Theory Proper_Iterator
section ‹Proper Iterators›
theory Proper_Iterator
imports
SetIteratorOperations
Automatic_Refinement.Refine_Lib
begin
text ‹
Proper iterators provide a way to obtain polymorphic iterators even
inside locale contexts.
For this purpose, an iterator that converts the set to a list is fixed
inside the locale, and polymorphic iterators are described by folding
over the generated list.
In order to ensure efficiency, it is shown that folding over the generated
list is equivalent to directly iterating over the set, and this equivalence
is set up as a code preprocessing rule.
›
subsection ‹Proper Iterators›
text ‹A proper iterator can be expressed as a fold over a list, where
the list does only depend on the set. In particular, it does not depend
on the type of the state. We express this by the following definition,
using two iterators with different types:›
definition proper_it
:: "('x,'σ1) set_iterator ⇒ ('x,'σ2) set_iterator ⇒ bool"
where "proper_it it it' ≡ (∃l. it=foldli l ∧ it'=foldli l)"
lemma proper_itI[intro?]:
fixes it :: "('x,'σ1) set_iterator"
and it' :: "('x,'σ2) set_iterator"
assumes "it=foldli l ∧ it'=foldli l"
shows "proper_it it it'"
using assms unfolding proper_it_def by auto
lemma proper_itE:
fixes it :: "('x,'σ1) set_iterator"
and it' :: "('x,'σ2) set_iterator"
assumes "proper_it it it'"
obtains l where "it=foldli l" and "it'=foldli l"
using assms unfolding proper_it_def by auto
lemma proper_it_parE:
fixes it :: "'a ⇒ ('x,'σ1) set_iterator"
and it' :: "'a ⇒ ('x,'σ2) set_iterator"
assumes "∀x. proper_it (it x) (it' x)"
obtains f where "it = (λx. foldli (f x))" and "it' = (λx. foldli (f x))"
using assms unfolding proper_it_def
by metis
definition
proper_it'
where "proper_it' it it' ≡ ∀s. proper_it (it s) (it' s)"
lemma proper_it'I:
"⟦⋀s. proper_it (it s) (it' s)⟧ ⟹ proper_it' it it'"
unfolding proper_it'_def by blast
lemma proper_it'D:
"proper_it' it it' ⟹ proper_it (it s) (it' s)"
unfolding proper_it'_def by blast
subsubsection ‹Properness Preservation›
ML ‹
structure Icf_Proper_Iterator = struct
structure icf_proper_iteratorI = Named_Thms
( val name = @{binding icf_proper_iteratorI_raw}
val description = "ICF (internal): Rules to show properness of iterators" )
val get = icf_proper_iteratorI.get
fun add_thm thm = icf_proper_iteratorI.add_thm thm
val add = Thm.declaration_attribute add_thm
fun del_thm thm = icf_proper_iteratorI.del_thm thm
val del = Thm.declaration_attribute del_thm
val setup = I
#> icf_proper_iteratorI.setup
#> Attrib.setup @{binding icf_proper_iteratorI}
(Attrib.add_del add del)
("ICF: Rules to show properness of iterators")
#> Global_Theory.add_thms_dynamic (@{binding icf_proper_iteratorI},
get o Context.proof_of
)
end
›
setup ‹Icf_Proper_Iterator.setup›
lemma proper_iterator_trigger:
"proper_it it it' ⟹ proper_it it it'"
"proper_it' itf itf' ⟹ proper_it' itf itf'" .
declaration ‹
Tagged_Solver.declare_solver @{thms proper_iterator_trigger}
@{binding proper_iterator} "Proper iterator solver"
(fn ctxt => REPEAT_ALL_NEW (resolve_tac ctxt (Icf_Proper_Iterator.get ctxt)))
›
lemma pi_foldli[icf_proper_iteratorI]:
"proper_it (foldli l :: ('a,'σ) set_iterator) (foldli l)"
unfolding proper_it_def
by auto
lemma pi_foldri[icf_proper_iteratorI]:
"proper_it (foldri l :: ('a,'σ) set_iterator) (foldri l)"
unfolding proper_it_def foldri_def by auto
lemma pi'_foldli[icf_proper_iteratorI]:
"proper_it' (foldli o tsl) (foldli o tsl)"
apply (clarsimp simp add: proper_it'_def)
apply (tagged_solver)
done
lemma pi'_foldri[icf_proper_iteratorI]:
"proper_it' (foldri o tsl) (foldri o tsl)"
apply (clarsimp simp add: proper_it'_def)
apply (tagged_solver)
done
text ‹Iterator combinators preserve properness›
lemma pi_emp[icf_proper_iteratorI]:
"proper_it set_iterator_emp set_iterator_emp"
unfolding proper_it_def set_iterator_emp_def[abs_def]
by (auto intro!: ext exI[where x="[]"])
lemma pi_sng[icf_proper_iteratorI]:
"proper_it (set_iterator_sng x) (set_iterator_sng x)"
unfolding proper_it_def set_iterator_sng_def[abs_def]
by (auto intro!: ext exI[where x="[x]"])
lemma pi_union[icf_proper_iteratorI]:
assumes PA: "proper_it it_a it_a'"
assumes PB: "proper_it it_b it_b'"
shows "proper_it (set_iterator_union it_a it_b)
(set_iterator_union it_a' it_b')"
unfolding set_iterator_union_def
apply (rule proper_itE[OF PA])
apply (rule proper_itE[OF PB])
apply (rule_tac l="l@la" in proper_itI)
apply simp
apply (intro conjI ext)
apply (simp_all add: foldli_append)
done
lemma pi_product[icf_proper_iteratorI]:
fixes it_a :: "('a,'σa) set_iterator"
fixes it_b :: "'a ⇒ ('b,'σa) set_iterator"
assumes PA: "proper_it it_a it_a'"
and PB: "⋀x. proper_it (it_b x) (it_b' x)"
shows "proper_it (set_iterator_product it_a it_b)
(set_iterator_product it_a' it_b')"
proof -
from PB have PB': "∀x. proper_it (it_b x) (it_b' x)" ..
show ?thesis
unfolding proper_it_def
apply (rule proper_itE[OF PA])
apply (rule proper_it_parE[OF PB'])
apply (auto simp add: set_iterator_product_foldli_conv)
done
qed
lemma pi_image_filter[icf_proper_iteratorI]:
fixes it :: "('x,'σ1) set_iterator"
and it' :: "('x,'σ2) set_iterator"
and g :: "'x ⇒ 'y option"
assumes P: "proper_it it it'"
shows "proper_it (set_iterator_image_filter g it)
(set_iterator_image_filter g it')"
unfolding proper_it_def
apply (rule proper_itE[OF P])
apply (auto simp: set_iterator_image_filter_foldli_conv)
done
lemma pi_filter[icf_proper_iteratorI]:
assumes P: "proper_it it it'"
shows "proper_it (set_iterator_filter P it)
(set_iterator_filter P it')"
unfolding proper_it_def
apply (rule proper_itE[OF P])
by (auto simp: set_iterator_filter_foldli_conv)
lemma pi_image[icf_proper_iteratorI]:
assumes P: "proper_it it it'"
shows "proper_it (set_iterator_image g it)
(set_iterator_image g it')"
unfolding proper_it_def
apply (rule proper_itE[OF P])
by (auto simp: set_iterator_image_foldli_conv)
lemma pi_dom[icf_proper_iteratorI]:
assumes P: "proper_it it it'"
shows "proper_it (map_iterator_dom it)
(map_iterator_dom it')"
unfolding proper_it_def
apply (rule proper_itE[OF P])
by (auto simp: map_iterator_dom_foldli_conv)
lemma set_iterator_product_eq2:
assumes "∀a∈set la. itb a = itb' a"
shows "set_iterator_product (foldli la) itb
= set_iterator_product (foldli la) itb'"
proof (intro ext)
fix c f σ
show "set_iterator_product (foldli la) itb c f σ
= set_iterator_product (foldli la) itb' c f σ"
using assms
unfolding set_iterator_product_def
apply (induct la arbitrary: σ)
apply (auto)
done
qed
subsubsection ‹Optimizing Folds›
text ‹
Using an iterator to create a list. The optimizations will
match the pattern ‹foldli (it_to_list it s)›
›
definition "it_to_list it s ≡ (it s) (λ_. True) (λx l. l@[x]) []"
lemma map_it_to_list_genord_correct:
assumes A: "map_iterator_genord (it s) m (λ(k,_) (k',_). R k k')"
shows "map_of (it_to_list it s) = m
∧ distinct (map fst (it_to_list it s))
∧ sorted_wrt R ((map fst (it_to_list it s)))"
unfolding it_to_list_def
apply (rule map_iterator_genord_rule_insert_P[OF A, where I="
λit l. map_of l = m |` it
∧ distinct (map fst l)
∧ sorted_wrt R ((map fst l))
"])
apply auto
apply (auto simp: restrict_map_def) []
apply (metis Some_eq_map_of_iff restrict_map_eq(2))
apply (auto simp add: sorted_wrt_append)
by (metis (lifting) restrict_map_eq(2) weak_map_of_SomeI)
lemma (in linorder) map_it_to_list_linord_correct:
assumes A: "map_iterator_linord (it s) m"
shows "map_of (it_to_list it s) = m
∧ distinct (map fst (it_to_list it s))
∧ sorted ((map fst (it_to_list it s)))"
using map_it_to_list_genord_correct[where it=it,
OF A[unfolded set_iterator_map_linord_def]] .
lemma (in linorder) map_it_to_list_rev_linord_correct:
assumes A: "map_iterator_rev_linord (it s) m"
shows "map_of (it_to_list it s) = m
∧ distinct (map fst (it_to_list it s))
∧ sorted (rev (map fst (it_to_list it s)))"
using map_it_to_list_genord_correct[where it=it,
OF A[unfolded set_iterator_map_rev_linord_def]]
by simp
end