Theory Dijkstra_Shortest_Path.GraphByMap
section ‹Implementing Graphs by Maps›
theory GraphByMap
imports
GraphSpec
GraphGA
begin
definition "map_Sigma M1 F2 ≡ {
(x,y). ∃v. M1 x = Some v ∧ y∈F2 v
}"
lemma map_Sigma_alt: "map_Sigma M1 F2 = Sigma (dom M1) (λx.
F2 (the (M1 x)))"
unfolding map_Sigma_def
by auto
lemma ranE:
assumes "v∈ran m"
obtains k where "m k = Some v"
using assms
by (metis ran_restrictD restrict_map_self)
lemma option_bind_alt:
"Option.bind x f = (case x of None ⇒ None | Some v ⇒ f v)"
by (auto split: option.split)
locale GraphByMapDefs =
m1: StdMapDefs m1_ops +
m2: StdMapDefs m2_ops +
s3: StdSetDefs s3_ops
for m1_ops::"('V,'m2,'m1,_) map_ops_scheme"
and m2_ops::"('V,'s3,'m2,_) map_ops_scheme"
and s3_ops::"('W,'s3,_) set_ops_scheme"
and m1_mvif :: "('V ⇒ 'm2 ⇀ 'm2) ⇒ 'm1 ⇒ 'm1"
begin
definition gbm_α :: "('V,'W,'m1) graph_α" where
"gbm_α m1 ≡
⦇ nodes = dom (m1.α m1),
edges = {(v,w,v').
∃m2 s3. m1.α m1 v = Some m2
∧ m2.α m2 v' = Some s3
∧ w∈s3.α s3
}
⦈"
definition "gbm_invar m1 ≡
m1.invar m1 ∧
(∀m2∈ran (m1.α m1). m2.invar m2 ∧
(∀s3∈ran (m2.α m2). s3.invar s3)
) ∧ valid_graph (gbm_α m1)"
definition gbm_empty :: "('V,'W,'m1) graph_empty" where
"gbm_empty ≡ m1.empty"
definition gbm_add_node :: "('V,'W,'m1) graph_add_node" where
"gbm_add_node v g ≡ case m1.lookup v g of
None ⇒ m1.update v (m2.empty ()) g |
Some _ ⇒ g"
definition gbm_delete_node :: "('V,'W,'m1) graph_delete_node" where
"gbm_delete_node v g ≡ let g=m1.delete v g in
m1_mvif (λ_ m2. Some (m2.delete v m2)) g"
definition gbm_add_edge :: "('V,'W,'m1) graph_add_edge" where
"gbm_add_edge v e v' g ≡
let g = (case m1.lookup v' g of
None ⇒ m1.update v' (m2.empty ()) g | Some _ ⇒ g
) in
case m1.lookup v g of
None ⇒ (m1.update v (m2.sng v' (s3.sng e)) g) |
Some m2 ⇒ (case m2.lookup v' m2 of
None ⇒ m1.update v (m2.update v' (s3.sng e) m2) g |
Some s3 ⇒ m1.update v (m2.update v' (s3.ins e s3) m2) g)
"
definition gbm_delete_edge :: "('V,'W,'m1) graph_delete_edge" where
"gbm_delete_edge v e v' g ≡
case m1.lookup v g of
None ⇒ g |
Some m2 ⇒ (
case m2.lookup v' m2 of
None ⇒ g |
Some s3 ⇒ m1.update v (m2.update v' (s3.delete e s3) m2) g
)
"
definition gbm_nodes_list_it
:: "('V,'W,'V list,'m1) graph_nodes_it"
where
"gbm_nodes_list_it g ≡ map_iterator_dom (m1.iteratei g)"
local_setup ‹Locale_Code.lc_decl_del @{term gbm_nodes_list_it}›
definition gbm_edges_list_it
:: "('V,'W,('V×'W×'V) list,'m1) graph_edges_it"
where
"gbm_edges_list_it g ≡ set_iterator_image
(λ((v1,m1),(v2,m2),w). (v1,w,v2))
(set_iterator_product (m1.iteratei g)
(λ(v,m2). set_iterator_product
(m2.iteratei m2) (λ(w,s3). s3.iteratei s3)))
"
local_setup ‹Locale_Code.lc_decl_del @{term gbm_edges_list_it}›
definition gbm_succ_list_it ::
"('V,'W,('W×'V) list,'m1) graph_succ_it"
where
"gbm_succ_list_it g v ≡ case m1.lookup v g of
None ⇒ set_iterator_emp |
Some m2 ⇒
set_iterator_image (λ((v',m2),w). (w,v'))
(set_iterator_product (m2.iteratei m2) (λ(v',s). s3.iteratei s))
"
local_setup ‹Locale_Code.lc_decl_del @{term gbm_succ_list_it}›
definition
"gbm_from_list ≡ gga_from_list gbm_empty gbm_add_node gbm_add_edge"
lemma gbm_nodes_list_it_unf:
"it_to_it (gbm_nodes_list_it g)
≡ map_iterator_dom (it_to_it (m1.list_it g))"
apply (rule eq_reflection)
apply (rule it_to_it_fold)
unfolding gbm_nodes_list_it_def m1.iteratei_def
by (intro icf_proper_iteratorI)
lemma gbm_edges_list_it_unf:
"it_to_it (gbm_edges_list_it g)
≡ set_iterator_image
(λ((v1,m1),(v2,m2),w). (v1,w,v2))
(set_iterator_product (it_to_it (m1.list_it g))
(λ(v,m2). set_iterator_product
(it_to_it (m2.list_it m2)) (λ(w,s3). (it_to_it (s3.list_it s3)))))
"
apply (rule eq_reflection)
apply (rule it_to_it_fold)
unfolding gbm_edges_list_it_def
m1.iteratei_def m2.iteratei_def s3.iteratei_def
apply (intro icf_proper_iteratorI allI impI, (simp split: prod.split)?)+
done
lemma gbm_succ_list_it_unf:
"it_to_it (gbm_succ_list_it g v) ≡
case m1.lookup v g of
None ⇒ set_iterator_emp |
Some m2 ⇒
set_iterator_image (λ((v',m2),w). (w,v'))
(set_iterator_product (it_to_it (m2.list_it m2))
(λ(v',s). (it_to_it (s3.list_it s))))
"
apply (rule eq_reflection)
apply (rule it_to_it_fold)
unfolding gbm_succ_list_it_def
m2.iteratei_def s3.iteratei_def
apply (simp split: prod.split option.split)
apply (intro icf_proper_iteratorI allI impI conjI,
(simp split: prod.split option.split)?)+
done
end
sublocale GraphByMapDefs < graph_nodes_it_defs gbm_nodes_list_it .
sublocale GraphByMapDefs < graph_edges_it_defs gbm_edges_list_it .
sublocale GraphByMapDefs < graph_succ_it_defs gbm_succ_list_it .
sublocale GraphByMapDefs
< gga_to_list_defs_loc gbm_nodes_list_it gbm_edges_list_it .
context GraphByMapDefs
begin
definition [icf_rec_def]: "gbm_ops ≡ ⦇
gop_α = gbm_α,
gop_invar = gbm_invar,
gop_empty = gbm_empty,
gop_add_node = gbm_add_node,
gop_delete_node = gbm_delete_node,
gop_add_edge = gbm_add_edge,
gop_delete_edge = gbm_delete_edge,
gop_from_list = gbm_from_list,
gop_to_list = gga_to_list,
gop_nodes_list_it = gbm_nodes_list_it,
gop_edges_list_it = gbm_edges_list_it,
gop_succ_list_it = gbm_succ_list_it
⦈"
local_setup ‹Locale_Code.lc_decl_del @{term gbm_ops}›
end
locale GraphByMap = GraphByMapDefs m1_ops m2_ops s3_ops m1_mvif +
m1: StdMap m1_ops +
m2: StdMap m2_ops +
s3: StdSet s3_ops +
m1: map_value_image_filter m1.α m1.invar m1.α m1.invar m1_mvif
for m1_ops::"('V,'m2,'m1,_) map_ops_scheme"
and m2_ops::"('V,'s3,'m2,_) map_ops_scheme"
and s3_ops::"('W,'s3,_) set_ops_scheme"
and m1_mvif :: "('V ⇒ 'm2 ⇀ 'm2) ⇒ 'm1 ⇒ 'm1"
begin
lemma gbm_invar_split:
assumes "gbm_invar g"
shows
"m1.invar g"
"⋀v m2. m1.α g v = Some m2 ⟹ m2.invar m2"
"⋀v m2 v' s3. m1.α g v = Some m2 ⟹ m2.α m2 v' = Some s3 ⟹ s3.invar s3"
"valid_graph (gbm_α g)"
using assms unfolding gbm_invar_def
by (auto intro: ranI)
end
sublocale GraphByMap < graph gbm_α gbm_invar
proof
fix g
assume INV: "gbm_invar g"
then interpret vg: valid_graph "(gbm_α g)" by (simp add: gbm_invar_def)
from vg.E_valid
show "fst ` edges (gbm_α g) ⊆ nodes (gbm_α g)" and
"snd ` snd ` edges (gbm_α g) ⊆ nodes (gbm_α g)" .
from INV show "finite (nodes (gbm_α g))"
unfolding gbm_invar_def gbm_α_def by auto
note [simp] = gbm_invar_split[OF INV]
show "finite (edges (gbm_α g))"
apply (rule finite_imageD[where f="λ(v,e,v'). (v,v',e)"])
apply (rule finite_subset[where B=
"map_Sigma (m1.α g) (λm2. map_Sigma (m2.α m2) (s3.α))"])
apply (auto simp add: map_Sigma_def gbm_α_def) []
apply (unfold map_Sigma_alt)
apply (auto intro!: finite_SigmaI inj_onI)
done
qed
context GraphByMap
begin
lemma gbm_empty_impl:
"graph_empty gbm_α gbm_invar gbm_empty"
apply (unfold_locales)
unfolding gbm_α_def gbm_invar_def gbm_empty_def
apply (auto simp: m1.correct Graph.empty_def)
apply (unfold_locales)
apply auto
done
lemma gbm_add_node_impl:
"graph_add_node gbm_α gbm_invar gbm_add_node"
proof
fix g v
assume INV: "gbm_invar g"
note [simp]= gbm_invar_split[OF INV]
show "gbm_α (gbm_add_node v g) = add_node v (gbm_α g)"
unfolding gbm_α_def gbm_add_node_def
by (auto simp: m1.correct m2.correct s3.correct add_node_def
split: option.split if_split_asm)
thus "gbm_invar (gbm_add_node v g)"
unfolding gbm_invar_def
apply (simp)
unfolding gbm_α_def gbm_add_node_def add_node_def
apply (auto simp: m1.correct m2.correct s3.correct add_node_def
split: option.split if_split_asm elim!: ranE)
done
qed
lemma gbm_delete_node_impl:
"graph_delete_node gbm_α gbm_invar gbm_delete_node"
proof
fix g v
assume INV: "gbm_invar g"
note [simp]= gbm_invar_split[OF INV]
show "gbm_α (gbm_delete_node v g) = delete_node v (gbm_α g)"
unfolding gbm_α_def gbm_delete_node_def
by (auto simp: restrict_map_def option_bind_alt
m1.correct m2.correct s3.correct m1.map_value_image_filter_correct
delete_node_def
split: option.split if_split_asm option.split_asm)
thus "gbm_invar (gbm_delete_node v g)"
unfolding gbm_invar_def
apply (simp)
unfolding gbm_α_def gbm_delete_node_def delete_node_def
apply (auto simp: restrict_map_def option_bind_alt
m1.correct m2.correct s3.correct m1.map_value_image_filter_correct
split: option.split if_split_asm option.split_asm elim!: ranE)
done
qed
lemma gbm_add_edge_impl:
"graph_add_edge gbm_α gbm_invar gbm_add_edge"
proof
fix g v e v'
assume INV: "gbm_invar g"
note [simp]= gbm_invar_split[OF INV]
show "gbm_α (gbm_add_edge v e v' g) = add_edge v e v' (gbm_α g)"
unfolding gbm_α_def gbm_add_edge_def
apply (auto simp: m1.correct m2.correct s3.correct
Let_def
split: option.split if_split_asm)
unfolding add_edge_def
apply (fastforce split: if_split_asm
simp: m1.correct m2.correct s3.correct
)+
done
thus "gbm_invar (gbm_add_edge v e v' g)"
unfolding gbm_invar_def
apply (simp)
unfolding gbm_α_def gbm_add_edge_def
apply (force simp: m1.correct m2.correct s3.correct
Let_def
split: option.split if_split_asm elim!: ranE)
done
qed
lemma gbm_delete_edge_impl:
"graph_delete_edge gbm_α gbm_invar gbm_delete_edge"
proof
fix g v e v'
assume INV: "gbm_invar g"
note [simp]= gbm_invar_split[OF INV]
show "gbm_α (gbm_delete_edge v e v' g) = delete_edge v e v' (gbm_α g)"
unfolding gbm_α_def gbm_delete_edge_def delete_edge_def
apply (auto simp: m1.correct m2.correct s3.correct
Let_def
split: option.split if_split_asm)
done
thus "gbm_invar (gbm_delete_edge v e v' g)"
unfolding gbm_invar_def
apply (simp)
unfolding gbm_α_def gbm_delete_edge_def
apply (auto simp: m1.correct m2.correct s3.correct
Let_def
split: option.split if_split_asm elim!: ranE)
done
qed
lemma gbm_nodes_list_it_impl:
shows "graph_nodes_it gbm_α gbm_invar gbm_nodes_list_it"
proof
fix g
assume "gbm_invar g"
hence MINV: "map_op_invar m1_ops g" unfolding gbm_invar_def by auto
from map_iterator_dom_correct[OF m1.iteratei_correct[OF MINV]]
show "set_iterator (gbm_nodes_list_it g) (nodes (gbm_α g))"
unfolding gbm_nodes_list_it_def gbm_α_def by simp
qed
lemma gbm_edges_list_it_impl:
shows "graph_edges_it gbm_α gbm_invar gbm_edges_list_it"
proof
fix g
assume INV: "gbm_invar g"
from INV have I1: "m1.invar g" unfolding gbm_invar_def by auto
from INV have I2: "⋀v m2. (v,m2)∈map_to_set (m1.α g) ⟹ m2.invar m2"
unfolding gbm_invar_def map_to_set_def
by (auto simp: ran_def)
from INV have I3: "⋀v m2 v' s. ⟦
(v,m2)∈map_to_set (m1.α g);
(v',s)∈map_to_set (m2.α m2)⟧
⟹ s3.invar s"
unfolding gbm_invar_def map_to_set_def
by (auto simp: ran_def)
show "set_iterator (gbm_edges_list_it g) (edges (gbm_α g))"
unfolding gbm_edges_list_it_def
apply (rule set_iterator_image_correct)
apply (rule set_iterator_product_correct)
apply (rule m1.iteratei_correct)
apply (rule I1)
apply (case_tac a)
apply clarsimp
apply (rule set_iterator_product_correct)
apply (drule I2)
apply (subgoal_tac "map_iterator (m2.iteratei ba)
(map_op_α m2_ops (snd (aa,ba)))")
apply assumption
apply (simp add: m2.iteratei_correct)
apply (case_tac a)
apply clarsimp
apply (subgoal_tac "set_iterator (s3.iteratei bb)
(s3.α (snd (ab,bb)))")
apply assumption
apply (simp add: s3.iteratei_correct I3)
apply (auto simp: inj_on_def map_to_set_def) []
apply (force simp: gbm_α_def map_to_set_def) []
done
qed
lemma gbm_succ_list_it_impl:
shows "graph_succ_it gbm_α gbm_invar gbm_succ_list_it"
proof
fix g v
assume INV: "gbm_invar g"
hence I1[simp]: "m1.invar g" unfolding gbm_invar_def by auto
show "set_iterator (gbm_succ_list_it g v) (succ (gbm_α g) v)"
proof (cases "m1.lookup v g")
case None hence "(succ (gbm_α g) v) = {}"
unfolding succ_def gbm_α_def by (auto simp: m1.lookup_correct)
with None show ?thesis unfolding gbm_succ_list_it_def
by (auto simp: set_iterator_emp_correct)
next
case (Some m2)
hence [simp]: "m2.invar m2" using gbm_invar_split[OF INV]
by (simp add: m1.lookup_correct)
from INV Some have
I2: "⋀v' s. (v', s) ∈ map_to_set (map_op_α m2_ops m2) ⟹ s3.invar s"
unfolding gbm_invar_def
by (auto simp: map_to_set_def ran_def m1.lookup_correct)
from Some show ?thesis
unfolding gbm_succ_list_it_def apply simp
apply (rule set_iterator_image_correct)
apply (rule set_iterator_product_correct)
apply (rule m2.iteratei_correct)
apply simp
apply (case_tac a, simp)
apply (subgoal_tac "set_iterator (s3.iteratei b) (s3.α (snd (aa, b)))")
apply assumption
apply simp
apply (rule s3.iteratei_correct)
apply (simp add: I2)
apply (auto simp: inj_on_def map_to_set_def) []
apply (force simp: succ_def gbm_α_def map_to_set_def m1.lookup_correct)
done
qed
qed
lemma gbm_from_list_impl:
shows "graph_from_list gbm_α gbm_invar gbm_from_list"
unfolding gbm_from_list_def
apply (rule gga_from_list_correct)
apply (rule gbm_empty_impl gbm_add_node_impl gbm_add_edge_impl)+
done
end
sublocale GraphByMap < graph_nodes_it gbm_α gbm_invar gbm_nodes_list_it
by (rule gbm_nodes_list_it_impl)
sublocale GraphByMap < graph_edges_it gbm_α gbm_invar gbm_edges_list_it
by (rule gbm_edges_list_it_impl)
sublocale GraphByMap < graph_succ_it gbm_α gbm_invar gbm_succ_list_it
by (rule gbm_succ_list_it_impl)
sublocale GraphByMap
< gga_to_list_loc gbm_α gbm_invar gbm_nodes_list_it gbm_edges_list_it
by unfold_locales
context GraphByMap
begin
lemma gbm_to_list_impl: "graph_to_list gbm_α gbm_invar gga_to_list"
by (rule gga_to_list_correct)
lemma gbm_ops_impl: "StdGraph gbm_ops"
apply (rule StdGraph.intro)
apply (simp_all add: icf_rec_unf)
apply icf_locales
apply (rule gbm_empty_impl gbm_add_node_impl gbm_delete_node_impl
gbm_add_edge_impl gbm_delete_edge_impl gbm_from_list_impl
gbm_to_list_impl)+
done
end
setup ‹
(Record_Intf.add_unf_thms_global @{thms
GraphByMapDefs.gbm_nodes_list_it_unf
GraphByMapDefs.gbm_edges_list_it_unf
GraphByMapDefs.gbm_succ_list_it_unf
})
›
end