Theory Deutsch_Jozsa
section ‹The Deutsch-Jozsa Algorithm›
theory Deutsch_Jozsa
imports
Deutsch
More_Tensor
Binary_Nat
begin
text ‹
Given a function $f:{0,1}^n \mapsto {0,1}$, the Deutsch-Jozsa algorithm decides if this function is
constant or balanced with a single $f(x)$ circuit to evaluate the function for multiple values of $x$
simultaneously. The algorithm makes use of quantum parallelism and quantum interference.
A constant function with values in {0,1} returns either always 0 or always 1.
A balanced function is 0 for half of the inputs and 1 for the other half.
›
locale bob_fun =
fixes f:: "nat ⇒ nat" and n:: "nat"
assumes dom: "f ∈ ({(i::nat). i < 2^n} →⇩E {0,1})"
assumes dim: "n ≥ 1"
context bob_fun
begin
definition const:: "nat ⇒ bool" where
"const c = (∀x∈{i::nat. i<2^n}. f x = c)"
definition is_const:: bool where
"is_const ≡ const 0 ∨ const 1"
definition is_balanced:: bool where
"is_balanced ≡ ∃A B ::nat set. A ⊆ {i::nat. i < 2^n} ∧ B ⊆ {i::nat. i < 2^n}
∧ card A = 2^(n-1) ∧ card B = 2^(n-1)
∧ (∀x∈A. f x = 0) ∧ (∀x∈B. f x = 1)"
lemma is_balanced_inter:
fixes A B:: "nat set"
assumes "∀x ∈ A. f x = 0" and "∀x ∈ B. f x = 1"
shows "A ∩ B = {}"
using assms by auto
lemma is_balanced_union:
fixes A B:: "nat set"
assumes "A ⊆ {i::nat. i < 2^n}" and "B ⊆ {i::nat. i < 2^n}"
and "card A = 2^(n-1)" and "card B = 2^(n-1)"
and "A ∩ B = {}"
shows "A ∪ B = {i::nat. i < 2^n}"
proof-
have "finite A" and "finite B"
by (simp add: assms(3) card_ge_0_finite)
(simp add: assms(4) card_ge_0_finite)
then have "card(A ∪ B) = 2 * 2^(n-1)"
using assms(3-5) by (simp add: card_Un_disjoint)
then have "card(A ∪ B) = 2^n"
by (metis Nat.nat.simps(3) One_nat_def dim le_0_eq power_eq_if)
moreover have "… = card({i::nat. i < 2^n})" by simp
moreover have "A ∪ B ⊆ {i::nat. i < 2^n}"
using assms(1,2) by simp
moreover have "finite ({i::nat. i < 2^n})" by simp
ultimately show ?thesis
using card_subset_eq[of "{i::nat. i < 2^n}" "A ∪ B"] by simp
qed
lemma f_ge_0: "∀x. f x ≥ 0" by simp
lemma f_dom_not_zero:
shows "f ∈ ({i::nat. n ≥ 1 ∧ i < 2^n} →⇩E {0,1})"
using dim dom by simp
lemma f_values: "∀x ∈ {(i::nat). i < 2^n} . f x = 0 ∨ f x = 1"
using dom by auto
end
text ‹The input function has to be constant or balanced.›
locale jozsa = bob_fun +
assumes const_or_balanced: "is_const ∨ is_balanced "
text ‹
Introduce two customised rules: disjunctions with four disjuncts and induction starting from one
instead of zero.
›
lemma disj_four_cases:
assumes "A ∨ B ∨ C ∨ D" and "A ⟹ P" and "B ⟹ P" and "C ⟹ P" and "D ⟹ P"
shows "P"
using assms by auto
text ‹The unitary transform @{term U⇩f}.›
definition (in jozsa) jozsa_transform:: "complex Matrix.mat" (‹U⇩f›) where
"U⇩f ≡ Matrix.mat (2^(n+1)) (2^(n+1)) (λ(i,j).
if i = j then (1-f(i div 2)) else
if i = j + 1 ∧ odd i then f(i div 2) else
if i = j - 1 ∧ even i ∧ j≥1 then f(i div 2) else 0)"
lemma (in jozsa) jozsa_transform_dim [simp]:
shows "dim_row U⇩f = 2^(n+1)" and "dim_col U⇩f = 2^(n+1)"
by (auto simp add: jozsa_transform_def)
lemma (in jozsa) jozsa_transform_coeff_is_zero [simp]:
assumes "i < dim_row U⇩f ∧ j < dim_col U⇩f"
shows "(i≠j ∧ ¬(i=j+1 ∧ odd i) ∧ ¬ (i=j-1 ∧ even i ∧ j≥1)) ⟶ U⇩f $$ (i,j) = 0"
using jozsa_transform_def assms by auto
lemma (in jozsa) jozsa_transform_coeff [simp]:
assumes "i < dim_row U⇩f ∧ j < dim_col U⇩f"
shows "i = j ⟶ U⇩f $$ (i,j) = 1 - f (i div 2)"
and "i = j + 1 ∧ odd i ⟶ U⇩f $$ (i,j) = f (i div 2)"
and "j ≥ 1 ∧ i = j - 1 ∧ even i ⟶ U⇩f $$ (i,j) = f (i div 2)"
using jozsa_transform_def assms by auto
lemma (in jozsa) U⇩f_mult_without_empty_summands_sum_even:
fixes i j A
assumes "i < dim_row U⇩f" and "j < dim_col A" and "even i" and "dim_col U⇩f = dim_row A"
shows "(∑k∈{0..< dim_row A}. U⇩f $$ (i,k) * A $$ (k,j)) =(∑k∈{i,i+1}. U⇩f $$ (i,k) * A $$ (k,j))"
proof-
have "(∑k ∈ {0..< 2^(n+1)}. U⇩f $$ (i,k) * A $$ (k,j)) =
(∑k ∈ {0..<i}. U⇩f $$ (i,k) * A $$ (k,j)) +
(∑k ∈ {i,i+1}. U⇩f $$ (i,k) * A $$ (k,j)) +
(∑k ∈ {(i+2)..< 2^(n+1)}. U⇩f $$ (i,k) * A $$ (k,j))"
proof-
have "{0..< 2^(n+1)} = {0..<i} ∪ {i..< 2^(n+1)}
∧ {i..< 2^(n+1)} = {i,i+1} ∪ {(i+2)..<2^(n+1)}" using assms(1-3) by auto
moreover have "{0..<i} ∩ {i,i+1} = {}
∧ {i,i+1} ∩ {(i+2)..< 2^(n+1)} = {}
∧ {0..<i} ∩ {(i+2)..< 2^(n+1)} = {}" using assms by simp
ultimately show ?thesis
using sum.union_disjoint
by (metis (no_types, lifting) finite_Un finite_atLeastLessThan is_num_normalize(1) ivl_disj_int_two(3))
qed
moreover have "(∑k ∈ {0..<i}. U⇩f $$ (i,k) * A $$ (k,j)) = 0"
proof-
have "k ∈ {0..<i} ⟶ (i≠k ∧ ¬(i=k+1 ∧ odd i) ∧ ¬ (i=k-1 ∧ even i ∧ k≥1))" for k
using assms by auto
then have "k ∈ {0..<i} ⟶ U⇩f $$ (i,k) = 0" for k
using assms(1) by auto
then show ?thesis by simp
qed
moreover have "(∑k ∈ {(i+2)..< 2^(n+1)}. U⇩f $$ (i,k) * A $$ (k,j)) = 0"
proof-
have "k∈{(i+2)..< 2^(n+1)} ⟶ (i≠k ∧ ¬(i=k+1 ∧ odd i) ∧ ¬ (i=k-1 ∧ even i ∧ k≥1))" for k by auto
then have "k ∈ {(i+2)..< 2^(n+1)}⟶ U⇩f $$ (i,k) = 0" for k
using assms(1) by auto
then show ?thesis by simp
qed
moreover have "dim_row A = 2^(n+1)" using assms(4) by simp
ultimately show "?thesis" by(metis (no_types, lifting) add.left_neutral add.right_neutral)
qed
lemma (in jozsa) U⇩f_mult_without_empty_summands_even:
fixes i j A
assumes "i < dim_row U⇩f" and "j < dim_col A" and "even i" and "dim_col U⇩f = dim_row A"
shows "(U⇩f * A) $$ (i,j) = (∑k ∈ {i,i+1}. U⇩f $$ (i,k) * A $$ (k,j))"
proof-
have "(U⇩f * A) $$ (i,j) = (∑ k∈{0..< dim_row A}. (U⇩f $$ (i,k)) * (A $$ (k,j)))"
using assms(1,2,4) index_matrix_prod by (simp add: atLeast0LessThan)
then show ?thesis
using assms U⇩f_mult_without_empty_summands_sum_even by simp
qed
lemma (in jozsa) U⇩f_mult_without_empty_summands_sum_odd:
fixes i j A
assumes "i < dim_row U⇩f" and "j < dim_col A" and "odd i" and "dim_col U⇩f = dim_row A"
shows "(∑k∈{0..< dim_row A}. U⇩f $$ (i,k) * A $$ (k,j)) =(∑k∈{i-1,i}. U⇩f $$ (i,k) * A $$ (k,j))"
proof-
have "(∑k∈{0..< 2^(n+1)}. U⇩f $$ (i,k) * A $$ (k,j)) =
(∑k ∈ {0..<i-1}. U⇩f $$ (i,k) * A $$ (k,j)) +
(∑k ∈ {i-1,i}. U⇩f $$ (i,k) * A $$ (k,j)) +
(∑k ∈ {i+1..< 2^(n+1)}. U⇩f $$ (i,k) * A $$ (k,j))"
proof-
have "{0..< 2^(n+1)} = {0..<i-1} ∪ {i-1..< 2^(n+1)}
∧ {i-1..< 2^(n+1)} = {i-1,i} ∪ {i+1..<2^(n+1)}" using assms(1-3) by auto
moreover have "{0..<i-1} ∩ {i-1,i} = {}
∧ {i-1,i} ∩ {i+1..< 2^(n+1)} = {}
∧ {0..<i-1} ∩ {i+1..< 2^(n+1)} = {}" using assms by simp
ultimately show ?thesis
using sum.union_disjoint
by(metis (no_types, lifting) finite_Un finite_atLeastLessThan is_num_normalize(1) ivl_disj_int_two(3))
qed
moreover have "(∑k ∈ {0..<i-1}. U⇩f $$ (i,k) * A $$ (k,j)) = 0"
proof-
have "k ∈ {0..<i-1} ⟶ (i≠k ∧ ¬(i=k+1 ∧ odd i) ∧ ¬ (i=k-1 ∧ even i ∧ k≥1))" for k by auto
then have "k ∈ {0..<i-1} ⟶ U⇩f $$ (i,k) = 0" for k
using assms(1) by auto
then show ?thesis by simp
qed
moreover have "(∑k ∈ {i+1..< 2^(n+1)}. U⇩f $$ (i,k) * A $$ (k,j)) = 0"
using assms(3) by auto
moreover have "dim_row A = 2^(n+1)" using assms(4) by simp
ultimately show "?thesis" by(metis (no_types, lifting) add.left_neutral add.right_neutral)
qed
lemma (in jozsa) U⇩f_mult_without_empty_summands_odd:
fixes i j A
assumes "i < dim_row U⇩f" and "j < dim_col A" and "odd i" and "dim_col U⇩f = dim_row A"
shows "(U⇩f * A) $$ (i,j) = (∑k ∈ {i-1,i}. U⇩f $$ (i,k) * A $$ (k,j)) "
proof-
have "(U⇩f * A) $$ (i,j) = (∑k ∈ {0 ..< dim_row A}. (U⇩f $$ (i,k)) * (A $$ (k,j)))"
using assms(1,2,4) index_matrix_prod by (simp add: atLeast0LessThan)
then show "?thesis"
using assms U⇩f_mult_without_empty_summands_sum_odd by auto
qed
text ‹@{term U⇩f} is a gate.›
lemma (in jozsa) transpose_of_jozsa_transform:
shows "(U⇩f)⇧t = U⇩f"
proof
show "dim_row (U⇩f⇧t) = dim_row U⇩f" by simp
next
show "dim_col (U⇩f⇧t) = dim_col U⇩f" by simp
next
fix i j:: nat
assume a0: "i < dim_row U⇩f" and a1: "j < dim_col U⇩f"
then show "U⇩f⇧t $$ (i, j) = U⇩f $$ (i, j)"
proof (induct rule: disj_four_cases)
show "i=j ∨ (i=j+1 ∧ odd i) ∨ (i=j-1 ∧ even i ∧ j≥1) ∨ (i≠j ∧ ¬(i=j+1 ∧ odd i) ∧ ¬ (i=j-1 ∧ even i ∧ j≥1))"
by linarith
next
assume "i = j"
then show "U⇩f⇧t $$ (i,j) = U⇩f $$ (i,j)" using a0 by simp
next
assume "(i=j+1 ∧ odd i)"
then show "U⇩f⇧t $$ (i,j) = U⇩f $$ (i,j)" using transpose_mat_def a0 a1 by auto
next
assume a2:"(i=j-1 ∧ even i ∧ j≥1)"
then have "U⇩f $$ (i,j) = f (i div 2)"
using a0 a1 jozsa_transform_coeff by auto
moreover have "U⇩f $$ (j,i) = f (i div 2)"
using a0 a1 a2 jozsa_transform_coeff
by (metis add_diff_assoc2 diff_add_inverse2 even_plus_one_iff even_succ_div_two jozsa_transform_dim)
ultimately show "?thesis"
using transpose_mat_def a0 a1 by simp
next
assume a2:"(i≠j ∧ ¬(i=j+1 ∧ odd i) ∧ ¬ (i=j-1 ∧ even i ∧ j≥1))"
then have "(j≠i ∧ ¬(j=i+1 ∧ odd j) ∧ ¬ (j=i-1 ∧ even j ∧ i≥1))"
by (metis le_imp_diff_is_add diff_add_inverse even_plus_one_iff le_add1)
then have "U⇩f $$ (j,i) = 0"
using jozsa_transform_coeff_is_zero a0 a1 by auto
moreover have "U⇩f $$ (i,j) = 0"
using jozsa_transform_coeff_is_zero a0 a1 a2 by auto
ultimately show "U⇩f⇧t $$ (i,j) = U⇩f $$ (i,j)"
using transpose_mat_def a0 a1 by simp
qed
qed
lemma (in jozsa) adjoint_of_jozsa_transform:
shows "(U⇩f)⇧† = U⇩f"
proof
show "dim_row (U⇩f⇧†) = dim_row U⇩f" by simp
next
show "dim_col (U⇩f⇧†) = dim_col U⇩f" by simp
next
fix i j:: nat
assume a0: "i < dim_row U⇩f" and a1: "j < dim_col U⇩f"
then show "U⇩f⇧† $$ (i,j) = U⇩f $$ (i,j)"
proof (induct rule: disj_four_cases)
show "i=j ∨ (i=j+1 ∧ odd i) ∨ (i=j-1 ∧ even i ∧ j≥1) ∨ (i≠j ∧ ¬(i=j+1 ∧ odd i) ∧ ¬ (i=j-1 ∧ even i ∧ j≥1))"
by linarith
next
assume "i=j"
then show "U⇩f⇧† $$ (i,j) = U⇩f $$ (i,j)" using a0 dagger_def by simp
next
assume "(i=j+1 ∧ odd i)"
then show "U⇩f⇧† $$ (i,j) = U⇩f $$ (i,j)" using a0 dagger_def by auto
next
assume a2:"(i=j-1 ∧ even i ∧ j≥1)"
then have "U⇩f $$ (i,j) = f (i div 2)"
using a0 a1 jozsa_transform_coeff by auto
moreover have "U⇩f⇧† $$ (j,i) = f (i div 2)"
using a1 a2 jozsa_transform_coeff dagger_def by auto
ultimately show "U⇩f⇧† $$ (i,j) = U⇩f $$ (i,j)"
by(metis a0 a1 cnj_transpose_is_dagger dim_row_of_dagger index_transpose_mat dagger_of_transpose_is_cnj transpose_of_jozsa_transform)
next
assume a2: "(i≠j ∧ ¬(i=j+1 ∧ odd i) ∧ ¬ (i=j-1 ∧ even i ∧ j≥1))"
then have f0:"(i≠j ∧ ¬(j=i+1 ∧ odd j) ∧ ¬ (j=i-1 ∧ even j ∧ i≥1))"
by (metis le_imp_diff_is_add diff_add_inverse even_plus_one_iff le_add1)
then have "U⇩f $$ (j,i) = 0" and "cnj 0 = 0"
using jozsa_transform_coeff_is_zero a0 a1 a2 by auto
then have "U⇩f⇧† $$ (i,j) = 0"
using a0 a1 dagger_def by simp
then show "U⇩f⇧† $$ (i, j) = U⇩f $$ (i, j)"
using a0 a1 a2 jozsa_transform_coeff_is_zero by auto
qed
qed
lemma (in jozsa) jozsa_transform_is_unitary_index_even:
fixes i j:: nat
assumes "i < dim_row U⇩f" and "j < dim_col U⇩f" and "even i"
shows "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
proof-
have "(U⇩f * U⇩f) $$ (i,j) = (∑k ∈ {i,i+1}. U⇩f $$ (i,k) * U⇩f $$ (k,j)) "
using U⇩f_mult_without_empty_summands_even[of i j U⇩f ] assms by simp
moreover have "U⇩f $$ (i,i) * U⇩f $$ (i,j) = (1-f(i div 2)) * U⇩f $$ (i,j)"
using assms(1,3) by simp
moreover have f0: "U⇩f $$ (i,i+1) * U⇩f $$ (i+1,j) = f(i div 2) * U⇩f $$ (i+1,j)"
by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right assms(1) assms(3) diff_add_inverse2
even_add even_mult_iff jozsa_transform_coeff(3) jozsa_transform_dim le_add2 le_eq_less_or_eq odd_one
one_add_one power.simps(2))
ultimately have f1: "(U⇩f * U⇩f) $$ (i,j) = (1-f(i div 2)) * U⇩f $$ (i,j) + f(i div 2) * U⇩f $$ (i+1,j)" by auto
thus ?thesis
proof (induct rule: disj_four_cases)
show "j=i ∨ (j=i+1 ∧ odd j) ∨ (j=i-1 ∧ even j ∧ i≥1) ∨ (j≠i ∧ ¬(j=i+1 ∧ odd j) ∧ ¬ (j=i-1 ∧ even j ∧ i≥1))"
by linarith
next
assume a0:"j=i"
then have "U⇩f $$ (i,j) = (1-f(i div 2))"
using assms(1,2) a0 by simp
moreover have "U⇩f $$ (i+1,j) = f(i div 2)"
using assms(1,3) a0 by auto
ultimately have "(U⇩f * U⇩f) $$ (i,j) = (1-f(i div 2)) * (1-f(i div 2)) + f(i div 2) * f(i div 2)"
using f1 by simp
moreover have "(1-f(i div 2)) * (1-f(i div 2)) + f(i div 2) * f(i div 2) = 1"
using f_values assms(1)
by (metis (no_types, lifting) Nat.minus_nat.diff_0 diff_add_0 diff_add_inverse jozsa_transform_dim(1)
less_power_add_imp_div_less mem_Collect_eq mult_eq_if one_power2 power2_eq_square power_one_right)
ultimately show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)" by(metis assms(2) a0 index_one_mat(1) of_nat_1)
next
assume a0: "(j=i+1 ∧ odd j)"
then have "U⇩f $$ (i,j) = f(i div 2)"
using assms(1,2) a0 by simp
moreover have "U⇩f $$ (i+1,j) = (1-f(i div 2))"
using assms(2,3) a0 by simp
ultimately have "(U⇩f * U⇩f) $$ (i,j) = (1-f(i div 2)) * f(i div 2) + f(i div 2) * (1-f(i div 2))"
using f0 f1 assms by simp
then show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
using assms(1,2) a0 by auto
next
assume "(j=i-1 ∧ even j ∧ i≥1)"
then show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
using assms(3) dvd_diffD1 odd_one by blast
next
assume a0:"(j≠i ∧ ¬(j=i+1 ∧ odd j) ∧ ¬ (j=i-1 ∧ even j ∧ i≥1))"
then have "U⇩f $$ (i,j) = 0"
using assms(1,2) by(metis index_transpose_mat(1) jozsa_transform_coeff_is_zero jozsa_transform_dim transpose_of_jozsa_transform)
moreover have "U⇩f $$ (i+1,j) = 0"
using assms a0 by auto
ultimately have "(U⇩f * U⇩f) $$ (i,j) = (1-f(i div 2)) * 0 + f(i div 2) * 0"
by (simp add: f1)
then show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
using a0 assms(1,2) by(metis add.left_neutral index_one_mat(1) jozsa_transform_dim mult_0_right of_nat_0)
qed
qed
lemma (in jozsa) jozsa_transform_is_unitary_index_odd:
fixes i j:: nat
assumes "i < dim_row U⇩f" and "j < dim_col U⇩f" and "odd i"
shows "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
proof-
have f0: "i ≥ 1"
using linorder_not_less assms(3) by auto
have "(U⇩f * U⇩f) $$ (i,j) = (∑k ∈ {i-1,i}. U⇩f $$ (i,k) * U⇩f $$ (k,j)) "
using U⇩f_mult_without_empty_summands_odd[of i j U⇩f ] assms by simp
moreover have "(∑k ∈ {i-1,i}. U⇩f $$ (i,k) * U⇩f $$ (k,j))
= U⇩f $$ (i,i-1) * U⇩f $$ (i-1,j) + U⇩f $$ (i,i) * U⇩f $$ (i,j)"
using f0 by simp
moreover have "U⇩f $$ (i,i) * U⇩f $$ (i,j) = (1-f(i div 2)) * U⇩f $$ (i,j)"
using assms(1,2) by simp
moreover have f1: "U⇩f $$ (i,i-1) * U⇩f $$ (i-1,j) = f(i div 2) * U⇩f $$ (i-1,j)"
using assms(1) assms(3) by simp
ultimately have f2: "(U⇩f * U⇩f) $$ (i,j) = f(i div 2) * U⇩f $$ (i-1,j) + (1-f(i div 2)) * U⇩f $$ (i,j)" by simp
then show "?thesis"
proof (induct rule: disj_four_cases)
show "j=i ∨ (j=i+1 ∧ odd j) ∨ (j=i-1 ∧ even j ∧ i≥1) ∨ (j≠i ∧ ¬(j=i+1 ∧ odd j) ∧ ¬ (j=i-1 ∧ even j ∧ i≥1))"
by linarith
next
assume a0:"j=i"
then have "U⇩f $$ (i,j) = (1-f(i div 2))"
using assms(1,2) by simp
moreover have "U⇩f $$ (i-1,j) = f(i div 2)"
using a0 assms
by (metis index_transpose_mat(1) jozsa_transform_coeff(2) less_imp_diff_less odd_two_times_div_two_nat
odd_two_times_div_two_succ transpose_of_jozsa_transform)
ultimately have "(U⇩f * U⇩f) $$ (i,j) = f(i div 2) * f(i div 2) + (1-f(i div 2)) * (1-f(i div 2))"
using f2 by simp
moreover have "f(i div 2) * f(i div 2) + (1-f(i div 2)) * (1-f(i div 2)) = 1"
using f_values assms(1)
by (metis (no_types, lifting) Nat.minus_nat.diff_0 diff_add_0 diff_add_inverse jozsa_transform_dim(1)
less_power_add_imp_div_less mem_Collect_eq mult_eq_if one_power2 power2_eq_square power_one_right)
ultimately show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)" by(metis assms(2) a0 index_one_mat(1) of_nat_1)
next
assume a0:"(j=i+1 ∧ odd j)"
then show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
using assms(3) dvd_diffD1 odd_one even_plus_one_iff by blast
next
assume a0:"(j=i-1 ∧ even j ∧ i≥1)"
then have "(U⇩f * U⇩f) $$ (i,j) = f(i div 2) * (1-f(i div 2)) + (1-f(i div 2)) * f(i div 2)"
using f0 f1 f2 assms
by (metis jozsa_transform_coeff(1) Groups.ab_semigroup_mult_class.mult.commute even_succ_div_two f2
jozsa_transform_dim odd_two_times_div_two_nat odd_two_times_div_two_succ of_nat_add of_nat_mult)
then show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
using assms(1) a0 by auto
next
assume a0:"j≠i ∧ ¬(j=i+1 ∧ odd j) ∧ ¬ (j=i-1 ∧ even j ∧ i≥1)"
then have "U⇩f $$ (i,j) = 0"
by (metis assms(1,2) index_transpose_mat(1) jozsa_transform_coeff_is_zero jozsa_transform_dim transpose_of_jozsa_transform)
moreover have "U⇩f $$ (i-1,j) = 0"
using assms a0 f0
by auto (smt (verit) One_nat_def Suc_n_not_le_n add_diff_inverse_nat assms(1) assms(2) diff_Suc_less even_add
jozsa_transform_coeff_is_zero jozsa_axioms less_imp_le less_le_trans less_one odd_one)
ultimately have "(U⇩f * U⇩f) $$ (i,j) = (1-f(i div 2)) * 0 + f(i div 2) * 0"
using f2 by simp
then show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
using a0 assms by (metis add.left_neutral index_one_mat(1) jozsa_transform_dim mult_0_right of_nat_0)
qed
qed
lemma (in jozsa) jozsa_transform_is_gate:
shows "gate (n+1) U⇩f"
proof
show "dim_row U⇩f = 2^(n+1)" by simp
next
show "square_mat U⇩f" by simp
next
show "unitary U⇩f"
proof-
have "U⇩f * U⇩f = 1⇩m (dim_col U⇩f)"
proof
show "dim_row (U⇩f * U⇩f) = dim_row (1⇩m (dim_col U⇩f))" by simp
show "dim_col (U⇩f * U⇩f) = dim_col (1⇩m (dim_col U⇩f))" by simp
fix i j:: nat
assume "i < dim_row (1⇩m (dim_col U⇩f))" and "j < dim_col (1⇩m (dim_col U⇩f))"
then have "i < dim_row U⇩f" and "j < dim_col U⇩f" by auto
then show "(U⇩f * U⇩f) $$ (i,j) = 1⇩m (dim_col U⇩f) $$ (i,j)"
using jozsa_transform_is_unitary_index_odd jozsa_transform_is_unitary_index_even by blast
qed
thus ?thesis by (simp add: adjoint_of_jozsa_transform unitary_def)
qed
qed
text ‹N-fold application of the tensor product›
fun iter_tensor:: "complex Matrix.mat ⇒ nat ⇒ complex Matrix.mat" (‹_ ⊗⇗_⇖› 75) where
"A ⊗⇗(Suc 0)⇖ = A"
| "A ⊗⇗(Suc k)⇖ = A ⨂ (A ⊗⇗k⇖)"
lemma one_tensor_is_id [simp]:
fixes A
shows "A ⊗⇗1⇖ = A"
using one_mat_def by simp
lemma iter_tensor_suc:
fixes n
assumes "n ≥ 1"
shows " A ⊗⇗(Suc n)⇖ = A ⨂ (A ⊗⇗n⇖)"
using assms by (metis Deutsch_Jozsa.iter_tensor.simps(2) One_nat_def Suc_le_D)
lemma dim_row_of_iter_tensor [simp]:
fixes A n
assumes "n ≥ 1"
shows "dim_row(A ⊗⇗n⇖) = (dim_row A)^n"
using assms
proof (rule nat_induct_at_least)
show "dim_row (A ⊗⇗1⇖) = (dim_row A)^1"
using one_tensor_is_id by simp
fix n:: nat
assume "n ≥ 1" and "dim_row (A ⊗⇗n⇖) = (dim_row A)^n"
then show "dim_row (A ⊗⇗Suc n⇖) = (dim_row A)^Suc n"
using iter_tensor_suc assms dim_row_tensor_mat by simp
qed
lemma dim_col_of_iter_tensor [simp]:
fixes A n
assumes "n ≥ 1"
shows "dim_col(A ⊗⇗n⇖) = (dim_col A)^n"
using assms
proof (rule nat_induct_at_least)
show "dim_col (A ⊗⇗1⇖) = (dim_col A)^1"
using one_tensor_is_id by simp
fix n:: nat
assume "n ≥ 1" and "dim_col (A ⊗⇗n⇖) = (dim_col A)^n"
then show "dim_col (A ⊗⇗Suc n⇖) = (dim_col A)^Suc n"
using iter_tensor_suc assms dim_col_tensor_mat by simp
qed
lemma iter_tensor_values:
fixes A n i j
assumes "n ≥ 1" and "i < dim_row (A ⨂ (A ⊗⇗n⇖))" and "j < dim_col (A ⨂ (A ⊗⇗n⇖))"
shows "(A ⊗⇗(Suc n)⇖) $$ (i,j) = (A ⨂ (A ⊗⇗n⇖)) $$ (i,j)"
using assms by (metis One_nat_def le_0_eq not0_implies_Suc iter_tensor.simps(2))
lemma iter_tensor_mult_distr:
assumes "n ≥ 1" and "dim_col A = dim_row B" and "dim_col A > 0" and "dim_col B > 0"
shows "(A ⊗⇗(Suc n)⇖) * (B ⊗⇗(Suc n)⇖) = (A * B) ⨂ ((A ⊗⇗n⇖) * (B ⊗⇗n⇖))"
proof-
have "(A ⊗⇗(Suc n)⇖) * (B ⊗⇗(Suc n)⇖) = (A ⨂ (A ⊗⇗n⇖)) * (B ⨂ (B ⊗⇗n⇖))"
using Suc_le_D assms(1) by fastforce
then show "?thesis"
using mult_distr_tensor[of "A" "B" "(iter_tensor A n)" "(iter_tensor B n)"] assms by simp
qed
lemma index_tensor_mat_with_vec2_row_cond:
fixes A B:: "complex Matrix.mat" and i:: "nat"
assumes "i < 2 * (dim_row B)" and "i ≥ dim_row B" and "dim_col B > 0"
and "dim_row A = 2" and "dim_col A = 1"
shows "(A ⨂ B) $$ (i,0) = (A $$ (1,0)) * (B $$ (i-dim_row B,0))"
proof-
have "(A ⨂ B) $$ (i,0) = A $$ (i div (dim_row B),0) * B $$ (i mod (dim_row B),0)"
using assms index_tensor_mat[of A "dim_row A" "dim_col A" B "dim_row B" "dim_col B" i 0] by simp
moreover have "i div (dim_row B) = 1"
using assms(1,2,4) by simp
then have "i mod (dim_row B) = i - (dim_row B)"
by (simp add: modulo_nat_def)
ultimately show "(A ⨂ B) $$ (i,0) = (A $$ (1,0)) * (B $$ (i-dim_row B,0))"
by (simp add: ‹i div dim_row B = 1›)
qed
lemma iter_tensor_of_gate_is_gate:
fixes A:: "complex Matrix.mat" and n m:: "nat"
assumes "gate m A" and "n ≥ 1"
shows "gate (m*n) (A ⊗⇗n⇖)"
using assms(2)
proof(rule nat_induct_at_least)
show "gate (m * 1) (A ⊗⇗1⇖)" using assms(1) by simp
fix n:: nat
assume "n ≥ 1" and IH:"gate (m * n) (A ⊗⇗n⇖)"
then have "A ⊗⇗(Suc n)⇖ = A ⨂ (A ⊗⇗n⇖)"
by (simp add: iter_tensor_suc)
moreover have "gate (m*n + m) (A ⊗⇗(Suc n)⇖)"
using tensor_gate assms(1) by (simp add: IH add.commute calculation(1))
then show "gate (m*(Suc n)) (A ⊗⇗(Suc n)⇖)"
by (simp add: add.commute)
qed
lemma iter_tensor_of_state_is_state:
fixes A:: "complex Matrix.mat" and n m:: "nat"
assumes "state m A" and "n≥1"
shows "state (m*n) (A ⊗⇗n⇖)"
using assms(2)
proof(rule nat_induct_at_least)
show "state (m * 1) (A ⊗⇗1⇖)"
using one_tensor_is_id assms(1) by simp
fix n:: nat
assume "n ≥ 1" and IH:"state (m * n) (A ⊗⇗n⇖)"
then have "A ⊗⇗(Suc n)⇖ = A ⨂ (A ⊗⇗n⇖)"
by (simp add: iter_tensor_suc)
moreover have "state (m*n + m) (A ⊗⇗(Suc n)⇖)"
using tensor_gate assms(1) by (simp add: IH add.commute calculation)
then show "state (m*(Suc n)) (A ⊗⇗(Suc n)⇖)"
by (simp add: add.commute)
qed
text ‹
We prepare n+1 qubits. The first n qubits in the state $|0\rangle$, the last one in the state
$|1\rangle$.
›
abbreviation ψ⇩1⇩0:: "nat ⇒ complex Matrix.mat" where
"ψ⇩1⇩0 n ≡ Matrix.mat (2^n) 1 (λ(i,j). 1/(sqrt 2)^n)"
lemma ψ⇩1⇩0_values:
fixes i j n
assumes "i < dim_row (ψ⇩1⇩0 n)" and "j < dim_col (ψ⇩1⇩0 n)"
shows "(ψ⇩1⇩0 n) $$ (i,j) = 1/(sqrt 2)^n"
using assms case_prod_conv by simp
text ‹$H^{\otimes n}$ is applied to $|0\rangle^{\otimes n}$.›
lemma H_on_ket_zero:
shows "(H * |zero⟩) = ψ⇩1⇩0 1"
proof
fix i j:: nat
assume "i < dim_row (ψ⇩1⇩0 1)" and "j < dim_col (ψ⇩1⇩0 1)"
then have f1: "i ∈ {0,1} ∧ j = 0" by (simp add: less_2_cases)
then show "(H * |zero⟩) $$ (i,j) = (ψ⇩1⇩0 1) $$ (i,j)"
by (auto simp add: times_mat_def scalar_prod_def H_def ket_vec_def)
next
show "dim_row (H * |zero⟩) = dim_row (ψ⇩1⇩0 1)" by (simp add: H_def)
show "dim_col (H * |zero⟩) = dim_col (ψ⇩1⇩0 1)" using H_def
by (simp add: ket_vec_def)
qed
lemma ψ⇩1⇩0_tensor:
assumes "n ≥ 1"
shows "(ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n) = (ψ⇩1⇩0 (Suc n))"
proof
have "dim_row (ψ⇩1⇩0 1) * dim_row (ψ⇩1⇩0 n) = 2^(Suc n)" by simp
then show "dim_row ((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) = dim_row (ψ⇩1⇩0 (Suc n))" by simp
have "dim_col (ψ⇩1⇩0 1) * dim_col (ψ⇩1⇩0 n) = 1" by simp
then show "dim_col ((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) = dim_col (ψ⇩1⇩0 (Suc n))" by simp
next
fix i j:: nat
assume a0: "i < dim_row (ψ⇩1⇩0 (Suc n))" and a1: "j < dim_col (ψ⇩1⇩0 (Suc n))"
then have f0: "j = 0" and f1: "i < 2^(Suc n)" by auto
then have f2:"(ψ⇩1⇩0 (Suc n)) $$ (i,j) = 1/(sqrt 2)^(Suc n)"
using ψ⇩1⇩0_values[of "i" "(Suc n)" "j"] a0 a1 by simp
show "((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) $$ (i,j) = (ψ⇩1⇩0 (Suc n)) $$ (i,j)"
proof (rule disjE)
show "i < dim_row (ψ⇩1⇩0 n) ∨ i ≥ dim_row (ψ⇩1⇩0 n)" by linarith
next
assume a2: "i < dim_row (ψ⇩1⇩0 n)"
then have "((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) $$ (i,j) = (ψ⇩1⇩0 1) $$ (0,0) * (ψ⇩1⇩0 n) $$ (i,0)"
using index_tensor_mat f0 assms by simp
also have "... = 1/sqrt(2) * 1/(sqrt(2)^n)"
using ψ⇩1⇩0_values a2 assms by simp
finally show "((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) $$ (i,j) = (ψ⇩1⇩0 (Suc n)) $$ (i,j)"
using f2 divide_divide_eq_left power_Suc by simp
next
assume "i ≥ dim_row (ψ⇩1⇩0 n)"
then have "((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) $$ (i,0) = ((ψ⇩1⇩0 1) $$ (1, 0)) * ((ψ⇩1⇩0 n) $$ ( i -dim_row (ψ⇩1⇩0 n),0))"
using index_tensor_mat_with_vec2_row_cond[of i "(ψ⇩1⇩0 1)" "(ψ⇩1⇩0 n)" ] a0 a1 f0
by (metis dim_col_mat(1) dim_row_mat(1) index_tensor_mat_with_vec2_row_cond power_Suc power_one_right)
then have "((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) $$ (i,0) = 1/sqrt(2) * 1/(sqrt 2)^n"
using ψ⇩1⇩0_values[of "i -dim_row (ψ⇩1⇩0 n)" "n" "j"] a0 a1 by simp
then show "((ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)) $$ (i,j) = (ψ⇩1⇩0 (Suc n)) $$ (i,j)"
using f0 f1 divide_divide_eq_left power_Suc by simp
qed
qed
lemma ψ⇩1⇩0_tensor_is_state:
assumes "n ≥ 1"
shows "state n ( |zero⟩ ⊗⇗n⇖)"
using iter_tensor_of_state_is_state ket_zero_is_state assms by fastforce
lemma iter_tensor_of_H_is_gate:
assumes "n ≥ 1"
shows "gate n (H ⊗⇗n⇖)"
using iter_tensor_of_gate_is_gate H_is_gate assms by fastforce
lemma iter_tensor_of_H_on_zero_tensor:
assumes "n ≥ 1"
shows "(H ⊗⇗n⇖) * ( |zero⟩ ⊗⇗n⇖) = ψ⇩1⇩0 n"
using assms
proof(rule nat_induct_at_least)
show "(H ⊗⇗1⇖) * ( |zero⟩ ⊗⇗1⇖) = ψ⇩1⇩0 1"
using H_on_ket_zero by simp
next
fix n:: nat
assume a0: "n ≥ 1" and IH: "(H ⊗⇗n⇖) * ( |zero⟩ ⊗⇗n⇖) = ψ⇩1⇩0 n"
then have "(H ⊗⇗(Suc n)⇖) * ( |zero⟩ ⊗⇗(Suc n)⇖) = (H * |zero⟩) ⨂ ((H ⊗⇗n⇖) * ( |zero⟩ ⊗⇗n⇖))"
using iter_tensor_mult_distr[of "n" "H" "|zero⟩"] a0 ket_vec_def H_def by(simp add: H_def)
also have "... = (H * |zero⟩) ⨂ (ψ⇩1⇩0 n)" using IH by simp
also have "... = (ψ⇩1⇩0 1) ⨂ (ψ⇩1⇩0 n)" using H_on_ket_zero by simp
also have "... = (ψ⇩1⇩0 (Suc n))" using ψ⇩1⇩0_tensor a0 by simp
finally show "(H ⊗⇗(Suc n)⇖) * ( |zero⟩ ⊗⇗(Suc n)⇖) = (ψ⇩1⇩0 (Suc n))" by simp
qed
lemma ψ⇩1⇩0_is_state:
assumes "n ≥ 1"
shows "state n (ψ⇩1⇩0 n)"
using iter_tensor_of_H_is_gate ψ⇩1⇩0_tensor_is_state assms gate_on_state_is_state iter_tensor_of_H_on_zero_tensor assms by metis
abbreviation ψ⇩1⇩1:: "complex Matrix.mat" where
"ψ⇩1⇩1 ≡ Matrix.mat 2 1 (λ(i,j). if i=0 then 1/sqrt(2) else -1/sqrt(2))"
lemma H_on_ket_one_is_ψ⇩1⇩1:
shows "(H * |one⟩) = ψ⇩1⇩1"
proof
fix i j:: nat
assume "i < dim_row ψ⇩1⇩1" and "j < dim_col ψ⇩1⇩1"
then have "i ∈ {0,1} ∧ j = 0" by (simp add: less_2_cases)
then show "(H * |one⟩) $$ (i,j) = ψ⇩1⇩1 $$ (i,j)"
by (auto simp add: times_mat_def scalar_prod_def H_def ket_vec_def)
next
show "dim_row (H * |one⟩) = dim_row ψ⇩1⇩1" by (simp add: H_def)
next
show "dim_col (H * |one⟩) = dim_col ψ⇩1⇩1" by (simp add: H_def ket_vec_def)
qed
abbreviation ψ⇩1:: "nat ⇒ complex Matrix.mat" where
"ψ⇩1 n ≡ Matrix.mat (2^(n+1)) 1 (λ(i,j). if even i then 1/(sqrt 2)^(n+1) else -1/(sqrt 2)^(n+1))"
lemma ψ⇩1_values_even[simp]:
fixes i j n
assumes "i < dim_row (ψ⇩1 n)" and "j < dim_col (ψ⇩1 n)" and "even i"
shows "(ψ⇩1 n) $$ (i,j) = 1/(sqrt 2)^(n+1)"
using assms case_prod_conv by simp
lemma ψ⇩1_values_odd [simp]:
fixes i j n
assumes "i < dim_row (ψ⇩1 n)" and "j < dim_col (ψ⇩1 n)" and "odd i"
shows "(ψ⇩1 n) $$ (i,j) = -1/(sqrt 2)^(n+1)"
using assms case_prod_conv by simp
lemma "ψ⇩1⇩0_tensor_ψ⇩1⇩1_is_ψ⇩1":
assumes "n ≥ 1"
shows "(ψ⇩1⇩0 n) ⨂ ψ⇩1⇩1 = ψ⇩1 n"
proof
show "dim_col ((ψ⇩1⇩0 n) ⨂ ψ⇩1⇩1) = dim_col (ψ⇩1 n)" by simp
next
show "dim_row ((ψ⇩1⇩0 n) ⨂ ψ⇩1⇩1) = dim_row (ψ⇩1 n)" by simp
next
fix i j:: nat
assume a0: "i < dim_row (ψ⇩1 n)" and a1: "j < dim_col (ψ⇩1 n)"
then have "i < 2^(n+1)" and "j = 0" by auto
then have f0: "((ψ⇩1⇩0 n) ⨂ ψ⇩1⇩1) $$ (i,j) = 1/(sqrt 2)^n * ψ⇩1⇩1 $$ (i mod 2, j)"
using ψ⇩1⇩0_values[of "i div 2" n "j div 1"] a0 a1 by simp
show "((ψ⇩1⇩0 n) ⨂ ψ⇩1⇩1) $$ (i,j) = (ψ⇩1 n) $$ (i,j)"
using f0 ψ⇩1_values_even ψ⇩1_values_odd a0 a1 by auto
qed
lemma ψ⇩1_is_state:
assumes "n ≥ 1"
shows "state (n+1) (ψ⇩1 n)"
using assms ψ⇩1⇩0_tensor_ψ⇩1⇩1_is_ψ⇩1 ψ⇩1⇩0_is_state H_on_ket_one_is_state H_on_ket_one_is_ψ⇩1⇩1 tensor_state by metis
abbreviation (in jozsa) ψ⇩2:: "complex Matrix.mat" where
"ψ⇩2 ≡ Matrix.mat (2^(n+1)) 1 (λ(i,j). if even i then (-1)^f(i div 2)/(sqrt 2)^(n+1)
else (-1)^(f(i div 2)+1)/(sqrt 2)^(n+1))"
lemma (in jozsa) ψ⇩2_values_even [simp]:
fixes i j
assumes "i < dim_row ψ⇩2 " and "j < dim_col ψ⇩2" and "even i"
shows "ψ⇩2 $$ (i,j) = (-1)^f(i div 2)/(sqrt 2)^(n+1)"
using assms case_prod_conv by simp
lemma (in jozsa) ψ⇩2_values_odd [simp]:
fixes i j
assumes "i < dim_row ψ⇩2" and "j < dim_col ψ⇩2" and "odd i"
shows "ψ⇩2 $$ (i,j) = (-1)^(f(i div 2)+1)/(sqrt 2)^(n+1)"
using assms case_prod_conv by simp
lemma (in jozsa) ψ⇩2_values_odd_hidden [simp]:
assumes "2*k+1 < dim_row ψ⇩2" and "j < dim_col ψ⇩2"
shows "ψ⇩2 $$ (2*k+1,j) = ((-1)^(f((2*k+1) div 2)+1))/(sqrt 2)^(n+1)"
using assms by simp
lemma (in jozsa) snd_rep_of_ψ⇩2:
assumes "i < dim_row ψ⇩2"
shows "((1-f(i div 2)) + -f(i div 2)) * 1/(sqrt 2)^(n+1) = (-1)^f(i div 2)/(sqrt 2)^(n+1)"
and "(-(1-f(i div 2))+(f(i div 2)))* 1/(sqrt 2)^(n+1) = (-1)^(f(i div 2)+1)/(sqrt 2)^(n+1)"
proof-
have "i div 2 ∈ {i. i < 2 ^ n}"
using assms by auto
then have "real (Suc 0 - f (i div 2)) - real (f (i div 2)) = (- 1) ^ f (i div 2)"
using assms f_values by auto
thus "((1-f(i div 2)) + -f(i div 2)) * 1/(sqrt 2)^(n+1) = (-1)^f(i div 2)/(sqrt 2)^(n+1)" by auto
next
have "i div 2 ∈ {i. i < 2^n}"
using assms by simp
then have "(real (f (i div 2)) - real (Suc 0 - f (i div 2))) / (sqrt 2 ^ (n+1)) =
- ((- 1) ^ f (i div 2) / (sqrt 2 ^ (n+1)))"
using assms f_values by fastforce
then show "(-(1-f(i div 2))+(f(i div 2)))* 1/(sqrt 2)^(n+1) = (-1)^(f(i div 2)+1)/(sqrt 2)^(n+1)" by simp
qed
lemma (in jozsa) jozsa_transform_times_ψ⇩1_is_ψ⇩2:
shows "U⇩f * (ψ⇩1 n) = ψ⇩2"
proof
show "dim_row (U⇩f * (ψ⇩1 n)) = dim_row ψ⇩2" by simp
next
show "dim_col (U⇩f * (ψ⇩1 n)) = dim_col ψ⇩2" by simp
next
fix i j ::nat
assume a0: "i < dim_row ψ⇩2" and a1: "j < dim_col ψ⇩2"
then have f0:"i ∈ {0..2^(n+1)} ∧ j=0" by simp
then have f1: "i < dim_row U⇩f ∧ j < dim_col U⇩f " using a0 by simp
have f2: "i < dim_row (ψ⇩1 n) ∧ j < dim_col (ψ⇩1 n)" using a0 a1 by simp
show "(U⇩f * (ψ⇩1 n)) $$ (i,j) = ψ⇩2 $$ (i,j)"
proof (rule disjE)
show "even i ∨ odd i" by auto
next
assume a2: "even i"
then have "(U⇩f * (ψ⇩1 n)) $$ (i,j) = (∑k ∈ {i,i+1}. U⇩f $$ (i,k) * (ψ⇩1 n) $$ (k,j))"
using f1 f2 U⇩f_mult_without_empty_summands_even[of i j "(ψ⇩1 n)"] by simp
moreover have "U⇩f $$ (i,i) * (ψ⇩1 n) $$ (i,j) = (1-f(i div 2))* 1/(sqrt 2)^(n+1)"
using f0 f1 a2 by simp
moreover have "U⇩f $$ (i,i+1) * (ψ⇩1 n) $$ (i+1,j) = (-f(i div 2))* 1/(sqrt 2)^(n+1)"
using f0 f1 a2 by auto
ultimately have "(U⇩f * (ψ⇩1 n)) $$ (i,j) = (1-f(i div 2))* 1/(sqrt 2)^(n+1) + (-f(i div 2))* 1/(sqrt 2)^(n+1)" by simp
also have "... = ((1-f(i div 2))+-f(i div 2)) * 1/(sqrt 2)^(n+1)"
using add_divide_distrib
by (metis (no_types, opaque_lifting) mult.right_neutral of_int_add of_int_of_nat_eq)
also have "... = ψ⇩2 $$ (i,j)"
using a0 a1 a2 snd_rep_of_ψ⇩2 by simp
finally show "(U⇩f * (ψ⇩1 n)) $$ (i,j) = ψ⇩2 $$ (i,j)" by simp
next
assume a2: "odd i"
then have f6: "i≥1"
using linorder_not_less by auto
have "(U⇩f * (ψ⇩1 n)) $$ (i,j) = (∑k ∈ {i-1,i}. U⇩f $$ (i,k) * (ψ⇩1 n) $$ (k,j))"
using f1 f2 a2 U⇩f_mult_without_empty_summands_odd[of i j "(ψ⇩1 n)"]
by (metis dim_row_mat(1) jozsa_transform_dim(2))
moreover have "(∑k ∈ {i-1,i}. U⇩f $$ (i,k) * (ψ⇩1 n) $$ (k,j))
= U⇩f $$ (i,i-1) * (ψ⇩1 n) $$ (i-1,j) + U⇩f $$ (i,i) * (ψ⇩1 n) $$ (i,j)"
using a2 f6 by simp
moreover have "U⇩f $$ (i,i) * (ψ⇩1 n) $$ (i,j) = (1-f(i div 2))* -1/(sqrt 2)^(n+1)"
using f1 f2 a2 by simp
moreover have "U⇩f $$ (i,i-1) * (ψ⇩1 n) $$ (i-1,j) = f(i div 2)* 1/(sqrt 2)^(n+1)"
using a0 a1 a2 by simp
ultimately have "(U⇩f * (ψ⇩1 n)) $$ (i,j) = (1-f(i div 2))* -1/(sqrt 2)^(n+1) +(f(i div 2))* 1/(sqrt 2)^(n+1)"
using of_real_add by simp
also have "... = (-(1-f(i div 2)) + (f(i div 2))) * 1/(sqrt 2)^(n+1)"
by (metis (no_types, opaque_lifting) mult.right_neutral add_divide_distrib mult_minus1_right
of_int_add of_int_of_nat_eq)
also have "... = (-1)^(f(i div 2)+1)/(sqrt 2)^(n+1)"
using a0 a1 a2 snd_rep_of_ψ⇩2 by simp
finally show "(U⇩f * (ψ⇩1 n)) $$ (i,j) = ψ⇩2 $$ (i,j)"
using a0 a1 a2 by simp
qed
qed
lemma (in jozsa) ψ⇩2_is_state:
shows "state (n+1) ψ⇩2"
using jozsa_transform_times_ψ⇩1_is_ψ⇩2 jozsa_transform_is_gate ψ⇩1_is_state dim gate_on_state_is_state by fastforce
text ‹@{text "H^⇩⊗ n"} is the result of taking the nth tensor product of H›
abbreviation iter_tensor_of_H_rep:: "nat ⇒ complex Matrix.mat" (‹H^⇩⊗ _›) where
"iter_tensor_of_H_rep n ≡ Matrix.mat (2^n) (2^n) (λ(i,j).(-1)^(i ⋅⇘n⇙ j)/(sqrt 2)^n)"
lemma tensor_of_H_values [simp]:
fixes n i j:: nat
assumes "i < dim_row (H^⇩⊗ n)" and "j < dim_col (H^⇩⊗ n)"
shows "(H^⇩⊗ n) $$ (i,j) = (-1)^(i ⋅⇘n⇙ j)/(sqrt 2)^n"
using assms by simp
lemma dim_row_of_iter_tensor_of_H [simp]:
assumes "n ≥ 1"
shows "1 < dim_row (H^⇩⊗ n)"
using assms by(metis One_nat_def Suc_1 dim_row_mat(1) le_trans lessI linorder_not_less one_less_power)
lemma iter_tensor_of_H_fst_pos:
fixes n i j:: nat
assumes "i < 2^n ∨ j < 2^n" and "i < 2^(n+1) ∧ j < 2^(n+1)"
shows "(H^⇩⊗ (Suc n)) $$ (i,j) = 1/sqrt(2) * ((H^⇩⊗ n) $$ (i mod 2^n, j mod 2^n))"
proof-
have "(H^⇩⊗ (Suc n)) $$ (i,j) = (-1)^(bip i (Suc n) j)/(sqrt 2)^(Suc n)"
using assms by simp
moreover have "bip i (Suc n) j = bip (i mod 2^n) n (j mod 2^n)"
using bitwise_inner_prod_fst_el_0 assms(1) by simp
ultimately show ?thesis
using bitwise_inner_prod_def by simp
qed
lemma iter_tensor_of_H_fst_neg:
fixes n i j:: nat
assumes "i ≥ 2^n ∧ j ≥ 2^n" and "i < 2^(n+1) ∧ j < 2^(n+1)"
shows "(H^⇩⊗ (Suc n)) $$ (i,j) = -1/sqrt(2) * (H^⇩⊗ n) $$ (i mod 2^n, j mod 2^n)"
proof-
have "(H^⇩⊗ (Suc n)) $$ (i,j) = (-1)^(bip i (n+1) j)/(sqrt 2)^(n+1)"
using assms(2) by simp
moreover have "bip i (n+1) j = 1 + bip (i mod 2^n) n (j mod 2^n)"
using bitwise_inner_prod_fst_el_is_1 assms by simp
ultimately show ?thesis by simp
qed
lemma H_tensor_iter_tensor_of_H:
fixes n:: nat
shows "(H ⨂ H^⇩⊗ n) = H^⇩⊗ (Suc n)"
proof
fix i j:: nat
assume a0: "i < dim_row (H^⇩⊗ (Suc n))" and a1: "j < dim_col (H^⇩⊗ (Suc n))"
then have f0: "i ∈ {0..<2^(n+1)} ∧ j ∈ {0..<2^(n+1)}" by simp
then have f1: "(H ⨂ H^⇩⊗ n) $$ (i,j) = H $$ (i div (dim_row (H^⇩⊗ n)),j div (dim_col (H^⇩⊗ n)))
* (H^⇩⊗ n) $$ (i mod (dim_row (H^⇩⊗ n)),j mod (dim_col (H^⇩⊗ n)))"
by (simp add: H_without_scalar_prod)
show "(H ⨂ H^⇩⊗ n) $$ (i,j) = (H^⇩⊗ (Suc n)) $$ (i,j)"
proof (rule disjE)
show "(i < 2^n ∨ j < 2^n) ∨ ¬(i < 2^n ∨ j < 2^n)" by auto
next
assume a2: "(i < 2^n ∨ j < 2^n)"
then have "(H^⇩⊗ (Suc n)) $$ (i,j) = 1/sqrt(2) * ((H^⇩⊗ n) $$ (i mod 2^n, j mod 2^n))"
using a0 a1 f0 iter_tensor_of_H_fst_pos by (metis (mono_tags, lifting) atLeastLessThan_iff)
moreover have "H $$ (i div (dim_row (H^⇩⊗ n)),j div (dim_col (H^⇩⊗ n))) = 1/sqrt 2"
using a0 a1 f0 H_without_scalar_prod H_values a2
by (metis (no_types, lifting) dim_col_mat(1) dim_row_mat(1) div_less le_eq_less_or_eq
le_numeral_extra(2) less_power_add_imp_div_less plus_1_eq_Suc power_one_right)
ultimately show "(H ⨂ H^⇩⊗ n) $$ (i,j) = (H^⇩⊗ (Suc n)) $$ (i,j)"
using f1 by simp
next
assume a2: "¬(i < 2^n ∨ j < 2^n)"
then have "i ≥ 2^n ∧ j ≥ 2^n" by simp
then have f2:"(H^⇩⊗ (Suc n)) $$ (i,j) = -1/sqrt(2) * ((H^⇩⊗ n) $$ (i mod 2^n, j mod 2^n))"
using a0 a1 f0 iter_tensor_of_H_fst_neg by simp
have "i div (dim_row (H^⇩⊗ n)) =1" and "j div (dim_row (H^⇩⊗ n)) = 1"
using a2 a0 a1 by auto
then have "H $$ (i div (dim_row (H^⇩⊗ n)),j div (dim_col (H^⇩⊗ n))) = -1/sqrt 2"
using a0 a1 f0 H_values_right_bottom[of "i div (dim_row (H^⇩⊗ n))" "j div (dim_col (H^⇩⊗ n))"] a2
by fastforce
then show "(H ⨂ H^⇩⊗ n) $$ (i,j) = (H^⇩⊗ (Suc n)) $$ (i,j)"
using f1 f2 by simp
qed
next
show "dim_row (H ⨂ H^⇩⊗ n) = dim_row (H^⇩⊗ (Suc n))"
by (simp add: H_without_scalar_prod)
next
show "dim_col (H ⨂ H^⇩⊗ n) = dim_col (H^⇩⊗ (Suc n))"
by (simp add: H_without_scalar_prod)
qed
text ‹
We prove that @{term "H^⇩⊗ n"} is indeed the matrix representation of @{term "H ⊗⇗n⇖"}, the iterated
tensor product of the Hadamard gate H.
›
lemma one_tensor_of_H_is_H:
shows "(H^⇩⊗ 1) = H"
proof(rule eq_matI)
show "dim_row (H^⇩⊗ 1) = dim_row H"
by (simp add: H_without_scalar_prod)
show "dim_col (H^⇩⊗ 1) = dim_col H"
by (simp add: H_without_scalar_prod)
next
fix i j:: nat
assume a0:"i < dim_row H" and a1:"j < dim_col H"
then show "(H^⇩⊗ 1) $$ (i,j) = H $$ (i,j)"
proof-
have "(H^⇩⊗ 1) $$ (0, 0) = 1/sqrt(2)"
using bitwise_inner_prod_def bin_rep_def by simp
moreover have "(H^⇩⊗ 1) $$ (0,1) = 1/sqrt(2)"
using bitwise_inner_prod_def bin_rep_def by simp
moreover have "(H^⇩⊗ 1) $$ (1,0) = 1/sqrt(2)"
using bitwise_inner_prod_def bin_rep_def by simp
moreover have "(H^⇩⊗ 1) $$ (1,1) = -1/sqrt(2)"
using bitwise_inner_prod_def bin_rep_def by simp
ultimately show "(H^⇩⊗ 1) $$ (i,j) = H $$ (i,j)"
using a0 a1 H_values H_values_right_bottom
by (metis (no_types, lifting) H_without_scalar_prod One_nat_def dim_col_mat(1) dim_row_mat(1)
divide_minus_left less_2_cases)
qed
qed
lemma iter_tensor_of_H_rep_is_correct:
fixes n:: nat
assumes "n ≥ 1"
shows "(H ⊗⇗n⇖) = H^⇩⊗ n"
using assms
proof(rule nat_induct_at_least)
show "(H ⊗⇗1⇖) = H^⇩⊗ 1"
using one_tensor_is_id one_tensor_of_H_is_H by simp
next
fix n:: nat
assume a0:"n ≥ 1" and IH:"(H ⊗⇗n⇖) = H^⇩⊗ n"
then have "(H ⊗⇗(Suc n)⇖) = H ⨂ (H ⊗⇗n⇖)"
using iter_tensor_suc Nat.Suc_eq_plus1 by metis
also have "... = H ⨂ (H^⇩⊗ n)"
using IH by simp
also have "... = H^⇩⊗ (Suc n)"
using a0 H_tensor_iter_tensor_of_H by simp
finally show "(H ⊗⇗(Suc n)⇖) = H^⇩⊗ (Suc n)"
by simp
qed
text ‹@{text "HId^⇩⊗ 1"} is the result of taking the tensor product of the nth tensor of H and Id 1 ›
abbreviation tensor_of_H_tensor_Id:: "nat ⇒ complex Matrix.mat" (‹HId^⇩⊗ _›) where
"tensor_of_H_tensor_Id n ≡ Matrix.mat (2^(n+1)) (2^(n+1)) (λ(i,j).
if (i mod 2 = j mod 2) then (-1)^((i div 2) ⋅⇘n⇙ (j div 2))/(sqrt 2)^n else 0)"
lemma mod_2_is_both_even_or_odd:
"((even i ∧ even j) ∨ (odd i ∧ odd j)) ⟷ (i mod 2 = j mod 2)"
by (metis even_iff_mod_2_eq_zero odd_iff_mod_2_eq_one)
lemma HId_values [simp]:
assumes "n ≥ 1" and "i < dim_row (HId^⇩⊗ n)" and "j < dim_col (HId^⇩⊗ n)"
shows "even i ∧ even j ⟶ (HId^⇩⊗ n) $$ (i,j) = (-1)^((i div 2) ⋅⇘n⇙ (j div 2))/(sqrt 2)^n"
and "odd i ∧ odd j ⟶ (HId^⇩⊗ n) $$ (i,j) = (-1)^((i div 2) ⋅⇘n⇙ (j div 2))/(sqrt 2)^n"
and "(i mod 2 = j mod 2) ⟶ (HId^⇩⊗ n) $$ (i,j) = (-1)^((i div 2) ⋅⇘n⇙ (j div 2))/(sqrt 2)^n"
and "¬(i mod 2 = j mod 2) ⟶ (HId^⇩⊗ n) $$ (i,j) = 0"
using assms mod_2_is_both_even_or_odd by auto
lemma iter_tensor_of_H_tensor_Id_is_HId:
shows "(H^⇩⊗ n) ⨂ Id 1 = HId^⇩⊗ n"
proof
show "dim_row ((H^⇩⊗ n) ⨂ Id 1) = dim_row (HId^⇩⊗ n)"
by (simp add: Quantum.Id_def)
show "dim_col ((H^⇩⊗ n) ⨂ Id 1) = dim_col (HId^⇩⊗ n)"
by (simp add: Quantum.Id_def)
next
fix i j:: nat
assume a0: "i < dim_row (HId^⇩⊗ n)" and a1: "j < dim_col (HId^⇩⊗ n)"
then have f0: "i < (2^(n+1)) ∧ j < (2^(n+1))" by simp
then have "i < dim_row (H^⇩⊗ n) * dim_row (Id 1) ∧ j < dim_col (H^⇩⊗ n) * dim_col (Id 1)"
using Id_def by simp
moreover have "dim_col (H^⇩⊗ n) ≥ 0 ∧ dim_col (Id 1) ≥ 0"
using Id_def by simp
ultimately have f1: "((H^⇩⊗ n) ⨂ (Id 1)) $$ (i,j)
= (H^⇩⊗ n) $$ (i div (dim_row (Id 1)),j div (dim_col (Id 1))) *
(Id 1) $$ (i mod (dim_row (Id 1)),j mod (dim_col (Id 1)))"
by (simp add: Quantum.Id_def)
show "((H^⇩⊗ n)⨂Id 1) $$ (i,j) = (HId^⇩⊗ n) $$ (i,j)"
proof (rule disjE)
show "(i mod 2 = j mod 2) ∨ ¬ (i mod 2 = j mod 2)" by simp
next
assume a2:"(i mod 2 = j mod 2)"
then have "(Id 1) $$ (i mod (dim_row (Id 1)),j mod (dim_col (Id 1))) = 1"
by (simp add: Quantum.Id_def)
moreover have "(H^⇩⊗ n) $$ (i div (dim_row (Id 1)), j div (dim_col (Id 1)))
= (-1)^((i div (dim_row (Id 1))) ⋅⇘n⇙ (j div (dim_col (Id 1))))/(sqrt 2)^n"
using tensor_of_H_values Id_def f0 less_mult_imp_div_less by simp
ultimately show "((H^⇩⊗ n) ⨂ Id 1) $$ (i,j) = (HId^⇩⊗ n) $$ (i,j)"
using a2 f0 f1 Id_def by simp
next
assume a2: "¬(i mod 2 = j mod 2)"
then have "(Id 1) $$ (i mod (dim_row (Id 1)),j mod (dim_col (Id 1))) = 0"
by (simp add: Quantum.Id_def)
then show "((H^⇩⊗ n) ⨂ Id 1) $$ (i,j) = (HId^⇩⊗ n) $$ (i,j)"
using a2 f0 f1 by simp
qed
qed
lemma HId_is_gate:
assumes "n ≥ 1"
shows "gate (n+1) (HId^⇩⊗ n)"
proof-
have "(HId^⇩⊗ n) = (H^⇩⊗ n) ⨂ Id 1"
using iter_tensor_of_H_tensor_Id_is_HId by simp
moreover have "gate 1 (Id 1)"
using id_is_gate by simp
moreover have "gate n (H^⇩⊗ n)"
using H_is_gate iter_tensor_of_gate_is_gate[of 1 H n] assms by(simp add: iter_tensor_of_H_rep_is_correct)
ultimately show "gate (n+1) (HId^⇩⊗ n)"
using tensor_gate by presburger
qed
text ‹State @{term "ψ⇩3"} is obtained by the multiplication of @{term "HId^⇩⊗ n"} and @{term "ψ⇩2"}›
abbreviation (in jozsa) ψ⇩3:: "complex Matrix.mat" where
"ψ⇩3 ≡ Matrix.mat (2^(n+1)) 1 (λ(i,j).
if even i
then (∑k<2^n. (-1)^(f(k) + ((i div 2) ⋅⇘n⇙ k))/((sqrt 2)^n * (sqrt 2)^(n+1)))
else (∑k<2^n. (-1)^(f(k)+ 1 + ((i div 2) ⋅⇘n⇙ k)) /((sqrt 2)^n * (sqrt 2)^(n+1))))"
lemma (in jozsa) ψ⇩3_values:
assumes "i < dim_row ψ⇩3"
shows "odd i ⟶ ψ⇩3 $$ (i,0) = (∑k<2^n. (-1)^(f(k) + 1 + ((i div 2) ⋅⇘n⇙ k))/((sqrt 2)^n * (sqrt 2)^(n+1)))"
using assms by simp
lemma (in jozsa) ψ⇩3_dim [simp]:
shows "1 < dim_row ψ⇩3"
using dim_row_mat(1) nat_neq_iff by fastforce
lemma sum_every_odd_summand_is_zero:
fixes n:: nat
assumes "n ≥ 1"
shows "∀f::(nat ⇒ complex).(∀i. i<2^(n+1) ∧ odd i ⟶ f i = 0) ⟶
(∑k∈{0..<2^(n+1)}. f k) = (∑k∈{0..<2^n}. f (2*k))"
using assms
proof(rule nat_induct_at_least)
show "∀f::(nat ⇒ complex).(∀i. i<2^(1+1) ∧ odd i ⟶ f i = 0) ⟶
(∑k∈{0..<2^(1+1)}. f k) = (∑k ∈ {0..<2^1}. f (2*k))"
proof(rule allI,rule impI)
fix f:: "(nat ⇒ complex)"
assume asm: "(∀i. i<2^(1+1) ∧ odd i ⟶ f i = 0)"
moreover have "(∑k∈{0..<4}. f k) = f 0 + f 1 + f 2 + f 3"
by (simp add: add.commute add.left_commute)
moreover have "f 1 = 0"
using asm by simp
moreover have "f 3 = 0"
using asm by simp
moreover have "(∑k∈{0..<2^1}. f (2*k)) = f 0 + f 2"
using add.commute add.left_commute by simp
ultimately show "(∑k∈{0..<2^(1+1)}. f k) = (∑k∈{0..<2^1}. f (2*k))"
by simp
qed
next
fix n:: nat
assume "n ≥ 1"
and IH: "∀f::(nat ⇒complex).(∀i. i<2^(n+1) ∧ odd i ⟶ f i = 0) ⟶
(∑k∈{0..<2^(n+1)}. f k) = (∑k∈{0..<2^n}. f (2*k))"
show "∀f::(nat ⇒complex).(∀i. i<2^(Suc n +1) ∧ odd i ⟶ f i = 0) ⟶
(∑k∈{0..<2^(Suc n +1)}. f k) = (∑k∈{0..< 2^(Suc n)}. f (2*k))"
proof (rule allI,rule impI)
fix f::"nat ⇒ complex"
assume asm: "(∀i. i<2^(Suc n +1) ∧ odd i ⟶ f i = 0)"
have f0: "(∑k∈{0..<2^(n+1)}. f k) = (∑k∈{0..<2^n}. f (2*k))"
using asm IH by simp
have f1: "(∑k∈{0..<2^(n+1)}. (λx. f (x+2^(n+1))) k) = (∑k∈{0..< 2^n}. (λx. f (x+2^(n+1))) (2*k))"
using asm IH by simp
have "(∑k∈{0..<2^(n+2)}. f k) = (∑k∈{0..<2^(n+1)}. f k) + (∑k∈{2^(n+1)..<2^(n+2)}. f k)"
by (simp add: sum.atLeastLessThan_concat)
also have "... = (∑k∈{0..<2^n}. f (2*k)) + (∑k∈{2^(n+1)..<2^(n+2)}. f k)"
using f0 by simp
also have "... = (∑k∈{0..<2^n}. f (2*k)) + (∑k∈{0..<2^(n+1)}. f (k+2^(n+1)))"
using sum.shift_bounds_nat_ivl[of "f" "0" "2^(n+1)" "2^(n+1)"] by simp
also have "... = (∑k∈{0..<2^n}. f (2*k)) + (∑k∈{0..< 2^n}. (λx. f (x+2^(n+1))) (2*k))"
using f1 by simp
also have "... = (∑k∈{0..<2^n}. f (2*k)) + (∑k∈{2^n..< 2^(n+1)}. f (2 *k))"
using sum.shift_bounds_nat_ivl[of "λx. (f::nat⇒complex) (2*(x-2^n)+2^(n+1))" "0" "2^n" "2^n"]
by (simp add: mult_2)
also have "... = (∑k ∈ {0..<2^(n+1)}. f (2*k))"
by (metis Suc_eq_plus1 lessI less_imp_le_nat one_le_numeral power_increasing sum.atLeastLessThan_concat zero_le)
finally show "(∑k∈{0..<2^((Suc n)+1)}. f k) = (∑k∈{0..< 2^(Suc n)}. f (2*k))"
by (metis Suc_eq_plus1 add_2_eq_Suc')
qed
qed
lemma sum_every_even_summand_is_zero:
fixes n:: nat
assumes "n ≥ 1"
shows "∀f::(nat ⇒ complex).(∀i. i<2^(n+1) ∧ even i ⟶ f i = 0) ⟶
(∑k∈{0..<2^(n+1)}. f k) = (∑k∈{0..< 2^n}. f (2*k+1))"
using assms
proof(rule nat_induct_at_least)
show "∀f::(nat ⇒ complex).(∀i. i<2^(1+1) ∧ even i ⟶ f i = 0) ⟶
(∑k∈{0..<2^(1+1)}. f k) = (∑k∈{0..< 2^1}. f (2*k+1))"
proof(rule allI,rule impI)
fix f:: "nat ⇒complex"
assume asm: "(∀i. i<2^(1+1) ∧ even i ⟶ f i = 0)"
moreover have "(∑k∈{0..<4}. f k) = f 0 + f 1 + f 2 + f 3"
by (simp add: add.commute add.left_commute)
moreover have "f 0 = 0" using asm by simp
moreover have "f 2 = 0" using asm by simp
moreover have "(∑k ∈ {0..< 2^1}. f (2*k+1)) = f 1 + f 3"
using add.commute add.left_commute by simp
ultimately show "(∑k∈{0..<2^(1+1)}. f k) = (∑k∈{0..< 2^1}. f (2*k+1))" by simp
qed
next
fix n:: nat
assume "n ≥ 1"
and IH: "∀f::(nat ⇒complex).(∀i. i<2^(n+1) ∧ even i ⟶ f i = 0) ⟶
(∑k∈{0..<2^(n+1)}. f k) = (∑k∈{0..< 2^n}. f (2*k+1))"
show "∀f::(nat ⇒complex).(∀i. i<2^((Suc n)+1) ∧ even i ⟶ f i = 0) ⟶
(∑k∈{0..<2^((Suc n)+1)}. f k) = (∑k∈{0..< 2^(Suc n)}. f (2*k+1))"
proof (rule allI,rule impI)
fix f::"nat ⇒complex"
assume asm: "(∀i. i<2^((Suc n)+1) ∧ even i ⟶ f i = 0)"
have f0: "(∑k ∈{0..<2^(n+1)}. f k) = (∑k ∈ {0..< 2^n}. f (2*k+1))"
using asm IH by simp
have f1: "(∑k∈{0..<2^(n+1)}. (λx. f (x+2^(n+1))) k)
= (∑k∈{0..< 2^n}. (λx. f (x+2^(n+1))) (2*k+1))"
using asm IH by simp
have "(∑k∈{0..<2^(n+2)}. f k)
= (∑k∈{0..<2^(n+1)}. f k) + (∑k∈{2^(n+1)..<2^(n+2)}. f k)"
by (simp add: sum.atLeastLessThan_concat)
also have "... = (∑k∈{0..< 2^n}. f (2*k+1)) + (∑k∈{2^(n+1)..<2^(n+2)}. f k)"
using f0 by simp
also have "... = (∑k∈{0..< 2^n}. f (2*k+1)) + (∑k∈{0..<2^(n+1)}. f (k+(2^(n+1))))"
using sum.shift_bounds_nat_ivl[of "f" "0" "2^(n+1)" "2^(n+1)"] by simp
also have "... = (∑k∈{0..< 2^n}. f (2*k+1)) + (∑k∈{0..< 2^n}. (λx. f (x+2^(n+1))) (2*k+1))"
using f1 by simp
also have "... = (∑k∈{0..< 2^n}. f (2*k+1)) + (∑k∈{2^n..< 2^(n+1)}. f (2 *k+1))"
using sum.shift_bounds_nat_ivl[of "λx. (f::nat⇒complex) (2*(x-2^n)+1+2^(n+1))" "0" "2^n" "2^n"]
by (simp add: mult_2)
also have "... = (∑k∈{0..< 2^(n+1)}. f (2*k+1))"
by (metis Suc_eq_plus1 lessI less_imp_le_nat one_le_numeral power_increasing sum.atLeastLessThan_concat zero_le)
finally show "(∑k∈{0..<2^((Suc n)+1)}. f k) = (∑k∈{0..< 2^(Suc n)}. f (2*k+1))"
by (metis Suc_eq_plus1 add_2_eq_Suc')
qed
qed
lemma (in jozsa) iter_tensor_of_H_times_ψ⇩2_is_ψ⇩3:
shows "((H^⇩⊗ n) ⨂ Id 1) * ψ⇩2 = ψ⇩3"
proof
fix i j
assume a0:"i < dim_row ψ⇩3" and a1:"j < dim_col ψ⇩3"
then have f0: "i < (2^(n+1)) ∧ j = 0" by simp
have f1: "((HId^⇩⊗ n)* ψ⇩2) $$ (i,j) = (∑k<(2^(n+1)). ((HId^⇩⊗ n) $$ (i,k)) * (ψ⇩2 $$ (k,j)))"
using a1 f0 by (simp add: atLeast0LessThan)
show "(((H^⇩⊗ n) ⨂ Id 1) * ψ⇩2) $$ (i,j) = ψ⇩3 $$ (i,j)"
proof(rule disjE)
show "even i ∨ odd i" by simp
next
assume a2: "even i"
have "(¬(i mod 2 = k mod 2) ∧ k<dim_col (HId^⇩⊗ n)) ⟶ ((HId^⇩⊗ n) $$ (i,k)) * (ψ⇩2 $$ (k,j)) = 0" for k
using f0 by simp
then have "k<(2^(n+1)) ∧ odd k ⟶ ((HId^⇩⊗ n) $$ (i,k)) * (ψ⇩2 $$ (k,j)) = 0" for k
using a2 mod_2_is_both_even_or_odd f0 by (metis (no_types, lifting) dim_col_mat(1))
then have "(∑k∈{(0::nat)..<(2^(n+1))}. ((HId^⇩⊗ n) $$ (i,k)) * (ψ⇩2 $$ (k,j)))
= (∑k∈{(0::nat)..< (2^n)}. ((HId^⇩⊗ n) $$ (i,2*k)) * (ψ⇩2 $$ (2*k,j)))"
using sum_every_odd_summand_is_zero dim by simp
moreover have "(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k)) * (ψ⇩2 $$ (2*k,j)))
= (∑k<2^n.(-1)^((i div 2) ⋅⇘n⇙ k)/(sqrt(2)^n) *((-1)^f(k))/(sqrt(2)^(n+1)))"
proof-
have "(even k ∧ k<dim_row ψ⇩2) ⟶ (ψ⇩2 $$ (k,j)) = ((-1)^f(k div 2))/(sqrt(2)^(n+1))" for k
using a0 a1 by simp
then have "(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k)) * (ψ⇩2 $$ (2*k,j)))
= (∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k)) *((-1)^f((2*k) div 2))/(sqrt(2)^(n+1)))"
by simp
moreover have "(even k ∧ k<dim_col (HId^⇩⊗ n))
⟶ ((HId^⇩⊗ n) $$ (i,k)) = (-1)^ ((i div 2) ⋅⇘n⇙ (k div 2))/(sqrt(2)^n)" for k
using a2 a0 a1 by simp
ultimately have "(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k)) * (ψ⇩2 $$ (2*k,j)))
= (∑k<2^n. (-1)^((i div 2) ⋅⇘n⇙ ((2*k) div 2))/(sqrt(2)^n) *
((-1)^f((2*k) div 2))/(sqrt(2)^(n+1)))"
by simp
then show "(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k)) * (ψ⇩2 $$ (2*k,j)))
= (∑k<2^n. (-1)^((i div 2) ⋅⇘n⇙ k)/(sqrt(2)^n) *((-1)^f(k))/(sqrt(2)^(n+1)))"
by simp
qed
ultimately have "((HId^⇩⊗ n)* ψ⇩2) $$ (i,j) = (∑k<2^n. (-1)^((i div 2) ⋅⇘n⇙ k)/(sqrt(2)^n)
* ((-1)^f(k))/(sqrt(2)^(n+1)))"
using f1 by (metis atLeast0LessThan)
also have "... = (∑k<2^n. (-1)^(f(k)+((i div 2) ⋅⇘n⇙ k))/((sqrt(2)^n)*(sqrt(2)^(n+1))))"
by (simp add: power_add mult.commute)
finally have "((HId^⇩⊗ n)* ψ⇩2) $$ (i,j) = (∑k<2^n. (-1)^(f(k)+((i div 2) ⋅⇘n⇙ k))/((sqrt(2)^n)*(sqrt(2)^(n+1))))"
by simp
moreover have "ψ⇩3 $$ (i,j) = (∑k<2^n. (-1)^(f(k) + ((i div 2) ⋅⇘n⇙ k))/(sqrt(2)^n * sqrt(2)^(n+1)))"
using a0 a1 a2 by simp
ultimately show "(((H^⇩⊗ n) ⨂ Id 1)* ψ⇩2) $$ (i,j) = ψ⇩3 $$ (i,j)"
using iter_tensor_of_H_tensor_Id_is_HId dim by simp
next
assume a2: "odd i"
have "(¬(i mod 2 = k mod 2) ∧ k<dim_col (HId^⇩⊗ n)) ⟶ ((HId^⇩⊗ n) $$ (i,k)) * (ψ⇩2 $$ (k,j)) = 0" for k
using f0 by simp
then have "k<(2^(n+1)) ∧ even k ⟶ ((HId^⇩⊗ n) $$ (i,k)) * (ψ⇩2 $$ (k,j)) = 0" for k
using a2 mod_2_is_both_even_or_odd f0 by (metis (no_types, lifting) dim_col_mat(1))
then have "(∑k∈{0..<2^(n+1)}. ((HId^⇩⊗ n) $$ (i,k)) * (ψ⇩2 $$ (k,j)))
= (∑k∈{0..<2^n}. ((HId^⇩⊗ n) $$ (i,2*k+1)) * (ψ⇩2 $$ (2*k+1,j)))"
using sum_every_even_summand_is_zero dim by simp
moreover have "(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k+1)) * (ψ⇩2 $$ (2*k+1,j)))
= (∑ k<2^n. (-1)^((i div 2) ⋅⇘n⇙ k)/(sqrt(2)^n) * ((-1)^(f(k)+1))/(sqrt(2)^(n+1)))"
proof-
have "(odd k ∧ k<dim_row ψ⇩2) ⟶ (ψ⇩2 $$ (k,j)) = ((-1)^(f(k div 2)+1))/(sqrt(2)^(n+1))" for k
using a0 a1 a2 by simp
then have f2:"(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k+1)) * (ψ⇩2 $$ (2*k+1,j)))
= (∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k+1)) * ((-1)^(f((2*k+1) div 2)+1))/(sqrt(2)^(n+1)))"
by simp
have "i < dim_row (HId^⇩⊗ n)"
using f0 a2 mod_2_is_both_even_or_odd by simp
then have "((i mod 2 = k mod 2) ∧ k<dim_col (HId^⇩⊗ n))
⟶ ((HId^⇩⊗ n) $$ (i,k)) = (-1)^((i div 2) ⋅⇘n⇙ (k div 2))/(sqrt(2)^n) " for k
using a2 a0 a1 f0 dim HId_values by simp
moreover have "odd k ⟶ (i mod 2 = k mod 2)" for k
using a2 mod_2_is_both_even_or_odd by auto
ultimately have "(odd k ∧ k<dim_col (HId^⇩⊗ n))
⟶ ((HId^⇩⊗ n) $$ (i,k)) = (-1)^((i div 2) ⋅⇘n⇙ (k div 2))/(sqrt(2)^n)" for k
by simp
then have "k<2^n ⟶ ((HId^⇩⊗ n) $$ (i,2*k+1)) = (-1)^((i div 2) ⋅⇘n⇙ ((2*k+1) div 2))/(sqrt(2)^n) " for k
by simp
then have "(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k+1)) * (ψ⇩2 $$ (2*k+1,j)))
= (∑k<2^n. (-1)^((i div 2) ⋅⇘n⇙ ((2*k+1) div 2))/(sqrt(2)^n)
* ((-1)^(f((2*k+1) div 2)+1))/(sqrt(2)^(n+1)))"
using f2 by simp
then show "(∑k<2^n. ((HId^⇩⊗ n) $$ (i,2*k+1)) * (ψ⇩2 $$ (2*k+1,j)))
= (∑k<2^n. (-1)^((i div 2) ⋅⇘n⇙ k)/(sqrt(2)^n) *((-1)^(f(k)+1))/(sqrt(2)^(n+1)))"
by simp
qed
ultimately have "((HId^⇩⊗ n)* ψ⇩2) $$ (i,j) = (∑k<2^n. (-1)^((i div 2) ⋅⇘n⇙ k)/(sqrt(2)^n)
* ((-1)^(f(k)+1))/(sqrt(2)^(n+1)))"
using f1 by (metis atLeast0LessThan)
also have "... = (∑k<2^n. (-1)^(f(k)+1+((i div 2) ⋅⇘n⇙ k))/((sqrt(2)^n)*(sqrt(2)^(n+1))))"
by (simp add: mult.commute power_add)
finally have "((HId^⇩⊗ n)* ψ⇩2) $$ (i,j)
= (∑k< 2^n. (-1)^(f(k)+1+((i div 2) ⋅⇘n⇙ k))/((sqrt(2)^n)*(sqrt(2)^(n+1))))"
by simp
then show "(((H^⇩⊗ n) ⨂ Id 1)* ψ⇩2) $$ (i,j) = ψ⇩3 $$ (i,j)"
using iter_tensor_of_H_tensor_Id_is_HId dim a2 a0 a1 by simp
qed
next
show "dim_row (((H^⇩⊗ n) ⨂ Id 1) * ψ⇩2) = dim_row ψ⇩3"
using iter_tensor_of_H_tensor_Id_is_HId dim by simp
next
show "dim_col (((H^⇩⊗ n) ⨂ Id 1)* ψ⇩2) = dim_col ψ⇩3"
using iter_tensor_of_H_tensor_Id_is_HId dim by simp
qed
lemma (in jozsa) ψ⇩3_is_state:
shows "state (n+1) ψ⇩3"
proof-
have "((H^⇩⊗ n) ⨂ Id 1) * ψ⇩2 = ψ⇩3"
using iter_tensor_of_H_times_ψ⇩2_is_ψ⇩3 by simp
moreover have "gate (n+1) ((H^⇩⊗ n) ⨂ Id 1)"
using iter_tensor_of_H_tensor_Id_is_HId HId_is_gate dim by simp
moreover have "state (n+1) ψ⇩2"
using ψ⇩2_is_state by simp
ultimately show "state (n+1) ψ⇩3"
using gate_on_state_is_state dim by (metis (no_types, lifting))
qed
text ‹
Finally, all steps are put together. The result depends on the function f. If f is constant
the first n qubits are 0, if f is balanced there is at least one qubit in state 1 among the
first n qubits.
The algorithm only uses one evaluation of f(x) and will always succeed.
›
definition (in jozsa) jozsa_algo:: "complex Matrix.mat" where
"jozsa_algo ≡ ((H ⊗⇗n⇖) ⨂ Id 1) * (U⇩f * (((H ⊗⇗n⇖) * ( |zero⟩ ⊗⇗n⇖)) ⨂ (H * |one⟩)))"
lemma (in jozsa) jozsa_algo_result [simp]:
shows "jozsa_algo = ψ⇩3"
using jozsa_algo_def H_on_ket_one_is_ψ⇩1⇩1 iter_tensor_of_H_on_zero_tensor ψ⇩1⇩0_tensor_ψ⇩1⇩1_is_ψ⇩1
jozsa_transform_times_ψ⇩1_is_ψ⇩2 iter_tensor_of_H_times_ψ⇩2_is_ψ⇩3 dim iter_tensor_of_H_rep_is_correct
by simp
lemma (in jozsa) jozsa_algo_result_is_state:
shows "state (n+1) jozsa_algo"
using ψ⇩3_is_state by simp
lemma (in jozsa) prob0_fst_qubits_of_jozsa_algo:
shows "(prob0_fst_qubits n jozsa_algo) = (∑j∈{0,1}. (cmod(jozsa_algo $$ (j,0)))⇧2)"
using prob0_fst_qubits_eq by simp
text ‹General lemmata required to compute probabilities.›
lemma aux_comp_with_sqrt2:
shows "(sqrt 2)^n * (sqrt 2)^n = 2^n"
by (smt (verit) power_mult_distrib real_sqrt_mult_self)
lemma aux_comp_with_sqrt2_bis [simp]:
shows "2^n/(sqrt(2)^n * sqrt(2)^(n+1)) = 1/sqrt 2"
using aux_comp_with_sqrt2 by (simp add: mult.left_commute)
lemma aux_ineq_with_card:
fixes g:: "nat ⇒ nat" and A:: "nat set"
assumes "finite A"
shows "(∑k∈A. (-1)^(g k)) ≤ card A" and "(∑k∈A. (-1)^(g k)) ≥ -card A"
apply (smt (verit) assms neg_one_even_power neg_one_odd_power card_eq_sum of_nat_1 of_nat_sum sum_mono)
apply (smt (verit) assms neg_one_even_power neg_one_odd_power card_eq_sum of_nat_1 of_nat_sum sum_mono sum_negf).
lemma aux_comp_with_cmod:
fixes g:: "nat ⇒ nat"
assumes "(∀x<2^n. g x = 0) ∨ (∀x<2^n. g x = 1)"
shows "(cmod (∑k<2^n. (-1)^(g k)))⇧2 = 2^(2*n)"
proof(rule disjE)
show "(∀x<2^n. g x = 0) ∨ (∀x<2^n. g x = 1)"
using assms by simp
next
assume "∀x<2^n. g x = 0"
then have "(cmod (∑k<2^n. (-1)^(g k)))⇧2 = (2^n)⇧2"
by (simp add: norm_power)
then show "?thesis"
by (simp add: power_even_eq)
next
assume "∀x<2^n. g x = 1"
then have "(cmod (∑k<2^n. (-1)^(g k)))⇧2 = (2^n)⇧2"
by (simp add: norm_power)
then show "?thesis"
by (simp add: power_even_eq)
qed
lemma cmod_less:
fixes a n:: int
assumes "a < n" and "a > -n"
shows "cmod a < n"
using assms by simp
lemma square_less:
fixes a n:: real
assumes "a < n" and "a > -n"
shows "a⇧2 < n⇧2"
using assms by (smt (verit) power2_eq_iff power2_minus power_less_imp_less_base)
lemma cmod_square_real [simp]:
fixes n:: real
shows "(cmod n)⇧2 = n⇧2"
by simp
lemma aux_comp_sum_divide_cmod:
fixes n:: nat and g:: "nat ⇒ int" and a:: real
shows "(cmod(complex_of_real(∑k<n. g k / a)))⇧2 = (cmod (∑k<n. g k) / a)⇧2"
by (metis cmod_square_real of_int_sum of_real_of_int_eq power_divide sum_divide_distrib)
text ‹
The function is constant if and only if the first n qubits are 0. So, if the function is constant,
then the probability of measuring 0 for the first n qubits is 1.
›
lemma (in jozsa) prob0_jozsa_algo_of_const_0:
assumes "const 0"
shows "prob0_fst_qubits n jozsa_algo = 1"
proof-
have "prob0_fst_qubits n jozsa_algo = (∑j∈{0,1}. (cmod(jozsa_algo $$ (j,0)))⇧2)"
using prob0_fst_qubits_of_jozsa_algo by simp
moreover have "(cmod(jozsa_algo $$ (0,0)))⇧2 = 1/2"
proof-
have "k<2^n ⟶ ((0 div 2) ⋅⇘n⇙ k) = 0" for k::nat
using bitwise_inner_prod_with_zero by simp
then have "(cmod(jozsa_algo $$ (0,0)))⇧2 = (cmod(∑k::nat<2^n. 1/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using jozsa_algo_result const_def assms by simp
also have "... = (cmod((2::nat)^n/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2" by simp
also have "... = (cmod(1/(sqrt(2))))⇧2"
using aux_comp_with_sqrt2_bis by simp
also have "... = 1/2"
by (simp add: norm_divide power2_eq_square)
finally show "?thesis" by simp
qed
moreover have "(cmod(jozsa_algo $$ (1,0)))⇧2 = 1/2"
proof-
have "k<2^n ⟶ ((1 div 2) ⋅⇘n⇙ k) = 0" for k:: nat
using bitwise_inner_prod_with_zero by simp
then have "k<2^n ⟶ f k + 1 + ((1 div 2) ⋅⇘n⇙ k) = 1" for k::nat
using const_def assms by simp
moreover have "(cmod(jozsa_algo $$ (1,0)))⇧2
= (cmod (∑k::nat<2^n. (-1)^(f k + 1 + ((1 div 2) ⋅⇘n⇙ k))/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using ψ⇩3_dim by simp
ultimately have "(cmod(jozsa_algo $$ (1,0)))⇧2 = (cmod(∑k::nat<2^n. -1/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
by (smt (verit) lessThan_iff power_one_right sum.cong)
also have "... = (cmod(-1/(sqrt(2))))⇧2"
using aux_comp_with_sqrt2_bis by simp
also have "... = 1/2"
by (simp add: norm_divide power2_eq_square)
finally show "?thesis" by simp
qed
ultimately have "prob0_fst_qubits n jozsa_algo = 1/2 + 1/2" by simp
then show "?thesis" by simp
qed
lemma (in jozsa) prob0_jozsa_algo_of_const_1:
assumes "const 1"
shows "prob0_fst_qubits n jozsa_algo = 1"
proof-
have "prob0_fst_qubits n jozsa_algo = (∑j∈{0,1}. (cmod(jozsa_algo $$ (j,0)))⇧2)"
using prob0_fst_qubits_of_jozsa_algo by simp
moreover have "(cmod(jozsa_algo $$ (0,0)))⇧2 = 1/2"
proof-
have "k<2^n ⟶ ((0 div 2) ⋅⇘n⇙ k) = 0" for k::nat
using bitwise_inner_prod_with_zero by simp
then have "(cmod(jozsa_algo $$ (0,0)))⇧2 = (cmod(∑k::nat<2^n. 1/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using jozsa_algo_result const_def assms by simp
also have "... = (cmod((-1)/(sqrt(2))))⇧2 "
using aux_comp_with_sqrt2_bis by simp
also have "... = 1/2"
by (simp add: norm_divide power2_eq_square)
finally show "?thesis" by simp
qed
moreover have "(cmod(jozsa_algo $$ (1,0)))⇧2 = 1/2"
proof-
have "k<2^n ⟶ ((1 div 2) ⋅⇘n⇙ k) = 0" for k::nat
using bitwise_inner_prod_with_zero by simp
then have "(∑k::nat<2^n. (-1)^(f k +1 + ((1 div 2) ⋅⇘n⇙ k))/(sqrt(2)^n * sqrt(2)^(n+1)))
= (∑k::nat<2^n. 1/(sqrt(2)^n * sqrt(2)^(n+1)))"
using const_def assms by simp
moreover have "(cmod(jozsa_algo $$ (1,0)))⇧2
= (cmod (∑k::nat<2^n. (-1)^(f k + 1 + ((1 div 2) ⋅⇘n⇙ k))/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using ψ⇩3_dim by simp
ultimately have "(cmod(jozsa_algo $$ (1,0)))⇧2 = (cmod(∑k::nat<2^n. 1/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2" by simp
also have "... = (cmod(1/(sqrt(2))))⇧2 "
using aux_comp_with_sqrt2_bis by simp
also have "... = 1/2"
by (simp add: norm_divide power2_eq_square)
finally show "?thesis" by simp
qed
ultimately have "prob0_fst_qubits n jozsa_algo = 1/2 + 1/2" by simp
then show "?thesis" by simp
qed
text ‹If the probability of measuring 0 for the first n qubits is 1, then the function is constant.›
lemma (in jozsa) max_value_of_not_const_less:
assumes "¬ const 0" and "¬ const 1"
shows "(cmod (∑k::nat<2^n. (-(1::nat))^(f k)))⇧2 < (2::nat)^(2*n)"
proof-
have "cmod (∑k::nat<2^n. (-(1::nat))^(f k)) < 2^n"
proof-
have "(∑k::nat<2^n. (-(1::nat))^(f k)) < 2^n"
proof-
obtain x where f0:"x < 2^n" and f1:"f x = 1"
using assms(1) const_def f_values by auto
then have "(∑k::nat<2^n. (-(1::nat))^(f k)) < (∑k∈{i| i:: nat. i < 2^n}-{x}. (-(1::nat))^(f k))"
proof-
have "(-(1::nat))^ f x = -1" using f1 by simp
moreover have "x∈{i| i::nat. i<2^n}" using f0 by simp
moreover have "finite {i| i::nat. i<2^n}" by simp
moreover have "(∑k∈{i| i::nat. i<2^n}. (-(1::nat))^(f k)) <
(∑k∈{i| i:: nat. i<2^n}-{x}. (-(1::nat))^(f k))"
using calculation(1,2,3) sum_diff1 by (simp add: sum_diff1)
ultimately show ?thesis by (metis Collect_cong Collect_mem_eq lessThan_iff)
qed
moreover have "… ≤ int (2^n - 1)"
using aux_ineq_with_card(1)[of "{i| i:: nat. i<2^n}-{x}"] f0 by simp
ultimately show ?thesis
by (meson diff_le_self less_le_trans of_nat_le_numeral_power_cancel_iff)
qed
moreover have "(∑k::nat<2^n. (-(1::nat))^(f k)) > - (2^n)"
proof-
obtain x where f0:"x < 2^n" and f1:"f x = 0"
using assms(2) const_def f_values by auto
then have "(∑k::nat<2^n. (-(1::nat))^(f k)) > (∑k∈{i| i:: nat. i < 2^n}-{x}. (-(1::nat))^(f k))"
proof-
have "(-(1::nat))^ f x = 1" using f1 by simp
moreover have "x∈{i| i::nat. i<2^n}" using f0 by simp
moreover have "finite {i| i::nat. i<2^n}" by simp
moreover have "(∑k∈{i| i::nat. i<2^n}. (-(1::nat))^(f k)) >
(∑k∈{i| i:: nat. i<2^n}-{x}. (-(1::nat))^(f k))"
using calculation(1,2,3) sum_diff1 by (simp add: sum_diff1)
ultimately show ?thesis by (metis Collect_cong Collect_mem_eq lessThan_iff)
qed
moreover have "- int (2^n - 1) ≤ (∑k∈{i| i:: nat. i < 2^n}-{x}. (-(1::nat))^(f k))"
using aux_ineq_with_card(2)[of "{i| i:: nat. i<2^n}-{x}"] f0 by simp
ultimately show ?thesis
by (smt (verit) diff_le_self of_nat_1 of_nat_add of_nat_power_le_of_nat_cancel_iff one_add_one)
qed
ultimately show ?thesis
using cmod_less of_int_of_nat_eq of_nat_numeral of_nat_power by (metis (no_types, lifting))
qed
then have "(cmod (∑k::nat<2^n. (-(1::nat))^(f k)))⇧2 < (2^n)⇧2"
using square_less norm_ge_zero by (smt (verit))
thus ?thesis
by (simp add: power_even_eq)
qed
lemma (in jozsa) max_value_of_not_const_less_bis:
assumes "¬ const 0" and "¬ const 1"
shows "(cmod (∑k::nat<2^n. (-(1::nat))^(f k + 1)))⇧2 < (2::nat)^(2*n)"
proof-
have "cmod (∑k::nat<2^n. (-(1::nat))^(f k + 1)) < 2^n"
proof-
have "(∑k::nat<2^n. (-(1::nat))^(f k + 1)) < 2^n"
proof-
obtain x where f0:"x < 2^n" and f1:"f x = 0"
using assms(2) const_def f_values by auto
then have "(∑k::nat<2^n. (-(1::nat))^(f k + 1)) < (∑k∈{i| i:: nat. i < 2^n}-{x}. (-(1::nat))^(f k + 1))"
proof-
have "(-(1::nat))^ (f x + 1) = -1" using f1 by simp
moreover have "x∈{i| i::nat. i<2^n}" using f0 by simp
moreover have "finite {i| i::nat. i<2^n}" by simp
moreover have "(∑k∈{i| i::nat. i<2^n}. (-(1::nat))^(f k + 1)) <
(∑k∈{i| i:: nat. i<2^n}-{x}. (-(1::nat))^(f k + 1))"
using calculation(1,2,3) sum_diff1 by (simp add: sum_diff1)
ultimately show ?thesis by (metis Collect_cong Collect_mem_eq lessThan_iff)
qed
moreover have "… ≤ int (2^n - 1)"
using aux_ineq_with_card(1)[of "{i| i:: nat. i<2^n}-{x}" "λk. f k + 1"] f0 by simp
ultimately show ?thesis
by (meson diff_le_self less_le_trans of_nat_le_numeral_power_cancel_iff)
qed
moreover have "(∑k::nat<2^n. (-(1::nat))^(f k + 1)) > - (2^n)"
proof-
obtain x where f0:"x < 2^n" and f1:"f x = 1"
using assms(1) const_def f_values by auto
then have "(∑k::nat<2^n. (-(1::nat))^(f k + 1)) > (∑k∈{i| i:: nat. i < 2^n}-{x}. (-(1::nat))^(f k + 1))"
proof-
have "(-(1::nat))^ (f x + 1) = 1" using f1 by simp
moreover have "x∈{i| i::nat. i<2^n}" using f0 by simp
moreover have "finite {i| i::nat. i<2^n}" by simp
moreover have "(∑k∈{i| i::nat. i<2^n}. (-(1::nat))^(f k + 1)) >
(∑k∈{i| i:: nat. i<2^n}-{x}. (-(1::nat))^(f k + 1))"
using calculation(1,2,3) sum_diff1 by (simp add: sum_diff1)
ultimately show ?thesis by (metis Collect_cong Collect_mem_eq lessThan_iff)
qed
moreover have "- int (2^n - 1) ≤ (∑k∈{i| i:: nat. i < 2^n}-{x}. (-(1::nat))^(f k + 1))"
using aux_ineq_with_card(2)[of "{i| i:: nat. i<2^n}-{x}" "λk. f k + 1"] f0 by simp
ultimately show ?thesis
by (smt (verit) diff_le_self of_nat_1 of_nat_add of_nat_power_le_of_nat_cancel_iff one_add_one)
qed
ultimately show ?thesis
using cmod_less of_int_of_nat_eq of_nat_numeral of_nat_power by (metis (no_types, lifting))
qed
then have "(cmod (∑k::nat<2^n. (-(1::nat))^(f k + 1)))⇧2 < (2^n)⇧2"
using square_less norm_ge_zero by (smt (verit))
thus ?thesis
by (simp add: power_even_eq)
qed
lemma (in jozsa) f_const_has_max_value:
assumes "const 0 ∨ const 1"
shows "(cmod (∑k<(2::nat)^n. (-1)^(f k)))⇧2 = (2::nat)^(2*n)"
and "(cmod (∑k<(2::nat)^n. (-1)^(f k + 1)))⇧2 = (2::nat)^(2*n)"
using aux_comp_with_cmod[of n "λk. f k"] aux_comp_with_cmod[of n "λk. f k + 1"] const_def assms by auto
lemma (in jozsa) prob0_fst_qubits_leq:
shows "(cmod (∑k<(2::nat)^n. (-1)^(f k)))⇧2 ≤ (2::nat)^(2*n)"
and "(cmod (∑k<(2::nat)^n. (-1)^(f k + 1)))⇧2 ≤ (2::nat)^(2*n)"
proof-
show "(cmod (∑k<(2::nat)^n. (-1)^(f k)))⇧2 ≤ (2::nat)^(2*n)"
proof(rule disjE)
show "(const 0 ∨ const 1) ∨ (¬ const 0 ∧ ¬ const 1)" by auto
next
assume "const 0 ∨ const 1"
then show "(cmod (∑k<(2::nat)^n. (-1)^(f k)))⇧2 ≤ (2::nat)^(2*n)"
using f_const_has_max_value by simp
next
assume "¬ const 0 ∧ ¬ const 1"
then show "(cmod (∑k<(2::nat)^n. (-1)^(f k)))⇧2 ≤ (2::nat)^(2*n)"
using max_value_of_not_const_less by simp
qed
next
show "(cmod (∑k<(2::nat)^n. (-1)^(f k + 1)))⇧2 ≤ (2::nat)^(2*n)"
proof(rule disjE)
show "(const 0 ∨ const 1) ∨ (¬ const 0 ∧ ¬ const 1)" by auto
next
assume "const 0 ∨ const 1"
then show "(cmod (∑k<(2::nat)^n. (-1)^(f k + 1)))⇧2 ≤ (2::nat)^(2*n)"
using f_const_has_max_value by simp
next
assume "¬ const 0 ∧ ¬ const 1"
then show "(cmod (∑k<(2::nat)^n. (-1)^(f k + 1)))⇧2 ≤ (2::nat)^(2*n)"
using max_value_of_not_const_less_bis by simp
qed
qed
lemma (in jozsa) prob0_jozsa_algo_1_is_const:
assumes "prob0_fst_qubits n jozsa_algo = 1"
shows "const 0 ∨ const 1"
proof-
have f0: "(∑j∈{0,1}. (cmod(jozsa_algo $$ (j,0)))⇧2) = 1"
using prob0_fst_qubits_of_jozsa_algo assms by simp
have "k < 2^n⟶((0 div 2) ⋅⇘n⇙ k) = 0" for k::nat
using bitwise_inner_prod_with_zero by simp
then have f1: "(cmod(jozsa_algo $$ (0,0)))⇧2 = (cmod(∑k<(2::nat)^n. (-1)^(f k)/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
by simp
have "k < 2^n⟶((1 div 2) ⋅⇘n⇙ k) = 0" for k::nat
using bitwise_inner_prod_with_zero by simp
moreover have "(cmod(jozsa_algo $$ (1,0)))⇧2
= (cmod (∑k<(2::nat)^n. (-1)^(f k+ 1 + ((1 div 2) ⋅⇘n⇙ k))/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using ψ⇩3_dim by simp
ultimately have f2: "(cmod(jozsa_algo $$ (1,0)))⇧2
= (cmod (∑k<(2::nat)^n. (-1)^(f k + 1)/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2" by simp
have f3: "1 = (cmod(∑k::nat<(2::nat)^n.(-1)^(f k)/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2
+ (cmod (∑k::nat<(2::nat)^n. (-1)^(f k + 1)/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using f0 f1 f2 by simp
also have "... = ((cmod (∑k::nat<(2::nat)^n. (-1)^(f k)) ) /(sqrt(2)^n * sqrt(2)^(n+1)))⇧2
+ ((cmod(∑k::nat<(2::nat)^n. (-1)^(f k + 1))) /(sqrt(2)^n * sqrt(2)^(n+1)))⇧2"
using aux_comp_sum_divide_cmod[of "λk. (-1)^(f k)" "(sqrt(2)^n * sqrt(2)^(n+1))" "(2::nat)^n"]
aux_comp_sum_divide_cmod[of "λk. (-1)^(f k + 1)" "(sqrt(2)^n * sqrt(2)^(n+1))" "(2::nat)^n"]
by simp
also have "... = ((cmod (∑k::nat<(2::nat)^n. (-1)^(f k))))⇧2 /((sqrt(2)^n * sqrt(2)^(n+1)))⇧2
+ ((cmod(∑k::nat<(2::nat)^n. (-1)^(f k +1))))⇧2 /((sqrt(2)^n * sqrt(2)^(n+1)))⇧2"
by (simp add: power_divide)
also have "... = ((cmod (∑k::nat<(2::nat)^n. (-1)^(f k)) ) )⇧2/(2^(2*n+1))
+ ((cmod(∑k::nat<(2::nat)^n. (-1)^(f k + 1))))⇧2 /(2^(2*n+1))"
by (smt (verit) left_add_twice power2_eq_square power_add power_mult_distrib real_sqrt_pow2)
also have "... = (((cmod (∑k::nat<(2::nat)^n. (-1)^(f k))))⇧2
+ ((cmod(∑k::nat<(2::nat)^n. (-1)^(f k + 1))))⇧2)/(2^(2*n+1)) "
by (simp add: add_divide_distrib)
finally have "((2::nat)^(2*n+1)) = (((cmod (∑k::nat<(2::nat)^n. (-1)^(f k))))⇧2
+ ((cmod(∑k::nat<(2::nat)^n. (-1)^(f k + 1))))⇧2)" by simp
moreover have "((2::nat)^(2*n+1)) = 2^(2*n) + 2^(2*n)" by auto
moreover have "(cmod (∑k<(2::nat)^n. (-1)^(f k)))⇧2 ≤ 2^(2*n)"
using prob0_fst_qubits_leq by simp
moreover have "(cmod (∑k<(2::nat)^n. (-1)^(f k + 1)))⇧2 ≤ 2^(2*n)"
using prob0_fst_qubits_leq by simp
ultimately have "2^(2*n) = ((cmod (∑k::nat<(2::nat)^n. (-1)^(f k))))⇧2" by simp
then show ?thesis
using max_value_of_not_const_less by auto
qed
text ‹
The function is balanced if and only if at least one qubit among the first n qubits is not zero.
So, if the function is balanced then the probability of measuring 0 for the first n qubits is 0.
›
lemma sum_union_disjoint_finite_set:
fixes C::"nat set" and g::"nat ⇒ int"
assumes "finite C"
shows "∀A B. A ∩ B = {} ∧ A ∪ B = C ⟶ (∑k∈C. g k) = (∑k∈A. g k) + (∑k∈B. g k)"
using assms sum.union_disjoint by auto
lemma (in jozsa) balanced_pos_and_neg_terms_cancel_out1:
assumes "is_balanced"
shows "(∑k<(2::nat)^n. (-(1::nat))^(f k)) = 0"
proof-
have "⋀A B. A ⊆ {i::nat. i < (2::nat)^n} ∧ B ⊆ {i::nat. i < (2::nat)^n}
∧ card A = ((2::nat)^(n-1)) ∧ card B = ((2::nat)^(n-1))
∧ (∀(x::nat) ∈ A. f x = (0::nat)) ∧ (∀(x::nat) ∈ B. f x = 1)
⟶ (∑k<(2::nat)^n. (-(1::nat))^(f k)) = 0"
proof
fix A B::"nat set"
assume asm: "A ⊆ {i::nat. i < (2::nat)^n} ∧ B ⊆ {i::nat. i < (2::nat)^n}
∧ card A = ((2::nat)^(n-1)) ∧ card B = ((2::nat)^(n-1))
∧ (∀(x::nat) ∈ A. f x = (0::nat)) ∧ (∀(x::nat) ∈ B. f x = 1)"
then have " A ∩ B = {}" and "{0..<(2::nat)^n} = A ∪ B"
using is_balanced_union is_balanced_inter by auto
then have "(∑k∈{0..<(2::nat)^n}. (-(1::nat))^(f k)) =
(∑k∈A. (-(1::nat))^(f k))
+ (∑k∈B. (-(1::nat))^(f k))"
by (metis finite_atLeastLessThan sum_union_disjoint_finite_set)
moreover have "(∑k∈A. (-1)^(f k)) = ((2::nat)^(n-1))"
using asm by simp
moreover have "(∑k∈B. (-1)^(f k)) = -((2::nat)^(n-1))"
using asm by simp
ultimately have "(∑k∈ {0..<(2::nat)^n}. (-(1::nat))^(f k)) = 0" by simp
then show "(∑k<(2::nat)^n. (-(1::nat))^(f k)) = 0"
by (simp add: lessThan_atLeast0)
qed
then show ?thesis
using assms is_balanced_def by auto
qed
lemma (in jozsa) balanced_pos_and_neg_terms_cancel_out2:
assumes "is_balanced"
shows "(∑k<(2::nat)^n. (-(1::nat))^(f k + 1)) = 0"
proof-
have "⋀A B. A ⊆ {i::nat. i < (2::nat)^n} ∧ B ⊆ {i::nat. i < (2::nat)^n}
∧ card A = ((2::nat)^(n-1)) ∧ card B = ((2::nat)^(n-1))
∧ (∀(x::nat)∈A. f x = (0::nat)) ∧ (∀(x::nat)∈B. f x = 1)
⟶ (∑k<(2::nat)^n. (-(1::nat))^(f k + 1)) = 0"
proof
fix A B::"nat set"
assume asm: "A ⊆ {i::nat. i < (2::nat)^n} ∧ B ⊆ {i::nat. i < (2::nat)^n}
∧ card A = ((2::nat)^(n-1)) ∧ card B = ((2::nat)^(n-1))
∧ (∀(x::nat) ∈ A. f x = (0::nat)) ∧ (∀(x::nat) ∈ B. f x = 1)"
have "A ∩ B = {}" and "{0..<(2::nat)^n} = A ∪ B"
using is_balanced_union is_balanced_inter asm by auto
then have "(∑k∈{0..<(2::nat)^n}. (-(1::nat))^(f k + 1)) =
(∑k∈A. (-(1::nat))^(f k + 1))
+ (∑k∈B. (-(1::nat))^(f k + 1))"
by (metis finite_atLeastLessThan sum_union_disjoint_finite_set)
moreover have "(∑k∈A. (-1)^(f k + 1)) = -((2::nat)^(n-1))"
using asm by simp
moreover have "(∑k∈B. (-1)^(f k + 1)) = ((2::nat)^(n-1))"
using asm by simp
ultimately have "(∑k∈{0..<(2::nat)^n}. (-(1::nat))^(f k + 1)) = 0 " by simp
then show "(∑k<(2::nat)^n. (-(1::nat))^(f k + 1)) = 0"
by (simp add: lessThan_atLeast0)
qed
then show "(∑k<(2::nat)^n. (-(1::nat))^(f k + 1)) = 0"
using assms is_balanced_def by auto
qed
lemma (in jozsa) prob0_jozsa_algo_of_balanced:
assumes "is_balanced"
shows "prob0_fst_qubits n jozsa_algo = 0"
proof-
have "prob0_fst_qubits n jozsa_algo = (∑j∈{0,1}. (cmod(jozsa_algo $$ (j,0)))⇧2)"
using prob0_fst_qubits_of_jozsa_algo by simp
moreover have "(cmod(jozsa_algo $$ (0,0)))⇧2 = 0"
proof-
have "k < 2^n⟶((1 div 2) ⋅⇘n⇙ k) = 0" for k::nat
using bitwise_inner_prod_with_zero by simp
then have "(cmod(jozsa_algo $$ (0,0)))⇧2 = (cmod(∑ k < (2::nat)^n. (-1)^(f k)/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using ψ⇩3_values by simp
also have "... = (cmod(∑k<(2::nat)^n. (-(1::nat))^(f k))/(sqrt(2)^n * sqrt(2)^(n+1)))⇧2"
using aux_comp_sum_divide_cmod[of "λk.(-(1::nat))^(f k)" "(sqrt(2)^n * sqrt(2)^(n+1))" "2^n"]
by simp
also have "... = (cmod ((0::int)/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using balanced_pos_and_neg_terms_cancel_out1 assms by (simp add: bob_fun_axioms)
also have "... = 0" by simp
finally show ?thesis by simp
qed
moreover have "(cmod(jozsa_algo $$ (1,0)))⇧2 = 0"
proof-
have "k < 2^n ⟶ (((1::nat) div 2) ⋅⇘n⇙ k) = 0" for k::nat
using bitwise_inner_prod_with_zero by auto
moreover have "(cmod(jozsa_algo $$ (1,0)))⇧2
= (cmod (∑k<(2::nat)^n. (-(1::nat))^(f k + (1::nat) + ((1 div 2) ⋅⇘n⇙ k))/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using ψ⇩3_dim by simp
ultimately have "(cmod(jozsa_algo $$ (1,0)))⇧2
= (cmod(∑k<(2::nat)^n. (-(1::nat))^(f k + (1::nat))/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
by simp
also have "... = (cmod(∑k<(2::nat)^n. (-(1::nat))^(f k + 1))/(sqrt(2)^n * sqrt(2)^(n+1)))⇧2"
using aux_comp_sum_divide_cmod[of "λk.(-(1::nat))^(f k + 1)" "(sqrt(2)^n * sqrt(2)^(n+1))" "2^n"]
by simp
also have "... = (cmod ((0::int)/(sqrt(2)^n * sqrt(2)^(n+1))))⇧2"
using balanced_pos_and_neg_terms_cancel_out2 assms by (simp add: bob_fun_axioms)
also have "... = 0" by simp
finally show ?thesis by simp
qed
ultimately have "prob0_fst_qubits n jozsa_algo = 0 + 0" by simp
then show ?thesis by simp
qed
text ‹If the probability that the first n qubits are 0 is 0, then the function is balanced.›
lemma (in jozsa) balanced_prob0_jozsa_algo:
assumes "prob0_fst_qubits n jozsa_algo = 0"
shows "is_balanced"
proof-
have "is_const ∨ is_balanced"
using const_or_balanced by simp
moreover have "is_const ⟶ ¬ prob0_fst_qubits n jozsa_algo = 0"
using is_const_def prob0_jozsa_algo_of_const_0 prob0_jozsa_algo_of_const_1 by simp
ultimately show ?thesis
using assms by simp
qed
text ‹We prove the correctness of the algorithm.›
definition (in jozsa) jozsa_algo_eval:: "real" where
"jozsa_algo_eval ≡ prob0_fst_qubits n jozsa_algo"
theorem (in jozsa) jozsa_algo_is_correct:
shows "jozsa_algo_eval = 1 ⟷ is_const"
and "jozsa_algo_eval = 0 ⟷ is_balanced"
using prob0_jozsa_algo_of_const_1 prob0_jozsa_algo_of_const_0 jozsa_algo_eval_def
prob0_jozsa_algo_1_is_const is_const_def balanced_prob0_jozsa_algo prob0_jozsa_algo_of_balanced
by auto
end