Theory Bounding_X

section ‹Bounding the Size of @{term X}

theory Bounding_X imports Bounding_Y

begin

subsection ‹Preliminaries›

lemma sum_odds_even:
  fixes f :: "nat  'a :: ab_group_add"
  assumes "even m"
  shows "(i  {i. i<m  odd i}. f (Suc i) - f (i -Suc 0)) = f m - f 0"
  using assms
proof (induction m rule: less_induct)
  case (less m)
  show ?case
  proof (cases "m<2")
    case True
    with even m show ?thesis
       by fastforce
  next
    case False
    have eq: "{i. i<m  odd i} = insert (m-1) {i. i<m-2  odd i}"
    proof
      show "{i. i < m  odd i}  insert (m - 1) {i. i < m - 2  odd i}"
        using even m by clarify presburger
    qed (use False less in auto)
    have [simp]: "¬ (m - Suc 0 < m - 2)"
      by linarith
    show ?thesis
      using False by (simp add: eq less flip: numeral_2_eq_2)
  qed
qed 

lemma sum_odds_odd:
  fixes f :: "nat  'a :: ab_group_add"
  assumes "odd m"
  shows "(i  {i. i<m  odd i}. f (Suc i) - f (i - Suc 0)) = f (m-1) - f 0"
proof -
  have eq: "{i. i<m  odd i} = {i. i<m-1  odd i}"
    using assms not_less_iff_gr_or_eq by fastforce
  show ?thesis
    by (simp add: sum_odds_even eq assms)
qed


context Book
begin

text ‹the set of moderate density-boost steps (page 20)›
definition dboost_star where
  "dboost_star  {i  Step_class {dboost_step}. real (hgt (pseq (Suc i))) - hgt (pseq i)  ε powr (-1/4)}"

definition bigbeta where
  "bigbeta  let S = dboost_star in if S = {} then μ else (card S) * inverse (iS. inverse (beta i))"

lemma dboost_star_subset: "dboost_star  Step_class {dboost_step}"
  by (auto simp: dboost_star_def)

lemma finite_dboost_star: "finite (dboost_star)"
    by (meson dboost_step_finite dboost_star_subset finite_subset)

lemma bigbeta_ge0: "bigbeta  0"
  using μ01 by (simp add: bigbeta_def Let_def beta_ge0 sum_nonneg)

lemma bigbeta_ge_square:
  assumes big: "Big_Red_5_3 μ l"
  shows "bigbeta  1 / (real k)^2"
proof -
  have k: "1 / (real k)2  μ"
    using big kn0 l_le_k by (auto simp: Big_Red_5_3_def)
  have fin: "finite (dboost_star)"
    using assms finite_dboost_star by blast
  have R53: "i  Step_class {dboost_step}. 1 / (real k)^2  beta i"
    using Red_5_3 assms by blast 
  show "1 / (real k)^2  bigbeta"
  proof (cases "dboost_star = {}")
    case True
    then show ?thesis
      using assms k by (simp add: bigbeta_def)
  next
    case False
    then have card_gt0: "card (dboost_star) > 0"
      by (meson card_gt_0_iff dboost_star_subset fin finite_subset)
    moreover have *: "i  dboost_star. beta i > 0  (real k)^2  inverse (beta i)"
      using R53 kn0 assms by (simp add: beta_gt0 field_simps dboost_star_def)
    ultimately have "(idboost_star. inverse (beta i))  card (dboost_star) * (real k)^2"
      by (simp add: sum_bounded_above)
    moreover have "(idboost_star. inverse (beta i))  0"
      by (metis * False fin inverse_positive_iff_positive less_irrefl sum_pos)
    ultimately show ?thesis
      using False card_gt0 k bigbeta_ge0 
      by (simp add: bigbeta_def Let_def divide_simps split: if_split_asm)
  qed
qed


lemma bigbeta_gt0:
  assumes big: "Big_Red_5_3 μ l"
  shows "bigbeta > 0"
  by (smt (verit) kn0 assms bigbeta_ge_square of_nat_zero_less_power_iff zero_less_divide_iff)

lemma bigbeta_less1:
  assumes big: "Big_Red_5_3 μ l"
  shows "bigbeta < 1"
proof -
  have *: "iStep_class {dboost_step}. 0 < beta i"
    using assms beta_gt0 big by blast 
  have fin: "finite (Step_class {dboost_step})"
    using dboost_step_finite  assms by blast
  show "bigbeta < 1"
  proof (cases "dboost_star = {}")
    case True
    then show ?thesis
      using assms μ01 by (simp add: bigbeta_def)
  next
    case False
    then have gt0: "card (dboost_star) > 0"
      by (meson card_gt_0_iff dboost_star_subset fin finite_subset)
    have "real (card (dboost_star)) = (idboost_star. 1)"
      by simp
    also have "  < (idboost_star. 1 / beta i)"
    proof (intro sum_strict_mono)
      show "finite (dboost_star)"
        using card_gt_0_iff gt0 by blast
      fix i
      assume "i  dboost_star"
      with assms μ01 "*" dboost_star_subset beta_le
      show "1 < 1 / beta i"
        by (force simp: Step_class_insert_NO_MATCH)
    qed (use False in auto)
    finally show ?thesis
      using False by (simp add: bigbeta_def Let_def divide_simps)
  qed
qed

lemma bigbeta_le:
  assumes big: "Big_Red_5_3 μ l"
  shows "bigbeta  μ"
proof -
  have "real (card (dboost_star)) = (idboost_star. 1)"
    by simp
  also have "  (idboost_star. μ / beta i)"
  proof (intro sum_mono)
    fix i
    assume i: "i  dboost_star"
    with beta_le dboost_star_subset have "beta i  μ"
      by (auto simp: Step_class_insert_NO_MATCH)
    with beta_gt0 assms show "1  μ / beta i"
      by (smt (verit) dboost_star_subset divide_less_eq_1_pos i subset_iff)
  qed
  also have " = μ * (idboost_star. 1 / beta i)"
    by (simp add: sum_distrib_left)
  finally have "real (card (dboost_star))  μ * (idboost_star. 1 / beta i)" .
  moreover have "(idboost_star. 1 / beta i)  0"
    by (simp add: beta_ge0 sum_nonneg)
  ultimately show ?thesis
    using μ01 by (simp add: bigbeta_def Let_def divide_simps)
qed

end

subsection ‹Lemma 7.2›

definition "Big_X_7_2  λμ l. nat real l powr (3/4)  3  l > 1 / (1-μ)"

text ‹establishing the size requirements for 7.11›
lemma Big_X_7_2:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_2 μ l"
  unfolding Big_X_7_2_def eventually_conj_iff all_imp_conj_distrib eps_def
  apply (simp add: eventually_conj_iff all_imp_conj_distrib)  
  apply (intro conjI strip eventually_all_geI1[where L=1] eventually_all_ge_at_top)
  apply real_asymp+
  by (smt (verit, best) μ1<1 frac_le)

definition "ok_fun_72  λμ k. (real k / ln 2) * ln (1 - 1 / (k * (1-μ)))" 

lemma ok_fun_72:
  assumes "μ<1" 
  shows "ok_fun_72 μ  o(real)"
  using assms unfolding ok_fun_72_def by real_asymp

lemma ok_fun_72_uniform:
  assumes "0<μ0" "μ1<1" 
  assumes "e>0" 
  shows   "k. μ. μ0  μ  μ  μ1  ¦ok_fun_72 μ k¦ / k  e" 
proof (intro eventually_all_geI1 [where L = "Suc(nat1/(1-μ1))"])
  show "k. ¦ok_fun_72 μ1 k¦ / real k  e"
    using assms unfolding ok_fun_72_def by real_asymp
next
  fix k μ
  assume le_e: "¦ok_fun_72 μ1 k¦ / real k  e"
    and μ: "μ0  μ" "μ  μ1"
    and k: "Suc(nat1/(1-μ1))  k"
  with assms have "1 > 1 / (real k * (1 - μ1))"
    by (smt (verit, best) divide_less_eq divide_less_eq_1 less_eq_Suc_le natceiling_lessD)
  then have *: "1 > 1 / (real k * (1 - r))" if "rμ1" for r
    using that assms k less_le_trans by fastforce
  have : "1 / (k * (1 - μ))  1 / (k * (1 - μ1))"
    using μ assms by (simp add: divide_simps mult_less_0_iff)
  obtain "μ<1" "k>0" using μ k assms by force
  then have "¦ok_fun_72 μ k¦  ¦ok_fun_72 μ1 k¦"
    using μ * assms 
    by (simp add: ok_fun_72_def abs_mult zero_less_mult_iff abs_of_neg divide_le_cancel)
  then show "¦ok_fun_72 μ k¦ / real k  e"
    by (smt (verit, best) le_e divide_right_mono of_nat_0_le_iff)
qed

lemma (in Book) X_7_2:
  defines "  Step_class {red_step}"
  assumes big: "Big_X_7_2 μ l"
  shows "(i. card (Xseq(Suc i)) / card (Xseq i))  2 powr (ok_fun_72 μ k) * (1-μ) ^ card "
proof -
  define R where "R  RN k (nat real l powr (3/4))"
  have l34_ge3: "nat real l powr (3/4)  3" and k_gt: "k > 1 / (1-μ)"
    using big l_le_k by (auto simp: Big_X_7_2_def)
  then obtain "R > k" "k  2"
    using μ01 RN_gt1 R_def l_le_k
    by (smt (verit, best) divide_le_eq_1_pos fact_2 nat_le_real_less of_nat_fact)
  with k_gt μ01 have bigR: "1-μ > 1/R"
    by (smt (verit, best) less_imp_of_nat_less ln_div ln_le_cancel_iff zero_less_divide_iff)
  have *: "1-μ - 1/R  card (Xseq (Suc i)) / card (Xseq i)"
    if  "i  " for i
  proof -
    let ?NRX = "λi. Neighbours Red (cvx i)  Xseq i"
    have nextX: "Xseq (Suc i) = ?NRX i" and nont: "¬ termination_condition (Xseq i) (Yseq i)"
      using that by (auto simp: ℛ_def step_kind_defs next_state_def split: prod.split)
    then have cardX: "card (Xseq i) > R"
      unfolding R_def by (meson not_less termination_condition_def)
    have 1: "card (?NRX i)  (1-μ) * card (Xseq i) - 1"
      using that card_cvx_Neighbours μ01 by (simp add: ℛ_def Step_class_def)
    have "R  0"
      using k < R by linarith
    with cardX have "(1-μ) - 1 / R  (1-μ) - 1 / card (Xseq i)"
      by (simp add: inverse_of_nat_le)
    also have "  card (Xseq (Suc i)) / card (Xseq i)"
      using cardX nextX 1 by (simp add: divide_simps)
    finally show ?thesis .
  qed
  have fin_red: "finite "
    using red_step_finite by (auto simp: ℛ_def)
  define t where "t  card "
  have "t0"
    by (auto simp: t_def)
  have "(1-μ - 1/R) ^ card Red_steps  (i  Red_steps. card (Xseq(Suc i)) / card (Xseq i))"
    if "Red_steps  " for Red_steps
    using finite_subset [OF that fin_red] that
  proof induction
    case empty
    then show ?case
      by auto
  next
    case (insert i Red_steps)
    then have i: "i  "
      by auto
    have "((1-μ) - 1/R) ^ card (insert i Red_steps) = ((1-μ) - 1/R) * ((1-μ) - 1/R) ^ card (Red_steps)"
      by (simp add: insert)
    also have "  (card (Xseq (Suc i)) / card (Xseq i)) * ((1-μ) - 1/R) ^ card (Red_steps)"
      using bigR by (intro mult_right_mono * i) auto
    also have "  (card (Xseq (Suc i)) / card (Xseq i)) * (i  Red_steps. card (Xseq(Suc i)) / card (Xseq i))"
      using insert by (intro mult_left_mono) auto
    also have " = (iinsert i Red_steps. card (Xseq(Suc i)) / card (Xseq i))"
      using insert by simp
    finally show ?case .
  qed
  then have *: "(1-μ - 1/R) ^ t  (i  . card (Xseq(Suc i)) / card (Xseq i))"
    using t_def by blast
  ― ‹Asymptotic part of the argument›
  have "1-μ - 1/k  1-μ - 1/R"
    using kn0 k < R by (simp add: inverse_of_nat_le)
  then have ln_le: "ln (1-μ - 1/k)  ln (1-μ - 1/R)"
    using μ01 k_gt R>k by (simp add: bigR divide_simps mult.commute less_le_trans)
  have "ok_fun_72 μ k * ln 2 = k * ln (1 - 1 / (k * (1-μ)))"
    by (simp add: ok_fun_72_def)
  also have "  t * ln (1 - 1 / (k * (1-μ)))"
  proof (intro mult_right_mono_neg)
    have red_steps: "card  < k"
      using red_step_limit 0<μ by (auto simp: ℛ_def)
    show "real t  real k"
      using nat_less_le red_steps by (simp add: t_def)
    show "ln (1 - 1 / (k * (1-μ)))  0"
      using μ01 divide_less_eq k_gt ln_one_minus_pos_upper_bound by fastforce
  qed
  also have " = t * ln ((1-μ - 1/k) / (1-μ))"
    using t0 μ01 by (simp add: diff_divide_distrib)
  also have " = t * (ln (1-μ - 1/k) - ln (1-μ))"
    using t0 μ01 k_gt kn0 ln_div by force
  also have "  t * (ln (1-μ - 1/R) - ln (1-μ))"
    by (simp add: ln_le mult_left_mono)
  finally have "ok_fun_72 μ k * ln 2 + t * ln (1-μ)  t * ln (1-μ - 1/R)"
    by (simp add: ring_distribs)
  then have "2 powr ok_fun_72 μ k * (1-μ) ^ t  (1-μ - 1/R) ^ t"
    using μ01 by (simp add: bigR ln_mult ln_powr ln_realpow flip: ln_le_cancel_iff)
  with * show ?thesis
    by (simp add: t_def)
qed

subsection ‹Lemma 7.3›

context Book
begin

definition "Bdelta  λ μ i. Bseq (Suc i)  Bseq i"

lemma card_Bdelta: "card (Bdelta μ i) = card (Bseq (Suc i)) - card (Bseq i)"
  by (simp add: Bseq_mono Bdelta_def card_Diff_subset finite_Bseq)

lemma card_Bseq_mono: "card (Bseq (Suc i))  card (Bseq i)"
  by (simp add: Bseq_Suc_subset card_mono finite_Bseq)

lemma card_Bseq_sum: "card (Bseq i) = (j<i. card (Bdelta μ j))"
proof (induction i)
  case 0
  then show ?case
    by auto
next
  case (Suc i)
  with card_Bseq_mono show ?case
    unfolding card_Bdelta sum.lessThan_Suc
    by (smt (verit, del_insts) Nat.add_diff_assoc diff_add_inverse)
qed

definition "get_blue_book  λi. let (X,Y,A,B) = stepper i in choose_blue_book (X,Y,A,B)"

text ‹Tracking changes to X and B. The sets are necessarily finite›
lemma Bdelta_bblue_step:
  assumes "i  Step_class {bblue_step}" 
  shows "S  Xseq i. Bdelta μ i = S
             card (Xseq (Suc i))  (μ ^ card S) * card (Xseq i) / 2"
proof -
  obtain X Y A B S T where step: "stepper i = (X,Y,A,B)" and bb: "get_blue_book i = (S,T)"
    and valid: "valid_state(X,Y,A,B)"
    by (metis surj_pair valid_state_stepper)
  moreover have "finite X"
    by (metis V_state_stepper finX step)
  ultimately have *: "stepper (Suc i) = (T, Y, A, BS)  good_blue_book X (S,T)" 
    and Xeq: "X = Xseq i"
    using assms choose_blue_book_works [of X S T Y A B]
    by (simp_all add: step_kind_defs next_state_def valid_state_def get_blue_book_def choose_blue_book_works split: if_split_asm)
  show ?thesis
  proof (intro exI conjI)
    have "S  X"
    proof (intro choose_blue_book_subset [THEN conjunct1] finite X)
      show "(S, T) = choose_blue_book (X, Y, A, B)"
        using bb step by (simp add: get_blue_book_def Xseq_def)
    qed
    then show "S  Xseq i"
      using Xeq by force
    have "disjnt X B"
      using valid by (auto simp: valid_state_def disjoint_state_def)
    then show "Bdelta μ i = S"
      using * step S  X by (auto simp: Bdelta_def Bseq_def disjnt_iff)
    show "μ ^ card S * real (card (Xseq i)) / 2  real (card (Xseq (Suc i)))"
      using * by (auto simp: Xseq_def good_blue_book_def step)
  qed
qed

lemma Bdelta_dboost_step:
  assumes "i  Step_class {dboost_step}" 
  shows "x  Xseq i. Bdelta μ i = {x}"
proof -
  obtain X Y A B where step: "stepper i = (X,Y,A,B)" and valid: "valid_state(X,Y,A,B)"
    by (metis surj_pair valid_state_stepper)
  have cvx: "choose_central_vx (X,Y,A,B)  X"
    by (metis Step_class_insert Un_iff cvx_def cvx_in_Xseq assms step stepper_XYseq)
  then have "X' Y'. stepper (Suc i) = (X', Y', A, insert (choose_central_vx (X,Y,A,B)) B)"
    using assms step
    by (auto simp: step_kind_defs next_state_def split: if_split_asm)
  moreover have "choose_central_vx (X,Y,A,B)  B"
    using valid cvx by (force simp: valid_state_def disjoint_state_def disjnt_iff)
  ultimately show ?thesis
    using step cvx by (auto simp: Bdelta_def Bseq_def disjnt_iff Xseq_def)
qed

lemma card_Bdelta_dboost_step:
  assumes "i  Step_class {dboost_step}" 
  shows "card (Bdelta μ i) = 1"
  using Bdelta_dboost_step [OF assms] by force

lemma Bdelta_trivial_step:
  assumes i: "i  Step_class {red_step,dreg_step,halted}" 
  shows "Bdelta μ i = {}"
  using assms
  by (auto simp: step_kind_defs next_state_def Bdelta_def degree_reg_def split: if_split_asm prod.split)

end

definition "ok_fun_73  λk. - (real k powr (3/4))" 

lemma ok_fun_73: "ok_fun_73   o(real)"
  unfolding ok_fun_73_def by real_asymp

lemma (in Book) X_7_3:
  assumes big: "Big_Blue_4_1 μ l"
  defines "  Step_class {bblue_step}"
  defines "𝒮  Step_class {dboost_step}"
  shows "(i  . card (Xseq(Suc i)) / card (Xseq i))  2 powr (ok_fun_73 k) * μ ^ (l - card 𝒮)"
proof -
  have [simp]: "finite " "finite 𝒮" and cardℬ: "card   l powr (3/4)"
    using assms bblue_step_limit big by (auto simp: ℬ_def 𝒮_def)
  define b where "b  λi. card (Bdelta μ i)"
  obtain i where "card (Bseq i) = sum b  + card 𝒮" 
  proof -
    define i where "i = Suc (Max (  𝒮))"
    define TRIV where "TRIV  Step_class {red_step,dreg_step,halted}  {..<i}"
    have [simp]: "finite TRIV"
      by (auto simp: TRIV_def)
    have eq: "  𝒮  TRIV = {..<i}"
    proof
      show "  𝒮  TRIV  {..<i}"
        by (auto simp: i_def TRIV_def less_Suc_eq_le)
      show "{..<i}    𝒮  TRIV"
        using stepkind.exhaust by (auto simp: ℬ_def 𝒮_def TRIV_def Step_class_def)
    qed
    have dis: "  𝒮 = {}" "(  𝒮)  TRIV = {}"
      by (auto simp: ℬ_def 𝒮_def TRIV_def Step_class_def)
    show thesis
    proof
      have "card (Bseq i) = (j    𝒮  TRIV. b j)"
        using card_Bseq_sum eq unfolding b_def by metis
      also have " = (j. b j) + (j𝒮. b j) + (jTRIV. b j)"
        by (simp add: sum_Un_nat dis)
      also have " = sum b  + card 𝒮"
        by (simp add: b_def 𝒮_def card_Bdelta_dboost_step TRIV_def Bdelta_trivial_step)
      finally show "card (Bseq i) = sum b  + card 𝒮" .
    qed
  qed
  then have sum_b_ℬ: "sum b   l - card 𝒮"
    by (metis Bseq_less_l less_diff_conv nat_less_le)
  have "real (card )  real k powr (3/4)"
    using cardℬ l_le_k
    by (smt (verit, best) divide_nonneg_pos of_nat_0_le_iff of_nat_mono powr_mono2)
  then have "2 powr (ok_fun_73 k)  (1/2) ^ card "
    by (simp add: ok_fun_73_def powr_minus divide_simps flip: powr_realpow)
  then have "2 powr (ok_fun_73 k) * μ ^ (l - card 𝒮)  (1/2) ^ card  * μ ^ (l - card 𝒮)"
    by (simp add: μ01)
  also have "(1/2) ^ card  * μ ^ (l - card 𝒮)  (1/2) ^ card  * μ ^ (sum b )" 
    using μ01 sum_b_ℬ by simp
  also have " = (i. μ ^ b i / 2)"
    by (simp add: power_sum prod_dividef divide_simps)
  also have "  (i. card (Xseq (Suc i)) / card (Xseq i))"
  proof (rule prod_mono)
    fix i :: nat
    assume "i  "
    then have "¬ termination_condition (Xseq i) (Yseq i)"
      by (simp add: ℬ_def Step_class_def flip: step_non_terminating_iff)
    then have "card (Xseq i)  0"
      using termination_condition_def by force
    with i μ01 show "0  μ ^ b i / 2  μ ^ b i / 2  card (Xseq (Suc i)) / card (Xseq i)"
      by (force simp: b_def ℬ_def divide_simps dest!: Bdelta_bblue_step)
  qed
  finally show ?thesis .
qed

subsection ‹Lemma 7.5›

text ‹Small $o(k)$ bounds on summations for this section›

text ‹This is the explicit upper bound for heights given just below (5) on page 9›
definition "ok_fun_26  λk. 2 * ln k / eps k" 

definition "ok_fun_28  λk. -2 * real k powr (7/8)"  

lemma ok_fun_26: "ok_fun_26  o(real)" and ok_fun_28: "ok_fun_28  o(real)"
  unfolding ok_fun_26_def ok_fun_28_def eps_def by real_asymp+

definition 
  "Big_X_7_5  
    λμ l. Big_Blue_4_1 μ l  Big_Red_5_3 μ l  Big_Y_6_5_Bblue l
         (kl. Big_height_upper_bound k  k16  (ok_fun_26 k - ok_fun_28 k  k))"

text ‹establishing the size requirements for 7.5›
lemma Big_X_7_5:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_5 μ l"
proof -
  have ok: "l. ok_fun_26 l - ok_fun_28 l  l" 
    unfolding eps_def ok_fun_26_def ok_fun_28_def by real_asymp
  show ?thesis
    using assms Big_Y_6_5_Bblue Big_Red_5_3 Big_Blue_4_1 
    unfolding Big_X_7_5_def 
    apply (simp add: eventually_conj_iff all_imp_conj_distrib)  
    apply (intro conjI strip eventually_all_ge_at_top ok Big_height_upper_bound; real_asymp)
    done
qed

context Book
begin

lemma X_26_and_28:
  assumes big: "Big_X_7_5 μ l"
  defines "𝒟  Step_class {dreg_step}"
  defines "  Step_class {bblue_step}"
  defines "  Step_class {halted}"
  defines "h  λi. real (hgt (pseq i))"
  obtains "(i{..<halted_point}  𝒟. h (Suc i) - h (i-1))  ok_fun_26 k"
          "ok_fun_28 k  (i  . h(Suc i) - h(i-1))"
proof -
  define 𝒮 where "𝒮  Step_class {dboost_step}" 
  have B_limit: "Big_Blue_4_1 μ l" and bigY65B: "Big_Y_6_5_Bblue l"
    and hub: "Big_height_upper_bound k"
    using big l_le_k by (auto simp: Big_X_7_5_def)
  have m_minimal: "i    i < halted_point" for i
    unfolding ℋ_def using halted_point_minimal assms by blast
  have oddset: "{..<halted_point}  𝒟 = {i  {..<halted_point}. odd i}" 
    using m_minimal step_odd step_even not_halted_even_dreg 
    by (auto simp: 𝒟_def ℋ_def Step_class_insert_NO_MATCH)
      ― ‹working on 28›
  have "ok_fun_28 k  -2 * ε powr (-1/2) * card "
  proof -
    have "k powr (1/8) * card   k powr (1/8) * l powr (3/4)"
      using B_limit bblue_step_limit by (simp add: ℬ_def mult_left_mono)
    also have "  k powr (1/8) * k powr (3/4)"
      by (simp add: l_le_k mult_mono powr_mono2)
    also have " = k powr (7/8)"
      by (simp flip: powr_add)
    finally show ?thesis
      by (simp add: eps_def powr_powr ok_fun_28_def)
  qed
  also have "  (i  . h(Suc i) - h(i-1))"
  proof -
    have "(i  . -2 * ε powr (-1/2))  (i  . h(Suc i) - h(i-1))"
    proof (rule sum_mono)
      fix i :: nat
      assume i: "i  "
      show "-2 * ε powr (-1/2)  h(Suc i) - h(i-1)"
        using bigY65B kn0 i Y_6_5_Bblue by (fastforce simp: ℬ_def h_def)
    qed
    then show ?thesis 
      by (simp add: mult.commute)
  qed
  finally have 28: "ok_fun_28 k  (i  . h(Suc i) - h(i-1))" .
  have "(i  {..<halted_point}  𝒟. h(Suc i) - h(i-1))  h halted_point - h 0"
  proof (cases "even halted_point")
    case False
    have "hgt (pseq (halted_point - Suc 0))  hgt (pseq halted_point)"
      using Y_6_5_DegreeReg [of "halted_point-1"] False m_minimal not_halted_even_dreg odd_pos  
      by (fastforce simp: ℋ_def)
    then have "h(halted_point - Suc 0)  h halted_point"
      using h_def of_nat_mono by blast
    with False show ?thesis
      by (simp add: oddset sum_odds_odd)
  qed (simp add: oddset sum_odds_even)
  also have "  ok_fun_26 k"
  proof -
    have "hgt (pseq i)  1" for i
      by (simp add: Suc_leI hgt_gt0)
    moreover have "hgt (pseq halted_point)  ok_fun_26 k"
      using hub pee_le1 height_upper_bound unfolding ok_fun_26_def by blast 
    ultimately show ?thesis
      by (simp add: h_def)
  qed
  finally have 26: "(i{..<halted_point}  𝒟. h (Suc i) - h (i-1))  ok_fun_26 k" .
  with 28 show ?thesis
    using that by blast
qed

proposition X_7_5:
  assumes μ: "0<μ" "μ<1" 
  defines "𝒮  Step_class {dboost_step}" and "𝒮𝒮  dboost_star"
  assumes big: "Big_X_7_5 μ l"
  shows "card (𝒮𝒮𝒮)  3 * ε powr (1/4) * k"
proof -
  define 𝒟 where "𝒟  Step_class {dreg_step}"
  define  where "  Step_class {red_step}"
  define  where "  Step_class {bblue_step}"
  define h where "h  λi. real (hgt (pseq i))"
  obtain 26: "(i{..<halted_point}  𝒟. h (Suc i) - h (i-1))  ok_fun_26 k"
     and 28: "ok_fun_28 k  (i  . h(Suc i) - h(i-1))"
    using X_26_and_28 assms(1-3) big
    unfolding ℬ_def 𝒟_def h_def Big_X_7_5_def by blast
  have 𝒮𝒮: "𝒮𝒮 = {i  𝒮. h(Suc i) - h i  ε powr (-1/4)}" and "𝒮𝒮  𝒮"
    by (auto simp: 𝒮𝒮_def 𝒮_def dboost_star_def h_def)
  have in_S: "h(Suc i) - h i > ε powr (-1/4)" if "i  𝒮𝒮𝒮" for i
    using that by (fastforce simp: 𝒮𝒮)
  have B_limit: "Big_Blue_4_1 μ l"
      and bigR53: "Big_Red_5_3 μ l"
      and 16: "k16" (*for Y_6_5_Red*)
      and ok_fun: "ok_fun_26 k - ok_fun_28 k  k"
    using big l_le_k by (auto simp: Big_X_7_5_def)
  have [simp]: "finite " "finite " "finite 𝒮"
    using finite_components by (auto simp: ℛ_def ℬ_def 𝒮_def)
  have [simp]: "  𝒮 = {}" "  (𝒮) = {}"
    by (auto simp: ℛ_def 𝒮_def ℬ_def Step_class_def)

  obtain cardss:  "card 𝒮𝒮  card 𝒮" "card (𝒮𝒮𝒮) = card 𝒮 - card 𝒮𝒮"
    by (meson 𝒮𝒮  𝒮 finite 𝒮 card_Diff_subset card_mono infinite_super)
  have "(i  𝒮. h(Suc i) - h(i-1))  ε powr (-1/4) * card (𝒮𝒮𝒮)"
  proof -
    have "(i  𝒮𝒮𝒮. h(Suc i) - h(i-1))  (i  𝒮𝒮𝒮. ε powr (-1/4))"
    proof (rule sum_mono)
      fix i :: nat
      assume i: "i  𝒮𝒮𝒮"
      with i obtain "i-1  𝒟" "i>0"    
        using dreg_before_step1 dreg_before_gt0 by (fastforce simp: 𝒮_def 𝒟_def Step_class_insert_NO_MATCH)
      with i show "ε powr (-1/4)  h(Suc i) - h(i-1)"
        using in_S[of i] Y_6_5_DegreeReg[of "i-1"] by (simp add: 𝒟_def h_def)
    qed
    moreover
    have "(i  𝒮𝒮. h(Suc i) - h(i-1))  0"
    proof (intro sum_nonneg)
      show "i. i  𝒮𝒮  0  h (Suc i) - h (i - 1)"
        using Y_6_4_dbooSt μ bigR53 by(auto simp: h_def 𝒮𝒮 𝒮_def hgt_mono)
    qed
    ultimately show ?thesis
      by (simp add: mult.commute sum.subset_diff [OF 𝒮𝒮  𝒮 finite 𝒮])
  qed
  moreover
  have "(i  . h(Suc i) - h(i-1))  (i  . -2)"
  proof (rule sum_mono)
    fix i :: nat
    assume i: "i  "
      with i obtain "i-1  𝒟" "i>0"    
        using dreg_before_step1 dreg_before_gt0 
          by (fastforce simp: ℛ_def 𝒟_def Step_class_insert_NO_MATCH)
    with i have "hgt (pseq (i-1)) - 2  hgt (pseq (Suc i))"
      using Y_6_5_Red[of i] 16 Y_6_5_DegreeReg[of "i-1"]
      by (fastforce simp: algebra_simps ℛ_def 𝒟_def)
    then show "- 2  h(Suc i) - h(i-1)"
      unfolding h_def by linarith
  qed
  ultimately have 27: "(i  𝒮. h(Suc i) - h(i-1))  ε powr (-1/4) * card (𝒮𝒮𝒮) - 2 * card "
    by (simp add: sum.union_disjoint)

  have "ok_fun_28 k + (ε powr (-1/4) * card (𝒮𝒮𝒮) - 2 * card )  (i  . h(Suc i) - h(i-1)) + (i  𝒮. h(Suc i) - h(i-1))"
    using 27 28 by simp
  also have " = (i    (𝒮). h(Suc i) - h(i-1))"
    by (simp add: sum.union_disjoint)
  also have " = (i  {..<halted_point}  𝒟. h(Suc i) - h(i-1))"
  proof -
    have "i    (𝒮)" if "i < halted_point" "i  𝒟" for i
      using that unfolding 𝒟_def ℬ_def ℛ_def 𝒮_def
      using Step_class_cases halted_point_minimal by auto
    moreover
    have "i  {..<halted_point}  𝒟" if "i    (𝒮)" for i
      using halted_point_minimal' that by (force simp: 𝒟_def ℬ_def ℛ_def 𝒮_def  Step_class_def)
    ultimately have "  (𝒮) = {..<halted_point}  𝒟"
      by auto
    then show ?thesis
      by simp
  qed
  finally have "ok_fun_28 k + (ε powr (-1/4) * card (𝒮𝒮𝒮) - real (2 * card ))  ok_fun_26 k" 
    using 26 by simp
  then have "real (card (𝒮  𝒮𝒮))  (ok_fun_26 k - ok_fun_28 k + 2 * card ) * ε powr (1/4)"
    using eps_gt0 by (simp add: powr_minus field_simps del: div_add div_mult_self3)
  moreover have "card  < k"
    using red_step_limit μ unfolding ℛ_def by blast
  ultimately have "card (𝒮𝒮𝒮)  (k + 2 * k) * ε powr (1/4)"
    by (smt (verit, best) of_nat_add mult_2 mult_right_mono nat_less_real_le ok_fun powr_ge_zero)
  then show ?thesis
    by (simp add: algebra_simps)
qed

end

subsection ‹Lemma 7.4›

definition 
  "Big_X_7_4  λμ l. Big_X_7_5 μ l  Big_Red_5_3 μ l"

text ‹establishing the size requirements for 7.4›
lemma Big_X_7_4:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_4 μ l"
  using assms Big_X_7_5 Big_Red_5_3
  unfolding Big_X_7_4_def  
  by (simp add: eventually_conj_iff all_imp_conj_distrib)


definition "ok_fun_74  λk. -6 * eps k powr (1/4) * k * ln k / ln 2" 

lemma ok_fun_74: "ok_fun_74  o(real)"
  unfolding ok_fun_74_def eps_def by real_asymp

context Book
begin

lemma X_7_4:
  assumes big: "Big_X_7_4 μ l"
  defines "𝒮  Step_class {dboost_step}"
  shows "(i𝒮. card (Xseq (Suc i)) / card (Xseq i))  2 powr ok_fun_74 k * bigbeta ^ card 𝒮"
proof -
  define 𝒮𝒮 where "𝒮𝒮  dboost_star"
  then have big53: "Big_Red_5_3 μ l" and X75: "card (𝒮𝒮𝒮)  3 * ε powr (1/4) * k" 
    using μ01 big by (auto simp: Big_X_7_4_def X_7_5 𝒮_def 𝒮𝒮_def)
  then have R53:  "pseq (Suc i)  pseq i  beta i  1 / (real k)2" and beta_gt0: "0 < beta i"
    if "i  𝒮" for i
    using that Red_5_3 beta_gt0 by (auto simp: 𝒮_def)
  have bigbeta01: "bigbeta  {0<..<1}"
    using big53 assms bigbeta_gt0 bigbeta_less1 by force
  have "𝒮𝒮  𝒮"
    unfolding 𝒮𝒮_def 𝒮_def dboost_star_def by auto
  then obtain [simp]: "finite 𝒮" "finite 𝒮𝒮"
    by (simp add: 𝒮𝒮_def 𝒮_def finite_dboost_star)
  have card_SSS: "card 𝒮𝒮  card 𝒮"
    by (metis 𝒮𝒮_def 𝒮_def finite 𝒮 card_mono dboost_star_subset)
  have β: "beta i = card (Xseq (Suc i)) / card (Xseq i)" if "i  𝒮" for i
  proof -
    have "Xseq (Suc i) = Neighbours Blue (cvx i)  Xseq i"
      using that unfolding 𝒮_def
      by (auto simp: step_kind_defs next_state_def split: prod.split)
    then show ?thesis
      by (force simp: beta_eq)
  qed
  then have *: "(i𝒮. card (Xseq (Suc i)) / card (Xseq i)) = (i𝒮. beta i)"
    by force
  have prod_beta_gt0: "prod (beta) S' > 0" if "S'  𝒮" for S'
    using beta_gt0 that
    by (force simp: beta_ge0 intro: prod_pos)
      ― ‹bounding the immoderate steps›
  have "(i𝒮𝒮𝒮. 1 / beta i)  (i𝒮𝒮𝒮. real k ^ 2)"
  proof (rule prod_mono)
    fix i
    assume i: "i  𝒮  𝒮𝒮"
    with R53 kn0 beta_ge0 [of i] show "0  1 / beta i  1 / beta i  (real k)2"
      by (force simp: R53 divide_simps mult.commute)
  qed
  then have "(i𝒮𝒮𝒮. 1 / beta i)  real k ^ (2 * card(𝒮𝒮𝒮))"
    by (simp add: power_mult)
  also have " = real k powr (2 * card(𝒮𝒮𝒮))"
    by (metis kn0 of_nat_0_less_iff powr_realpow)
  also have "  k powr (2 * 3 * ε powr (1/4) * k)"
    using X75 kn0 by (intro powr_mono; linarith) 
  also have "  exp (6 * ε powr (1/4) * k * ln k)"
    by (simp add: powr_def)
  also have " = 2 powr -ok_fun_74 k"
    by (simp add: ok_fun_74_def powr_def)
  finally have "(i𝒮𝒮𝒮. 1 / beta i)  2 powr -ok_fun_74 k" .
  then have A: "(i𝒮𝒮𝒮. beta i)  2 powr ok_fun_74 k"
    using prod_beta_gt0[of "𝒮𝒮𝒮"]
    by (simp add: powr_minus prod_dividef mult.commute divide_simps)
― ‹bounding the moderate steps›
  have "(i𝒮𝒮. 1 / beta i)  bigbeta powr (- (card 𝒮𝒮))"
  proof (cases "𝒮𝒮 = {}")
    case True
    with bigbeta01 show ?thesis
      by fastforce
  next
    case False
    then have "card 𝒮𝒮 > 0"
      using finite 𝒮𝒮 card_0_eq by blast
    have "(i𝒮𝒮. 1 / beta i) powr (1 / card 𝒮𝒮)  (i𝒮𝒮. 1 / beta i / card 𝒮𝒮)"
    proof (rule arith_geom_mean [OF finite 𝒮𝒮 𝒮𝒮  {}])
      show "i. i  𝒮𝒮  0  1 / beta i"
        by (simp add: beta_ge0)
    qed
    then have "((i𝒮𝒮. 1 / beta i) powr (1 / card 𝒮𝒮)) powr (card 𝒮𝒮) 
           (i𝒮𝒮. 1 / beta i / card 𝒮𝒮) powr (card 𝒮𝒮)"
      using powr_mono2 by auto
    with 𝒮𝒮  {} 
    have "(i𝒮𝒮. 1 / beta i)  (i𝒮𝒮. 1 / beta i / card 𝒮𝒮) powr (card 𝒮𝒮)"
      by (simp add: powr_powr beta_ge0 prod_nonneg)
    also have "  (1 / (card 𝒮𝒮) * (i𝒮𝒮. 1 / beta i)) powr (card 𝒮𝒮)"
      using card 𝒮𝒮 > 0 by (simp add: field_simps sum_divide_distrib)
    also have "  bigbeta powr (- (card 𝒮𝒮))"
      using 𝒮𝒮  {} card 𝒮𝒮 > 0 
      by (simp add: bigbeta_def field_simps powr_minus powr_divide beta_ge0 sum_nonneg flip: 𝒮𝒮_def)
    finally show ?thesis .
  qed
  then have B: "(i𝒮𝒮. beta i)  bigbeta powr (card 𝒮𝒮)"
    using 𝒮𝒮  𝒮 prod_beta_gt0[of "𝒮𝒮"] bigbeta01
    by (simp add: powr_minus prod_dividef mult.commute divide_simps)
  have "2 powr ok_fun_74 k * bigbeta powr card 𝒮  2 powr ok_fun_74 k * bigbeta powr card 𝒮𝒮"
    using bigbeta01 big53 card_SSS by (simp add: powr_mono')
  also have "  (i𝒮𝒮𝒮. beta i) * (i𝒮𝒮. beta i)"
    using beta_ge0 by (intro mult_mono A B) (auto simp: prod_nonneg)
  also have " = (i𝒮. beta i)"
    by (metis 𝒮𝒮  𝒮 finite 𝒮 prod.subset_diff)
  finally have "2 powr ok_fun_74 k * bigbeta powr real (card 𝒮)  prod (beta) 𝒮" .
  with bigbeta01 show ?thesis
    by (simp add: "*" powr_realpow)
qed  

subsection ‹Observation 7.7›

lemma X_7_7:
  assumes i: "i  Step_class {dreg_step}"
  defines "q  ε powr (-1/2) * alpha (hgt (pseq i))"
  shows "pseq (Suc i) - pseq i  card (Xseq i  Xseq (Suc i)) / card (Xseq (Suc i)) * q  card (Xseq (Suc i)) > 0"
proof -
  have finX: "finite (Xseq i)" for i
    using finite_Xseq by blast
  define Y where "Y  Yseq"
  have "Xseq (Suc i) = {x  Xseq i. red_dense (Y i) (red_density (Xseq i) (Y i)) x}"   
   and Y: "Y (Suc i) = Y i"
    using i
    by (simp_all add: step_kind_defs next_state_def X_degree_reg_def degree_reg_def 
        Y_def split: if_split_asm prod.split_asm)
  then have Xseq: "Xseq (Suc i) = {x  Xseq i. card (Neighbours Red x  Y i)  (pseq i - q) * card (Y i)}"
    by (simp add: red_dense_def q_def pseq_def Y_def)
  have Xsub[simp]: "Xseq (Suc i)  Xseq i"
    using Xseq_Suc_subset by blast
  then have card_le: "card (Xseq (Suc i))  card (Xseq i)"
    by (simp add: card_mono finX)
  have [simp]: "disjnt (Xseq i) (Y i)"
    using Xseq_Yseq_disjnt Y_def by blast
  have Xnon0: "card (Xseq i) > 0" and Ynon0: "card (Y i) > 0"
    using i by (simp_all add: Y_def Xseq_gt0 Yseq_gt0 Step_class_def)
  have "alpha (hgt (pseq i)) > 0"
    by (simp add: alpha_gt0 kn0 hgt_gt0)
  with kn0 have "q > 0"
    by (smt (verit) q_def eps_gt0 mult_pos_pos powr_gt_zero)
  have Xdif: "Xseq i  Xseq (Suc i) = {x  Xseq i. card (Neighbours Red x  Y i) < (pseq i - q) * card (Y i)}"
    using Xseq by force
  have disYX: "disjnt (Y i) (Xseq i  Xseq (Suc i))"
    by (metis Diff_subset disjnt (Xseq i) (Y i) disjnt_subset2 disjnt_sym)
  have "edge_card Red (Y i) (Xseq i  Xseq (Suc i)) 
      = (x  Xseq i  Xseq (Suc i). real (card (Neighbours Red x  Y i)))"
    using edge_card_eq_sum_Neighbours [OF _ _ disYX] finX Red_E by simp
  also have "  (x  Xseq i  Xseq (Suc i). (pseq i - q) * card (Y i))"
    by (smt (verit, del_insts) Xdif mem_Collect_eq sum_mono)
  finally have A: "edge_card Red (Xseq i  Xseq (Suc i)) (Y i)  card (Xseq i  Xseq (Suc i)) * (pseq i - q) * card (Y i)" 
    by (simp add: edge_card_commute)
  then have False if "Xseq (Suc i) = {}"
    using q>0 Xnon0 Ynon0 that  by (simp add: edge_card_eq_pee Y_def mult_le_0_iff)
  then have XSnon0: "card (Xseq (Suc i)) > 0"
    using card_gt_0_iff finX by blast 
  have "pseq i * card (Xseq i) * real (card (Y i)) - edge_card Red (Xseq (Suc i)) (Y i)
      card (Xseq i  Xseq (Suc i)) * (pseq i - q) * card (Y i)"
    by (metis A edge_card_eq_pee edge_card_mono Y_def Xsub disjnt (Xseq i) (Y i) edge_card_diff finX of_nat_diff)
  moreover have "real (card (Xseq (Suc i)))  real (card (Xseq i))"
    using Xsub by (simp add: card_le)
  ultimately have §: "edge_card Red (Xseq (Suc i)) (Y i)  pseq i * card (Xseq (Suc i)) * card (Y i) + card (Xseq i  Xseq (Suc i)) * q * card (Y i)"
    using Xnon0 
    by (smt (verit, del_insts) Xsub card_Diff_subset card_gt_0_iff card_le left_diff_distrib finite_subset mult_of_nat_commute of_nat_diff) 
  have "edge_card Red (Xseq (Suc i)) (Y i) / (card (Xseq (Suc i)) * card (Y i))  pseq i + card (Xseq i  Xseq (Suc i)) * q / card (Xseq (Suc i))"
    using divide_right_mono [OF §, of "card (Xseq (Suc i)) * card (Y i)"] XSnon0 Ynon0
    by (simp add: add_divide_distrib split: if_split_asm)
  moreover have "pseq (Suc i) = real (edge_card Red (Xseq (Suc i)) (Y i)) / (real (card (Y i)) * real (card (Xseq (Suc i))))"
    using Y by (simp add: pseq_def gen_density_def Y_def)
  ultimately show ?thesis
    by (simp add: algebra_simps XSnon0)
qed

end

subsection ‹Lemma 7.8›

definition "Big_X_7_8  λk. k2  eps k powr (1/2) / k  2 / k^2"

lemma Big_X_7_8: "k. Big_X_7_8 k"
  unfolding eps_def Big_X_7_8_def eventually_conj_iff eps_def
  by (intro conjI; real_asymp)

lemma (in Book) X_7_8:
  assumes big: "Big_X_7_8 k" 
    and i: "i  Step_class {dreg_step}"
  shows "card (Xseq (Suc i))  card (Xseq i) / k^2"
proof -
  define q where "q  ε powr (-1/2) * alpha (hgt (pseq i))"
  have "k>0" k2 using big by (auto simp: Big_X_7_8_def)
  have "2 / k^2  ε powr (1/2) / k"
    using big by (auto simp: Big_X_7_8_def)
  also have "  q"
    using kn0 eps_gt0 Red_5_7a [of "pseq i"]
    by (simp add: q_def powr_minus divide_simps flip: powr_add)
  finally have q_ge: "q  2 / k^2" .
  define Y where "Y  Yseq"
  have "Xseq (Suc i) = {x  Xseq i. red_dense (Y i) (red_density (Xseq i) (Y i)) x}"   
   and Y: "Y (Suc i) = Y i"
    using i
    by (simp_all add: step_kind_defs next_state_def X_degree_reg_def degree_reg_def 
        Y_def split: if_split_asm prod.split_asm)
  have XSnon0: "card (Xseq (Suc i)) > 0"
    using X_7_7 kn0 assms by simp
  have finX: "finite (Xseq i)" for i
    using finite_Xseq by blast
  have Xsub[simp]: "Xseq (Suc i)  Xseq i"
    using Xseq_Suc_subset by blast
  then have card_le: "card (Xseq (Suc i))  card (Xseq i)"
    by (simp add: card_mono finX)
  have "2  (real k)2"
    by (metis of_nat_numeral 2  k of_nat_power_le_of_nat_cancel_iff self_le_ge2_pow)
  then have 2: "2 / (real k ^ 2 + 2)  1 / k^2"
    by (simp add: divide_simps)
  have "q * card (Xseq i  Xseq (Suc i)) / card (Xseq (Suc i))  pseq (Suc i) - pseq i"
    using X_7_7 μ01 kn0 assms by (simp add: q_def mult_of_nat_commute)
  also have "  1"
    by (smt (verit) pee_ge0 pee_le1)
  finally have "q * card (Xseq i  Xseq (Suc i))  card (Xseq (Suc i))" 
    using XSnon0 by auto
  with q_ge have "card (Xseq (Suc i))  (2 / k^2) * card (Xseq i  Xseq (Suc i))"
    by (smt (verit, best) mult_right_mono of_nat_0_le_iff)
  then have "card (Xseq (Suc i)) * (1 + 2/k^2)  (2/k^2) * card (Xseq i)"
    by (simp add: card_Diff_subset finX card_le diff_divide_distrib field_simps)
  then have "card (Xseq (Suc i))  (2/(real k ^ 2 + 2)) * card (Xseq i)"
    using kn0 add_nonneg_nonneg[of "real k^2" 2]
    by (simp del: add_nonneg_nonneg add: divide_simps split: if_split_asm)
  then show ?thesis
    using mult_right_mono [OF 2, of "card (Xseq i)"] by simp
qed

subsection ‹Lemma 7.9›

definition "Big_X_7_9  λk. ((1 + eps k) powr (eps k powr (-1/4) + 1) - 1) / eps k  2 * eps k powr (-1/4)
    k2  eps k powr (1/2) / k  2 / k^2"

lemma Big_X_7_9: "k. Big_X_7_9 k"
  unfolding eps_def Big_X_7_9_def eventually_conj_iff eps_def
  by (intro conjI; real_asymp)

lemma one_plus_powr_le:
  fixes p::real
  assumes "0p" "p1" "x0"  
  shows "(1+x) powr p - 1  x*p"
proof -
  define f where "f  λx. x*p - ((1+x) powr p - 1)"
  have "0  f 0"
    by (simp add: f_def)
  also have "  f x"
  proof (intro DERIV_nonneg_imp_nondecreasing[of concl: f] exI conjI assms)
    fix y::real
    assume y: "0  y" "y  x"
    show "(f has_real_derivative p - (1+y)powr (p-1) * p) (at y)"
      unfolding f_def using assms y by (intro derivative_eq_intros | simp)+
    show "p - (1+y)powr (p-1) * p  0"
      using y assms less_eq_real_def powr_less_one by fastforce
  qed
  finally show ?thesis
    by (simp add: f_def)
qed

lemma (in Book) X_7_9:
  assumes i: "i  Step_class {dreg_step}" and big: "Big_X_7_9 k"
  defines "hp  λi. hgt (pseq i)"
  assumes "pseq i  p0" and hgt: "hp (Suc i)  hp i + ε powr (-1/4)"
  shows "card (Xseq (Suc i))  (1 - 2 * ε powr (1/4)) * card (Xseq i)"
proof -
  have k: "k2" "ε powr (1/2) / k  2 / k^2" 
    using big by (auto simp: Big_X_7_9_def)
  let ?q = "ε powr (-1/2) * alpha (hp i)"
  have "k>0" using k by auto
  have Xsub[simp]: "Xseq (Suc i)  Xseq i"
    using Xseq_Suc_subset by blast
  have finX: "finite (Xseq i)" for i
    using finite_Xseq by blast
  then have card_le: "card (Xseq (Suc i))  card (Xseq i)"
    by (simp add: card_mono finX)
  have XSnon0: "card (Xseq (Suc i)) > 0"
    using X_7_7 0 < k i by blast
  have "card (Xseq i  Xseq (Suc i)) / card (Xseq (Suc i)) * ?q  pseq (Suc i) - pseq i"
    using X_7_7 i k hp_def by auto
  also have "  2 * ε powr (-1/4) * alpha (hp i)"
  proof -
    have hgt_le: "hp i  hp (Suc i)" 
      using Y_6_5_DegreeReg 0 < k i hp_def by blast
    have A: "pseq (Suc i)  qfun (hp (Suc i))"
      by (simp add: 0 < k hp_def hgt_works)
    have B: "qfun (hp i - 1)  pseq i"
      using hgt_Least [of "hp i - 1" "pseq i"] pseq i  p0 by (force simp: hp_def)
    have "pseq (Suc i) - pseq i  qfun (hp (Suc i)) - qfun (hp i - 1)"
      using A B by auto
    also have " = ((1 + ε) ^ (Suc (hp i - 1 + hp (Suc i)) - hp i) -
                      (1 + ε) ^ (hp i - 1))  /  k"
      using kn0 eps_gt0 hgt_le pseq i  p0 hgt_gt0 [of k]
      by (simp add: hp_def qfun_eq Suc_diff_eq_diff_pred hgt_gt0 diff_divide_distrib)
    also have " = alpha (hp i) / ε * ((1 + ε) ^ (1 + hp (Suc i) - hp i) - 1)"
      using kn0 hgt_le hgt_gt0 
      by (simp add: hp_def alpha_eq right_diff_distrib flip: diff_divide_distrib power_add)
    also have "  2 * ε powr (-1/4) * alpha (hp i)"
    proof -
      have "((1 + ε) ^ (1 + hp (Suc i) - hp i) - 1)  / ε  ((1 + ε) powr (ε powr (-1/4) + 1) - 1) / ε"
        using hgt eps_ge0 hgt_le powr_mono_both by (force simp flip: powr_realpow intro: divide_right_mono)
      also have "  2 * ε powr (-1/4)"
        using big by (meson Big_X_7_9_def)
      finally have *: "((1 + ε) ^ (1 + hp (Suc i) - hp i) - 1) / ε  2 * ε powr (-1/4)" .
      show ?thesis
        using mult_left_mono [OF *, of "alpha (hp i)"]
        by (smt (verit) alpha_ge0 mult.commute times_divide_eq_right)
    qed
    finally show ?thesis .
  qed
  finally have 29: "card (Xseq i  Xseq (Suc i)) / card (Xseq (Suc i)) * ?q  2 * ε powr (-1/4) * alpha (hp i)" .
  moreover have "alpha (hp i) > 0"
    unfolding hp_def
    by (smt (verit, ccfv_SIG) eps_gt0 0 < k alpha_ge divide_le_0_iff hgt_gt0 of_nat_0_less_iff)
  ultimately have "card (Xseq i  Xseq (Suc i)) / card (Xseq (Suc i)) * ε powr (-1/2)  2 * ε powr (-1/4)" 
    using mult_le_cancel_right by fastforce
  then have "card (Xseq i  Xseq (Suc i)) / card (Xseq (Suc i))  2 * ε powr (-1/4) * ε powr (1/2)" 
    using 0 < k eps_gt0
    by (force simp: powr_minus divide_simps mult.commute mult_less_0_iff)
  then have "card (Xseq i  Xseq (Suc i))  2 * ε powr (1/4) * card (Xseq (Suc i))"
    using XSnon0 by (simp add: field_simps flip: powr_add)
  also have "  2 * ε powr (1/4) * card (Xseq i)"
    by (simp add: card_le mult_mono')
  finally show ?thesis
    by (simp add: card_Diff_subset finX card_le algebra_simps)
qed

subsection ‹Lemma 7.10›
 
definition "Big_X_7_10  λμ l. Big_X_7_5 μ l  Big_Red_5_3 μ l"

text ‹establishing the size requirements for 7.10›
lemma Big_X_7_10:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_10 μ l"
  using Big_X_7_10_def Big_X_7_4 Big_X_7_4_def assms by force


lemma (in Book) X_7_10:
  defines "  Step_class {red_step}"
  defines "𝒮  Step_class {dboost_step}"
  defines "h  λi. real (hgt (pseq i))"
  defines "C  {i. h i  h (i-1) + ε powr (-1/4)}"
  assumes big: "Big_X_7_10 μ l" 
  shows "card ((𝒮)  C)  3 * ε powr (1/4) * k"
proof -
  define 𝒟 where "𝒟  Step_class {dreg_step}"
  define  where "  Step_class {bblue_step}"
  have hub: "Big_height_upper_bound k"
    and 16: "k16" (*for Y_6_5_Red*)
    and ok_le_k: "ok_fun_26 k - ok_fun_28 k  k"
    and bigR53: "Big_Red_5_3 μ l"
    using big l_le_k by (auto simp: Big_X_7_5_def Big_X_7_10_def)
  have "𝒮  {..<halted_point}  𝒟  " and BmD: "  {..<halted_point}  𝒟"
    using halted_point_minimal'
    by (fastforce simp: ℛ_def 𝒮_def 𝒟_def ℬ_def Step_class_def)+
  then have RS_eq: "𝒮 = {..<halted_point}  𝒟 - "
    using halted_point_minimal Step_class_cases by (auto simp: ℛ_def 𝒮_def 𝒟_def ℬ_def)
  obtain 26: "(i{..<halted_point}  𝒟. h (Suc i) - h (i-1))  ok_fun_26 k"
     and 28: "ok_fun_28 k  (i  . h(Suc i) - h(i-1))"
    using X_26_and_28 big unfolding ℬ_def 𝒟_def h_def Big_X_7_10_def by blast
  have "(i𝒮. h (Suc i) - h (i-1)) = (i{..<halted_point}  𝒟. h (Suc i) - h (i-1)) - (i  . h(Suc i) - h(i-1))"
    unfolding RS_eq by (intro sum_diff BmD) auto
  also have "  ok_fun_26 k - ok_fun_28 k"
    using 26 28 by linarith
  finally have *: "(i𝒮. h (Suc i) - h (i-1))  ok_fun_26 k - ok_fun_28 k" .

  have [simp]: "finite " "finite 𝒮"
  using finite_components by (auto simp: ℛ_def 𝒮_def)
  have h_ge_0_if_S: "h(Suc i) - h(i-1)  0" if "i  𝒮" for i
  proof -
    have *: "hgt (pseq i)  hgt (pseq (Suc i))"
      using bigR53 Y_6_5_dbooSt that unfolding 𝒮_def by blast
    obtain "i-1  𝒟" "i>0"
      using that i𝒮 dreg_before_step1[of i] dreg_before_gt0[of i]
      by (force simp: 𝒮_def 𝒟_def Step_class_insert_NO_MATCH)
    then have "hgt (pseq (i-1))  hgt (pseq i)"
      using that kn0 by (metis Suc_diff_1 Y_6_5_DegreeReg 𝒟_def)
    with * show "0  h(Suc i) - h(i-1)"
      using kn0 unfolding h_def by linarith
  qed

  have "card ((𝒮)  C) * ε powr (-1/4) + real (card ) * (-2)
      = (i  𝒮. if iC then ε powr (-1/4) else 0) + (i  𝒮. if i then -2 else 0)"
    by (simp add: Int_commute Int_left_commute flip: sum.inter_restrict)
  also have " = (i  𝒮. (if iC then ε powr (-1/4) else 0) + (if i then -2 else 0))"
    by (simp add: sum.distrib)
  also have "  (i  𝒮. h(Suc i) - h(i-1))"
  proof (rule sum_mono)
    fix i :: nat
    assume i: "i  𝒮"
    with i dreg_before_step1 dreg_before_gt0 have D: "i-1  𝒟" "i>0"     
      by (force simp: 𝒮_def ℛ_def 𝒟_def dreg_before_step Step_class_def)+
    then have *: "hgt (pseq (i-1))  hgt (pseq i)"
      by (metis Suc_diff_1 Y_6_5_DegreeReg 𝒟_def)
    show "(if iC then ε powr (-1/4) else 0) + (if i then - 2 else 0)  h (Suc i) - h (i-1)"
    proof (cases "i")
      case True
      then have "h i - 2  h (Suc i)"
        using Y_6_5_Red[of i] 16 by (force simp: algebra_simps ℛ_def h_def)
      with * True show ?thesis
        by (simp add: h_def C_def)
    next
      case False
      with i have "i𝒮" by blast
      show ?thesis
      proof (cases "iC")
        case True
        then have "h (i - Suc 0) + ε powr (-1/4)  h i"
          by (simp add: C_def)
        then show ?thesis
          using * i i kn0 bigR53 Y_6_5_dbooSt by (force simp: h_def 𝒮_def)
      qed (use i i𝒮 h_ge_0_if_S in auto)
    qed
  qed
  also have "  k"
    using * ok_le_k
    by linarith
  finally have "card ((𝒮)  C) * ε powr (-1/4) - 2 * card   k"
    by linarith 
  moreover have "card   k"
    by (metis ℛ_def nless_le red_step_limit)
  ultimately have "card ((𝒮)  C) * ε powr (-1/4)  3 * k"
    by linarith
  with eps_gt0 show ?thesis
    by (simp add: powr_minus divide_simps mult.commute split: if_split_asm)
qed


subsection ‹Lemma 7.11›

(*Big_X_7_5 is used (rather than the conclusion) because that theorem is split in two*)

definition "Big_X_7_11_inequalities  λk. 
              eps k * eps k powr (-1/4)  (1 + eps k) ^ (2 * nat eps k powr (-1/4)) - 1
             k  2 * eps k powr (-1/2) * k powr (3/4)
             ((1 + eps k) * (1 + eps k) powr (2 * eps k powr (-1/4)))  2
             (1 + eps k) ^ (nat 2 * eps k powr (-1/4) + nat 2 * eps k powr (-1/2) - 1)  2"

definition "Big_X_7_11  
      λμ l. Big_X_7_5 μ l  Big_Red_5_3 μ l  Big_Y_6_5_Bblue l
           (k. lk  Big_X_7_11_inequalities k)"

text ‹establishing the size requirements for 7.11›
lemma Big_X_7_11:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_11 μ l"
  using assms Big_Red_5_3 Big_X_7_5 Big_Y_6_5_Bblue
  unfolding Big_X_7_11_def Big_X_7_11_inequalities_def eventually_conj_iff all_imp_conj_distrib eps_def
  apply (simp add: eventually_conj_iff all_imp_conj_distrib)  
  apply (intro conjI strip eventually_all_geI0 eventually_all_ge_at_top; real_asymp)
  done

lemma (in Book) X_7_11:
  defines "  Step_class {red_step}"
  defines "𝒮  Step_class {dboost_step}"
  defines "C  {i. pseq i  pseq (i-1) + ε powr (-1/4) * alpha 1  pseq (i-1)  p0}"
  assumes big: "Big_X_7_11 μ l"
  shows "card ((𝒮)  C)  4 * ε powr (1/4) * k"
proof -
  define qstar where "qstar  p0 + ε powr (-1/4) * alpha 1"
  define pstar where "pstar  λi. min (pseq i) qstar"
  define 𝒟 where "𝒟  Step_class {dreg_step}"
  define  where "  Step_class {bblue_step}"
  have big_x75: "Big_X_7_5 μ l"  
    and 711: "ε * ε powr (-1/4)  (1 + ε) ^ (2 * nat ε powr (-1/4)) - 1"
    and big34: "k  2 * ε powr (-1/2) * k powr (3/4)"
    and le2: "((1 + ε) * (1 + ε) powr (2 * ε powr (-1/4)))  2"
             "(1 + ε) ^ (nat 2 * ε powr (-1/4) + nat 2 * ε powr (-1/2) - 1)  2"
    and bigY65B: "Big_Y_6_5_Bblue l"
    and R53:  "i. i  𝒮  pseq (Suc i)  pseq i"
    using big l_le_k
    by (auto simp: Red_5_3 Big_X_7_11_def Big_X_7_11_inequalities_def 𝒮_def)
  then have Y_6_5_B: "i. i    hgt (pseq (Suc i))  hgt (pseq (i-1)) - 2 * ε powr (-1/2)"
    using bigY65B Y_6_5_Bblue unfolding ℬ_def by blast 
  have big41: "Big_Blue_4_1 μ l"
    and hub: "Big_height_upper_bound k"
    and 16: "k16" (*for Y_6_5_Red*)
    and ok_le_k: "ok_fun_26 k - ok_fun_28 k  k"
    using big_x75 l_le_k by (auto simp: Big_X_7_5_def)
  have oddset: "{..<halted_point}  𝒟 = {i  {..<halted_point}. odd i}" 
    using step_odd step_even not_halted_even_dreg halted_point_minimal by (auto simp: 𝒟_def)
  have [simp]: "finite " "finite " "finite 𝒮"
    using finite_components by (auto simp: ℛ_def ℬ_def 𝒮_def)
  have [simp]: "  𝒮 = {}" and [simp]: "(  𝒮)   = {}"
    by (simp_all add: ℛ_def 𝒮_def ℬ_def Step_class_def disjoint_iff)

  have hgt_qstar_le: "hgt qstar  2 * ε powr (-1/4)"
  proof (intro real_hgt_Least)
    show "0 < 2 * nat ε powr (-1/4)"
      using kn0 eps_gt0 by (simp add: eps_le1 powr_le1 powr_minus_divide)
    show "qstar  qfun (2 * nat ε powr (-1/4))"
      using kn0 711
      by (simp add: qstar_def alpha_def qfun_eq divide_right_mono mult.commute)
  qed auto
  then have "((1 + ε) * (1 + ε) ^ hgt qstar)  ((1 + ε) * (1 + ε) powr (2 * ε powr (-1/4)))"
    by (smt (verit) eps_ge0 mult_left_mono powr_mono powr_realpow)
  also have "((1 + ε) * (1 + ε) powr (2 * ε powr (-1/4)))  2"
    using le2 by simp
  finally have "(1 + ε) * (1 + ε) ^ hgt qstar  2" .
  moreover have "card   k"
    by (simp add: ℛ_def less_imp_le red_step_limit)
  ultimately have §: "((1 + ε) * (1 + ε) ^ hgt qstar) * card   2 * real k"
    by (intro mult_mono) auto
  have "- 2 * alpha 1 * k  - alpha (hgt qstar + 2) * card "
    using mult_right_mono_neg [OF §, of "- ε"] eps_ge0 
    by (simp add: alpha_eq divide_simps mult_ac)
  also have "  (i. pstar (Suc i) - pstar i)"
  proof -
    { fix i
      assume "i  "
      have "- alpha (hgt qstar + 2)  pstar (Suc i) - pstar i"
      proof (cases "hgt (pseq i) > hgt qstar + 2")
        case True
        then have "hgt (pseq (Suc i)) > hgt qstar"
          using Y_6_5_Red 16 i   by (force simp: ℛ_def)
        then have "pstar (Suc i) = pstar i"
          using True hgt_mono' pstar_def by fastforce
        then show ?thesis
          by (simp add: alpha_ge0)
      next
        case False
        with i   show ?thesis
          unfolding pstar_def ℛ_def
          by (smt (verit, del_insts) Y_6_4_Red alpha_ge0 alpha_mono hgt_gt0 linorder_not_less)
      qed
    }
    then show ?thesis
      by (smt (verit, ccfv_SIG) mult_of_nat_commute sum_constant sum_mono)
  qed
  finally have "- 2 * alpha 1 * k  (i. pstar (Suc i) - pstar i)" .
  moreover have "0  (i𝒮. pstar (Suc i) - pstar i)"
    using R53 by (intro sum_nonneg) (force simp: pstar_def)
  ultimately have RS_half: "- 2 * alpha 1 * k  (i𝒮. pstar (Suc i) - pstar i)"
    by (simp add: sum.union_disjoint)

  let ?e12 = "ε powr (-1/2)"
  define h' where "h'  hgt qstar + nat 2 * ?e12"
  have "- alpha 1 * k  -2 * ?e12 * alpha 1 * k powr (3/4)"
    using mult_right_mono_neg [OF big34, of "- alpha 1"] alpha_ge0 [of 1]
    by (simp add: mult_ac)
  also have "  -?e12 * alpha (h') * card "
  proof -
    have "card   l powr (3/4)"
      using big41 bblue_step_limit by (simp add: ℬ_def)
    also have "  k powr (3/4)"
      by (simp add: powr_mono2 l_le_k)
    finally have 1: "card   k powr (3/4)" .
    have "alpha (h')  alpha (nat 2 * ε powr (-1/4) + nat 2 * ?e12)"
    proof (rule alpha_mono)
      show "h'  nat 2 * ε powr (-1/4) + nat 2 * ?e12"
        using h'_def hgt_qstar_le le_nat_floor by auto
    qed (simp add: hgt_gt0 h'_def)
    also have "  2 * alpha 1"
    proof -
      have *: "(1 + ε) ^ (nat 2 * ε powr (-1/4) + nat 2 * ?e12 - 1)  2"
        using le2 by simp
      have "1  2 * ε powr (-1/4)"
        by (smt (verit) hgt_qstar_le Suc_leI divide_minus_left hgt_gt0 numeral_nat(7) real_of_nat_ge_one_iff)
      then show ?thesis
        using mult_right_mono [OF *, of "ε"] eps_ge0 
        by (simp add: alpha_eq hgt_gt0 divide_right_mono mult.commute)
    qed
    finally have 2: "2 * alpha 1  alpha (h')" .
    show ?thesis
      using mult_right_mono_neg [OF mult_mono [OF 1 2], of "-?e12"] alpha_ge0 by (simp add: mult_ac)
  qed
  also have "  (i. pstar (Suc i) - pstar (i-1))"
  proof -
    { fix i
      assume "i  "
      have "-?e12 * alpha (h')  pstar (Suc i) - pstar (i-1)"
      proof (cases "hgt (pseq (i-1)) > hgt qstar + 2 * ?e12")
        case True
        then have "hgt (pseq (Suc i)) > hgt qstar"
          using Y_6_5_B i   by (force simp: ℛ_def)
        then have "pstar (i-1) = pstar(Suc i)" 
          unfolding pstar_def
          by (smt (verit) True hgt_mono' of_nat_less_iff powr_non_neg) 
        then show ?thesis
          by (simp add: alpha_ge0)
      next
        case False
        then have "hgt (pseq (i-1))  h'"
          by (simp add: h'_def) linarith 
        then have : "alpha (hgt (pseq (i-1)))  alpha h'"
          by (intro alpha_mono hgt_gt0)
        have "pseq (Suc i)  pseq (i-1) - ?e12 * alpha (hgt (pseq (i-1)))"
          using Y_6_4_Bblue i   unfolding ℬ_def by blast
        with mult_left_mono [OF , of ?e12] show ?thesis
          unfolding pstar_def
          by (smt (verit) alpha_ge0 mult_minus_left powr_non_neg mult_le_0_iff)
      qed
    }
    then show ?thesis
      by (smt (verit, ccfv_SIG) mult_of_nat_commute sum_constant sum_mono)
  qed
  finally have B: "- alpha 1 * k  (i. pstar (Suc i) - pstar (i-1))" .

  have "ε powr (-1/4) * alpha 1 * card ((𝒮)  C)  (i𝒮. if i  C then ε powr (-1/4) * alpha 1 else 0)"
    by (simp add: flip: sum.inter_restrict)
  also have "(i𝒮. if i  C then ε powr (-1/4) * alpha 1 else 0)  (i𝒮. pstar i - pstar (i-1))"
  proof (intro sum_mono)
    fix i
    assume i: "i    𝒮"
    then obtain "i-1  𝒟" "i>0"
      unfolding ℛ_def 𝒮_def 𝒟_def by (metis dreg_before_step1 dreg_before_gt0 Step_class_insert Un_iff)
    then have "pseq (i-1)  pseq i"
      by (metis Suc_pred' Y_6_4_DegreeReg 𝒟_def)
    then have "pstar (i-1)  pstar i"
      by (fastforce simp: pstar_def)
    then show "(if i  C then ε powr (-1/4) * alpha 1 else 0)  pstar i - pstar (i-1)"
      using C_def pstar_def qstar_def by auto
  qed
  finally have §: "ε powr (-1/4) * alpha 1 * card ((𝒮)  C)  (i𝒮. pstar i - pstar (i-1))" .

  have psplit: "pstar (Suc i) - pstar (i-1) = (pstar (Suc i) - pstar i) + (pstar i - pstar (i-1))" for i
    by simp
  have RS: "ε powr (-1/4) * alpha 1 * card ((𝒮)  C) + (- 2 * alpha 1 * k)  (i𝒮. pstar (Suc i) - pstar (i-1))"
    unfolding psplit sum.distrib using RS_half § by linarith

  have k16: "k powr (1/16)  k powr 1"
    using kn0 by (intro powr_mono) auto

  have meq: "{..<halted_point}  𝒟 = (𝒮)  "
    using Step_class_cases halted_point_minimal' by(fastforce simp: ℛ_def 𝒮_def 𝒟_def ℬ_def Step_class_def)

  have "(ε powr (-1/4) * alpha 1 * card ((𝒮)  C) + (- 2 * alpha 1 * k))
        + (- alpha 1 * k)
       (i  𝒮. pstar(Suc i) - pstar(i-1)) + (i. pstar(Suc i) - pstar(i-1))"
    using RS B by linarith
  also have " = (i  {..<halted_point}  𝒟. pstar(Suc i) - pstar(i-1))"
    by (simp add: meq sum.union_disjoint)
  also have "  pstar halted_point - pstar 0"
  proof (cases "even halted_point")
    case False
    have "pseq (halted_point - Suc 0)  pseq halted_point"
      using Y_6_4_DegreeReg [of "halted_point-1"] False not_halted_even_dreg odd_pos 
      by (auto simp: halted_point_minimal)
    then have "pstar(halted_point - Suc 0)  pstar halted_point"
      by (simp add: pstar_def)
    with False show ?thesis
      by (simp add: oddset sum_odds_odd)
  qed (simp add: oddset sum_odds_even)
  also have " = (i < halted_point. pstar(Suc i) - pstar i)"
    by (simp add: sum_lessThan_telescope)
  also have " = pstar halted_point - pstar 0" 
    by (simp add: sum_lessThan_telescope)
  also have "  alpha 1 * ε powr (-1/4)"
    using alpha_ge0 by (simp add: mult.commute pee_eq_p0 pstar_def qstar_def) 
  also have "  alpha 1 * k"
    using alpha_ge0 k16 by (intro powr_mono mult_left_mono) (auto simp: eps_def powr_powr)
  finally have "ε powr (-1/4) * card ((  𝒮)  C) * alpha 1  4 * k * alpha 1"
    by (simp add: mult_ac)
  then have "ε powr (-1/4) * real (card ((  𝒮)  C))  4 * k"
    using kn0 by (simp add: divide_simps alpha_eq eps_gt0)
  then show ?thesis
    using alpha_ge0[of 1] kn0 eps_gt0 by (simp add: powr_minus divide_simps mult_ac split: if_split_asm)
qed


subsection ‹Lemma 7.12›

definition "Big_X_7_12 
   λμ l. Big_X_7_11 μ l  Big_X_7_10 μ l  (k. lk  Big_X_7_9 k)"

text ‹establishing the size requirements for 7.12›
lemma Big_X_7_12:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_12 μ l"
  using assms Big_X_7_11 Big_X_7_10 Big_X_7_9
  unfolding Big_X_7_12_def eventually_conj_iff
  apply (simp add: eventually_conj_iff all_imp_conj_distrib eventually_frequently_const_simps)
  using eventually_all_ge_at_top by blast  

lemma (in Book) X_7_12:
  defines "  Step_class {red_step}"
  defines "𝒮  Step_class {dboost_step}"
  defines "C  {i. card (Xseq i) < (1 - 2 * ε powr (1/4)) * card (Xseq (i-1))}"
  assumes big: "Big_X_7_12 μ l"
  shows "card ((𝒮)  C)  7 * ε powr (1/4) * k"
proof -
  define 𝒟 where "𝒟  Step_class {dreg_step}"
  have big_711: "Big_X_7_11 μ l" and big_710: "Big_X_7_10 μ l"
    using big by (auto simp: Big_X_7_12_def)
  have [simp]: "finite " "finite 𝒮"
    using finite_components by (auto simp: ℛ_def 𝒮_def)
  ― ‹now the conditions for Lemmas 7.10 and 7.11›
  define C10 where "C10  {i. hgt (pseq i)  hgt (pseq (i-1)) + ε powr (-1/4)}"
  define C11 where "C11  {i. pseq i  pseq (i-1) + ε powr (-1/4) * alpha 1  pseq (i-1)  p0}"
  have "(𝒮)  C  {i. pseq (i-1)  p0}  (𝒮)  C11"
  proof
    fix i
    assume i: "i  (𝒮)  C  {i. pseq (i-1)  p0}"
    then have iRS: "i    𝒮" and iC: "i  C"
      by auto
    then obtain i1: "i-1  𝒟" "i>0"
      unfolding ℛ_def 𝒮_def 𝒟_def by (metis Step_class_insert Un_iff dreg_before_step1 dreg_before_gt0)
    then have 77: "card (Xseq (i-1)  Xseq i) / card (Xseq i) * (ε powr (-1/2) * alpha (hgt (pseq (i-1))))
             pseq i - pseq (i-1)"
      by (metis Suc_diff_1 X_7_7 𝒟_def)
    have card_Xm1: "card (Xseq (i-1)) = card (Xseq i) + card (Xseq (i-1)  Xseq i)"
      by (metis Xseq_antimono add_diff_inverse_nat card_Diff_subset card_mono diff_le_self 
          finite_Xseq linorder_not_less)
    have "card (Xseq i) > 0"
      by (metis Step_class_insert card_Xseq_pos ℛ_def 𝒮_def iRS)
    have "card (Xseq (i-1)) > 0"
      using C_def iC less_irrefl by fastforce
    moreover have "2 * (card (Xseq (i-1)) * ε powr (1/4)) < card (Xseq (i-1)  Xseq i)"
      using iC card_Xm1 by (simp add: algebra_simps C_def)
    moreover have "card (Xseq i)  2 * card (Xseq (i-1))"
      using card_Xm1 by linarith
    ultimately have "ε powr (1/4)  card (Xseq (i-1)  Xseq i) / card (Xseq (i-1))"
      by (simp add: divide_simps mult.commute)
    moreover have "real (card (Xseq i))  card (Xseq (i-1))"
      using card_Xm1 by linarith
    ultimately have 1: "ε powr (1/4)  card (Xseq (i-1)  Xseq i) / card (Xseq i)"
      by (smt (verit) 0 < card (Xseq i) frac_le of_nat_0_le_iff of_nat_0_less_iff)
    have "ε powr (-1/4) * alpha 1
        card (Xseq (i-1)  Xseq i) / card (Xseq i) * (ε powr (-1/2) * alpha 1)"
      using alpha_ge0 mult_right_mono [OF 1, of "ε powr (-1/2) * alpha 1"] 
      by (simp add: mult_ac flip: powr_add)
    also have "  card (Xseq (i-1)  Xseq i) / card (Xseq i) * (ε powr (-1/2) * alpha (hgt (pseq (i-1))))"
      by (intro mult_left_mono alpha_mono) (auto simp: Suc_leI hgt_gt0)
    also have "  pseq i - pseq (i-1)"
      using 77 by simp
    finally have "ε powr (-1/4) * alpha 1  pseq i - pseq (i-1)" .
    with i show "i  (  𝒮)  C11"
      by (simp add: C11_def)
  qed
  then have "real (card ((𝒮)  C  {i. pseq (i-1)  p0}))  real (card ((𝒮)  C11))"
    by (simp add: card_mono)
  also have "  4 * ε powr (1/4) * k"
    using X_7_11 big_711 by (simp add: ℛ_def 𝒮_def C11_def Step_class_insert_NO_MATCH)
  finally have "card ((𝒮)  C  {i. pseq (i-1)  p0})  4 * ε powr (1/4) * k" .
  moreover
  have "card ((𝒮)  C  {i. pseq (i-1)  p0})  3 * ε powr (1/4) * k" 
  proof -
    have "Big_X_7_9 k"
      using Big_X_7_12_def big l_le_k by presburger
    then have X79: "card (Xseq (Suc i))  (1 - 2 * ε powr (1/4)) * card (Xseq i)" 
      if "i  Step_class {dreg_step}" and "pseq i  p0" 
          and "hgt (pseq (Suc i))  hgt (pseq i) + ε powr (-1/4)" for i
      using X_7_9 that by blast 
    have "(𝒮)  C  {i. pseq (i-1)  p0}  (𝒮)  C10"
      unfolding C10_def C_def
    proof clarify
      fix i
      assume "i    𝒮"
        and §: "card (Xseq i) < (1 - 2 * ε powr (1/4)) * card (Xseq (i-1))" "¬ pseq (i-1)  p0"
      then obtain "i-1  𝒟" "i>0"
        unfolding 𝒟_def ℛ_def 𝒮_def 
        by (metis dreg_before_step1 dreg_before_gt0 Step_class_Un Un_iff insert_is_Un)
      with X79 § show "hgt (pseq (i - 1)) + ε powr (-1/4)  hgt (pseq i)"
        by (force simp: 𝒟_def)
    qed
    then have "card ((𝒮)  C  {i. pseq (i-1)  p0})  real (card ((𝒮)  C10))"
      by (simp add: card_mono)
    also have "card ((𝒮)  C10)  3 * ε powr (1/4) * k"
      unfolding ℛ_def 𝒮_def C10_def by (intro X_7_10 assms big_710)
    finally show ?thesis . 
  qed
  moreover
  have "card ((𝒮)  C)
      = real (card ((𝒮)  C  {i. pseq (i-1)  p0})) + real (card ((𝒮)  C  {i. pseq (i-1)  p0}))"
    by (metis card_Int_Diff of_nat_add finite  finite 𝒮 finite_Int infinite_Un)
  ultimately show ?thesis
    by linarith 
qed

subsection ‹Lemma 7.6›

definition "Big_X_7_6 
   λμ l. Big_Blue_4_1 μ l  Big_X_7_12 μ l  (k. kl  Big_X_7_8 k  1 - 2 * eps k powr (1/4) > 0)"

lemma Big_X_7_6:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_6 μ l"
  using assms Big_Blue_4_1 Big_X_7_8 Big_X_7_12
  unfolding Big_X_7_6_def eps_def
  apply (simp add: eventually_conj_iff all_imp_conj_distrib eventually_all_ge_at_top)  
  apply (intro conjI strip eventually_all_geI0 eventually_all_ge_at_top; real_asymp)
  done

definition "ok_fun_76  
  λk. ((1 + 2 * real k) * ln (1 - 2 * eps k powr (1/4)) 
      - (k powr (3/4) + 7 * eps k powr (1/4) * k + 1) * (2 * ln k)) / ln 2" 

lemma ok_fun_76: "ok_fun_76  o(real)"
  unfolding eps_def ok_fun_76_def by real_asymp

lemma (in Book) X_7_6:
  assumes big: "Big_X_7_6 μ l"
  defines "𝒟  Step_class {dreg_step}"
  shows "(i𝒟. card(Xseq(Suc i)) / card (Xseq i))  2 powr ok_fun_76 k"
proof -
  define  where "  Step_class {red_step}"
  define  where "  Step_class {bblue_step}"
  define 𝒮 where "𝒮  Step_class {dboost_step}"
  define C where "C  {i. card (Xseq i) < (1 - 2 * ε powr (1/4)) * card (Xseq (i-1))}"
  define C' where "C'  Suc -` C"
  have big41: "Big_Blue_4_1 μ l"
    and 712: "card ((𝒮)  C)  7 * ε powr (1/4) * k"
    using big X_7_12 l_le_k by (auto simp: Big_X_7_6_def ℛ_def 𝒮_def C_def)

  have [simp]: "finite 𝒟" "finite " "finite " "finite 𝒮"
    using finite_components by (auto simp: 𝒟_def ℛ_def ℬ_def 𝒮_def)
  have "card  < k"
    using ℛ_def assms red_step_limit by blast+ 
  have "card   l powr (3/4)"
    using big41 bblue_step_limit by (auto simp: ℬ_def)
  then have "card (  C)  l powr (3/4)"
    using card_mono [OF _ Int_lower1] by (smt (verit) finite  of_nat_mono)
  also have "  k powr (3/4)"
    by (simp add: l_le_k powr_mono2)
  finally have Bk_34: "card (  C)  k powr (3/4)" .

  have less_l: "card  + card 𝒮 < l"
    using bblue_dboost_step_limit big41 by (auto simp: ℬ_def 𝒮_def)
  have [simp]: "(  (  𝒮))  {halted_point} = {}" "  𝒮 = {}" "  (  𝒮) = {}" 
               "halted_point  " "halted_point  " "halted_point  𝒮"
               "  C  (  C  𝒮  C) = {}" for C
    using halted_point_minimal' by (force simp: ℬ_def ℛ_def 𝒮_def Step_class_def)+

  have "Big_X_7_8 k" and one_minus_gt0: "1 - 2 * ε powr (1/4) > 0"
    using big l_le_k by (auto simp: Big_X_7_6_def)
  then have X78: "card (Xseq (Suc i))  card (Xseq i) / k^2" if "i  𝒟" for i
    using X_7_8 that by (force simp: 𝒟_def)

  let ?DC = "λk. k powr (3/4) + 7 * eps k powr (1/4) * k + 1"
  have dc_pos: "?DC k > 0" for k
    by (smt (verit) of_nat_less_0_iff powr_ge_zero zero_le_mult_iff)
  have X_pos: "card (Xseq i) > 0" if "i  𝒟" for i
  proof -
    have "card (Xseq (Suc i)) > 0"
      using that X_7_7 kn0 unfolding 𝒟_def by blast
    then show ?thesis
      by (metis Xseq_Suc_subset card_mono finite_Xseq gr0I leD)
  qed
  have "ok_fun_76 k  log 2 ((1 / (real k)2) powr ?DC k * (1 - 2 * ε powr (1/4)) ^ (k + l + 1))"
    unfolding ok_fun_76_def log_def
    using kn0 l_le_k one_minus_gt0
    by (simp add: ln_mult ln_div ln_realpow divide_right_mono mult_le_cancel_right flip: power_Suc mult.assoc)
  then have "2 powr ok_fun_76 k  (1 / (real k)2) powr ?DC k * (1 - 2 * ε powr (1/4)) ^ (k + l + 1)"
    using powr_eq_iff kn0 one_minus_gt0 by (simp add: le_log_iff)
  also have "  (1 / (real k)2) powr card (𝒟  C') * (1 - 2 * ε powr (1/4)) ^ card (𝒟C')"
  proof (intro mult_mono powr_mono')
    have "Suc i  " if "i  𝒟" "Suc i  halted_point" "Suc i  " "Suc i  𝒮" for i
    proof -
      have "Suc i  𝒟"
        by (metis 𝒟_def i  𝒟 even_Suc step_even)
      moreover 
      have "stepper_kind i  halted"
        using 𝒟_def i  𝒟 Step_class_def by force
      ultimately show "Suc i  "
        using that halted_point_minimal' halted_point_minimal Step_class_cases Suc_lessI 
          ℬ_def 𝒟_def ℛ_def 𝒮_def by blast
    qed
    then have "Suc ` 𝒟    (  𝒮)  {halted_point}"
      by auto
    then have ifD: "Suc i    Suc i    Suc i  𝒮  Suc i = halted_point" if "i  𝒟" for i
      using that by force
    then have "card 𝒟  card (  (𝒮)  {halted_point})"
      by (intro card_inj_on_le [of Suc]) auto
    also have " = card  + card  + card 𝒮 + 1"
      by (simp add: card_Un_disjoint card_insert_if)
    also have "  k + l + 1"
      using card  < k less_l by linarith
    finally have card_D: "card 𝒟  k + l + 1" .

    have "(1 - 2 * ε powr (1/4)) * card (Xseq 0)  1 * real (card (Xseq 0))"
      by (intro mult_right_mono; force)
    then have "0  C"
      by (force simp: C_def)
    then have C_eq_C': "C = Suc ` C'"
      using nat.exhaust by (auto simp: C'_def set_eq_iff image_iff)
    have "card (𝒟  C')  real (card ((  (𝒮)  {halted_point})  C))"
      using ifD
      by (intro of_nat_mono card_inj_on_le [of Suc]) (force simp: Int_insert_left C_eq_C')+
    also have "  card (  C) + real (card ((𝒮)  C)) + 1"
      by (simp add: Int_insert_left Int_Un_distrib2 card_Un_disjoint card_insert_if)
    also have "  ?DC k"
      using Bk_34 712 by force 
    finally show "card (𝒟  C')  ?DC k" .
    have "card (𝒟C')  card 𝒟"
      using finite 𝒟 by (simp add: card_mono)
    then show "(1 - 2 * ε powr (1/4)) ^ (k+l+1)  (1 - 2 * ε powr (1/4)) ^ card (𝒟C')"
      by (smt (verit) card_D add_leD2 one_minus_gt0 power_decreasing powr_ge_zero)
  qed (use one_minus_gt0 kn0 in auto)
  also have " = (i𝒟. if i  C' then 1 / real k ^ 2 else 1 - 2 * ε powr (1/4))"
    by (simp add: kn0 powr_realpow prod.If_cases Diff_eq)
  also have "  (i  𝒟. card (Xseq (Suc i)) / card (Xseq i))"
    using X_pos X78 one_minus_gt0 kn0 by (simp add: divide_simps C'_def C_def prod_mono)  
  finally show ?thesis .
qed

subsection ‹Lemma 7.1›

definition "Big_X_7_1 
   λμ l. Big_Blue_4_1 μ l  Big_X_7_2 μ l  Big_X_7_4 μ l  Big_X_7_6 μ l"

text ‹establishing the size requirements for 7.11›
lemma Big_X_7_1:
  assumes "0<μ0" "μ1<1" 
  shows "l. μ. μ  {μ0..μ1}  Big_X_7_1 μ l"
  unfolding Big_X_7_1_def
  using assms Big_Blue_4_1 Big_X_7_2 Big_X_7_4 Big_X_7_6
  by (simp add: eventually_conj_iff all_imp_conj_distrib)  

definition "ok_fun_71  λμ k. ok_fun_72 μ k + ok_fun_73 k + ok_fun_74 k + ok_fun_76 k"

lemma ok_fun_71:
  assumes "0<μ" "μ<1" 
  shows "ok_fun_71 μ  o(real)"
  using ok_fun_72 ok_fun_73 ok_fun_74 ok_fun_76
  by (simp add: assms ok_fun_71_def sum_in_smallo)

lemma (in Book) X_7_1:
  assumes big: "Big_X_7_1 μ l"
  defines "𝒟  Step_class {dreg_step}"
  defines "  Step_class {red_step}" and "𝒮  Step_class {dboost_step}"
  shows "card (Xseq halted_point)  
     2 powr ok_fun_71 μ k * μ^l * (1-μ) ^ card  * (bigbeta / μ) ^ card 𝒮 * card X0"
proof -
  define  where "  Step_class {bblue_step}"
  have 72: "Big_X_7_2 μ l" and 74: "Big_X_7_4 μ l" 
    and 76: "Big_X_7_6 μ l" 
    and big41: "Big_Blue_4_1 μ l"
    using big by (auto simp: Big_X_7_1_def)
  then have [simp]: "finite " "finite " "finite 𝒮" "finite 𝒟" 
                    " = {}" "𝒮𝒟 = {}" "()(𝒮𝒟) = {}"
    using finite_components by (auto simp: ℛ_def ℬ_def 𝒮_def 𝒟_def Step_class_def)
  have BS_le_l: "card  + card 𝒮 < l"
    using big41 bblue_dboost_step_limit by (auto simp: 𝒮_def ℬ_def)
  
  have R: "(i. card (Xseq(Suc i)) / card (Xseq i))  2 powr (ok_fun_72 μ k) * (1-μ) ^ card "
    unfolding ℛ_def using 72 X_7_2 by meson
  have B: "(i. card (Xseq(Suc i)) / card (Xseq i))  2 powr (ok_fun_73 k) * μ ^ (l - card 𝒮)"
    unfolding ℬ_def 𝒮_def using big41 X_7_3 by meson
  have S: "(i𝒮. card (Xseq (Suc i)) / card (Xseq i))  2 powr ok_fun_74 k * bigbeta ^ card 𝒮"
    unfolding 𝒮_def using 74 X_7_4 by meson
  have D: "(i𝒟. card(Xseq(Suc i)) / card (Xseq i))  2 powr ok_fun_76 k"
    unfolding 𝒟_def using 76 X_7_6 by meson
  have below_m: "𝒮𝒟 = {..<halted_point}"
    using assms by (auto simp: ℛ_def ℬ_def 𝒮_def 𝒟_def before_halted_eq Step_class_insert_NO_MATCH)
  have X_nz: "i. i < halted_point  card (Xseq i)  0"
    using assms below_halted_point_cardX by blast
  have tele: "card (Xseq halted_point) = (i < halted_point. card (Xseq(Suc i)) / card (Xseq i)) * card (Xseq 0)"
  proof (cases "halted_point=0")
    case False
    with X_nz prod_lessThan_telescope_mult [where f = "λi. real (card (Xseq i))"] 
    show ?thesis by simp
  qed auto
  have X0_nz: "card (Xseq 0) > 0"
    by (simp add: card_XY0)
  have "2 powr ok_fun_71 μ k * μ^l * (1-μ) ^ card  * (bigbeta / μ) ^ card 𝒮
      2 powr ok_fun_71 μ k * μ ^ (l - card 𝒮) * (1-μ) ^ card  * (bigbeta ^ card 𝒮)"
    using μ01 BS_le_l by (simp add: power_diff power_divide)
  also have "  (i𝒮𝒟. card (Xseq(Suc i)) / card (Xseq i))"
  proof -
    have "(i()(𝒮𝒟). card (Xseq(Suc i)) / card (Xseq i)) 
          ((2 powr (ok_fun_72 μ k) * (1-μ) ^ card ) * (2 powr (ok_fun_73 k) * μ ^ (l - card 𝒮)))
          * ((2 powr ok_fun_74 k * bigbeta ^ card 𝒮) * (2 powr ok_fun_76 k))"
      using μ01 by (auto simp: R B S D prod.union_disjoint prod_nonneg bigbeta_ge0 intro!: mult_mono)
    then show ?thesis
      by (simp add: Un_assoc mult_ac powr_add ok_fun_71_def)
  qed
  also have "  (i < halted_point. card (Xseq(Suc i)) / card (Xseq i))"
    using below_m by auto
  finally show ?thesis
    using X0_nz μ01 unfolding tele by (simp add: divide_simps)
qed

end