Theory Piecewise_Continuous
section ‹Piecewise Continous Functions›
theory Piecewise_Continuous
imports
Laplace_Transform_Library
begin
subsection ‹at within filters›
lemma at_within_self_singleton[simp]: "at i within {i} = bot"
by (auto intro!: antisym filter_leI simp: eventually_at_filter)
lemma at_within_t1_space_avoid:
"(at x within X - {i}) = (at x within X)" if "x ≠ i" for x i::"'a::t1_space"
proof (safe intro!: antisym filter_leI)
fix P
assume "eventually P (at x within X - {i})"
moreover have "eventually (λx. x ≠ i) (nhds x)"
by (rule t1_space_nhds) fact
ultimately
show "eventually P (at x within X)"
unfolding eventually_at_filter
by eventually_elim auto
qed (simp add: eventually_mono order.order_iff_strict eventually_at_filter)
lemma at_within_t1_space_avoid_finite:
"(at x within X - I) = (at x within X)" if "finite I" "x ∉ I" for x::"'a::t1_space"
using that
proof (induction I)
case (insert i I)
then show ?case
by auto (metis Diff_insert at_within_t1_space_avoid)
qed simp
lemma at_within_interior:
"NO_MATCH (UNIV::'a set) (S::'a::topological_space set) ⟹ x ∈ interior S ⟹ at x within S = at x"
by (rule at_within_interior)
subsection ‹intervals›
lemma Compl_Icc: "- {a .. b} = {..<a} ∪ {b<..}" for a b::"'a::linorder"
by auto
lemma interior_Icc[simp]: "interior {a..b} = {a<..<b}"
for a b::"'a::{linorder_topology, dense_order, no_bot, no_top}"
by (auto simp add: Compl_Icc interior_closure)
lemma closure_finite[simp]: "closure X = X" if "finite X" for X::"'a::t1_space set"
using that
by (induction X) (simp_all add: closure_insert)
definition piecewise_continuous_on :: "'a::linorder_topology ⇒ 'a ⇒ 'a set ⇒ ('a ⇒ 'b::topological_space) ⇒ bool"
where "piecewise_continuous_on a b I f ⟷
(continuous_on ({a .. b} - I) f ∧ finite I ∧
(∀i∈I. (i ∈ {a<..b} ⟶ (∃l. (f ⤏ l) (at_left i))) ∧
(i ∈ {a..<b} ⟶ (∃u. (f ⤏ u) (at_right i)))))"
lemma piecewise_continuous_on_subset:
"piecewise_continuous_on a b I f ⟹ {c .. d} ⊆ {a .. b} ⟹ piecewise_continuous_on c d I f"
by (force simp add: piecewise_continuous_on_def intro: continuous_on_subset)
lemma piecewise_continuous_onE:
assumes "piecewise_continuous_on a b I f"
obtains l u
where "finite I"
and "continuous_on ({a..b} - I) f"
and "(⋀i. i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (f ⤏ l i) (at_left i))"
and "(⋀i. i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (f ⤏ u i) (at_right i))"
using assms
by (auto simp: piecewise_continuous_on_def Ball_def) metis
lemma piecewise_continuous_onI:
assumes "finite I" "continuous_on ({a..b} - I) f"
and "(⋀i. i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (f ⤏ l i) (at_left i))"
and "(⋀i. i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (f ⤏ u i) (at_right i))"
shows "piecewise_continuous_on a b I f"
using assms
by (force simp: piecewise_continuous_on_def)
lemma piecewise_continuous_onI':
fixes a b::"'a::{linorder_topology, dense_order, no_bot, no_top}"
assumes "finite I" "⋀x. a < x ⟹ x < b ⟹ isCont f x"
and "a ∉ I ⟹ continuous (at_right a) f"
and "b ∉ I ⟹ continuous (at_left b) f"
and "(⋀i. i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (f ⤏ l i) (at_left i))"
and "(⋀i. i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (f ⤏ u i) (at_right i))"
shows "piecewise_continuous_on a b I f"
proof (rule piecewise_continuous_onI)
have "x ∉ I ⟹ a ≤ x ⟹ x ≤ b ⟹ (f ⤏ f x) (at x within {a..b})" for x
using assms(2)[of x] assms(3,4)
by (cases "a = x"; cases "b = x"; cases "x ∈ {a<..<b}")
(auto simp: at_within_Icc_at_left at_within_Icc_at_right isCont_def
continuous_within filterlim_at_split at_within_interior)
then show "continuous_on ({a .. b} - I) f"
by (auto simp: continuous_on_def ‹finite I› at_within_t1_space_avoid_finite)
qed fact+
lemma piecewise_continuous_onE':
fixes a b::"'a::{linorder_topology, dense_order, no_bot, no_top}"
assumes "piecewise_continuous_on a b I f"
obtains l u
where "finite I"
and "⋀x. a < x ⟹ x < b ⟹ x ∉ I ⟹ isCont f x"
and "(⋀x. a < x ⟹ x ≤ b ⟹ (f ⤏ l x) (at_left x))"
and "(⋀x. a ≤ x ⟹ x < b ⟹ (f ⤏ u x) (at_right x))"
and "⋀x. a ≤ x ⟹ x ≤ b ⟹ x ∉ I ⟹ f x = l x"
and "⋀x. a ≤ x ⟹ x ≤ b ⟹ x ∉ I ⟹ f x = u x"
proof -
from piecewise_continuous_onE[OF assms] obtain l u
where "finite I"
and continuous: "continuous_on ({a..b} - I) f"
and left: "(⋀i. i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (f ⤏ l i) (at_left i))"
and right: "(⋀i. i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (f ⤏ u i) (at_right i))"
by metis
define l' where "l' x = (if x ∈ I then l x else f x)" for x
define u' where "u' x = (if x ∈ I then u x else f x)" for x
note ‹finite I›
moreover from continuous
have "a < x ⟹ x < b ⟹ x ∉ I ⟹ isCont f x" for x
by (rule continuous_on_interior) (auto simp: interior_diff ‹finite I›)
moreover
from continuous have "a < x ⟹ x ≤ b ⟹ x ∉ I ⟹ (f ⤏ f x) (at_left x)" for x
by (cases "x = b")
(auto simp: continuous_on_def at_within_t1_space_avoid_finite ‹finite I›
at_within_Icc_at_left at_within_interior filterlim_at_split
dest!: bspec[where x=x])
then have "a < x ⟹ x ≤ b ⟹ (f ⤏ l' x) (at_left x)" for x
by (auto simp: l'_def left)
moreover
from continuous have "a ≤ x ⟹ x < b ⟹ x ∉ I ⟹ (f ⤏ f x) (at_right x)" for x
by (cases "x = a")
(auto simp: continuous_on_def at_within_t1_space_avoid_finite ‹finite I›
at_within_Icc_at_right at_within_interior filterlim_at_split
dest!: bspec[where x=x])
then have "a ≤ x ⟹ x < b ⟹ (f ⤏ u' x) (at_right x)" for x
by (auto simp: u'_def right)
moreover have "a ≤ x ⟹ x ≤ b ⟹ x ∉ I ⟹ f x = l' x" for x by (auto simp: l'_def)
moreover have "a ≤ x ⟹ x ≤ b ⟹ x ∉ I ⟹ f x = u' x" for x by (auto simp: u'_def)
ultimately show ?thesis ..
qed
lemma tendsto_avoid_at_within:
"(f ⤏ l) (at x within X)"
if "(f ⤏ l) (at x within X - {x})"
using that
by (auto simp: eventually_at_filter dest!: topological_tendstoD intro!: topological_tendstoI)
lemma tendsto_within_subset_eventuallyI:
"(f ⤏ fx) (at x within X)"
if g: "(g ⤏ gy) (at y within Y)"
and ev: "∀⇩F x in (at y within Y). f x = g x"
and xy: "x = y"
and fxgy: "fx = gy"
and XY: "X - {x} ⊆ Y"
apply (rule tendsto_avoid_at_within)
apply (rule tendsto_within_subset[where S = "Y"])
unfolding xy
apply (subst tendsto_cong[OF ev ])
apply (rule g[folded fxgy])
apply (rule XY[unfolded xy])
done
lemma piecewise_continuous_on_insertE:
assumes "piecewise_continuous_on a b (insert i I) f"
assumes "i ∈ {a .. b}"
obtains g h where
"piecewise_continuous_on a i I g"
"piecewise_continuous_on i b I h"
"⋀x. a ≤ x ⟹ x < i ⟹ g x = f x"
"⋀x. i < x ⟹ x ≤ b ⟹ h x = f x"
proof -
from piecewise_continuous_onE[OF assms(1)] ‹i ∈ {a .. b}› obtain l u where
finite: "finite I"
and cf: "continuous_on ({a..b} - insert i I) f"
and l: "(⋀i. i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (f ⤏ l i) (at_left i))" "i > a ⟹ (f ⤏ l i) (at_left i)"
and u: "(⋀i. i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (f ⤏ u i) (at_right i))" "i < b ⟹ (f ⤏ u i) (at_right i)"
by auto (metis (mono_tags))
have fl: "(f(i := x) ⤏ l j) (at_left j)" if "j ∈ I" "a < j" "j ≤ b" for j x
using l(1)
by (rule tendsto_within_subset_eventuallyI)
(auto simp: eventually_at_filter frequently_def t1_space_nhds that)
have fr: "(f(i := x) ⤏ u j) (at_right j)" if "j ∈ I" "a ≤ j" "j < b" for j x
using u(1)
by (rule tendsto_within_subset_eventuallyI)
(auto simp: eventually_at_filter frequently_def t1_space_nhds that)
from cf have tendsto: "(f ⤏ f x) (at x within {a..b} - insert i I)"
if "x ∈ {a .. b} - insert i I" for x using that
by (auto simp: continuous_on_def)
have "continuous_on ({a..i} - I) (f(i:=l i))"
apply (cases "a = i")
subgoal by (auto simp: continuous_on_def Diff_triv)
unfolding continuous_on_def
apply safe
subgoal for x
apply (cases "x = i")
subgoal
apply (rule tendsto_within_subset_eventuallyI)
apply (rule l(2))
by (auto simp: eventually_at_filter)
subgoal
apply (subst at_within_t1_space_avoid[symmetric], assumption)
apply (rule tendsto_within_subset_eventuallyI[where y=x])
apply (rule tendsto)
using ‹i ∈ {a .. b}› by (auto simp: eventually_at_filter)
done
done
then have "piecewise_continuous_on a i I (f(i:=l i))"
using ‹i ∈ {a .. b}›
by (auto intro!: piecewise_continuous_onI finite fl fr)
moreover
have "continuous_on ({i..b} - I) (f(i:=u i))"
apply (cases "b = i")
subgoal by (auto simp: continuous_on_def Diff_triv)
unfolding continuous_on_def
apply safe
subgoal for x
apply (cases "x = i")
subgoal
apply (rule tendsto_within_subset_eventuallyI)
apply (rule u(2))
by (auto simp: eventually_at_filter)
subgoal
apply (subst at_within_t1_space_avoid[symmetric], assumption)
apply (rule tendsto_within_subset_eventuallyI[where y=x])
apply (rule tendsto)
using ‹i ∈ {a .. b}› by (auto simp: eventually_at_filter)
done
done
then have "piecewise_continuous_on i b I (f(i:=u i))"
using ‹i ∈ {a .. b}›
by (auto intro!: piecewise_continuous_onI finite fl fr)
moreover have "(f(i:=l i)) x = f x" if "a ≤ x" "x < i" for x
using that by auto
moreover have "(f(i:=u i)) x = f x" if "i < x" "x ≤ b" for x
using that by auto
ultimately show ?thesis ..
qed
lemma eventually_avoid_finite:
"∀⇩F x in at y within Y. x ∉ I" if "finite I" for y::"'a::t1_space"
using that
proof (induction)
case empty
then show ?case by simp
next
case (insert x F)
then show ?case
apply (auto intro!: eventually_conj)
apply (cases "y = x")
subgoal by (simp add: eventually_at_filter)
subgoal by (rule tendsto_imp_eventually_ne) (rule tendsto_ident_at)
done
qed
lemma eventually_at_left_linorder:
"a > (b :: 'a :: linorder_topology) ⟹ eventually (λx. x ∈ {b<..<a}) (at_left a)"
unfolding eventually_at_left
by auto
lemma eventually_at_right_linorder:
"a > (b :: 'a :: linorder_topology) ⟹ eventually (λx. x ∈ {b<..<a}) (at_right b)"
unfolding eventually_at_right
by auto
lemma piecewise_continuous_on_congI:
"piecewise_continuous_on a b I g"
if "piecewise_continuous_on a b I f"
and eq: "⋀x. x ∈ {a .. b} - I ⟹ g x = f x"
proof -
from piecewise_continuous_onE[OF that(1)]
obtain l u where finite: "finite I"
and *:
"continuous_on ({a..b} - I) f"
"(⋀i. i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (f ⤏ l i) (at_left i))"
"⋀i. i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (f ⤏ u i) (at_right i)"
by blast
note finite
moreover
from * have "continuous_on ({a..b} - I) g"
using that(2)
by (auto simp: eq cong: continuous_on_cong) (subst continuous_on_cong[OF refl eq]; assumption)
moreover
have "∀⇩F x in at_left i. f x = g x" if "a < i" "i ≤ b" for i
using eventually_avoid_finite[OF ‹finite I›, of i "{..<i}"]
eventually_at_left_linorder[OF ‹a < i›]
by eventually_elim (subst eq, use that in auto)
then have "i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (g ⤏ l i) (at_left i)" for i
using *(2)
by (rule Lim_transform_eventually[rotated]) auto
moreover
have "∀⇩F x in at_right i. f x = g x" if "a ≤ i" "i < b" for i
using eventually_avoid_finite[OF ‹finite I›, of i "{i<..}"]
eventually_at_right_linorder[OF ‹i < b›]
by eventually_elim (subst eq, use that in auto)
then have "i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (g ⤏ u i) (at_right i)" for i
using *(3)
by (rule Lim_transform_eventually[rotated]) auto
ultimately
show ?thesis
by (rule piecewise_continuous_onI) auto
qed
lemma piecewise_continuous_on_cong[cong]:
"piecewise_continuous_on a b I f ⟷ piecewise_continuous_on c d J g"
if "a = c"
"b = d"
"I = J"
"⋀x. c ≤ x ⟹ x ≤ d ⟹ x ∉ J ⟹ f x = g x"
using that
by (auto intro: piecewise_continuous_on_congI)
lemma tendsto_at_left_continuous_on_avoidI: "(f ⤏ g i) (at_left i)"
if g: "continuous_on ({a..i} - I) g"
and gf: "⋀x. a < x ⟹ x < i ⟹ g x = f x"
"i ∉ I" "finite I" "a < i"
for i::"'a::linorder_topology"
proof (rule Lim_transform_eventually)
from that have "i ∈ {a .. i}" by auto
from g have "(g ⤏ g i) (at i within {a..i} - I)"
using ‹i ∉ I› ‹i ∈ {a .. i}›
by (auto elim!: piecewise_continuous_onE simp: continuous_on_def)
then show "(g ⤏ g i) (at_left i)"
by (metis that at_within_Icc_at_left at_within_t1_space_avoid_finite
greaterThanLessThan_iff)
show "∀⇩F x in at_left i. g x = f x"
using eventually_at_left_linorder[OF ‹a < i›]
by eventually_elim (auto simp: ‹a < i› gf)
qed
lemma tendsto_at_right_continuous_on_avoidI: "(f ⤏ g i) (at_right i)"
if g: "continuous_on ({i..b} - I) g"
and gf: "⋀x. i < x ⟹ x < b ⟹ g x = f x"
"i ∉ I" "finite I" "i < b"
for i::"'a::linorder_topology"
proof (rule Lim_transform_eventually)
from that have "i ∈ {i .. b}" by auto
from g have "(g ⤏ g i) (at i within {i..b} - I)"
using ‹i ∉ I› ‹i ∈ {i .. b}›
by (auto elim!: piecewise_continuous_onE simp: continuous_on_def)
then show "(g ⤏ g i) (at_right i)"
by (metis that at_within_Icc_at_right at_within_t1_space_avoid_finite
greaterThanLessThan_iff)
show "∀⇩F x in at_right i. g x = f x"
using eventually_at_right_linorder[OF ‹i < b›]
by eventually_elim (auto simp: ‹i < b› gf)
qed
lemma piecewise_continuous_on_insert_leftI:
"piecewise_continuous_on a b (insert a I) f" if "piecewise_continuous_on a b I f"
apply (cases "a ∈ I")
subgoal using that by (auto dest: insert_absorb)
subgoal
using that
apply (rule piecewise_continuous_onE)
subgoal for l u
apply (rule piecewise_continuous_onI[where u="u(a:=f a)"])
apply (auto intro: continuous_on_subset )
apply (rule tendsto_at_right_continuous_on_avoidI, assumption)
apply auto
done
done
done
lemma piecewise_continuous_on_insert_rightI:
"piecewise_continuous_on a b (insert b I) f" if "piecewise_continuous_on a b I f"
apply (cases "b ∈ I")
subgoal using that by (auto dest: insert_absorb)
subgoal
using that
apply (rule piecewise_continuous_onE)
subgoal for l u
apply (rule piecewise_continuous_onI[where l="l(b:=f b)"])
apply (auto intro: continuous_on_subset )
apply (rule tendsto_at_left_continuous_on_avoidI, assumption)
apply auto
done
done
done
theorem piecewise_continuous_on_induct[consumes 1, case_names empty combine weaken]:
assumes pc: "piecewise_continuous_on a b I f"
assumes 1: "⋀a b f. continuous_on {a .. b} f ⟹ P a b {} f"
assumes 2: "⋀a i b I f1 f2 f. a ≤ i ⟹ i ≤ b ⟹ i ∉ I ⟹ P a i I f1 ⟹ P i b I f2 ⟹
piecewise_continuous_on a i I f1 ⟹
piecewise_continuous_on i b I f2 ⟹
(⋀x. a ≤ x ⟹ x < i ⟹ f1 x = f x) ⟹
(⋀x. i < x ⟹ x ≤ b ⟹ f2 x = f x) ⟹
(i > a ⟹ (f ⤏ f1 i) (at_left i)) ⟹
(i < b ⟹ (f ⤏ f2 i) (at_right i)) ⟹
P a b (insert i I) f"
assumes 3: "⋀a b i I f. P a b I f ⟹ finite I ⟹ i ∉ I ⟹ P a b (insert i I) f"
shows "P a b I f"
proof -
from pc have "finite I"
by (auto simp: piecewise_continuous_on_def)
then show ?thesis
using pc
proof (induction I arbitrary: a b f)
case empty
then show ?case
by (auto simp: piecewise_continuous_on_def 1)
next
case (insert i I)
show ?case
proof (cases "i ∈ {a .. b}")
case True
from insert.prems[THEN piecewise_continuous_on_insertE, OF ‹i ∈ {a .. b}›]
obtain g h
where g: "piecewise_continuous_on a i I g"
and h: "piecewise_continuous_on i b I h"
and gf: "⋀x. a ≤ x ⟹ x < i ⟹ g x = f x"
and hf: "⋀x. i < x ⟹ x ≤ b ⟹ h x = f x"
by metis
from g have pcg: "piecewise_continuous_on a i I (f(i:=g i))"
by (rule piecewise_continuous_on_congI) (auto simp: gf)
from h have pch: "piecewise_continuous_on i b I (f(i:=h i))"
by (rule piecewise_continuous_on_congI) (auto simp: hf)
have fg: "(f ⤏ g i) (at_left i)" if "a < i"
apply (rule tendsto_at_left_continuous_on_avoidI[where a=a and I=I])
using g ‹i ∉ I› ‹a < i›
by (auto elim!: piecewise_continuous_onE simp: gf)
have fh: "(f ⤏ h i) (at_right i)" if "i < b"
apply (rule tendsto_at_right_continuous_on_avoidI[where b=b and I=I])
using h ‹i ∉ I› ‹i < b›
by (auto elim!: piecewise_continuous_onE simp: hf)
show ?thesis
apply (rule 2)
using True apply force
using True apply force
apply (rule insert)
apply (rule insert.IH, rule pcg)
apply (rule insert.IH, rule pch)
apply fact
apply fact
using 3
by (auto simp: fg fh)
next
case False
with insert.prems
have "piecewise_continuous_on a b I f"
by (auto simp: piecewise_continuous_on_def)
from insert.IH[OF this] show ?thesis
by (rule 3) fact+
qed
qed
qed
lemma continuous_on_imp_piecewise_continuous_on:
"continuous_on {a .. b} f ⟹ piecewise_continuous_on a b {} f"
by (auto simp: piecewise_continuous_on_def)
lemma piecewise_continuous_on_imp_absolutely_integrable:
fixes a b::real and f::"real ⇒ 'a::euclidean_space"
assumes "piecewise_continuous_on a b I f"
shows "f absolutely_integrable_on {a..b}"
using assms
proof (induction rule: piecewise_continuous_on_induct)
case (empty a b f)
show ?case
by (auto intro!: absolutely_integrable_onI integrable_continuous_interval
continuous_intros empty)
next
case (combine a i b I f1 f2 f)
from combine(10)
have "f absolutely_integrable_on {a..i}"
by (rule absolutely_integrable_spike[where S="{i}"]) (auto simp: combine)
moreover
from combine(11)
have "f absolutely_integrable_on {i..b}"
by (rule absolutely_integrable_spike[where S="{i}"]) (auto simp: combine)
ultimately
show ?case
by (rule absolutely_integrable_on_combine) fact+
qed
lemma piecewise_continuous_on_integrable:
fixes a b::real and f::"real ⇒ 'a::euclidean_space"
assumes "piecewise_continuous_on a b I f"
shows "f integrable_on {a..b}"
using piecewise_continuous_on_imp_absolutely_integrable[OF assms]
unfolding absolutely_integrable_on_def by auto
lemma piecewise_continuous_on_comp:
assumes p: "piecewise_continuous_on a b I f"
assumes c: "⋀x. isCont (λ(x, y). g x y) x"
shows "piecewise_continuous_on a b I (λx. g x (f x))"
proof -
from piecewise_continuous_onE[OF p]
obtain l u
where I: "finite I"
and cf: "continuous_on ({a..b} - I) f"
and l: "(⋀i. i ∈ I ⟹ a < i ⟹ i ≤ b ⟹ (f ⤏ l i) (at_left i))"
and u: "(⋀i. i ∈ I ⟹ a ≤ i ⟹ i < b ⟹ (f ⤏ u i) (at_right i))"
by metis
note ‹finite I›
moreover
from c have cg: "continuous_on UNIV (λ(x, y). g x y)"
using c by (auto simp: continuous_on_def isCont_def intro: tendsto_within_subset)
then have "continuous_on ({a..b} - I) (λx. g x (f x))"
by (intro continuous_on_compose2[OF cg, where f="λx. (x, f x)", simplified])
(auto intro!: continuous_intros cf)
moreover
note tendstcomp = tendsto_compose[OF c[unfolded isCont_def], where f="λx. (x, f x)", simplified, THEN tendsto_eq_rhs]
have "((λx. g x (f x)) ⤏ g i (u i)) (at_right i)" if "i ∈ I" "a ≤ i" "i < b" for i
by (rule tendstcomp) (auto intro!: tendsto_eq_intros u[OF ‹i ∈ I›] that)
moreover
have "((λx. g x (f x)) ⤏ g i (l i)) (at_left i)" if "i ∈ I" "a < i" "i ≤ b" for i
by (rule tendstcomp) (auto intro!: tendsto_eq_intros l[OF ‹i ∈ I›] that)
ultimately show ?thesis
by (intro piecewise_continuous_onI)
qed
lemma bounded_piecewise_continuous_image:
"bounded (f ` {a .. b})"
if "piecewise_continuous_on a b I f" for a b::real
using that
proof (induction rule: piecewise_continuous_on_induct)
case (empty a b f)
then show ?case by (auto intro!: compact_imp_bounded compact_continuous_image)
next
case (combine a i b I f1 f2 f)
have "(f ` {a..b}) ⊆ (insert (f i) (f1 ` {a..i} ∪ f2 ` {i..b}))"
using combine
by (auto simp: image_iff) (metis antisym_conv atLeastAtMost_iff le_cases not_less)
also have "bounded …"
using combine by auto
finally (bounded_subset[rotated]) show ?case .
qed
lemma tendsto_within_eventually:
"(f ⤏ l) (at x within X)"
if
"(f ⤏ l) (at x within Y)"
"∀⇩F y in at x within X. y ∈ Y"
using _ that(1)
proof (rule tendsto_mono)
show "at x within X ≤ at x within Y"
proof (rule filter_leI)
fix P
assume "eventually P (at x within Y)"
with that(2) show "eventually P (at x within X)"
unfolding eventually_at_filter
by eventually_elim auto
qed
qed
lemma at_within_eq_bot_lemma:
"at x within {b..c} = (if x < b ∨ b > c then bot else at x within {b..c})"
for x b c::"'a::linorder_topology"
by (auto intro!: not_in_closure_trivial_limitI)
lemma at_within_eq_bot_lemma2:
"at x within {a..b} = (if x > b ∨ a > b then bot else at x within {a..b})"
for x a b::"'a::linorder_topology"
by (auto intro!: not_in_closure_trivial_limitI)
lemma piecewise_continuous_on_combine:
"piecewise_continuous_on a c J f"
if "piecewise_continuous_on a b J f" "piecewise_continuous_on b c J f"
using that
apply (auto elim!: piecewise_continuous_onE)
subgoal for l u l' u'
apply (rule piecewise_continuous_onI[where
l="λi. if i ≤ b then l i else l' i" and
u="λi. if i < b then u i else u' i"])
subgoal by force
subgoal
apply (rule continuous_on_subset[where s="({a .. b} ∪ {b .. c} - J)"])
apply (auto simp: continuous_on_def at_within_t1_space_avoid_finite)
apply (rule Lim_Un)
subgoal by auto
subgoal by (subst at_within_eq_bot_lemma) auto
apply (rule Lim_Un)
subgoal by (subst at_within_eq_bot_lemma2) auto
subgoal by auto
done
by auto
done
lemma piecewise_continuous_on_finite_superset:
"piecewise_continuous_on a b I f ⟹ I ⊆ J ⟹ finite J ⟹ piecewise_continuous_on a b J f"
for a b::"'a::{linorder_topology, dense_order, no_bot, no_top}"
apply (auto simp add: piecewise_continuous_on_def)
apply (rule continuous_on_subset, assumption, force)
subgoal for i
apply (cases "i ∈ I")
apply (auto simp: continuous_on_def at_within_t1_space_avoid_finite)
apply (drule bspec[where x=i])
apply (auto simp: at_within_t1_space_avoid)
apply (cases "i = b")
apply (auto simp: at_within_Icc_at_left )
apply (subst (asm) at_within_interior[where x=i])
by (auto simp: filterlim_at_split)
subgoal for i
apply (cases "i ∈ I")
apply (auto simp: continuous_on_def at_within_t1_space_avoid_finite)
apply (drule bspec[where x=i])
apply (auto simp: at_within_t1_space_avoid)
apply (cases "i = a")
apply (auto simp: at_within_Icc_at_right)
apply (subst (asm) at_within_interior[where x=i])
subgoal by (simp add: interior_Icc)
by (auto simp: filterlim_at_split)
done
lemma piecewise_continuous_on_splitI:
"piecewise_continuous_on a c K f"
if
"piecewise_continuous_on a b I f"
"piecewise_continuous_on b c J f"
"I ⊆ K" "J ⊆ K" "finite K"
for a b::"'a::{linorder_topology, dense_order, no_bot, no_top}"
apply (rule piecewise_continuous_on_combine[where b=b])
subgoal
by (rule piecewise_continuous_on_finite_superset, fact)
(use that in ‹auto elim!: piecewise_continuous_onE›)
subgoal
by (rule piecewise_continuous_on_finite_superset, fact)
(use that in ‹auto elim!: piecewise_continuous_onE›)
done
end