+c∙j)/2 else (c∙j+d∙j)/2) *⇩R j)::'a"
assume *: "a∙i > c∙i"
then have "c ∙ j < ?x ∙ j ∧ ?x ∙ j < d ∙ j" if "j ∈ Basis" for j
using cd that by (fastforce simp add: i *)
then have "?x ∈ box c d"
unfolding mem_box by auto
moreover have "?x ∉ cbox a b"
using i cd * by (force simp: mem_box)
ultimately have False using box by auto
}
then have "a∙i ≤ c∙i" by force
moreover
{ let ?x = "(∑j∈Basis. (if j=i then ((max (b∙j) (c∙j))+d∙j)/2 else (c∙j+d∙j)/2) *⇩R j)::'a"
assume *: "b∙i < d∙i"
then have "d ∙ j > ?x ∙ j ∧ ?x ∙ j > c ∙ j" if "j ∈ Basis" for j
using cd that by (fastforce simp add: i *)
then have "?x ∈ box c d"
unfolding mem_box by auto
moreover have "?x ∉ cbox a b"
using i cd * by (force simp: mem_box)
ultimately have False using box by auto
}
then have "b∙i ≥ d∙i" by (rule ccontr) auto
ultimately show ?thesis by auto
qed
show ?th3
using acdb by (fastforce simp add: mem_box)
have acdb': "a∙i ≤ c∙i ∧ d∙i ≤ b∙i"
if "i ∈ Basis" "box c d ⊆ box a b" "⋀i. i ∈ Basis ⟹ c∙i < d∙i" for i
using box_subset_cbox[of a b] that acdb by auto
show ?th4
using acdb' by (fastforce simp add: mem_box)
qed
lemma eq_cbox: "cbox a b = cbox c d ⟷ cbox a b = {} ∧ cbox c d = {} ∨ a = c ∧ b = d"
(is "?lhs = ?rhs")
proof
assume ?lhs
then have "cbox a b ⊆ cbox c d" "cbox c d ⊆ cbox a b"
by auto
then show ?rhs
by (force simp: subset_box box_eq_empty intro: antisym euclidean_eqI)
qed auto
lemma eq_cbox_box [simp]: "cbox a b = box c d ⟷ cbox a b = {} ∧ box c d = {}"
(is "?lhs ⟷ ?rhs")
proof
assume L: ?lhs
then have "cbox a b ⊆ box c d" "box c d ⊆ cbox a b"
by auto
with L subset_box show ?rhs
by (smt (verit) SOME_Basis box_ne_empty(1))
qed force
lemma eq_box_cbox [simp]: "box a b = cbox c d ⟷ box a b = {} ∧ cbox c d = {}"
by (metis eq_cbox_box)
lemma eq_box: "box a b = box c d ⟷ box a b = {} ∧ box c d = {} ∨ a = c ∧ b = d"
(is "?lhs ⟷ ?rhs")
proof
assume L: ?lhs
then have "box a b ⊆ box c d" "box c d ⊆ box a b"
by auto
then show ?rhs
unfolding subset_box by (smt (verit) box_ne_empty(2) euclidean_eq_iff)+
qed force
lemma subset_box_complex:
"cbox a b ⊆ cbox c d ⟷
(Re a ≤ Re b ∧ Im a ≤ Im b) ⟶ Re a ≥ Re c ∧ Im a ≥ Im c ∧ Re b ≤ Re d ∧ Im b ≤ Im d"
"cbox a b ⊆ box c d ⟷
(Re a ≤ Re b ∧ Im a ≤ Im b) ⟶ Re a > Re c ∧ Im a > Im c ∧ Re b < Re d ∧ Im b < Im d"
"box a b ⊆ cbox c d ⟷
(Re a < Re b ∧ Im a < Im b) ⟶ Re a ≥ Re c ∧ Im a ≥ Im c ∧ Re b ≤ Re d ∧ Im b ≤ Im d"
"box a b ⊆ box c d ⟷
(Re a < Re b ∧ Im a < Im b) ⟶ Re a ≥ Re c ∧ Im a ≥ Im c ∧ Re b ≤ Re d ∧ Im b ≤ Im d"
by (subst subset_box; force simp: Basis_complex_def)+
lemma in_cbox_complex_iff:
"x ∈ cbox a b ⟷ Re x ∈ {Re a..Re b} ∧ Im x ∈ {Im a..Im b}"
by (cases x; cases a; cases b) (auto simp: cbox_Complex_eq)
lemma cbox_complex_of_real: "cbox (complex_of_real x) (complex_of_real y) = complex_of_real ` {x..y}"
proof -
have "(x ≤ Re z ∧ Re z ≤ y ∧ Im z = 0) = (z ∈ complex_of_real ` {x..y})" for z
by (cases z) (simp add: complex_eq_cancel_iff2 image_iff)
then show ?thesis
by (auto simp: in_cbox_complex_iff)
qed
lemma box_Complex_eq:
"box (Complex a c) (Complex b d) = (λ(x,y). Complex x y) ` (box a b × box c d)"
by (auto simp: box_def Basis_complex_def image_iff complex_eq_iff)
lemma in_box_complex_iff:
"x ∈ box a b ⟷ Re x ∈ {Re a<..<Re b} ∧ Im x ∈ {Im a<..<Im b}"
by (cases x; cases a; cases b) (auto simp: box_Complex_eq)
lemma box_complex_of_real [simp]: "box (complex_of_real x) (complex_of_real y) = {}"
by (auto simp: in_box_complex_iff)
lemma Int_interval:
fixes a :: "'a::euclidean_space"
shows "cbox a b ∩ cbox c d =
cbox (∑i∈Basis. max (a∙i) (c∙i) *⇩R i) (∑i∈Basis. min (b∙i) (d∙i) *⇩R i)"
unfolding set_eq_iff and Int_iff and mem_box
by auto
lemma disjoint_interval:
fixes a::"'a::euclidean_space"
shows "cbox a b ∩ cbox c d = {} ⟷ (∃i∈Basis. (b∙i < a∙i ∨ d∙i < c∙i ∨ b∙i < c∙i ∨ d∙i < a∙i))" (is ?th1)
and "cbox a b ∩ box c d = {} ⟷ (∃i∈Basis. (b∙i < a∙i ∨ d∙i ≤ c∙i ∨ b∙i ≤ c∙i ∨ d∙i ≤ a∙i))" (is ?th2)
and "box a b ∩ cbox c d = {} ⟷ (∃i∈Basis. (b∙i ≤ a∙i ∨ d∙i < c∙i ∨ b∙i ≤ c∙i ∨ d∙i ≤ a∙i))" (is ?th3)
and "box a b ∩ box c d = {} ⟷ (∃i∈Basis. (b∙i ≤ a∙i ∨ d∙i ≤ c∙i ∨ b∙i ≤ c∙i ∨ d∙i ≤ a∙i))" (is ?th4)
proof -
let ?z = "(∑i∈Basis. (((max (a∙i) (c∙i)) + (min (b∙i) (d∙i))) / 2) *⇩R i)::'a"
have **: "⋀P Q. (⋀i :: 'a. i ∈ Basis ⟹ Q ?z i ⟹ P i) ⟹
(⋀i x :: 'a. i ∈ Basis ⟹ P i ⟹ Q x i) ⟹ (∀x. ∃i∈Basis. Q x i) ⟷ (∃i∈Basis. P i)"
by blast
note * = set_eq_iff Int_iff empty_iff mem_box ball_conj_distrib[symmetric] eq_False ball_simps(10)
show ?th1 unfolding * by (intro **) auto
show ?th2 unfolding * by (intro **) auto
show ?th3 unfolding * by (intro **) auto
show ?th4 unfolding * by (intro **) auto
qed
lemma UN_box_eq_UNIV: "(⋃i::nat. box (- (real i *⇩R One)) (real i *⇩R One)) = UNIV"
proof -
have "¦x ∙ b¦ < real_of_int (⌈Max ((λb. ¦x ∙ b¦)`Basis)⌉ + 1)"
if [simp]: "b ∈ Basis" for x b :: 'a
proof -
have "¦x ∙ b¦ ≤ real_of_int ⌈¦x ∙ b¦⌉"
by (rule le_of_int_ceiling)
also have "… ≤ real_of_int ⌈Max ((λb. ¦x ∙ b¦)`Basis)⌉"
by (auto intro!: ceiling_mono)
also have "… < real_of_int (⌈Max ((λb. ¦x ∙ b¦)`Basis)⌉ + 1)"
by simp
finally show ?thesis .
qed
then have "∃n::nat. ∀b∈Basis. ¦x ∙ b¦ < real n" for x :: 'a
by (metis order.strict_trans reals_Archimedean2)
moreover have "⋀x b::'a. ⋀n::nat. ¦x ∙ b¦ < real n ⟷ - real n < x ∙ b ∧ x ∙ b < real n"
by auto
ultimately show ?thesis
by (auto simp: box_def inner_sum_left inner_Basis sum.If_cases)
qed
lemma image_affinity_cbox: fixes m::real
fixes a b c :: "'a::euclidean_space"
shows "(λx. m *⇩R x + c) ` cbox a b =
(if cbox a b = {} then {}
else (if 0 ≤ m then cbox (m *⇩R a + c) (m *⇩R b + c)
else cbox (m *⇩R b + c) (m *⇩R a + c)))"
proof (cases "m = 0")
case True
{
fix x
assume "∀i∈Basis. x ∙ i ≤ c ∙ i" "∀i∈Basis. c ∙ i ≤ x ∙ i"
then have "x = c"
by (simp add: dual_order.antisym euclidean_eqI)
}
moreover have "c ∈ cbox (m *⇩R a + c) (m *⇩R b + c)"
unfolding True by auto
ultimately show ?thesis using True by (auto simp: cbox_def)
next
case False
{
fix y
assume "∀i∈Basis. a ∙ i ≤ y ∙ i" "∀i∈Basis. y ∙ i ≤ b ∙ i" "m > 0"
then have "∀i∈Basis. (m *⇩R a + c) ∙ i ≤ (m *⇩R y + c) ∙ i"
and "∀i∈Basis. (m *⇩R y + c) ∙ i ≤ (m *⇩R b + c) ∙ i"
by (auto simp: inner_distrib)
}
moreover
{
fix y
assume "∀i∈Basis. a ∙ i ≤ y ∙ i" "∀i∈Basis. y ∙ i ≤ b ∙ i" "m < 0"
then have "∀i∈Basis. (m *⇩R b + c) ∙ i ≤ (m *⇩R y + c) ∙ i"
and "∀i∈Basis. (m *⇩R y + c) ∙ i ≤ (m *⇩R a + c) ∙ i"
by (auto simp: mult_left_mono_neg inner_distrib)
}
moreover
{
fix y
assume "m > 0" and "∀i∈Basis. (m *⇩R a + c) ∙ i ≤ y ∙ i"
and "∀i∈Basis. y ∙ i ≤ (m *⇩R b + c) ∙ i"
then have "y ∈ (λx. m *⇩R x + c) ` cbox a b"
unfolding image_iff Bex_def mem_box
apply (intro exI[where x="(1 / m) *⇩R (y - c)"])
apply (auto simp: pos_le_divide_eq pos_divide_le_eq mult.commute inner_distrib inner_diff_left)
done
}
moreover
{
fix y
assume "∀i∈Basis. (m *⇩R b + c) ∙ i ≤ y ∙ i" "∀i∈Basis. y ∙ i ≤ (m *⇩R a + c) ∙ i" "m < 0"
then have "y ∈ (λx. m *⇩R x + c) ` cbox a b"
unfolding image_iff Bex_def mem_box
apply (intro exI[where x="(1 / m) *⇩R (y - c)"])
apply (auto simp: neg_le_divide_eq neg_divide_le_eq mult.commute inner_distrib inner_diff_left)
done
}
ultimately show ?thesis using False by (auto simp: cbox_def)
qed
lemma image_smult_cbox:"(λx. m *⇩R (x::_::euclidean_space)) ` cbox a b =
(if cbox a b = {} then {} else if 0 ≤ m then cbox (m *⇩R a) (m *⇩R b) else cbox (m *⇩R b) (m *⇩R a))"
using image_affinity_cbox[of m 0 a b] by auto
lemma swap_continuous:
assumes "continuous_on (cbox (a,c) (b,d)) (λ(x,y). f x y)"
shows "continuous_on (cbox (c,a) (d,b)) (λ(x, y). f y x)"
proof -
have "(λ(x, y). f y x) = (λ(x, y). f x y) ∘ prod.swap"
by auto
then show ?thesis
by (metis assms continuous_on_compose continuous_on_swap swap_cbox_Pair)
qed
lemma open_contains_cbox:
fixes x :: "'a :: euclidean_space"
assumes "open A" "x ∈ A"
obtains a b where "cbox a b ⊆ A" "x ∈ box a b" "∀i∈Basis. a ∙ i < b ∙ i"
proof -
from assms obtain R where R: "R > 0" "ball x R ⊆ A"
by (auto simp: open_contains_ball)
define r :: real where "r = R / (2 * sqrt DIM('a))"
from ‹R > 0› have [simp]: "r > 0" by (auto simp: r_def)
define d :: 'a where "d = r *⇩R Topology_Euclidean_Space.One"
have "cbox (x - d) (x + d) ⊆ A"
proof safe
fix y assume y: "y ∈ cbox (x - d) (x + d)"
have "dist x y = sqrt (∑i∈Basis. (dist (x ∙ i) (y ∙ i))⇧2)"
by (subst euclidean_dist_l2) (auto simp: L2_set_def)
also from y have "sqrt (∑i∈Basis. (dist (x ∙ i) (y ∙ i))⇧2) ≤ sqrt (∑i∈(Basis::'a set). r⇧2)"
by (intro real_sqrt_le_mono sum_mono power_mono)
(auto simp: dist_norm d_def cbox_def algebra_simps)
also have "… = sqrt (DIM('a) * r⇧2)" by simp
also have "DIM('a) * r⇧2 = (R / 2) ^ 2"
by (simp add: r_def power_divide)
also have "sqrt … = R / 2"
using ‹R > 0› by simp
also from ‹R > 0› have "… < R" by simp
finally have "y ∈ ball x R" by simp
with R show "y ∈ A" by blast
qed
thus ?thesis
using that[of "x - d" "x + d"] by (auto simp: algebra_simps d_def box_def)
qed
lemma open_contains_box:
fixes x :: "'a :: euclidean_space"
assumes "open A" "x ∈ A"
obtains a b where "box a b ⊆ A" "x ∈ box a b" "∀i∈Basis. a ∙ i < b ∙ i"
by (meson assms box_subset_cbox dual_order.trans open_contains_cbox)
lemma inner_image_box:
assumes "(i :: 'a :: euclidean_space) ∈ Basis"
assumes "∀i∈Basis. a ∙ i < b ∙ i"
shows "(λx. x ∙ i) ` box a b = {a ∙ i<..<b ∙ i}"
proof safe
fix x assume x: "x ∈ {a ∙ i<..<b ∙ i}"
let ?y = "(∑j∈Basis. (if i = j then x else (a + b) ∙ j / 2) *⇩R j)"
from x assms have "?y ∙ i ∈ (λx. x ∙ i) ` box a b"
by (intro imageI) (auto simp: box_def algebra_simps)
also have "?y ∙ i = (∑j∈Basis. (if i = j then x else (a + b) ∙ j / 2) * (j ∙ i))"
by (simp add: inner_sum_left)
also have "… = (∑j∈Basis. if i = j then x else 0)"
by (intro sum.cong) (auto simp: inner_not_same_Basis assms)
also have "… = x" using assms by simp
finally show "x ∈ (λx. x ∙ i) ` box a b" .
qed (insert assms, auto simp: box_def)
lemma inner_image_cbox:
assumes "(i :: 'a :: euclidean_space) ∈ Basis"
assumes "∀i∈Basis. a ∙ i ≤ b ∙ i"
shows "(λx. x ∙ i) ` cbox a b = {a ∙ i..b ∙ i}"
proof safe
fix x assume x: "x ∈ {a ∙ i..b ∙ i}"
let ?y = "(∑j∈Basis. (if i = j then x else a ∙ j) *⇩R j)"
from x assms have "?y ∙ i ∈ (λx. x ∙ i) ` cbox a b"
by (intro imageI) (auto simp: cbox_def)
also have "?y ∙ i = (∑j∈Basis. (if i = j then x else a ∙ j) * (j ∙ i))"
by (simp add: inner_sum_left)
also have "… = (∑j∈Basis. if i = j then x else 0)"
by (intro sum.cong) (auto simp: inner_not_same_Basis assms)
also have "… = x" using assms by simp
finally show "x ∈ (λx. x ∙ i) ` cbox a b" .
qed (insert assms, auto simp: cbox_def)
subsection ‹General Intervals›
definition "is_interval (s::('a::euclidean_space) set) ⟷
(∀a∈s. ∀b∈s. ∀x. (∀i∈Basis. ((a∙i ≤ x∙i ∧ x∙i ≤ b∙i) ∨ (b∙i ≤ x∙i ∧ x∙i ≤ a∙i))) ⟶ x ∈ s)"
lemma is_interval_1:
"is_interval (s::real set) ⟷ (∀a∈s. ∀b∈s. ∀ x. a ≤ x ∧ x ≤ b ⟶ x ∈ s)"
unfolding is_interval_def by auto
lemma is_interval_Int: "is_interval X ⟹ is_interval Y ⟹ is_interval (X ∩ Y)"
unfolding is_interval_def
by blast
lemma is_interval_cbox [simp]: "is_interval (cbox a (b::'a::euclidean_space))" (is ?th1)
and is_interval_box [simp]: "is_interval (box a b)" (is ?th2)
unfolding is_interval_def mem_box Ball_def atLeastAtMost_iff
by (meson order_trans le_less_trans less_le_trans less_trans)+
lemma is_interval_empty [iff]: "is_interval {}"
unfolding is_interval_def by simp
lemma is_interval_univ [iff]: "is_interval UNIV"
unfolding is_interval_def by simp
lemma mem_is_intervalI:
assumes "is_interval S"
and "a ∈ S" "b ∈ S"
and "⋀i. i ∈ Basis ⟹ a ∙ i ≤ x ∙ i ∧ x ∙ i ≤ b ∙ i ∨ b ∙ i ≤ x ∙ i ∧ x ∙ i ≤ a ∙ i"
shows "x ∈ S"
using assms is_interval_def by force
lemma interval_subst:
fixes S::"'a::euclidean_space set"
assumes "is_interval S"
and "x ∈ S" "y j ∈ S"
and "j ∈ Basis"
shows "(∑i∈Basis. (if i = j then y i ∙ i else x ∙ i) *⇩R i) ∈ S"
by (rule mem_is_intervalI[OF assms(1,2)]) (auto simp: assms)
lemma mem_box_componentwiseI:
fixes S::"'a::euclidean_space set"
assumes "is_interval S"
assumes "⋀i. i ∈ Basis ⟹ x ∙ i ∈ ((λx. x ∙ i) ` S)"
shows "x ∈ S"
proof -
from assms have "∀i ∈ Basis. ∃s ∈ S. x ∙ i = s ∙ i"
by auto
with finite_Basis obtain s and bs::"'a list"
where s: "⋀i. i ∈ Basis ⟹ x ∙ i = s i ∙ i" "⋀i. i ∈ Basis ⟹ s i ∈ S"
and bs: "set bs = Basis" "distinct bs"
by (metis finite_distinct_list)
from nonempty_Basis s obtain j where j: "j ∈ Basis" "s j ∈ S"
by blast
define y where
"y = rec_list (s j) (λj _ Y. (∑i∈Basis. (if i = j then s i ∙ i else Y ∙ i) *⇩R i))"
have "x = (∑i∈Basis. (if i ∈ set bs then s i ∙ i else s j ∙ i) *⇩R i)"
using bs by (auto simp: s(1)[symmetric] euclidean_representation)
also have [symmetric]: "y bs = …"
using bs(2) bs(1)[THEN equalityD1]
by (induct bs) (auto simp: y_def euclidean_representation intro!: euclidean_eqI[where 'a='a])
also have "y bs ∈ S"
using bs(1)[THEN equalityD1]
proof (induction bs)
case Nil
then show ?case
by (simp add: j y_def)
next
case (Cons a bs)
then show ?case
using interval_subst[OF assms(1)] s by (simp add: y_def)
qed
finally show ?thesis .
qed
lemma cbox01_nonempty [simp]: "cbox 0 One ≠ {}"
by (simp add: box_ne_empty inner_Basis inner_sum_left sum_nonneg)
lemma box01_nonempty [simp]: "box 0 One ≠ {}"
by (simp add: box_ne_empty inner_Basis inner_sum_left)
lemma empty_as_interval: "{} = cbox One (0::'a::euclidean_space)"
using nonempty_Basis box01_nonempty box_eq_empty(1) box_ne_empty(1) by blast
lemma interval_subset_is_interval:
assumes "is_interval S"
shows "cbox a b ⊆ S ⟷ cbox a b = {} ∨ a ∈ S ∧ b ∈ S" (is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs using box_ne_empty(1) mem_box(2) by fastforce
next
assume ?rhs
have "cbox a b ⊆ S" if "a ∈ S" "b ∈ S"
using assms that
by (force simp: mem_box intro: mem_is_intervalI)
with ‹?rhs› show ?lhs
by blast
qed
lemma is_real_interval_union:
"is_interval (X ∪ Y)"
if X: "is_interval X" and Y: "is_interval Y" and I: "(X ≠ {} ⟹ Y ≠ {} ⟹ X ∩ Y ≠ {})"
for X Y::"real set"
proof -
consider "X ≠ {}" "Y ≠ {}" | "X = {}" | "Y = {}" by blast
then show ?thesis
proof cases
case 1
then obtain r where "r ∈ X ∨ X ∩ Y = {}" "r ∈ Y ∨ X ∩ Y = {}"
by blast
then show ?thesis
using I 1 X Y unfolding is_interval_1
by (metis (full_types) Un_iff le_cases)
qed (use that in auto)
qed
lemma is_interval_translationI:
assumes "is_interval X"
shows "is_interval ((+) x ` X)"
unfolding is_interval_def
proof safe
fix b d e
assume "b ∈ X" "d ∈ X"
"∀i∈Basis. (x + b) ∙ i ≤ e ∙ i ∧ e ∙ i ≤ (x + d) ∙ i ∨
(x + d) ∙ i ≤ e ∙ i ∧ e ∙ i ≤ (x + b) ∙ i"
hence "e - x ∈ X"
by (intro mem_is_intervalI[OF assms ‹b ∈ X› ‹d ∈ X›, of "e - x"])
(auto simp: algebra_simps)
thus "e ∈ (+) x ` X" by force
qed
lemma is_interval_uminusI:
assumes "is_interval X"
shows "is_interval (uminus ` X)"
unfolding is_interval_def
proof safe
fix b d e
assume "b ∈ X" "d ∈ X"
"∀i∈Basis. (- b) ∙ i ≤ e ∙ i ∧ e ∙ i ≤ (- d) ∙ i ∨
(- d) ∙ i ≤ e ∙ i ∧ e ∙ i ≤ (- b) ∙ i"
hence "- e ∈ X"
by (smt (verit, ccfv_threshold) assms inner_minus_left mem_is_intervalI)
thus "e ∈ uminus ` X" by force
qed
lemma is_interval_uminus[simp]: "is_interval (uminus ` x) = is_interval x"
using is_interval_uminusI[of x] is_interval_uminusI[of "uminus ` x"]
by (auto simp: image_image)
lemma is_interval_neg_translationI:
assumes "is_interval X"
shows "is_interval ((-) x ` X)"
proof -
have "(-) x ` X = (+) x ` uminus ` X"
by (force simp: algebra_simps)
also have "is_interval …"
by (metis is_interval_uminusI is_interval_translationI assms)
finally show ?thesis .
qed
lemma is_interval_translation[simp]:
"is_interval ((+) x ` X) = is_interval X"
using is_interval_neg_translationI[of "(+) x ` X" x]
by (auto intro!: is_interval_translationI simp: image_image)
lemma is_interval_minus_translation[simp]:
shows "is_interval ((-) x ` X) = is_interval X"
proof -
have "(-) x ` X = (+) x ` uminus ` X"
by (force simp: algebra_simps)
also have "is_interval … = is_interval X"
by simp
finally show ?thesis .
qed
lemma is_interval_minus_translation'[simp]:
shows "is_interval ((λx. x - c) ` X) = is_interval X"
using is_interval_translation[of "-c" X]
by (metis image_cong uminus_add_conv_diff)
lemma is_interval_cball_1[intro, simp]: "is_interval (cball a b)" for a b::real
by (simp add: cball_eq_atLeastAtMost is_interval_def)
lemma is_interval_ball_real: "is_interval (ball a b)" for a b::real
by (simp add: ball_eq_greaterThanLessThan is_interval_def)
subsection ‹Bounded Projections›
lemma bounded_inner_imp_bdd_above:
assumes "bounded s"
shows "bdd_above ((λx. x ∙ a) ` s)"
by (simp add: assms bounded_imp_bdd_above bounded_linear_image bounded_linear_inner_left)
lemma bounded_inner_imp_bdd_below:
assumes "bounded s"
shows "bdd_below ((λx. x ∙ a) ` s)"
by (simp add: assms bounded_imp_bdd_below bounded_linear_image bounded_linear_inner_left)
subsection ‹Structural rules for pointwise continuity›
lemma continuous_infnorm[continuous_intros]:
"continuous F f ⟹ continuous F (λx. infnorm (f x))"
unfolding continuous_def by (rule tendsto_infnorm)
lemma continuous_inner[continuous_intros]:
assumes "continuous F f"
and "continuous F g"
shows "continuous F (λx. inner (f x) (g x))"
using assms unfolding continuous_def by (rule tendsto_inner)
subsection ‹Structural rules for setwise continuity›
lemma continuous_on_infnorm[continuous_intros]:
"continuous_on s f ⟹ continuous_on s (λx. infnorm (f x))"
unfolding continuous_on by (fast intro: tendsto_infnorm)
lemma continuous_on_inner[continuous_intros]:
fixes g :: "'a::topological_space ⇒ 'b::real_inner"
assumes "continuous_on s f"
and "continuous_on s g"
shows "continuous_on s (λx. inner (f x) (g x))"
using bounded_bilinear_inner assms
by (rule bounded_bilinear.continuous_on)
subsection ‹Openness of halfspaces.›
lemma open_halfspace_lt: "open {x. inner a x < b}"
by (simp add: open_Collect_less continuous_on_inner)
lemma open_halfspace_gt: "open {x. inner a x > b}"
by (simp add: open_Collect_less continuous_on_inner)
lemma open_halfspace_component_lt: "open {x::'a::euclidean_space. x∙i < a}"
by (simp add: open_Collect_less continuous_on_inner)
lemma open_halfspace_component_gt: "open {x::'a::euclidean_space. x∙i > a}"
by (simp add: open_Collect_less continuous_on_inner)
lemma eucl_less_eq_halfspaces:
fixes a :: "'a::euclidean_space"
shows "{x. x <e a} = (⋂i∈Basis. {x. x ∙ i < a ∙ i})"
"{x. a <e x} = (⋂i∈Basis. {x. a ∙ i < x ∙ i})"
by (auto simp: eucl_less_def)
lemma open_Collect_eucl_less[simp, intro]:
fixes a :: "'a::euclidean_space"
shows "open {x. x <e a}" "open {x. a <e x}"
by (auto simp: eucl_less_eq_halfspaces open_halfspace_component_lt open_halfspace_component_gt)
subsection ‹Closure and Interior of halfspaces and hyperplanes›
lemma continuous_at_inner: "continuous (at x) (inner a)"
unfolding continuous_at by (intro tendsto_intros)
lemma closed_halfspace_le: "closed {x. inner a x ≤ b}"
by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_halfspace_ge: "closed {x. inner a x ≥ b}"
by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_hyperplane: "closed {x. inner a x = b}"
by (simp add: closed_Collect_eq continuous_on_inner)
lemma closed_halfspace_component_le: "closed {x::'a::euclidean_space. x∙i ≤ a}"
by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_halfspace_component_ge: "closed {x::'a::euclidean_space. x∙i ≥ a}"
by (simp add: closed_Collect_le continuous_on_inner)
lemma closed_interval_left:
fixes b :: "'a::euclidean_space"
shows "closed {x::'a. ∀i∈Basis. x∙i ≤ b∙i}"
by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner)
lemma closed_interval_right:
fixes a :: "'a::euclidean_space"
shows "closed {x::'a. ∀i∈Basis. a∙i ≤ x∙i}"
by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner)
lemma interior_halfspace_le [simp]:
assumes "a ≠ 0"
shows "interior {x. a ∙ x ≤ b} = {x. a ∙ x < b}"
proof -
have *: "a ∙ x < b" if x: "x ∈ S" and S: "S ⊆ {x. a ∙ x ≤ b}" and "open S" for S x
proof -
obtain e where "e>0" and e: "cball x e ⊆ S"
using ‹open S› open_contains_cball x by blast
then have "x + (e / norm a) *⇩R a ∈ cball x e"
by (simp add: dist_norm)
then have "x + (e / norm a) *⇩R a ∈ S"
using e by blast
then have "x + (e / norm a) *⇩R a ∈ {x. a ∙ x ≤ b}"
using S by blast
moreover have "e * (a ∙ a) / norm a > 0"
by (simp add: ‹0 < e› assms)
ultimately show ?thesis
by (simp add: algebra_simps)
qed
show ?thesis
by (rule interior_unique) (auto simp: open_halfspace_lt *)
qed
lemma interior_halfspace_ge [simp]:
"a ≠ 0 ⟹ interior {x. a ∙ x ≥ b} = {x. a ∙ x > b}"
using interior_halfspace_le [of "-a" "-b"] by simp
lemma closure_halfspace_lt [simp]:
assumes "a ≠ 0"
shows "closure {x. a ∙ x < b} = {x