Theory Binary_Nat
section ‹Binary Representation of Natural Numbers›
theory Binary_Nat
imports
HOL.Nat
HOL.List
Basics
begin
primrec bin_rep_aux:: "nat ⇒ nat ⇒ nat list" where
"bin_rep_aux 0 m = [m]"
| "bin_rep_aux (Suc n) m = m div 2^n # bin_rep_aux n (m mod 2^n)"
lemma length_of_bin_rep_aux:
fixes n m:: nat
assumes "m < 2^n"
shows "length (bin_rep_aux n m) = n+1"
using assms
proof(induction n arbitrary: m)
case 0
then show "length (bin_rep_aux 0 m) = 0 + 1" by simp
next
case (Suc n)
assume a0:"⋀m. m < 2^n ⟹ length (bin_rep_aux n m) = n + 1" and "m < 2^(Suc n)"
then show "length (bin_rep_aux (Suc n) m) = Suc n + 1"
using a0 by simp
qed
lemma bin_rep_aux_neq_nil:
fixes n m:: nat
shows "bin_rep_aux n m ≠ []"
using bin_rep_aux.simps by (metis list.distinct(1) old.nat.exhaust)
lemma last_of_bin_rep_aux:
fixes n m:: nat
assumes "m < 2^n" and "m ≥ 0"
shows "last (bin_rep_aux n m) = 0"
using assms
proof(induction n arbitrary: m)
case 0
assume "m < 2^0" and "m ≥ 0"
then show "last (bin_rep_aux 0 m) = 0" by simp
next
case (Suc n)
assume a0:"⋀m. m < 2^n ⟹ m ≥ 0 ⟹ last (bin_rep_aux n m) = 0" and "m < 2^(Suc n)"
and "m ≥ 0"
then show "last (bin_rep_aux (Suc n) m) = 0"
using bin_rep_aux_neq_nil by simp
qed
lemma mod_mod_power_cancel:
fixes m n p:: nat
assumes "m ≤ n"
shows "p mod 2^n mod 2^m = p mod 2^m"
using assms by (simp add: dvd_power_le mod_mod_cancel)
lemma bin_rep_aux_index:
fixes n m i:: nat
assumes "n ≥ 1" and "m < 2^n" and "m ≥ 0" and "i ≤ n"
shows "bin_rep_aux n m ! i = (m mod 2^(n-i)) div 2^(n-1-i)"
using assms
proof(induction n arbitrary: m i rule: nat_induct_at_least)
case base
then have ‹m < 2› and ‹i ∈ {0, 1}›
by auto
then show ?case
by auto
next
case (Suc n)
assume a0:"⋀m i. m < 2^n ⟹ m ≥ 0 ⟹ i ≤ n ⟹ bin_rep_aux n m ! i = m mod 2 ^ (n-i) div 2^(n-1-i)"
and a1:"m < 2^(Suc n)" and a2:"i ≤ Suc n" and a3:"m ≥ 0"
then show "bin_rep_aux (Suc n) m ! i = m mod 2^(Suc n - i) div 2^(Suc n - 1 - i)"
proof-
have "bin_rep_aux (Suc n) m = m div 2^n # bin_rep_aux n (m mod 2^n)" by simp
then have f0:"bin_rep_aux (Suc n) m ! i = (m div 2^n # bin_rep_aux n (m mod 2^n)) ! i" by simp
then have "bin_rep_aux (Suc n) m ! i = m div 2^n" if "i = 0" using that by simp
then have f1:"bin_rep_aux (Suc n) m ! i = m mod 2^(Suc n - i) div 2^(Suc n - 1 - i)" if "i = 0"
proof-
have "m mod 2^(Suc n - i) = m"
using that a1 by (simp add: Suc.prems(2))
then have "m mod 2^(Suc n - i) div 2^(Suc n - 1 - i) = m div 2^n"
using that by simp
thus ?thesis by (simp add: that)
qed
then have "bin_rep_aux (Suc n) m ! i = bin_rep_aux n (m mod 2^n) ! (i-1)" if "i ≥ 1"
using that f0 by simp
then have f2:"bin_rep_aux (Suc n) m ! i = ((m mod 2^n) mod 2^(n - (i - 1))) div 2^(n - 1 - (i - 1))" if "i ≥ 1"
using that a0 a1 a2 a3 Suc.prems(2) by simp
then have f3:"bin_rep_aux (Suc n) m ! i = ((m mod 2^n) mod 2^(Suc n - i)) div 2^(Suc n - 1 - i)" if "i ≥ 1"
using that by simp
then have "bin_rep_aux (Suc n) m ! i = m mod 2^(Suc n - i) div 2^(Suc n - 1 - i)" if "i ≥ 1"
proof-
have "Suc n - i ≤ n" using that by simp
then have "m mod 2^n mod 2^(Suc n - i) = m mod 2^(Suc n - i)"
using mod_mod_power_cancel[of "Suc n - i" "n" "m"] by simp
thus ?thesis
using that f3 by simp
qed
thus ?thesis using f1 f2
using linorder_not_less by blast
qed
qed
lemma bin_rep_aux_coeff:
fixes n m i:: nat
assumes "m < 2^n" and "i ≤ n" and "m ≥ 0"
shows "bin_rep_aux n m ! i = 0 ∨ bin_rep_aux n m ! i = 1"
using assms
proof(induction n arbitrary: m i)
case 0
assume "m < 2^0" and "i ≤ 0" and "m ≥ 0"
then show "bin_rep_aux 0 m ! i = 0 ∨ bin_rep_aux 0 m ! i = 1" by simp
next
case (Suc n)
assume a0:"⋀m i. m < 2 ^ n ⟹ i ≤ n ⟹ m ≥ 0 ⟹ bin_rep_aux n m ! i = 0 ∨ bin_rep_aux n m ! i = 1"
and a1:"m < 2^Suc n" and a2:"i ≤ Suc n" and a3:"m ≥ 0"
then show "bin_rep_aux (Suc n) m ! i = 0 ∨ bin_rep_aux (Suc n) m ! i = 1"
proof-
have "bin_rep_aux (Suc n) m ! i = (m div 2^n # bin_rep_aux n (m mod 2^n)) ! i" by simp
moreover have "… = bin_rep_aux n (m mod 2^n) ! (i - 1)" if "i ≥ 1"
using that by simp
moreover have "m mod 2^n < 2^n" by simp
ultimately have "bin_rep_aux (Suc n) m ! i = 0 ∨ bin_rep_aux (Suc n) m ! i = 1" if "i≥1"
using that a0[of "m mod 2^n" "i-1"] a2 by simp
moreover have "m div 2^n = 0 ∨ m div 2^n = 1"
using a1 a3 less_mult_imp_div_less by(simp add: less_2_cases)
ultimately show ?thesis by (simp add: nth_Cons')
qed
qed
definition bin_rep:: "nat ⇒ nat ⇒ nat list" where
"bin_rep n m = butlast (bin_rep_aux n m)"
lemma length_of_bin_rep:
fixes n m:: nat
assumes "m < 2^n"
shows "length (bin_rep n m) = n"
using assms length_of_bin_rep_aux bin_rep_def by simp
lemma bin_rep_coeff:
fixes n m i:: nat
assumes "m < 2^n" and "i < n" and "m ≥ 0"
shows "bin_rep n m ! i = 0 ∨ bin_rep n m ! i = 1"
using assms bin_rep_def bin_rep_aux_coeff length_of_bin_rep by(simp add: nth_butlast)
lemma bin_rep_index:
fixes n m i:: nat
assumes "n ≥ 1" and "m < 2^n" and "i < n" and "m ≥ 0"
shows "bin_rep n m ! i = (m mod 2^(n-i)) div 2^(n-1-i)"
proof-
have "bin_rep n m ! i = bin_rep_aux n m ! i"
using bin_rep_def length_of_bin_rep nth_butlast assms(3)
by (simp add: nth_butlast assms(2))
thus ?thesis
using assms bin_rep_aux_index by simp
qed
lemma bin_rep_eq:
fixes n m:: nat
assumes "n ≥ 1" and "m ≥ 0" and "m < 2^n" and "m ≥ 0"
shows "m = (∑i<n. bin_rep n m ! i * 2^(n-1-i))"
proof-
{
fix i:: nat
assume "i < n"
then have "bin_rep n m ! i * 2^(n-1-i) = (m mod 2^(n-i)) div 2^(n-1-i) * 2^(n-1-i)"
using assms bin_rep_index by simp
moreover have "… = m mod 2^(n-i) - m mod 2^(n-i) mod 2^(n-1-i)"
by (simp add: minus_mod_eq_div_mult)
moreover have "… = int(m mod 2^(n-i)) - m mod 2^(n-i) mod 2^(n-1-i)"
using mod_less_eq_dividend of_nat_diff by blast
moreover have "… = int(m mod 2^(n-i)) - m mod 2^(n-1-i)"
using mod_mod_power_cancel[of "n-1-i" "n-i"] by (simp add: dvd_power_le mod_mod_cancel)
ultimately have "bin_rep n m ! i * 2^(n-1-i) = int (m mod 2^(n-i)) - m mod 2^(n-1-i)"
by presburger
}
then have f0:"(∑i<n. bin_rep n m ! i * 2^(n-1-i)) = (∑i<n. int (m mod 2^(n-i)) - m mod 2^(n-1-i))"
by auto
thus ?thesis
proof-
have "(∑i<n. int ((m::nat) mod 2^(n - i)) - (m mod 2^(n - 1 - i))) =
(∑i<n. ( m mod 2^(n - i))) - (∑i<n. int (m mod 2^(n - 1 - i)))"
using sum_subtractf[of "(λi. (m mod 2^(n-i)))::nat⇒nat" "(λi. (m mod 2^(n-1-i)))::nat⇒nat" "{..<(n::nat)}"]
by auto
moreover have "… = m mod 2^n + (∑i∈{1..<n}. (m mod 2^(n-i))) - (∑i<n-1. int (m mod 2^(n-1-i)))- m mod 2^0"
using sum.atLeast_Suc_atMost sum.lessThan_Suc assms(1)
by (smt (verit) One_nat_def Suc_le_eq diff_self_eq_0 le_add_diff_inverse lessThan_atLeast0 minus_nat.diff_0
plus_1_eq_Suc sum.atLeast_Suc_lessThan)
moreover have "… = m mod 2^n + (∑i<n-1. m mod 2^(n-i-1)) - (∑i<n-1. int ( m mod 2^(n-1-i))) - m mod 2^0"
apply (auto simp add: sum_of_index_diff[of "λi. m mod 2 ^ (n - 1 - i)" "1" "n-1"])
by (smt (verit) One_nat_def assms(1) le_add_diff_inverse lessThan_atLeast0 plus_1_eq_Suc sum.cong sum.shift_bounds_Suc_ivl)
moreover have "… = m mod 2^n - m mod 2^0" by simp
moreover have "… = m" using assms by auto
ultimately show "m = (∑i<n. bin_rep n m ! i * 2^(n-1-i))"
using assms f0 by linarith
qed
qed
lemma bin_rep_index_0:
fixes n m:: nat
assumes "m < 2^n" and "k > n"
shows "(bin_rep k m) ! 0 = 0"
proof-
have "m < 2^(k-1)"
using assms by (smt (verit) Suc_diff_1 Suc_leI gr0I le_trans less_or_eq_imp_le linorder_neqE_nat not_less
one_less_numeral_iff power_strict_increasing semiring_norm(76))
then have f:"m div 2^(k-1) = 0"
by auto
have "k ≥ 1"
using assms(2) by simp
moreover have "bin_rep_aux k m = (m div 2^(k-1)) # (bin_rep_aux (k-1) (m mod 2^(k-1)))"
using bin_rep_aux.simps(2) by(metis Suc_diff_1 assms(2) diff_0_eq_0 neq0_conv zero_less_diff)
moreover have "bin_rep k m = butlast ((m div 2^(k-1)) # (bin_rep_aux (k-1) (m mod 2^(k-1))))"
using bin_rep_def by (simp add: calculation(2))
moreover have "… = butlast (0 # (bin_rep_aux (k-1) (m mod 2^(k-1))))"
using f by simp
moreover have "… = 0 # butlast (bin_rep_aux (k-1) (m mod 2^(k-1)))"
by(simp add: bin_rep_aux_neq_nil)
ultimately show ?thesis
by simp
qed
lemma bin_rep_index_0_geq:
fixes n m:: nat
assumes "m ≥ 2^n" and "m < 2^(n+1)"
shows "bin_rep (n+1) m ! 0 = 1"
proof-
have "bin_rep (Suc n) m = butlast (bin_rep_aux (Suc n) m)"
using bin_rep_def by simp
moreover have "… = butlast (1 # (bin_rep_aux n (m mod 2^n)))"
using assms bin_rep_aux_def by simp
moreover have "… = 1 # butlast (bin_rep_aux n (m mod 2^n))"
by (simp add: bin_rep_aux_neq_nil)
ultimately show ?thesis
by (simp add: bin_rep_aux_neq_nil)
qed
end