Theory It_to_It
theory It_to_It
imports
Proper_Iterator
begin
lemma proper_it_fold:
"proper_it it it' ⟹ foldli (it (λ_. True) (λx l. l@[x]) []) = it'"
unfolding proper_it_def by auto
lemma proper_it_unfold:
"proper_it it it' ⟹ it' = foldli (it (λ_. True) (λx l. l@[x]) [])"
unfolding proper_it_def by auto
text ‹The following constant converts an iterator over list-state
to an iterator over arbitrary state›
definition it_to_it :: "('x,'x list) set_iterator ⇒ ('x,'σ) set_iterator"
where [code del]: "it_to_it it
≡ (foldli (it (λ_. True) (λx l. l@[x]) []))"
lemma pi_it_to_it[icf_proper_iteratorI]: "proper_it (it_to_it I) (it_to_it I)"
unfolding it_to_it_def by (rule pi_foldli)
text ‹In case of a proper iterator, it is equivalent to direct iteration›
lemma it_to_it_fold: "proper_it it (it'::('x,'σ) set_iterator)
⟹ it_to_it it = it'"
unfolding it_to_it_def
by (simp add: proper_it_fold)
lemma it_to_it_map_fold:
assumes P: "proper_it it it'"
shows "it_to_it (λc f. it c (f ∘ f')) = (λc f. it' c (f o f'))"
apply (rule proper_itE[OF P])
unfolding it_to_it_def
apply (intro ext)
apply (simp add: foldli_foldl map_by_foldl foldli_map)
done
lemma it_to_it_fold': "proper_it' it (it'::'s ⇒ ('x,'σ) set_iterator)
⟹ it_to_it (it s) = (it' s)"
by (drule proper_it'D) (rule it_to_it_fold)
lemma it_to_it_map_fold':
assumes P: "proper_it' it it'"
shows "it_to_it (λc f. it s c (f ∘ f')) = (λc f. it' s c (f o f'))"
using P[THEN proper_it'D] by (rule it_to_it_map_fold)
text ‹This locale wraps up the setup of a proper iterator for use
with ‹it_to_it›.›
locale proper_it_loc =
fixes it :: "'s ⇒ ('x,'x list) set_iterator"
and it' :: "'s ⇒ ('x,'σ) set_iterator"
assumes proper': "proper_it' it it'"
begin
lemma proper: "proper_it (it s) (it' s)"
using proper' by (rule proper_it'D)
lemmas it_to_it_code_unfold[code_unfold] = it_to_it_fold[OF proper]
end
subsubsection ‹Correctness›
text ‹The polymorphic iterator is a valid iterator again.›
lemma it_to_it_genord_correct:
assumes "set_iterator_genord (it::('x,'x list) set_iterator) S R"
shows "set_iterator_genord ((it_to_it it)::('x,'σ) set_iterator) S R"
proof -
interpret set_iterator_genord it S R by fact
show ?thesis
apply (unfold_locales)
unfolding it_to_it_def
using foldli_transform
by auto
qed
lemma it_to_it_linord_correct:
assumes "set_iterator_linord (it::('x::linorder,'x list) set_iterator) S"
shows "set_iterator_linord ((it_to_it it)::('x,'σ) set_iterator) S"
using assms
unfolding set_iterator_linord_def
by (rule it_to_it_genord_correct)
lemma it_to_it_rev_linord_correct:
assumes "set_iterator_rev_linord (it::('x::linorder,'x list) set_iterator) S"
shows "set_iterator_rev_linord ((it_to_it it)::('x,'σ) set_iterator) S"
using assms
unfolding set_iterator_rev_linord_def
by (rule it_to_it_genord_correct)
lemma it_to_it_correct:
assumes "set_iterator (it::('x,'x list) set_iterator) S"
shows "set_iterator ((it_to_it it)::('x,'σ) set_iterator) S"
using assms
unfolding set_iterator_def
by (rule it_to_it_genord_correct)
lemma it_to_it_map_genord_correct:
assumes "map_iterator_genord (it::('u,'v,('u×'v) list) map_iterator) S R"
shows "map_iterator_genord ((it_to_it it)::('u,'v,'σ) map_iterator) S R"
using assms by (rule it_to_it_genord_correct)
lemma it_to_it_map_linord_correct:
assumes "map_iterator_linord (it::('u::linorder,'v,('u×'v) list) map_iterator) S"
shows "map_iterator_linord ((it_to_it it)::('u,'v,'σ) map_iterator) S"
using assms unfolding set_iterator_map_linord_def by (rule it_to_it_genord_correct)
lemma it_to_it_map_rev_linord_correct:
assumes
"map_iterator_rev_linord (it::('u::linorder,'v,('u×'v) list) map_iterator) S"
shows "map_iterator_rev_linord ((it_to_it it)::('u,'v,'σ) map_iterator) S"
using assms unfolding set_iterator_map_rev_linord_def
by (rule it_to_it_genord_correct)
lemma it_to_it_map_correct:
assumes "map_iterator (it::('u,'v,('u×'v) list) map_iterator) S"
shows "map_iterator ((it_to_it it)::('u,'v,'σ) map_iterator) S"
using assms by (rule it_to_it_correct)
end