Theory Discrete_Time_Markov_Chain
section ‹Discrete-Time Markov Chain›
theory Discrete_Time_Markov_Chain
imports Markov_Models_Auxiliary
begin
text ‹
Markov chain with discrete time steps and discrete state space.
›
lemma sstart_eq': "sstart Ω (x # xs) = {ω. shd ω = x ∧ stl ω ∈ sstart Ω xs}"
by (auto simp: sstart_eq)
lemma measure_eq_stream_space_coinduct[consumes 1, case_names left right cont]:
assumes "R N M"
assumes R_1: "⋀N M. R N M ⟹ N ∈ space (prob_algebra (stream_space (count_space UNIV)))"
and R_2: "⋀N M. R N M ⟹ M ∈ space (prob_algebra (stream_space (count_space UNIV)))"
and cont: "⋀N M. R N M ⟹ ∃N' M' p. (∀y∈set_pmf p. R (N' y) (M' y)) ∧
(∀x. N' x ∈ space (prob_algebra (stream_space (count_space UNIV)))) ∧ (∀x. M' x ∈ space (prob_algebra (stream_space (count_space UNIV)))) ∧
N = (measure_pmf p ⤜ (λy. distr (N' y) (stream_space (count_space UNIV)) ((##) y))) ∧
M = (measure_pmf p ⤜ (λy. distr (M' y) (stream_space (count_space UNIV)) ((##) y)))"
shows "N = M"
proof -
let ?S = "stream_space (count_space UNIV)"
have "∀N M. R N M ⟶ (∃N' M' p. (∀y∈set_pmf p. R (N' y) (M' y)) ∧
(∀x. N' x ∈ space (prob_algebra ?S)) ∧ (∀x. M' x ∈ space (prob_algebra ?S)) ∧
N = (measure_pmf p ⤜ (λy. distr (N' y) ?S ((##) y))) ∧
M = (measure_pmf p ⤜ (λy. distr (M' y) ?S ((##) y))))"
using cont by auto
then obtain n m p where
p: "⋀N M y. R N M ⟹ y ∈ set_pmf (p N M) ⟹ R (n N M y) (m N M y)" and
n: "⋀N M x. R N M ⟹ n N M x ∈ space (prob_algebra ?S)" and
n_eq: "⋀N M y. R N M ⟹ N = (measure_pmf (p N M) ⤜ (λy. distr (n N M y) ?S ((##) y)))" and
m: "⋀N M x. R N M ⟹ m N M x ∈ space (prob_algebra ?S)" and
m_eq: "⋀N M y. R N M ⟹ M = (measure_pmf (p N M) ⤜ (λy. distr (m N M y) ?S ((##) y)))"
unfolding choice_iff' choice_iff by blast
define A where "A = (SIGMA nm:UNIV. (λx. (n (fst nm) (snd nm) x, m (fst nm) (snd nm) x)) ` p (fst nm) (snd nm))"
have A_singleton: "A `` {nm} = (λx. (n (fst nm) (snd nm) x, m (fst nm) (snd nm) x)) ` p (fst nm) (snd nm)" for nm
by (auto simp: A_def)
have sets_n[measurable_cong, simp]: "sets (n N M y) = sets ?S" if "R N M" for N M y
using n[OF that, of y] by (auto simp: space_prob_algebra)
have sets_m[measurable_cong, simp]: "sets (m N M y) = sets ?S" if "R N M" for N M y
using m[OF that, of y] by (auto simp: space_prob_algebra)
have [simp]: "R N M ⟹ prob_space (n N M y)" for N M y
using n[of N M y] by (auto simp: space_prob_algebra)
have [simp]: "R N M ⟹ prob_space (m N M y)" for N M y
using m[of N M y] by (auto simp: space_prob_algebra)
have [measurable]: "R N M ⟹ n N M ∈ count_space UNIV →⇩M subprob_algebra ?S" for N M
by (rule measurable_prob_algebraD) (auto intro: n)
have [measurable]: "R N M ⟹ m N M ∈ count_space UNIV →⇩M subprob_algebra ?S" for N M
by (rule measurable_prob_algebraD) (auto intro: m)
define n' where "n' N M y = distr (n N M y) ?S ((##) y)" for N M y
define m' where "m' N M y = distr (m N M y) ?S ((##) y)" for N M y
have n'_eq: "R N M ⟹ N = (measure_pmf (p N M) ⤜ n' N M)" for N M unfolding n'_def by (rule n_eq)
have m'_eq: "R N M ⟹ M = (measure_pmf (p N M) ⤜ m' N M)" for N M unfolding m'_def by (rule m_eq)
have [measurable]: "R N M ⟹ n' N M ∈ count_space UNIV →⇩M subprob_algebra ?S" for N M
unfolding n'_def by (rule measurable_distr2[where M="?S"]) measurable
have [measurable]: "R N M ⟹ m' N M ∈ count_space UNIV →⇩M subprob_algebra ?S" for N M
unfolding m'_def by (rule measurable_distr2[where M="?S"]) measurable
have n'_shd: "R N M ⟹ distr (n' N M y) (count_space UNIV) shd = measure_pmf (return_pmf y)" for N M y
unfolding n'_def by (subst distr_distr) (auto simp: comp_def prob_space.distr_const return_pmf.rep_eq)
have m'_shd: "R N M ⟹ distr (m' N M y) (count_space UNIV) shd = measure_pmf (return_pmf y)" for N M y
unfolding m'_def by (subst distr_distr) (auto simp: comp_def prob_space.distr_const return_pmf.rep_eq)
have n'_stl: "R N M ⟹ distr (n' N M y) ?S stl = n N M y" for N M y
unfolding n'_def by (subst distr_distr) (auto simp: comp_def distr_id2)
have m'_stl: "R N M ⟹ distr (m' N M y) ?S stl = m N M y" for N M y
unfolding m'_def by (subst distr_distr) (auto simp: comp_def distr_id2)
define F where "F = (A⇧* `` {(N, M)})"
have "countable F"
unfolding F_def
apply (intro countable_rtrancl countable_insert[of _ "(N, M)"] countable_empty)
apply (rule countable_Image)
apply (auto simp: A_singleton)
done
have F_NM[simp]: "(N, M) ∈ F" unfolding F_def by auto
have R_F[simp]: "R N' M'" if "(N', M') ∈ F" for N' M'
proof -
have "((N, M), (N', M')) ∈ A⇧*" using that by (auto simp: F_def)
then show "R N' M'"
by (induction p=="(N', M')" arbitrary: N' M' rule: rtrancl_induct) (auto simp: ‹R N M› A_def p)
qed
have nm_F: "(n N' M' y, m N' M' y) ∈ F" if "y ∈ p N' M'" "(N', M') ∈ F" for N' M' y
proof -
have *: "((N, M), (N', M')) ∈ A⇧*" using that by (auto simp: F_def)
with that show ?thesis
apply (simp add: F_def)
apply (intro rtrancl.rtrancl_into_rtrancl[OF *])
apply (auto simp: A_def)
done
qed
define Ω where "Ω = (⋃(n, m)∈F. set_pmf (p n m))"
have [measurable]: "Ω ∈ sets (count_space UNIV)" by auto
have in_Ω: "(N, M) ∈ F ⟹ y ∈ p N M ⟹ y ∈ Ω" for N M y
by (auto simp: Ω_def Bex_def)
show ?thesis
proof (intro stream_space_eq_sstart)
from ‹countable F› show "countable Ω"
by (auto simp add: Ω_def)
show "prob_space N" "prob_space M" "sets N = sets ?S" "sets M = sets ?S"
using R_1[OF ‹R N M›] R_2[OF ‹R N M›] by (auto simp add: space_prob_algebra)
have "⋀N M. (N, M) ∈ F ⟹ AE x in N. x !! i ∈ Ω" for i
proof (induction i)
case 0 note NM = 0[THEN R_F, simp] show ?case
apply (subst n'_eq[OF NM])
apply (subst AE_bind[where B="?S"])
apply measurable
apply (auto intro!: AE_distrD[where f=shd and M'="count_space UNIV"]
simp: AE_measure_pmf_iff n[OF NM] n'_shd in_Ω[OF 0] cong: AE_cong_simp)
done
next
case (Suc i) note NM = Suc(2)[THEN R_F, simp]
show ?case
apply (subst n'_eq[OF NM])
apply (subst AE_bind[where B="?S"])
apply measurable
apply (auto intro!: AE_distrD[where f=stl and M'="?S"] Suc(1)[OF nm_F] Suc(2)
simp: AE_measure_pmf_iff n'_stl cong: AE_cong_simp)
done
qed
then have AE_N: "⋀N M. (N, M) ∈ F ⟹ AE x in N. x ∈ streams Ω"
unfolding streams_iff_snth AE_all_countable by auto
then show "AE x in N. x ∈ streams Ω" by (blast intro: F_NM)
have "⋀N M. (N, M) ∈ F ⟹ AE x in M. x !! i ∈ Ω" for i
proof (induction i arbitrary: N M)
case 0 note NM = 0[THEN R_F, simp] show ?case
apply (subst m'_eq[OF NM])
apply (subst AE_bind[where B="?S"])
apply measurable
apply (auto intro!: AE_distrD[where f=shd and M'="count_space UNIV"]
simp: AE_measure_pmf_iff m[OF NM] m'_shd in_Ω[OF 0] cong: AE_cong_simp)
done
next
case (Suc i) note NM = Suc(2)[THEN R_F, simp]
show ?case
apply (subst m'_eq[OF NM])
apply (subst AE_bind[where B="?S"])
apply measurable
apply (auto intro!: AE_distrD[where f=stl and M'="?S"] Suc(1)[OF nm_F] Suc(2)
simp: AE_measure_pmf_iff m'_stl cong: AE_cong_simp)
done
qed
then have AE_M: "⋀N M. (N, M) ∈ F ⟹ AE x in M. x ∈ streams Ω"
unfolding streams_iff_snth AE_all_countable by auto
then show "AE x in M. x ∈ streams Ω" by (blast intro: F_NM)
fix xs assume "xs ∈ lists Ω"
with ‹(N, M) ∈ F› show "emeasure N (sstart Ω xs) = emeasure M (sstart Ω xs)"
proof (induction xs arbitrary: N M)
case Nil
have "prob_space N" "prob_space M" "sets N = sets ?S" "sets M = sets ?S"
using R_1[OF R_F[OF Nil(1)]] R_2[OF R_F[OF Nil(1)]] by (auto simp add: space_prob_algebra)
have "emeasure N (streams Ω) = 1"
by (rule prob_space.emeasure_eq_1_AE[OF ‹prob_space N› _ AE_N[OF Nil(1)]])
(auto simp add: ‹sets N = sets ?S› intro!: streams_sets)
moreover have "emeasure M (streams Ω) = 1"
by (rule prob_space.emeasure_eq_1_AE[OF ‹prob_space M› _ AE_M[OF Nil(1)]])
(auto simp add: ‹sets M = sets ?S› intro!: streams_sets)
ultimately show ?case by simp
next
case (Cons x xs)
note NM = Cons(2)[THEN R_F, simp]
have *: "(##) y -` sstart Ω (x # xs) = (if x = y then sstart Ω xs else {})" for y
by auto
show ?case
apply (subst n'_eq[OF NM])
apply (subst (3) m'_eq[OF NM])
apply (subst emeasure_bind[OF _ _ sstart_sets])
apply simp []
apply measurable []
apply (subst emeasure_bind[OF _ _ sstart_sets])
apply simp []
apply measurable []
apply (intro nn_integral_cong_AE AE_pmfI)
apply (subst n'_def)
apply (subst m'_def)
using Cons(3)
apply (auto intro!: Cons nm_F
simp add: emeasure_distr sets_eq_imp_space_eq[OF sets_n] sets_eq_imp_space_eq[OF sets_m]
space_stream_space *)
done
qed
qed
qed
subsection ‹Discrete Markov Kernel›
locale MC_syntax =
fixes K :: "'s ⇒ 's pmf"
begin
abbreviation acc :: "('s × 's) set" where
"acc ≡ (SIGMA s:UNIV. K s)⇧*"
abbreviation acc_on :: "'s set ⇒ ('s × 's) set" where
"acc_on S ≡ (SIGMA s:UNIV. K s ∩ S)⇧*"
lemma countable_reachable: "countable (acc `` {s})"
by (auto intro!: countable_rtrancl countable_set_pmf simp: Sigma_Image)
lemma countable_acc: "countable X ⟹ countable (acc `` X)"
apply (rule countable_Image)
apply (rule countable_reachable)
apply assumption
done
context
notes [[inductive_internals]]
begin
coinductive enabled where
"enabled (shd ω) (stl ω) ⟹ shd ω ∈ K s ⟹ enabled s ω"
end
lemma alw_enabled: "enabled (shd ω) (stl ω) ⟹ alw (λω. enabled (shd ω) (stl ω)) ω"
by (coinduction arbitrary: ω rule: alw_coinduct) (auto elim: enabled.cases)
abbreviation "S ≡ stream_space (count_space UNIV)"
lemma in_S [measurable (raw)]: "x ∈ space S"
by (simp add: space_stream_space)
inductive_simps enabled_iff: "enabled s ω"
lemma enabled_Stream: "enabled x (y ## ω) ⟷ y ∈ K x ∧ enabled y ω"
by (subst enabled_iff) auto
lemma measurable_enabled[measurable]:
"Measurable.pred (stream_space (count_space UNIV)) (enabled s)" (is "Measurable.pred ?S _")
unfolding enabled_def
proof (coinduction arbitrary: s rule: measurable_gfp2_coinduct)
case (step A s)
then have [measurable]: "⋀t. Measurable.pred ?S (A t)" by auto
have *: "⋀x. (∃ω t. s = t ∧ x = ω ∧ A (shd ω) (stl ω) ∧ shd ω ∈ set_pmf (K t)) ⟷
(∃t∈K s. A t (stl x) ∧ t = shd x)"
by auto
note countable_set_pmf[simp]
show ?case
unfolding * by measurable
qed (auto simp: inf_continuous_def)
lemma enabled_iff_snth: "enabled s ω ⟷ (∀i. ω !! i ∈ K ((s ## ω) !! i))"
proof safe
fix i assume "enabled s ω" then show "ω !! i ∈ K ((s ## ω) !! i)"
by (induct i arbitrary: s ω)
(force elim: enabled.cases)+
next
assume "∀i. ω !! i ∈ set_pmf (K ((s ## ω) !! i))" then show "enabled s ω"
by (coinduction arbitrary: s ω)
(auto elim: allE[of _ "Suc i" for i] allE[of _ 0])
qed
primcorec force_enabled where
"force_enabled x ω =
(let y = if shd ω ∈ K x then shd ω else (SOME y. y ∈ K x) in y ## force_enabled y (stl ω))"
lemma force_enabled_in_set_pmf[simp, intro]: "shd (force_enabled x ω) ∈ K x"
by (auto simp: some_in_eq set_pmf_not_empty)
lemma enabled_force_enabled: "enabled x (force_enabled x ω)"
by (coinduction arbitrary: x ω) (auto simp: some_in_eq set_pmf_not_empty)
lemma force_enabled: "enabled x ω ⟹ force_enabled x ω = ω"
by (coinduction arbitrary: x ω) (auto elim: enabled.cases)
lemma Ex_enabled: "∃ω. enabled x ω"
by (rule exI[of _ "force_enabled x undefined"] enabled_force_enabled)+
lemma measurable_force_enabled: "force_enabled x ∈ measurable S S"
proof (rule measurable_stream_space2)
fix n show "(λω. force_enabled x ω !! n) ∈ measurable S (count_space UNIV)"
proof (induction n arbitrary: x)
case (Suc n) show ?case
apply simp
apply (rule measurable_compose_countable'[OF measurable_compose[OF measurable_stl Suc], where I="set_pmf (K x)"])
apply (rule measurable_compose[OF measurable_shd])
apply (auto simp: countable_set_pmf some_in_eq set_pmf_not_empty)
done
qed (auto intro!: measurable_compose[OF measurable_shd])
qed
abbreviation "D ≡ stream_space (Π⇩M s∈UNIV. K s)"
lemma sets_D: "sets D = sets (stream_space (Π⇩M s∈UNIV. count_space UNIV))"
by (intro sets_stream_space_cong sets_PiM_cong) simp_all
lemma space_D: "space D = space (stream_space (Π⇩M s∈UNIV. count_space UNIV))"
using sets_eq_imp_space_eq[OF sets_D] .
lemma measurable_D_D: "measurable D D =
measurable (stream_space (Π⇩M s∈UNIV. count_space UNIV)) (stream_space (Π⇩M s∈UNIV. count_space UNIV))"
by (simp add: measurable_def space_D sets_D)
primcorec walk :: "'s ⇒ ('s ⇒ 's) stream ⇒ 's stream" where
"shd (walk s ω) = (if shd ω s ∈ K s then shd ω s else (SOME t. t ∈ K s))"
| "stl (walk s ω) = walk (if shd ω s ∈ K s then shd ω s else (SOME t. t ∈ K s)) (stl ω)"
lemma enabled_walk: "enabled s (walk s ω)"
by (coinduction arbitrary: s ω) (auto simp: some_in_eq set_pmf_not_empty)
lemma measurable_walk[measurable]: "walk s ∈ measurable D S"
proof -
note measurable_compose[OF measurable_snth, intro!]
note measurable_compose[OF measurable_component_singleton, intro!]
note if_weak_cong[cong del]
note measurable_g = measurable_compose_countable'[OF _ _ countable_reachable]
define n :: nat where "n = 0"
define g where "g = (λ_::('s ⇒ 's) stream. s)"
then have "g ∈ measurable D (count_space (acc `` {s}))"
by auto
then have "(λx. walk (g x) (sdrop n x)) ∈ measurable D S"
proof (coinduction arbitrary: g n rule: measurable_stream_coinduct)
case (shd g) show ?case
by (fastforce intro: measurable_g[OF _ shd])
next
case (stl g) show ?case
by (fastforce simp add: sdrop.simps[symmetric] some_in_eq set_pmf_not_empty
simp del: sdrop.simps intro: rtrancl_into_rtrancl measurable_g[OF _ stl])
qed
then show ?thesis
by (simp add: g_def n_def)
qed
subsection ‹Trace Space for Discrete-Time Markov Chains›
definition T :: "'s ⇒ 's stream measure" where
"T s = distr (stream_space (Π⇩M s∈UNIV. K s)) S (walk s)"
lemma space_T[simp]: "space (T s) = space S"
by (simp add: T_def)
lemma sets_T[simp, measurable_cong]: "sets (T s) = sets S"
by (simp add: T_def)
lemma measurable_T1[simp]: "measurable (T s) M = measurable S M"
by (intro measurable_cong_sets) simp_all
lemma measurable_T2[simp]: "measurable M (T s) = measurable M S"
by (intro measurable_cong_sets) simp_all
lemma in_measurable_T1[measurable (raw)]: "f ∈ measurable S M ⟹ f ∈ measurable (T s) M"
by simp
lemma in_measurable_T2[measurable (raw)]: "f ∈ measurable M S ⟹ f ∈ measurable M (T s)"
by simp
lemma AE_T_enabled: "AE ω in T s. enabled s ω"
unfolding T_def by (simp add: AE_distr_iff enabled_walk)
sublocale T: prob_space "T s" for s
proof -
interpret P: product_prob_space K UNIV ..
interpret prob_space "stream_space (Π⇩M s∈UNIV. K s)"
by (rule P.prob_space_stream_space)
fix s show "prob_space (T s)"
by (simp add: T_def prob_space_distr)
qed
lemma emeasure_T_const[simp]: "emeasure (T s) (space S) = 1"
using T.emeasure_space_1[of s] by simp
lemma nn_integral_T:
assumes f[measurable]: "f ∈ borel_measurable S"
shows "(∫⇧+X. f X ∂T s) = (∫⇧+t. (∫⇧+ω. f (t ## ω) ∂T t) ∂K s)"
proof -
interpret product_prob_space K UNIV ..
interpret D: prob_space "stream_space (Π⇩M s∈UNIV. K s)"
by (rule prob_space_stream_space)
have T: "⋀f s. f ∈ borel_measurable S ⟹ (∫⇧+X. f X ∂T s) = (∫⇧+ω. f (walk s ω) ∂D)"
by (simp add: T_def nn_integral_distr)
have "(∫⇧+X. f X ∂T s) = (∫⇧+ω. f (walk s ω) ∂D)"
by (rule T) measurable
also have "… = (∫⇧+d. ∫⇧+ω. f (walk s (d ## ω)) ∂D ∂Π⇩M i∈UNIV. K i)"
by (simp add: P.nn_integral_stream_space)
also have "… = (∫⇧+d. (∫⇧+ω. f (d s ## walk (d s) ω) * indicator {t. t ∈ K s} (d s) ∂D) ∂Π⇩M i∈UNIV. K i)"
apply (rule nn_integral_cong_AE)
apply (subst walk.ctr)
apply (simp add: frequently_def cong del: if_weak_cong)
apply (auto simp: AE_measure_pmf_iff intro: AE_component)
done
also have "… = (∫⇧+d. ∫⇧+ω. f (d s ## ω) * indicator (K s) (d s) ∂T (d s) ∂Π⇩M i∈UNIV. K i)"
by (subst T) (simp_all split: split_indicator)
also have "… = (∫⇧+t. ∫⇧+ω. f (t ## ω) * indicator (K s) t ∂T t ∂K s)"
by (subst (2) PiM_component[symmetric]) (simp_all add: nn_integral_distr)
also have "… = (∫⇧+t. ∫⇧+ω. f (t ## ω) ∂T t ∂K s)"
by (rule nn_integral_cong_AE) (simp add: AE_measure_pmf_iff)
finally show ?thesis .
qed
lemma nn_integral_T_gfp:
fixes g
defines "l ≡ λf ω. g (shd ω) (f (stl ω))"
assumes [measurable]: "case_prod g ∈ borel_measurable (count_space UNIV ⨂⇩M borel)"
assumes cont_g[THEN inf_continuous_compose, order_continuous_intros]: "⋀s. inf_continuous (g s)"
assumes int_g: "⋀f s. f ∈ borel_measurable S ⟹ (∫⇧+ω. g s (f ω) ∂T s) = g s (∫⇧+ω. f ω ∂T s)"
assumes bnd_g: "⋀f s. g s f ≤ b" "0 ≤ b" "b < ∞"
shows "(∫⇧+ω. gfp l ω ∂T s) = gfp (λf s. ∫⇧+t. g t (f t) ∂K s) s"
proof (rule nn_integral_gfp)
show "⋀s. sets (T s) = sets S" "⋀F. F ∈ borel_measurable S ⟹ l F ∈ borel_measurable S"
by (auto simp: l_def)
show "⋀s. emeasure (T s) (space (T s)) ≠ 0"
by (rewrite T.emeasure_space_1) simp
{ fix s F
have "integral⇧N (T s) (l F) ≤ (∫⇧+x. b ∂T s)"
by (intro nn_integral_mono) (simp add: l_def bnd_g)
also have "… < ∞"
using bnd_g by simp
finally show "integral⇧N (T s) (l F) < ∞" . }
show "inf_continuous (λf s. ∫⇧+ t. g t (f t) ∂K s)"
proof (intro order_continuous_intros)
fix f s
have "(∫⇧+ t. g t (f t) ∂K s) ≤ (∫⇧+ t. b ∂K s)"
by (intro nn_integral_mono bnd_g)
also have "… < ∞"
using bnd_g by simp
finally show "(∫⇧+ t. g t (f t) ∂K s) ≠ ∞"
by simp
qed simp
next
fix s and F :: "'s stream ⇒ ennreal" assume "F ∈ borel_measurable S"
then show "integral⇧N (T s) (l F) = (∫⇧+ t. g t (integral⇧N (T t) F) ∂K s) "
by (rewrite nn_integral_T) (simp_all add: l_def int_g)
qed (auto intro!: order_continuous_intros simp: l_def)
lemma nn_integral_T_lfp:
fixes g
defines "l ≡ λf ω. g (shd ω) (f (stl ω))"
assumes [measurable]: "case_prod g ∈ borel_measurable (count_space UNIV ⨂⇩M borel)"
assumes cont_g[THEN sup_continuous_compose, order_continuous_intros]: "⋀s. sup_continuous (g s)"
assumes int_g: "⋀f s. f ∈ borel_measurable S ⟹ (∫⇧+ω. g s (f ω) ∂T s) = g s (∫⇧+ω. f ω ∂T s)"
shows "(∫⇧+ω. lfp l ω ∂T s) = lfp (λf s. ∫⇧+t. g t (f t) ∂K s) s"
proof (rule nn_integral_lfp)
show "⋀s. sets (T s) = sets S" "⋀F. F ∈ borel_measurable S ⟹ l F ∈ borel_measurable S"
by (auto simp: l_def)
next
fix s and F :: "'s stream ⇒ ennreal" assume "F ∈ borel_measurable S"
then show "integral⇧N (T s) (l F) = (∫⇧+ t. g t (integral⇧N (T t) F) ∂K s) "
by (rewrite nn_integral_T) (simp_all add: l_def int_g)
qed (auto simp: l_def intro!: order_continuous_intros)
lemma emeasure_Collect_T:
assumes f[measurable]: "Measurable.pred S P"
shows "emeasure (T s) {x∈space (T s). P x} = (∫⇧+t. emeasure (T t) {x∈space (T t). P (t ## x)} ∂K s)"
apply (subst (1 2) nn_integral_indicator[symmetric])
apply simp
apply simp
apply (subst nn_integral_T)
apply (auto intro!: nn_integral_cong simp add: space_stream_space indicator_def)
done
lemma AE_T_iff:
assumes [measurable]: "Measurable.pred S P"
shows "(AE ω in T x. P ω) ⟷ (∀y∈K x. AE ω in T y. P (y ## ω))"
by (simp add: AE_iff_nn_integral nn_integral_T[where s=x])
(auto simp add: nn_integral_0_iff_AE AE_measure_pmf_iff split: split_indicator)
lemma AE_T_alw:
assumes [measurable]: "Measurable.pred S P"
assumes P: "⋀s. (x, s) ∈ acc ⟹ AE ω in T s. P ω"
shows "AE ω in T x. alw P ω"
proof -
define F where "F = (λp x. P x ∧ p (stl x))"
have [measurable]: "⋀p. Measurable.pred S p ⟹ Measurable.pred S (F p)"
by (auto simp: F_def)
have "almost_everywhere (T s) ((F ^^ i) top)"
if "(x, s) ∈ acc" for i s
using that
proof (induction i arbitrary: s)
case (Suc i) then show ?case
apply simp
apply (subst F_def)
apply (simp add: P)
apply (subst AE_T_iff)
apply (measurable; simp)
apply (auto dest: rtrancl_into_rtrancl)
done
qed simp
then have "almost_everywhere (T x) (gfp F)"
by (subst inf_continuous_gfp) (auto simp: inf_continuous_def AE_all_countable F_def)
then show ?thesis
by (simp add: alw_def F_def)
qed
lemma emeasure_suntil_disj:
assumes [measurable]: "Measurable.pred S P"
assumes *: "⋀t. AE ω in T t. ¬ (P ⊓ (HLD X ⊓ nxt (HLD X suntil P))) ω"
shows "emeasure (T s) {ω∈space (T s). (HLD X suntil P) ω} =
lfp (λF s. emeasure (T s) {ω∈space (T s). P ω} + (∫⇧+t. F t * indicator X t ∂K s)) s"
unfolding suntil_lfp
proof (rule emeasure_lfp[where s=s])
fix F t assume [measurable]: "Measurable.pred (T s) F" and
F: "F ≤ lfp (λa b. P b ∨ HLD X b ∧ a (stl b))"
have "emeasure (T t) {ω ∈ space (T s). P ω ∨ HLD X ω ∧ F (stl ω)} =
emeasure (T t) {ω ∈ space (T t). P ω} + emeasure (T t) {ω∈space (T t). HLD X ω ∧ F (stl ω)}"
proof (rule emeasure_add_AE)
show "AE x in T t. ¬ (x ∈ {ω ∈ space (T t). P ω} ∧ x ∈ {ω ∈ space (T t). HLD X ω ∧ F (stl ω)})"
using * by eventually_elim (insert F, auto simp: suntil_lfp[symmetric])
qed auto
also have "emeasure (T t) {ω∈space (T t). HLD X ω ∧ F (stl ω)} =
(∫⇧+t. emeasure (T t) {ω ∈ space (T s). F ω} * indicator X t ∂K t)"
by (subst emeasure_Collect_T) (auto intro!: nn_integral_cong split: split_indicator)
finally show "emeasure (T t) {ω ∈ space (T s). P ω ∨ HLD X ω ∧ F (stl ω)} =
emeasure (T t) {ω ∈ space (T t). P ω} + (∫⇧+ t. emeasure (T t) {ω ∈ space (T s). F ω} * indicator X t ∂K t)" .
qed (auto intro!: order_continuous_intros split: split_indicator)
lemma emeasure_HLD_nxt:
assumes [measurable]: "Measurable.pred S P"
shows "emeasure (T s) {ω∈space (T s). (X ⋅ P) ω} =
(∫⇧+x. emeasure (T x) {ω∈space (T x). P ω} * indicator X x ∂K s)"
by (subst emeasure_Collect_T)
(auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff split: split_indicator)
lemma emeasure_HLD:
"emeasure (T s) {ω∈space (T s). HLD X ω} = emeasure (K s) X"
using emeasure_HLD_nxt[of "λω. True" s X] T.emeasure_space_1 by simp
lemma emeasure_suntil_HLD:
assumes [measurable]: "Measurable.pred S P"
shows "emeasure (T s) {x∈space (T s). (not (HLD {t}) suntil (HLD {t} aand nxt P)) x} =
emeasure (T s) {x∈space (T s). ev (HLD {t}) x} * emeasure (T t) {x∈space (T t). P x}"
proof -
let ?P = "emeasure (T t) {ω∈space (T t). P ω}"
let ?F = "λQ F s. emeasure (T s) {ω∈space (T s). Q ω} + (∫⇧+t'. F t' * indicator (- {t}) t' ∂K s)"
have "emeasure (T s) {x∈space (T s). (HLD (-{t}) suntil ({t} ⋅ P)) x} = lfp (?F ({t} ⋅ P)) s"
by (rule emeasure_suntil_disj) (auto simp: HLD_iff)
also have "lfp (?F ({t} ⋅ P)) = (λs. lfp (?F (HLD {t})) s * ?P)"
proof (rule lfp_transfer[symmetric, where α="λx s. x s * emeasure (T t) {ω∈space (T t). P ω}"])
fix F show "(λs. ?F (HLD {t}) F s * ?P) = ?F ({t} ⋅ P) (λs. F s * ?P)"
unfolding emeasure_HLD emeasure_HLD_nxt[OF assms] distrib_right
by (auto simp: fun_eq_iff nn_integral_multc[symmetric]
intro!: arg_cong2[where f="(+)"] nn_integral_cong ac_simps
split: split_indicator)
qed (auto intro!: order_continuous_intros sup_continuous_mono lfp_upperbound
intro: le_funI add_nonneg_nonneg
simp: bot_ennreal split: split_indicator)
also have "lfp (?F (HLD {t})) s = emeasure (T s) {x∈space (T s). (HLD (-{t}) suntil HLD {t}) x}"
by (rule emeasure_suntil_disj[symmetric]) (auto simp: HLD_iff)
finally show ?thesis
by (simp add: HLD_iff[abs_def] ev_eq_suntil)
qed
lemma AE_suntil:
assumes [measurable]: "Measurable.pred S P"
shows "(AE x in T s. (not (HLD {t}) suntil (HLD {t} aand nxt P)) x) ⟷
(AE x in T s. ev (HLD {t}) x) ∧ (AE x in T t. P x)"
apply (subst (1 2 3) T.prob_Collect_eq_1[symmetric])
apply simp
apply simp
apply simp
apply (simp_all add: measure_def emeasure_suntil_HLD del: space_T nxt.simps)
apply (auto simp: T.emeasure_eq_measure mult_eq_1)
done
subsection ‹Fairness›
definition fair :: "'s ⇒ 's ⇒ 's stream ⇒ bool" where
"fair s t = alw (ev (HLD {s})) impl alw (ev (HLD {s} aand nxt (HLD {t})))"
lemma AE_T_fair:
assumes "t' ∈ K t"
shows "AE ω in T s. fair t t' ω"
proof -
let ?M = "λP s. emeasure (T s) {ω∈space (T s). P ω}"
let ?t = "HLD {t}" and ?t' = "HLD {t'}"
define N where "N = alw (ev ?t) aand alw (not (?t aand nxt ?t'))"
let ?until = "not ?t suntil (?t aand nxt (not ?t' aand nxt N))"
have N_stl: "⋀ω. N ω ⟹ N (stl ω)"
by (auto simp: N_def)
have [measurable]: "Measurable.pred S N"
unfolding N_def by measurable
let ?c = "pmf (K t) t'"
let ?R = "λx. 1 ⊓ x * (1 - ennreal ?c)"
have "mono ?R"
by (intro monoI mult_right_mono inf_mono) (auto simp: mono_def field_simps )
have "⋀s. ?M N s ≤ gfp ?R"
proof (induction rule: gfp_ordinal_induct[OF ‹mono ?R›])
fix x s assume x: "⋀s. ?M N s ≤ x"
{ fix ω assume "N ω"
then have "ev (HLD {t}) ω" "N ω"
by (auto simp: N_def)
then have "?until ω"
by (induct rule: ev_induct_strong) (auto simp: N_def intro: suntil.intros dest: N_stl) }
then have "?M N s ≤ ?M ?until s"
by (intro emeasure_mono_AE) auto
also have "… = ?M (ev ?t) s * ?M (not ?t' aand nxt N) t"
by (simp_all add: emeasure_suntil_HLD del: nxt.simps space_T)
also have "… ≤ ?M (ev ?t) s * (∫⇧+s'. 1 ⊓ x * indicator (UNIV - {t'}) s' ∂K t)"
by (auto intro!: mult_left_mono nn_integral_mono T.measure_le_1 emeasure_mono
split: split_indicator simp add: x emeasure_Collect_T[of _ t] simp del: space_T)
also have "… ≤ 1 * (∫⇧+s'. 1 ⊓ x * indicator (UNIV - {t'}) s' ∂K t)"
by (intro mult_right_mono T.measure_le_1) simp
finally show "?M N s ≤ 1 ⊓ x * (1 - ennreal ?c)"
by (subst (asm) nn_integral_cmult_indicator) (auto simp: emeasure_Diff emeasure_pmf_single)
qed (auto intro: Inf_greatest)
also
from ‹mono ?R› have "gfp ?R = ?R (gfp ?R)" by (rule gfp_unfold)
then have "gfp ?R ≤ ?R (gfp ?R)" by simp
with assms[THEN pmf_positive] have "gfp ?R ≤ 0"
by (cases "gfp ?R")
(auto simp: top_unique inf_ennreal.rep_eq field_simps mult_le_0_iff ennreal_1[symmetric]
pmf_le_1 ennreal_minus ennreal_mult[symmetric] ennreal_le_iff2 inf_min min_def
simp del: ennreal_1
split: if_split_asm)
finally have "⋀s. AE ω in T s. ¬ N ω"
by (subst AE_iff_measurable[OF _ refl]) (auto intro: antisym simp: le_fun_def)
then have "AE ω in T s. alw (not N) ω"
by (intro AE_T_alw) auto
moreover
{ fix ω assume "alw (ev (HLD {t})) ω"
then have "alw (alw (ev (HLD {t}))) ω"
unfolding alw_alw .
moreover assume "alw (not N) ω"
then have "alw (alw (ev (HLD {t})) impl ev (HLD {t} aand nxt (HLD {t'}))) ω"
unfolding N_def not_alw_iff not_ev_iff de_Morgan_disj de_Morgan_conj not_not imp_conv_disj .
ultimately have "alw (ev (HLD {t} aand nxt (HLD {t'}))) ω"
by (rule alw_mp) }
then have "∀ω. alw (not N) ω ⟶ fair t t' ω"
by (auto simp: fair_def)
ultimately show ?thesis
by (simp add: eventually_mono)
qed
lemma enabled_imp_trancl:
assumes "alw (HLD B) ω" "enabled s ω"
shows "alw (HLD (acc_on B `` {s})) ω"
proof -
define t where "t = s"
then have "(s, t) ∈ acc_on B"
by auto
moreover note ‹alw (HLD B) ω›
moreover note ‹enabled s ω›[unfolded ‹t == s›[symmetric]]
ultimately show ?thesis
proof (coinduction arbitrary: t ω rule: alw_coinduct)
case stl from this(1,2,3) show ?case
by (auto simp: enabled.simps[of _ ω] alw.simps[of _ ω] HLD_iff
intro!: exI[of _ "shd ω"] rtrancl_trans[of s t])
next
case (alw t ω) then show ?case
by (auto simp: HLD_iff enabled.simps[of _ ω] alw.simps[of _ ω] intro!: rtrancl_trans[of s t])
qed
qed
lemma AE_T_reachable: "AE ω in T s. alw (HLD (acc `` {s})) ω"
using AE_T_enabled
proof eventually_elim
fix ω assume "enabled s ω"
from enabled_imp_trancl[of UNIV, OF _ this]
show "alw (HLD (acc `` {s})) ω"
by (auto simp: HLD_iff[abs_def] all_imp_alw)
qed
lemma AE_T_all_fair: "AE ω in T s. ∀(t,t')∈SIGMA t:UNIV. K t. fair t t' ω"
proof -
let ?Rn = "SIGMA s:(acc `` {s}). K s"
have "AE ω in T s. ∀(t,t')∈?Rn. fair t t' ω"
proof (subst AE_ball_countable)
show "countable ?Rn"
by (intro countable_SIGMA countable_rtrancl[OF countable_Image]) (auto simp: Image_def)
qed (auto intro!: AE_T_fair)
then show ?thesis
using AE_T_reachable
proof (eventually_elim, safe)
fix ω t t' assume "∀(t,t')∈?Rn. fair t t' ω" "t' ∈ K t" and alw: "alw (HLD (acc `` {s})) ω"
moreover
{ assume "t ∉ acc `` {s}"
then have "alw (not (HLD {t})) ω"
by (intro alw_mono[OF alw]) (auto simp: HLD_iff)
then have "not (alw (ev (HLD {t}))) ω"
unfolding not_alw_iff not_ev_iff by auto
then have "fair t t' ω"
unfolding fair_def by auto }
ultimately show "fair t t' ω"
by auto
qed
qed
lemma fair_imp: assumes "fair t t' ω" "alw (ev (HLD {t})) ω" shows "alw (ev (HLD {t'})) ω"
proof -
{ fix ω assume "ev (HLD {t} aand nxt (HLD {t'})) ω" then have "ev (HLD {t'}) ω"
by induction auto }
with assms show ?thesis
by (auto simp: fair_def elim!: alw_mp intro: all_imp_alw)
qed
lemma AE_T_ev_HLD:
assumes exiting: "⋀t. (s, t) ∈ acc_on (-B) ⟹ ∃t'∈B. (t, t') ∈ acc"
assumes fin: "finite (acc_on (-B) `` {s})"
shows "AE ω in T s. ev (HLD B) ω"
using AE_T_all_fair AE_T_enabled
proof eventually_elim
fix ω assume fair: "∀(t, t')∈(SIGMA s:UNIV. K s). fair t t' ω" and "enabled s ω"
show "ev (HLD B) ω"
proof (rule ccontr)
assume "¬ ev (HLD B) ω"
then have "alw (HLD (- B)) ω"
by (simp add: not_ev_iff HLD_iff[abs_def])
from enabled_imp_trancl[OF this ‹enabled s ω›]
have "alw (HLD (acc_on (-B) `` {s})) ω"
by (simp add: Diff_eq)
from pigeonhole_stream[OF this fin]
obtain t where "(s, t) ∈ acc_on (-B)" "alw (ev (HLD {t})) ω"
by auto
from exiting[OF this(1)] obtain t' where "(t, t') ∈ acc" "t' ∈ B"
by auto
from this(1) have "alw (ev (HLD {t'})) ω"
proof induction
case (step u w) then show ?case
using fair fair_imp[of u w ω] by auto
qed fact
{ assume "ev (HLD {t'}) ω" then have "ev (HLD B) ω"
by (rule ev_mono) (auto simp: HLD_iff ‹t' ∈ B›) }
then show False
using ‹alw (ev (HLD {t'})) ω› ‹¬ ev (HLD B) ω› by auto
qed
qed
lemma AE_T_ev_HLD':
assumes exiting: "⋀s. s ∉ X ⟹ ∃t∈X. (s, t) ∈ acc"
assumes fin: "finite (-X)"
shows "AE ω in T s. ev (HLD X) ω"
proof (rule AE_T_ev_HLD)
show "⋀t. (s, t) ∈ acc_on (- X) ⟹ ∃t'∈X. (t, t') ∈ acc"
using exiting by (auto elim: rtrancl.cases)
have "acc_on (- X) `` {s} ⊆ -X ∪ {s}"
by (auto elim: rtrancl.cases)
with fin show "finite (acc_on (- X) `` {s})"
by (auto dest: finite_subset )
qed
lemma AE_T_max_sfirst:
assumes [measurable]: "Measurable.pred S X"
assumes AE: "AE ω in T c. sfirst X (c ## ω) < ∞" and "0 < e"
shows "∃N::nat. 𝒫(ω in T c. N < sfirst X (c ## ω)) < e" (is "∃N. ?P N < e")
proof -
have "?P ⇢ measure (T c) (⋂N::nat. {bT ∈ space (T c). N < sfirst X (c ## bT)})"
using dual_order.strict_trans enat_ord_simps(2)
by (intro T.finite_Lim_measure_decseq) (force simp: decseq_Suc_iff simp del: enat_ord_simps)+
also have "measure (T c) (⋂N::nat. {bT ∈ space (T c). N < sfirst X (c ## bT)}) =
𝒫(bT in T c. sfirst X (c ## bT) = ∞)"
by (auto simp del: not_infinity_eq intro!: arg_cong[where f="measure (T c)"])
(metis less_irrefl not_infinity_eq)
also have "𝒫(bT in T c. sfirst X (c ## bT) = ∞) = 0"
using AE by (intro T.prob_eq_0_AE) auto
finally have "∃N. ∀n≥N. norm (?P n - 0) < e"
using ‹0 < e› by (rule LIMSEQ_D)
then show ?thesis
by (auto simp: measure_nonneg)
qed
subsection ‹First Hitting Time›
lemma nn_integral_sfirst_finite':
assumes "s ∉ H"
assumes [simp]: "finite (acc_on (-H) `` {s})"
assumes until: "AE ω in T s. ev (HLD H) ω"
shows "(∫⇧+ ω. sfirst (HLD H) ω ∂T s) ≠ ∞"
proof -
have R_ne[simp]: "acc_on (-H) `` {s} ≠ {}"
by auto
have [measurable]: "H ∈ sets (count_space UNIV)"
by simp
let ?Pf = "λn t. 𝒫(ω in T t. enat n < sfirst (HLD H) (t ## ω))"
have Pf_mono: "⋀N n t. N ≤ n ⟹ ?Pf n t ≤ ?Pf N t"
by (auto intro!: T.finite_measure_mono simp del: enat_ord_code(1) simp: enat_ord_code(1)[symmetric])
have not_H: "⋀t. (s, t) ∈ acc_on (-H) ⟹ t ∉ H"
using ‹s ∉ H› by (auto elim: rtrancl.cases)
have "∀⇩F n in sequentially. ∀t∈acc_on (-H)``{s}. ?Pf n t < 1"
proof (safe intro!: eventually_ball_finite)
fix t assume "(s, t) ∈ acc_on (-H)"
then have "AE ω in T t. sfirst (HLD H) (t ## ω) < ∞"
unfolding sfirst_finite
proof induction
case (step t u) with step.IH show ?case
by (subst (asm) AE_T_iff) (auto simp: ev_Stream not_H)
qed (simp add: ev_Stream eventually_frequently_simps until)
from AE_T_max_sfirst[OF _ this, of 1]
obtain N where "?Pf N t < 1" by auto
with Pf_mono[of N] show "∀⇩F n in sequentially. ?Pf n t < 1"
by (auto simp: eventually_sequentially intro: le_less_trans)
qed simp
then obtain n where "⋀t. (s, t) ∈ acc_on (-H) ⟹ ?Pf n t < 1"
by (auto simp: eventually_sequentially)
moreover define d where "d = Max (?Pf n ` acc_on (-H) `` {s})"
ultimately have d: "0 ≤ d" "d < 1" "⋀t. (s, t) ∈ acc_on (-H) ⟹ ?Pf (Suc n) t ≤ d"
using Pf_mono[of n "Suc n"] by (auto simp: Max_ge_iff measure_nonneg)
let ?F = "λF ω. if shd ω ∈ H then 0 else F (stl ω) + 1 :: ennreal"
have "sup_continuous ?F"
by (intro order_continuous_intros)
then have "mono ?F"
by (rule sup_continuous_mono)
have lfp_nonneg[simp]: "⋀ω. 0 ≤ lfp ?F ω"
by (subst lfp_unfold[OF ‹mono ?F›]) auto
let ?I = "λF s. ∫⇧+t. (if t ∈ H then 0 else F t + 1) ∂K s"
have "sup_continuous ?I"
by (intro order_continuous_intros) auto
then have "mono ?I"
by (rule sup_continuous_mono)
define p where "p = Suc n / (1 - d)"
have p: "p = Suc n + d * p"
unfolding p_def using d(1,2) by (auto simp: field_simps)
have [simp]: "0 ≤ p"
using d(1,2) by (auto simp: p_def)
have "(∫⇧+ ω. sfirst (HLD H) ω ∂T s) = (∫⇧+ ω. lfp ?F ω ∂T s)"
proof (intro nn_integral_cong_AE)
show "AE x in T s. sfirst (HLD H) x = lfp ?F x"
using until
proof eventually_elim
fix ω assume "ev (HLD H) ω" then show "sfirst (HLD H) ω = lfp ?F ω"
by (induction rule: ev_induct_strong;
subst lfp_unfold[OF ‹mono ?F›], simp add: HLD_iff[abs_def] ac_simps max_absorb2)
qed
qed
also have "… = lfp (?I^^Suc n) s"
unfolding lfp_funpow[OF ‹mono ?I›]
by (subst nn_integral_T_lfp)
(auto simp: nn_integral_add max_absorb2 intro!: order_continuous_intros)
also have "lfp (?I^^Suc n) t ≤ p" if "(s, t) ∈ acc_on (-H)" for t
using that
proof (induction arbitrary: t rule: lfp_ordinal_induct[of "?I^^Suc n"])
case (step S)
have "(?I^^i) S t ≤ i + ?Pf i t * ennreal p" for i
using step(3)
proof (induction i arbitrary: t)
case 0 then show ?case
using T.prob_space step(1)
by (auto simp add: zero_ennreal_def[symmetric] not_H zero_enat_def[symmetric] one_ennreal_def[symmetric])
next
case (Suc i)
then have "t ∉ H"
by (auto simp: not_H)
from Suc.prems have "⋀t'. t' ∈ K t ⟹ t' ∉ H ⟹ (s, t') ∈ acc_on (-H)"
by (rule rtrancl_into_rtrancl) (insert Suc.prems, auto dest: not_H)
then have "(?I ^^ Suc i) S t ≤ ?I (λt. i + ennreal (?Pf i t) * p) t"
by (auto simp: AE_measure_pmf_iff simp del: sfirst_eSuc space_T
intro!: nn_integral_mono_AE add_mono max.mono Suc)
also have "… ≤ (∫⇧+ t. ennreal (Suc i) + ennreal 𝒫(ω in T t. enat i < sfirst (HLD H) (t ## ω)) * p ∂K t)"
by (intro nn_integral_mono) auto
also have "… ≤ Suc i + ennreal (?Pf (Suc i) t) * p"
unfolding T.emeasure_eq_measure[symmetric]
by (subst (2) emeasure_Collect_T)
(auto simp: ‹t ∉ H› eSuc_enat[symmetric] nn_integral_add nn_integral_multc ennreal_of_nat_eq_real_of_nat)
finally show ?case
by (simp add: ennreal_of_nat_eq_real_of_nat)
qed
then have "(?I^^Suc n) S t ≤ Suc n + ?Pf (Suc n) t * ennreal p" .
also have "… ≤ p"
using d step by (subst (2) p) (auto intro!: mult_right_mono simp: ennreal_of_nat_eq_real_of_nat ennreal_mult)
finally show ?case .
qed (auto simp: SUP_least intro!: mono_pow ‹mono ?I› simp del: funpow.simps)
finally show ?thesis
unfolding p_def by (auto simp: top_unique)
qed
lemma nn_integral_sfirst_finite:
assumes [simp]: "finite (acc_on (-H) `` {s})"
assumes until: "AE ω in T s. ev (HLD H) ω"
shows "(∫⇧+ ω. sfirst (HLD H) (s ## ω) ∂T s) ≠ ∞"
proof cases
assume "s ∉ H" then show ?thesis
using nn_integral_sfirst_finite'[of s H] until by (simp add: nn_integral_add)
qed (simp add: sfirst.simps)
lemma prob_T:
assumes P: "Measurable.pred S P"
shows "𝒫(ω in T s. P ω) = (∫t. 𝒫(ω in T t. P (t ## ω)) ∂K s)"
using emeasure_Collect_T[OF P, of s] unfolding T.emeasure_eq_measure
by (subst (asm) nn_integral_eq_integral)
(auto intro!: measure_pmf.integrable_const_bound[where B=1])
lemma T_subprob[measurable]: "T ∈ measurable (measure_pmf I) (subprob_algebra S)"
by (auto intro!: space_bind simp: space_subprob_algebra) unfold_locales
subsection ‹Markov chain with Initial Distribution›
definition T' :: "'s pmf ⇒ 's stream measure" where
"T' I = bind I (λs. distr (T s) S ((##) s))"
lemma distr_Stream_subprob:
"(λs. distr (T s) S ((##) s)) ∈ measurable (measure_pmf I) (subprob_algebra S)"
apply (intro measurable_distr2[OF _ T_subprob])
apply (subst measurable_cong_sets[where M'="count_space UNIV ⨂⇩M S" and N'=S])
apply (rule sets_pair_measure_cong)
apply auto
done
lemma sets_T': "sets (T' I) = sets S"
by (simp add: T'_def)
lemma prob_space_T': "prob_space (T' I)"
unfolding T'_def
proof (rule measure_pmf.prob_space_bind)
show "AE s in I. prob_space (distr (T s) S ((##) s))"
by (intro AE_measure_pmf_iff[THEN iffD2] ballI T.prob_space_distr) simp
qed (rule distr_Stream_subprob)
lemma AE_T':
assumes [measurable]: "Measurable.pred S P"
shows "(AE x in T' I. P x) ⟷ (∀s∈I. AE x in T s. P (s ## x))"
unfolding T'_def by (simp add: AE_bind[OF distr_Stream_subprob] AE_measure_pmf_iff AE_distr_iff)
lemma emeasure_T':
assumes [measurable]: "X ∈ sets S"
shows "emeasure (T' I) X = (∫⇧+s. emeasure (T s) {ω∈space S. s ## ω ∈ X} ∂I)"
unfolding T'_def
by (simp add: emeasure_bind[OF _ distr_Stream_subprob] emeasure_distr vimage_def Int_def conj_ac)
lemma prob_T':
assumes [measurable]: "Measurable.pred S P"
shows "𝒫(x in T' I. P x) = (∫s. 𝒫(x in T s. P (s ## x)) ∂I)"
proof -
interpret T': prob_space "T' I" by (rule prob_space_T')
show ?thesis
using emeasure_T'[of "{x∈space (T' I). P x}" I]
unfolding T'.emeasure_eq_measure T.emeasure_eq_measure sets_eq_imp_space_eq[OF sets_T']
apply simp
apply (subst (asm) nn_integral_eq_integral)
apply (auto intro!: measure_pmf.integrable_const_bound[where B=1] integral_cong arg_cong2[where f=measure]
simp: AE_measure_pmf measure_nonneg space_stream_space)
done
qed
lemma T_eq_T': "T s = T' (K s)"
proof (rule measure_eqI)
fix X assume X: "X ∈ sets (T s)"
then have [measurable]: "X ∈ sets S"
by simp
have X_eq: "X = {x∈space (T s). x ∈ X}"
using sets.sets_into_space[OF X] by auto
show "emeasure (T s) X = emeasure (T' (K s)) X"
apply (subst X_eq)
apply (subst emeasure_Collect_T, simp)
apply (subst emeasure_T', simp)
apply simp
done
qed (simp add: sets_T')
lemma T_eq_bind: "T s = (measure_pmf (K s) ⤜ (λt. distr (T t) S ((##) t)))"
by (subst T_eq_T') (simp add: T'_def)
lemma T_split:
"T s = (T s ⤜ (λω. distr (T ((s ## ω) !! n)) S (λω'. stake n ω @- ω')))"
proof (induction n arbitrary: s)
case 0 then show ?case
apply (simp add: distr_cong[OF refl sets_T[symmetric, of s] refl])
apply (subst bind_const')
apply unfold_locales
..
next
case (Suc n)
let ?K = "measure_pmf (K s)" and ?m = "λn ω ω'. stake n ω @- ω'"
note sets_stream_space_cong[simp, measurable_cong]
have "T s = (?K ⤜ (λt. distr (T t) S ((##) t)))"
by (rule T_eq_bind)
also have "… = (?K ⤜ (λt. distr (T t ⤜ (λω. distr (T ((t ## ω) !! n)) S (?m n ω))) S ((##) t)))"
unfolding Suc[symmetric] ..
also have "… = (?K ⤜ (λt. T t ⤜ (λω. distr (distr (T ((t ## ω) !! n)) S (?m n ω)) S ((##) t))))"
by (simp add: distr_bind[where K=S, OF measurable_distr2[where M=S]] space_stream_space)
also have "… = (?K ⤜ (λt. T t ⤜ (λω. distr (T ((t ## ω) !! n)) S (?m (Suc n) (t ## ω)))))"
by (simp add: distr_distr space_stream_space comp_def)
also have "… = (?K ⤜ (λt. distr (T t) S ((##) t) ⤜ (λω. distr (T (ω !! n)) S (?m (Suc n) ω))))"
by (simp add: space_stream_space bind_distr[OF _ measurable_distr2[where M=S]] del: stake.simps)
also have "… = (T s ⤜ (λω. distr (T (ω !! n)) S (?m (Suc n) ω)))"
unfolding T_eq_bind[of s]
by (subst bind_assoc[OF measurable_distr2[where M=S] measurable_distr2[where M=S], OF _ T_subprob])
(simp_all add: space_stream_space del: stake.simps)
finally show ?case
by simp
qed
lemma nn_integral_T_split:
assumes f[measurable]: "f ∈ borel_measurable S"
shows "(∫⇧+ω. f ω ∂T s) = (∫⇧+ω. (∫⇧+ω'. f (stake n ω @- ω') ∂T ((s ## ω) !! n)) ∂T s)"
apply (subst T_split[of s n])
apply (simp add: nn_integral_bind[OF f measurable_distr2[where M=S]])
apply (subst nn_integral_distr)
apply (simp_all add: space_stream_space)
done
lemma emeasure_T_split:
assumes P[measurable]: "Measurable.pred S P"
shows "emeasure (T s) {ω∈space (T s). P ω} =
(∫⇧+ω. emeasure (T ((s ## ω) !! n)) {ω'∈space (T ((s ## ω) !! n)). P (stake n ω @- ω')} ∂T s)"
apply (subst T_split[of s n])
apply (subst emeasure_bind[OF _ measurable_distr2[where M=S]])
apply (simp_all add: )
apply (simp add: space_stream_space)
apply (subst emeasure_distr)
apply simp_all
apply (simp_all add: space_stream_space)
done
lemma prob_T_split:
assumes P[measurable]: "Measurable.pred S P"
shows "𝒫(ω in T s. P ω) = (∫ω. 𝒫(ω' in T ((s ## ω) !! n). P (stake n ω @- ω')) ∂T s)"
using emeasure_T_split[OF P, of s n]
unfolding T.emeasure_eq_measure
by (subst (asm) nn_integral_eq_integral)
(auto intro!: T.integrable_const_bound[where B=1] measure_measurable_subprob_algebra2[where N=S]
simp: T.emeasure_eq_measure SIGMA_Collect_eq)
lemma enabled_imp_alw:
"(⋃s∈X. set_pmf (K s)) ⊆ X ⟹ x ∈ X ⟹ enabled x ω ⟹ alw (HLD X) ω"
proof (coinduction arbitrary: ω x)
case alw then show ?case
unfolding enabled.simps[of _ ω]
by (auto simp: HLD_iff)
qed
lemma alw_HLD_iff_sconst:
"alw (HLD {x}) ω ⟷ ω = sconst x"
proof
assume "alw (HLD {x}) ω" then show "ω = sconst x"
by (coinduction arbitrary: ω) (auto simp: HLD_iff)
qed (auto simp: alw_sconst HLD_iff)
lemma enabled_iff_sconst:
assumes [simp]: "set_pmf (K x) = {x}" shows "enabled x ω ⟷ ω = sconst x"
proof
assume "enabled x ω" then show "ω = sconst x"
by (coinduction arbitrary: ω) (auto elim: enabled.cases)
next
assume "ω = sconst x" then show "enabled x ω"
by (coinduction arbitrary: ω) auto
qed
lemma AE_sconst:
assumes [simp]: "set_pmf (K x) = {x}"
shows "(AE ω in T x. P ω) ⟷ P (sconst x)"
proof -
have "(AE ω in T x. P ω) ⟷ (AE ω in T x. P ω ∧ ω = sconst x)"
using AE_T_enabled[of x] by (simp add: enabled_iff_sconst)
also have "… = (AE ω in T x. P (sconst x) ∧ ω = sconst x)"
by (simp del: AE_conj_iff cong: rev_conj_cong)
also have "… = (AE ω in T x. P (sconst x))"
using AE_T_enabled[of x] by (simp add: enabled_iff_sconst)
finally show ?thesis
by simp
qed
lemma ev_eq_lfp: "ev P = lfp (λF ω. P ω ∨ (¬ P ω ∧ F (stl ω)))"
unfolding ev_def by (intro antisym lfp_mono) blast+
lemma INF_eq_zero_iff_ennreal: "((⨅i∈A. f i) = (0::ennreal)) = (∀x>0. ∃i∈A. f i < x)"
using INF_eq_bot_iff[where 'a=ennreal] unfolding bot_ennreal_def zero_ennreal_def by auto
lemma inf_continuous_cmul:
fixes c :: ennreal
assumes f: "inf_continuous f" and c: "c < ⊤"
shows "inf_continuous (λx. c * f x)"
proof (rule inf_continuous_compose[OF _ f], clarsimp simp add: inf_continuous_def)
fix M :: "nat ⇒ ennreal" assume M: "decseq M"
show "c * (⨅i. M i) = (⨅i. c * M i)"
using M
by (intro LIMSEQ_unique[OF ennreal_tendsto_cmult[OF c] LIMSEQ_INF] LIMSEQ_INF)
(auto simp: decseq_def mult_left_mono)
qed
lemma AE_T_ev_HLD_infinite:
fixes X :: "'s set" and r :: real
assumes "r < 1"
assumes r: "⋀x. x ∈ X ⟹ measure (K x) X ≤ r"
shows "AE ω in T x. ev (HLD (- X)) ω"
proof -
{ fix x assume "x ∈ X"
have "0 ≤ r" using r[OF ‹x ∈ X›] measure_nonneg[of "K x" X] by (blast intro: order.trans)
define P where "P F x = ∫⇧+y. indicator X y * (F y ⊓ 1) ∂K x" for F x
have [measurable]: "X ∈ sets (count_space UNIV)" by auto
have bnd: "(∫⇧+ y. indicator X y * (f y ⊓ 1) ∂K x) ≤ 1" for x f
by (intro measure_pmf.nn_integral_le_const AE_pmfI) (auto split: split_indicator)
have "emeasure (T x) {ω∈space (T x). alw (HLD X) ω} =
emeasure (T x) {ω∈space (T x). gfp (λF ω. shd ω ∈ X ∧ F (stl ω)) ω}"
by (simp add: alw_def HLD_def)
also have "… = gfp P x"
apply (rule emeasure_gfp)
apply (auto intro!: order_continuous_intros inf_continuous_cmul split: split_indicator simp: P_def)
subgoal for x f using bnd[of x f] by (auto simp: top_unique)
subgoal for P x
apply (subst T_eq_bind)
apply (subst emeasure_bind[where N=S])
apply simp
apply (rule measurable_distr2[where M=S])
apply (auto intro: T_subprob[THEN measurable_space] intro!: nn_integral_cong_AE AE_pmfI
simp: emeasure_distr split: split_indicator)
apply (simp_all add: space_stream_space T.emeasure_le_1 inf.absorb1)
done
apply (intro le_funI)
apply (subst nn_integral_indicator[symmetric])
apply simp
apply (intro nn_integral_mono)
apply (auto split: split_indicator)
done
also have "… ≤ (INF n. ennreal r ^ n)"
proof (intro INF_greatest)
have mono_P: "mono P"
by (force simp: le_fun_def mono_def P_def intro!: nn_integral_mono intro: le_infI1 split: split_indicator)
fix n show "gfp P x ≤ ennreal r ^ n"
using ‹x ∈ X›
proof (induction n arbitrary: x)
case 0 then show ?case
by (subst gfp_unfold[OF mono_P]) (auto intro!: measure_pmf.nn_integral_le_const AE_pmfI split: split_indicator simp: P_def)
next
case (Suc n x)
have "gfp P x = P (gfp P) x" by (subst gfp_unfold[OF mono_P]) rule
also have "… ≤ P (λx. ennreal r ^ n) x"
unfolding P_def[of _ x] by (auto intro!: nn_integral_mono le_infI1 Suc split: split_indicator)
also have "… ≤ ennreal r ^ (Suc n)"
using Suc by (auto simp: P_def nn_integral_multc measure_pmf.emeasure_eq_measure intro!: mult_mono ennreal_leI r)
finally show ?case .
qed
qed
also have "… = 0"
unfolding ennreal_power[OF ‹0 ≤ r›]
proof (intro LIMSEQ_unique[OF LIMSEQ_INF])
show "decseq (λi. ennreal (r ^ i))"
using ‹0 ≤ r› ‹r < 1› by (auto intro!: ennreal_leI power_decreasing simp: decseq_def)
have "(λi. ennreal (r ^ i)) ⇢ ennreal 0"
using ‹0 ≤ r› ‹r < 1› by (intro tendsto_ennrealI LIMSEQ_power_zero) auto
then show "(λi. ennreal (r ^ i)) ⇢ 0" by simp
qed
finally have *: "emeasure (T x) {ω∈space (T x). alw (HLD X) ω} = 0" by auto
have "AE ω in T x. ev (HLD (- X)) ω"
by (rule AE_I[OF _ *]) (auto simp: not_ev_iff not_HLD[symmetric]) }
note * = this
show ?thesis
apply (clarsimp simp add: AE_T_iff[of _ x])
subgoal for x'
by (cases "x' ∈ X") (auto simp add: ev_Stream *)
done
qed
subsection ‹Trace space with Restriction›
definition "rT x = restrict_space (T x) {ω. enabled x ω}"
lemma space_rT: "ω ∈ space (rT x) ⟷ enabled x ω"
by (auto simp: rT_def space_restrict_space space_stream_space)
lemma Collect_enabled_S[measurable]: "Collect (enabled x) ∈ sets S"
proof -
have "Collect (enabled x) = {ω∈space S. enabled x ω}"
by (auto simp: space_stream_space)
then show ?thesis
by simp
qed
lemma space_rT_in_S: "space (rT x) ∈ sets S"
by (simp add: rT_def space_restrict_space)
lemma sets_rT: "A ∈ sets (rT x) ⟷ A ∈ sets S ∧ A ⊆ {ω. enabled x ω}"
by (auto simp: rT_def sets_restrict_space space_stream_space)
lemma prob_space_rT: "prob_space (rT x)"
unfolding rT_def by (auto intro!: prob_space_restrict_space T.emeasure_eq_1_AE AE_T_enabled)
lemma measurable_force_enabled2[measurable]: "force_enabled x ∈ measurable S (rT x)"
unfolding rT_def
by (rule measurable_restrict_space2)
(auto intro: measurable_force_enabled enabled_force_enabled)
lemma space_rT_not_empty[simp]: "space (rT x) ≠ {}"
by (simp add: rT_def space_restrict_space Ex_enabled)
lemma T_eq_bind': "T x = do { y ← measure_pmf (K x) ; ω ← T y ; return S (y ## ω) }"
apply (subst T_eq_bind)
apply (subst bind_return_distr[symmetric])
apply (simp_all add: space_stream_space comp_def)
done
lemma rT_eq_bind: "rT x = do { y ← measure_pmf (K x) ; ω ← rT y ; return (rT x) (y ## ω) }"
unfolding rT_def
apply (subst T_eq_bind)
apply (subst restrict_space_bind[where K=S])
apply (rule measurable_distr2[where M=S])
apply (auto simp del: measurable_pmf_measure1
simp add: Ex_enabled return_restrict_space intro!: bind_cong )
apply (subst restrict_space_bind[symmetric, where K=S])
apply (auto simp add: Ex_enabled space_restrict_space return_cong[OF sets_T]
intro!: measurable_restrict_space1 measurable_compose[OF _ return_measurable]
arg_cong2[where f=restrict_space])
apply (subst bind_return_distr[unfolded comp_def])
apply (simp add: space_restrict_space Ex_enabled)
apply (simp add: measurable_restrict_space1)
apply (rule measure_eqI)
apply simp
apply (subst (1 2) emeasure_distr)
apply (auto simp: measurable_restrict_space1)
apply (subst emeasure_restrict_space)
apply (auto simp: space_restrict_space intro!: emeasure_eq_AE)
using AE_T_enabled
apply eventually_elim
apply (simp add: space_stream_space)
apply (rule sets_Int_pred)
apply auto
apply (simp add: space_stream_space)
done
lemma snth_rT: "(λx. x !! n) ∈ measurable (rT x) (count_space (acc `` {x}))"
proof -
have "⋀ω. enabled x ω ⟹ (x, ω !! n) ∈ acc"
proof (induction n arbitrary: x)
case (Suc n) from Suc.prems Suc.IH[of "shd ω" "stl ω"] show ?case
by (auto simp: enabled.simps[of x ω] intro: rtrancl_trans)
qed (auto elim: enabled.cases)
moreover
{ fix X :: "'s set"
have [measurable]: "X ∈ count_space UNIV" by simp
have *: "(λx. x !! n) -` X ∩ space (rT x) = {ω∈space S. ω !! n ∈ X ∧ enabled x ω}"
by (auto simp: space_stream_space space_rT)
have "(λx. x !! n) -` X ∩ space (rT x) ∈ sets S"
unfolding * by measurable }
ultimately show ?thesis
by (auto simp: measurable_def space_rT sets_rT)
qed
subsection ‹Bisimulation›
lemma T_coinduct[consumes 1, case_names prob sets cont]:
assumes "R x M"
assumes prob: "⋀x M. R x M ⟹ prob_space M"
and sets: "⋀x M. R x M ⟹ sets M = sets S"
and cont': "⋀x M. R x M ⟹ ∃M'. (∀y∈K x. R y (M' y)) ∧ (∀y. sets (M' y) = S ∧ prob_space (M' y)) ∧
M = (measure_pmf (K x) ⤜ (λy. distr (M' y) S ((##) y)))"
shows "T x = M"
using ‹R x M›
proof (coinduction arbitrary: x M rule: measure_eq_stream_space_coinduct)
case left then show ?case using T.prob_space_axioms[of x] sets_T[of x] by (auto simp: space_prob_algebra)
next
case (right M) with prob[of M] sets[of M] show ?case by (auto simp: space_prob_algebra)
next
case (cont x M) with cont'[OF cont] obtain M' where *:
"(∀y∈K x. R y (M' y))"
"(∀y. sets (M' y) = S ∧ prob_space (M' y))"
"M = (measure_pmf (K x) ⤜ (λy. distr (M' y) S ((##) y)))"
by auto
show ?case
apply (rule exI[of _ T])
apply (rule exI[of _ M'])
apply (rule exI[of _ "K x"])
using * T.prob_space_axioms sets_T[of x]
apply (auto simp: space_prob_algebra intro: T_eq_bind)
done
qed
lemma T_bisim:
assumes M: "⋀x. prob_space (M x)" "⋀x. sets (M x) = sets S"
and M_eq: "⋀x. M x = (measure_pmf (K x) ⤜ (λs. distr (M s) S ((##) s)))"
shows "T = M"
proof
fix x show "T x = M x"
proof (coinduction arbitrary: x rule: T_coinduct)
case (cont x) then show ?case
apply (intro exI[of _ M])
apply (subst M_eq[of x])
apply (simp add: M)
done
qed fact+
qed
lemma T_subprob'[measurable]: "T ∈ measurable (count_space UNIV) (subprob_algebra S)"
by (auto intro!: space_bind simp: space_subprob_algebra) unfold_locales
lemma T_subprob''[simp]: "T a ∈ space (subprob_algebra S)"
using measurable_space[OF T_subprob', of a] by simp
lemma AE_not_suntil_coinduct [consumes 1, case_names ψ φ]:
assumes "P s"
assumes ψ: "⋀s. P s ⟹ s ∉ ψ"
assumes φ: "⋀s t. P s ⟹ s ∈ φ ⟹ t ∈ K s ⟹ P t"
shows "AE ω in T s. not (HLD φ suntil HLD ψ) (s ## ω)"
proof -
{ fix ω have "¬ (HLD φ suntil HLD ψ) (s ## ω) ⟷
(∀n. ¬ ((λR. HLD ψ or (HLD φ aand nxt R)) ^^ n) ⊥ (s ## ω))"
unfolding suntil_def
by (subst sup_continuous_lfp)
(auto simp add: sup_continuous_def) }
moreover
{ fix n from ‹P s› have "AE ω in T s. ¬ ((λR. HLD ψ or (HLD φ aand nxt R)) ^^ n) ⊥ (s ## ω)"
proof (induction n arbitrary: s)
case (Suc n) then show ?case
apply (subst AE_T_iff)
apply (rule measurable_compose[OF measurable_Stream, where M1="count_space UNIV"])
apply measurable
apply simp
apply (auto simp: bot_fun_def intro!: AE_impI dest: φ ψ)
done
qed simp }
ultimately show ?thesis
by (simp add: AE_all_countable)
qed
lemma AE_not_suntil_coinduct_strong [consumes 1, case_names ψ φ]:
assumes "P s"
assumes P_ψ: "⋀s. P s ⟹ s ∉ ψ"
assumes P_φ: "⋀s t. P s ⟹ s ∈ φ ⟹ t ∈ K s ⟹ P t ∨
(AE ω in T t. not (HLD φ suntil HLD ψ) (t ## ω))"
shows "AE ω in T s. not (HLD φ suntil HLD ψ) (s ## ω)" (is "?nuntil s")
proof -
have "P s ∨ ?nuntil s"
using ‹P s› by auto
then show ?thesis
proof (coinduction arbitrary: s rule: AE_not_suntil_coinduct)
case (φ t s) then show ?case
by (auto simp: AE_T_iff[of _ s] suntil_Stream[of _ _ s] dest: P_φ)
qed (auto simp: suntil_Stream dest: P_ψ)
qed
end
subsection ‹Reward Structure on Markov Chains›
locale MC_with_rewards = MC_syntax K for K :: "'s ⇒ 's pmf" +
fixes ι :: "'s ⇒ 's ⇒ ennreal" and ρ :: "'s ⇒ ennreal"
assumes ι_nonneg: "⋀s t. 0 ≤ ι s t" and ρ_nonneg: "⋀s. 0 ≤ ρ s"
assumes measurable_ι[measurable]: "(λ(a, b). ι a b) ∈ borel_measurable (count_space UNIV ⨂⇩M count_space UNIV)"
begin
definition reward_until :: "'s set ⇒ 's ⇒ 's stream ⇒ ennreal" where
"reward_until X = lfp (λF s ω. if s ∈ X then 0 else ρ s + ι s (shd ω) + (F (shd ω) (stl ω)))"
lemma measurable_ρ[measurable]: "ρ ∈ borel_measurable (count_space UNIV)"
by simp
lemma measurable_reward_until[measurable (raw)]:
assumes [measurable]: "f ∈ measurable M (count_space UNIV)"
assumes [measurable]: "g ∈ measurable M S"
shows "(λx. reward_until X (f x) (g x)) ∈ borel_measurable M"
proof -
let ?F = "λF (s, ω). if s ∈ X then 0 else ρ s + ι s (shd ω) + (F (shd ω, stl ω))"
{ fix s ω
have "reward_until X s ω = lfp ?F (s, ω)"
unfolding reward_until_def lfp_pair[symmetric] .. }
note * = this
have [measurable]: "lfp ?F ∈ borel_measurable (count_space UNIV ⨂⇩M S)"
proof (rule borel_measurable_lfp)
fix f :: "('s × 's stream) ⇒ ennreal"
assume [measurable]: "f ∈ borel_measurable (count_space UNIV ⨂⇩M S)"
show "?F f ∈ borel_measurable (count_space UNIV ⨂⇩M S)"
unfolding split_beta'
apply (intro measurable_If)
apply measurable []
apply measurable []
apply (rule predE)
apply (rule measurable_compose[OF measurable_fst])
apply measurable []
done
qed (auto intro!: ι_nonneg ρ_nonneg order_continuous_intros)
show ?thesis
unfolding * by measurable
qed
lemma continuous_reward_until:
"sup_continuous (λF s ω. if s ∈ X then 0 else ρ s + ι s (shd ω) + (F (shd ω) (stl ω)))"
by (intro ι_nonneg ρ_nonneg order_continuous_intros) (auto simp: sup_continuous_def image_comp)
lemma
shows reward_until_unfold: "reward_until X s ω =
(if s ∈ X then 0 else ρ s + ι s (shd ω) + reward_until X (shd ω) (stl ω))"
(is ?unfold)
proof -
let ?F = "λF s ω. if s ∈ X then 0 else ρ s + ι s (shd ω) + (F (shd ω) (stl ω))"
{ fix s ω have "reward_until X s ω = ?F (reward_until X) s ω"
unfolding reward_until_def
apply (subst lfp_unfold)
apply (rule continuous_reward_until[THEN sup_continuous_mono, of X])
apply rule
done }
note step = this
show ?unfold
by (subst step) (auto intro!: arg_cong2[where f="(+)"])
qed
lemma reward_until_simps[simp]:
shows "s ∈ X ⟹ reward_until X s ω = 0"
and "s ∉ X ⟹ reward_until X s ω = ρ s + ι s (shd ω) + reward_until X (shd ω) (stl ω)"
unfolding reward_until_unfold[of X s ω] by simp_all
lemma reward_until_SCons[simp]:
"reward_until X s (t ## ω) = (if s ∈ X then 0 else ρ s + ι s t + reward_until X t ω)"
by simp
lemma nn_integral_reward_until_finite:
assumes [simp]: "finite (acc `` {s})" (is "finite (?R `` {s})")
assumes ρ: "⋀t. (s, t) ∈ acc_on (-H) ⟹ ρ t < ∞"
assumes ι: "⋀t t'. (s, t) ∈ acc_on (-H) ⟹ t' ∈ K t ⟹ ι t t' < ∞"
assumes ev: "AE ω in T s. ev (HLD H) ω"
shows "(∫⇧+ ω. reward_until H s ω ∂T s) ≠ ∞"
proof cases
assume "s ∈ H" then show ?thesis
by simp
next
assume "s ∉ H"
let ?L = "acc_on (-H)"
define M where "M = Max ((λ(s, t). ρ s + ι s t) ` (SIGMA t:?L``{s}. K t))"
have "?L ⊆ ?R"
by (intro rtrancl_mono) auto
with ‹s ∉ H› have subset: "(SIGMA t:?L``{s}. K t) ⊆ (?R``{s} × ?R``{s})"
by (auto intro: rtrancl_into_rtrancl elim: rtrancl.cases)
then have [simp, intro!]: "finite ((λ(s, t). ρ s + ι s t) ` (SIGMA t:?L``{s}. K t))"
by (intro finite_imageI) (auto dest: finite_subset)
{ fix t t' assume "(s, t) ∈ ?L" "t ∉ H" "t' ∈ K t"
then have "(t, t') ∈ (SIGMA t:?L``{s}. K t)"
by (auto intro: rtrancl_into_rtrancl)
then have "ρ t + ι t t' ≤ M"
unfolding M_def by (intro Max_ge) auto }
note le_M = this
have fin_L: "finite (?L `` {s})"
by (intro finite_subset[OF _ assms(1)] Image_mono ‹?L ⊆ ?R› order_refl)
have "M < ∞"
unfolding M_def
proof (subst Max_less_iff, safe)
show "(SIGMA x:?L `` {s}. set_pmf (K x)) = {} ⟹ False"
using ‹s ∉ H› by (auto simp add: Sigma_empty_iff set_pmf_not_empty)
fix t t' assume "(s, t) ∈ ?L" "t' ∈ K t" then show "ρ t + ι t t' < ∞"
using ρ[of t] ι[of t t'] by simp
qed
from set_pmf_not_empty[of "K s"] obtain t where "t ∈ K s"
by auto
with le_M[of s t] have "0 ≤ M"
using set_pmf_not_empty[of "K s"] ‹s ∉ H› le_M[of s] ι_nonneg[of s] ρ_nonneg[of s]
by (intro order_trans[OF _ le_M]) auto
have "AE ω in T s. reward_until H s ω ≤ M * sfirst (HLD H) (s ## ω)"
using ev AE_T_enabled
proof eventually_elim
fix ω assume "ev (HLD H) ω" "enabled s ω"
moreover define t where "t = s"
ultimately have "ev (HLD H) ω" "enabled t ω" "t ∈ ?L``{s}"
by auto
then show "reward_until H t ω ≤ M * sfirst (HLD H) (t ## ω)"
proof (induction arbitrary: t rule: ev_induct_strong)
case (base ω t) then show ?case
by (auto simp: HLD_iff sfirst_Stream elim: enabled.cases intro: le_M)
next
case (step ω t) from step.IH[of "shd ω"] step.prems step.hyps show ?case
by (auto simp add: HLD_iff enabled.simps[of t] distrib_left sfirst_Stream
reward_until_simps[of t]
simp del: reward_until_simps
intro!: add_mono le_M intro: rtrancl_into_rtrancl)
qed
qed
then have "(∫⇧+ω. reward_until H s ω ∂T s) ≤ (∫⇧+ω. M * sfirst (HLD H) (s ## ω) ∂T s)"
by (rule nn_integral_mono_AE)
also have "… < ∞"
using ‹0 ≤ M› ‹M < ∞› nn_integral_sfirst_finite[OF fin_L ev]
by (simp add: nn_integral_cmult less_top[symmetric] ennreal_mult_eq_top_iff)
finally show ?thesis
by simp
qed
end
subsection ‹Bisimulation on a relation›
definition rel_set_strong :: "('a ⇒ 'b ⇒ bool) ⇒ 'a set ⇒ 'b set ⇒ bool"
where "rel_set_strong R A B ⟷ (∀x y. R x y ⟶ (x ∈ A ⟷ y ∈ B))"
lemma T_eq_rel_half[consumes 4, case_names prob sets cont]:
fixes R :: "'s ⇒ 't ⇒ bool" and f :: "'s ⇒ 't" and S :: "'s set"
assumes R_def: "⋀s t. R s t ⟷ (s ∈ S ∧ f s = t)"
assumes A[measurable]: "A ∈ sets (stream_space (count_space UNIV))"
and B[measurable]: "B ∈ sets (stream_space (count_space UNIV))"
and AB: "rel_set_strong (stream_all2 R) A B" and KL: "rel_fun R (rel_pmf R) K L" and xy: "R x y"
shows "MC_syntax.T K x A = MC_syntax.T L y B"
proof -
interpret K: MC_syntax K by unfold_locales
interpret L: MC_syntax L by unfold_locales
have "x ∈ S" using ‹R x y› by (auto simp: R_def)
define g where "g t = (SOME s. R s t)" for t
have measurable_g: "g ∈ count_space UNIV →⇩M count_space UNIV" by auto
have g: "R i j ⟹ R (g j) j" for i j
unfolding g_def by (rule someI)
have K_subset: "x ∈ S ⟹ K x ⊆ S" for x
using KL[THEN rel_funD, of x "f x", THEN rel_pmf_imp_rel_set] by (auto simp: rel_set_def R_def)
have in_S: "AE ω in K.T x. ω ∈ streams S"
using K.AE_T_enabled
proof eventually_elim
case (elim ω) with ‹x ∈ S› show ?case
apply (coinduction arbitrary: x ω)
subgoal for x ω using K_subset by (cases ω) (auto simp: K.enabled_Stream)
done
qed
have L_eq: "L y = map_pmf f (K x)" if xy: "R x y" for x y
proof -
have "rel_pmf (λx y. x = y) (map_pmf f (K x)) (L y)"
using KL[THEN rel_funD, OF xy] by (auto intro: pmf.rel_mono_strong simp: R_def pmf.rel_map)
then show ?thesis unfolding pmf.rel_eq by simp
qed
let ?D = "λx. distr (K.T x) K.S (smap f)"
have prob_space_D: "?D x ∈ space (prob_algebra K.S)" for x
by (auto simp: space_prob_algebra K.T.prob_space_distr)
have D_eq_D: "?D x = ?D x'" if "R x y" "R x' y" for x x' y
proof (rule stream_space_eq_sstart)
define A where "A = K.acc `` {x, x'}"
have x_A: "x ∈ A" "x' ∈ A" by (auto simp: A_def)
let ?Ω = "f ` A"
show "countable ?Ω"
unfolding A_def by (intro countable_image K.countable_acc) auto
show "prob_space (?D x)" "prob_space (?D x')" by (auto intro!: K.T.prob_space_distr)
show "sets (?D x) = sets L.S" "sets (?D x') = sets L.S" by auto
have AE_streams: "AE x in ?D x''. x ∈ streams ?Ω" if "x'' ∈ A" for x''
apply (simp add: space_stream_space streams_sets AE_distr_iff)
using K.AE_T_reachable[of x''] unfolding alw_HLD_iff_streams
proof eventually_elim
fix s assume "s ∈ streams (K.acc `` {x''})"
moreover have "K.acc `` {x''} ⊆ A"
using ‹x'' ∈ A› by (auto simp: A_def Image_def intro: rtrancl_trans)
ultimately show "smap f s ∈ streams (f ` A)"
by (auto intro: smap_streams)
qed
with x_A show "AE x in ?D x'. x ∈ streams ?Ω" "AE x in ?D x. x ∈ streams ?Ω"
by auto
from ‹x ∈ A› ‹x' ∈ A› that show "?D x (sstart (f ` A) xs) = ?D x' (sstart (f ` A) xs)" for xs
proof (induction xs arbitrary: x x' y)
case Nil
moreover have "?D x (streams (f ` A)) = 1" if "x ∈ A" for x
using AE_streams[of x] that
by (intro prob_space.emeasure_eq_1_AE[OF K.T.prob_space_distr]) (auto simp: streams_sets)
ultimately show ?case by simp
next
case (Cons z zs x x' y)
have "rel_pmf (R OO R¯¯) (K x) (K x')"
using KL[THEN rel_funD, OF Cons(4)] KL[THEN rel_funD, OF Cons(5)]
unfolding pmf.rel_compp pmf.rel_flip by auto
then obtain p :: "('s × 's) pmf" where p: "⋀a b. (a, b) ∈ p ⟹ (R OO R¯¯) a b" and
eq: "map_pmf fst p = K x" "map_pmf snd p = K x'"
by (auto simp: pmf.in_rel)
let ?S = "stream_space (count_space UNIV)"
have *: "(##) y -` smap f -` sstart (f ` A) (z # zs) = (if f y = z then smap f -` sstart (f ` A) zs else {})" for y z zs
by auto
have **: "?D x (sstart (f ` A) (z # zs)) = (∫⇧+ y'. (if f y' = z then ?D y' (sstart (f ` A) zs) else 0) ∂K x)" for x
apply (simp add: emeasure_distr)
apply (subst K.T_eq_bind)
apply (subst emeasure_bind[where N="?S"])
apply simp
apply (rule measurable_distr2[where M="?S"])
apply measurable
apply (intro nn_integral_cong_AE AE_pmfI)
apply (auto simp add: emeasure_distr)
apply (simp_all add: * space_stream_space)
done
have fst_A: "fst ab ∈ A" if "ab ∈ p" for ab
proof -
have "fst ab ∈ K x" using ‹ab ∈ p› set_map_pmf [of fst p] by (auto simp: eq)
with ‹x ∈ A› show "fst ab ∈ A"
by (auto simp: A_def intro: rtrancl.rtrancl_into_rtrancl)
qed
have snd_A: "snd ab ∈ A" if "ab ∈ p" for ab
proof -
have "snd ab ∈ K x'" using ‹ab ∈ p› set_map_pmf [of snd p] by (auto simp: eq)
with ‹x' ∈ A› show "snd ab ∈ A"
by (auto simp: A_def intro: rtrancl.rtrancl_into_rtrancl)
qed
show ?case
unfolding ** eq[symmetric] nn_integral_map_pmf
apply (intro nn_integral_cong_AE AE_pmfI)
subgoal for ab using p[of "fst ab" "snd ab"] by (auto simp: R_def intro!: Cons(1) fst_A snd_A)
done
qed
qed
have L_eq_D: "L.T y = ?D x"
using ‹R x y›
proof (coinduction arbitrary: x y rule: L.T_coinduct)
case (cont x y)
then have Kx_Ly: "rel_pmf R (K x) (L y)"
by (rule KL[THEN rel_funD])
then have *: "y' ∈ L y ⟹ ∃x'∈K x. R x' y'" for y'
by (auto dest!: rel_pmf_imp_rel_set simp: rel_set_def)
have **: "y' ∈ L y ⟹ R (g y') y'" for y'
using *[of y'] unfolding g_def by (auto intro: someI)
have D_SCons_eq_D_D: "distr (K.T i) K.S (λx. z ## smap f x) = distr (?D i) K.S (λx. z ## x)" for i z
by (subst distr_distr) (auto simp: comp_def)
have D_eq_D_gi: "?D i = ?D (g (f i))" if i: "i ∈ K x" for i
proof -
obtain j where "j ∈ L y" "R i j" "f i = j"
using Kx_Ly i by (force dest!: rel_pmf_imp_rel_set simp: rel_set_def R_def)
then show ?thesis
by (auto intro!: D_eq_D[OF ‹R i j›] g)
qed
have ***: "?D x = measure_pmf (L y) ⤜ (λy. distr (?D (g y)) K.S ((##) y))"
apply (subst K.T_eq_bind)
apply (subst distr_bind[of _ _ K.S])
apply (rule measurable_distr2[of _ _ "K.S"])
apply (simp_all add: Pi_iff)
apply (simp add: distr_distr comp_def L_eq[OF cont] map_pmf_rep_eq)
apply (subst bind_distr[where K=K.S])
apply measurable []
apply (rule measurable_distr2[of _ _ "K.S"])
apply measurable []
apply (rule measurable_compose[OF measurable_g])
apply measurable []
apply simp
apply (rule bind_measure_pmf_cong[where N="K.S"])
apply (auto simp: space_subprob_algebra space_stream_space intro!: K.T.subprob_space_distr)
unfolding D_SCons_eq_D_D D_eq_D_gi ..
show ?case
by (intro exI[of _ "λt. distr (K.T (g t)) (stream_space (count_space UNIV)) (smap f)"])
(auto simp add: K.T.prob_space_distr *** dest: **)
qed (auto intro: K.T.prob_space_distr)
have "stream_all2 R s t ⟷ (s ∈ streams S ∧ smap f s = t)" for s t
proof safe
show "stream_all2 R s t ⟹ s ∈ streams S"
apply (coinduction arbitrary: s t)
subgoal for s t by (cases s; cases t) (auto simp: R_def)
done
show "stream_all2 R s t ⟹ smap f s = t"
apply (coinduction arbitrary: s t)
subgoal for s t by (cases s; cases t) (auto simp: R_def)
done
qed (auto intro!: stream.rel_refl_strong simp: stream.rel_map R_def streams_iff_sset)
then have "ω ∈ streams S ⟹ ω ∈ A ⟷ smap f ω ∈ B" for ω
using AB by (auto simp: rel_set_strong_def)
with in_S have "K.T x A = K.T x (smap f -` B ∩ space (K.T x))"
by (auto intro!: emeasure_eq_AE streams_sets)
also have "… = (distr (K.T x) K.S (smap f)) B"
by (intro emeasure_distr[symmetric]) auto
also have "… = (L.T y) B" unfolding L_eq_D ..
finally show ?thesis .
qed
subsection ‹Product Construction›
locale MC_pair =
K1: MC_syntax K1 + K2: MC_syntax K2 for K1 K2
begin
definition "Kp ≡ λ(a, b). pair_pmf (K1 a) (K2 b)"
sublocale MC_syntax Kp .
definition
"szip⇩E a b ≡ λ(ω1, ω2). szip (K1.force_enabled a ω1) (K2.force_enabled b ω2)"
lemma szip_rT[measurable]: "(λ(ω1, ω2). szip ω1 ω2) ∈ measurable (K1.rT x1 ⨂⇩M K2.rT x2) S"
proof (rule measurable_stream_space2)
fix n
have "(λx. (case x of (ω1, ω2) ⇒ szip ω1 ω2) !! n) = (λω. (fst ω !! n, snd ω !! n))"
by auto
also have "… ∈ measurable (K1.rT x1 ⨂⇩M K2.rT x2) (count_space UNIV)"
apply (rule measurable_compose_countable'[OF _ measurable_compose[OF measurable_fst K1.snth_rT, of n]])
apply (rule measurable_compose_countable'[OF _ measurable_compose[OF measurable_snd K2.snth_rT, of n]])
apply (auto intro!: K1.countable_acc K2.countable_acc)
done
finally show "(λx. (case x of (ω1, ω2) ⇒ szip ω1 ω2) !! n) ∈ measurable (K1.rT x1 ⨂⇩M K2.rT x2) (count_space UNIV)"
.
qed
lemma measurable_szipE[measurable]: "szip⇩E a b ∈ measurable (K1.S ⨂⇩M K2.S) S"
unfolding szip⇩E_def by measurable
lemma T_eq_prod: "T = (λ(x1, x2). do { ω1 ← K1.T x1 ; ω2 ← K2.T x2 ; return S (szip⇩E x1 x2 (ω1, ω2)) })"
(is "_ = ?B")
proof (rule T_bisim)
have T1x: "⋀x. subprob_space (K1.T x)"
by (rule prob_space_imp_subprob_space) unfold_locales
interpret T12: pair_prob_space "K1.T x" "K2.T y" for x y
by unfold_locales
interpret T1K2: pair_prob_space "K1.T x" "K2 y" for x y
by unfold_locales
let ?P = "λx1 x2. K1.T x1 ⨂⇩M K2.T x2"
fix x show "prob_space (?B x)"
by (auto simp: space_stream_space split: prod.splits
intro!: prob_space.prob_space_bind prob_space_return
measurable_bind[where N=S] measurable_compose[OF _ return_measurable] AE_I2)
unfold_locales
show "sets (?B x) = sets S"
by (simp split: prod.splits add: measurable_bind[where N=S] sets_bind[where N=S] space_stream_space)
obtain a b where x_eq: "x = (a, b)"
by (cases x) auto
show "?B x = (measure_pmf (Kp x) ⤜ (λs. distr (?B s) S ((##) s)))"
unfolding x_eq
apply (subst K1.T_eq_bind')
apply (subst K2.T_eq_bind')
apply (auto
simp add: space_stream_space bind_assoc[where R=S and N=S] bind_return_distr[symmetric]
Kp_def T1K2.bind_rotate[where N=S] split_beta' set_pair_pmf space_subprob_algebra
bind_pair_pmf[of "case_prod M" for M, unfolded split, symmetric, where N=S] szip⇩E_def
stream_eq_Stream_iff bind_return[where N=S] space_bind[where N=S]
simp del: measurable_pmf_measure1
intro!: bind_measure_pmf_cong[where N=S] subprob_space_bind[where N=S] subprob_space_measure_pmf
T1x bind_cong[where M="MC_syntax.T K x" for K x] arg_cong2[where f=return])
done
qed
lemma nn_integral_pT:
fixes f assumes [measurable]: "f ∈ borel_measurable S"
shows "(∫⇧+ω. f ω ∂T (x, y)) = (∫⇧+ω1. ∫⇧+ω2. f (szip⇩E x y (ω1, ω2)) ∂K2.T y ∂K1.T x)"
by (simp add: nn_integral_bind[where B=S] nn_integral_return in_S T_eq_prod)
lemma prod_eq_prob_T:
assumes [measurable]: "Measurable.pred K1.S P1" "Measurable.pred K2.S P2"
shows "𝒫(ω in K1.T x1. P1 ω) * 𝒫(ω in K2.T x2. P2 ω) =
𝒫(ω in T (x1, x2). P1 (smap fst ω) ∧ P2 (smap snd ω))"
proof -
have "𝒫(ω in T (x1, x2). P1 (smap fst ω) ∧ P2 (smap snd ω)) =
(∫ x. ∫ xa. indicator {ω ∈ space S. P1 (smap fst ω) ∧ P2 (smap snd ω)} (szip⇩E x1 x2 (x, xa)) ∂MC_syntax.T K2 x2 ∂MC_syntax.T K1 x1)"
by (subst T_eq_prod)
(simp add: K1.T.measure_bind[where N=S] K2.T.measure_bind[where N=S] measure_return)
also have "... = (∫ω1. ∫ω2. indicator {ω∈space K1.S. P1 ω} ω1 * indicator {ω∈space K2.S. P2 ω} ω2 ∂K2.T x2 ∂K1.T x1)"
apply (intro integral_cong_AE)
apply measurable
using K1.AE_T_enabled
apply eventually_elim
apply (intro integral_cong_AE)
apply measurable
using K2.AE_T_enabled
apply eventually_elim
apply (auto simp: space_stream_space szip⇩E_def K1.force_enabled K2.force_enabled
smap_szip_snd[where g="λx. x"] smap_szip_fst[where f="λx. x"]
split: split_indicator)
done
also have "… = 𝒫(ω in K1.T x1. P1 ω) * 𝒫(ω in K2.T x2. P2 ω)"
by simp
finally show ?thesis ..
qed
end
end