Theory Fun3_secure
subsection "Proof"
theory Fun3_secure
imports Fun3
begin
type_synonym stateO = configS
type_synonym stateV = "config × val llist × val llist × loc set"
definition "PC ≡ {0..7}"
definition "beforeInput = {0,1}"
definition "afterInput = {2,3,4,5,6,7}"
definition "startOfThenBranch = 4"
definition "inThenBranchBeforeFence = {4,5}"
definition "elseBranch = 7"
definition "beforeFence = {2..4}"
definition "beforeAssign_vv = {0..4}"
definition common :: "stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool"
where
"common = (λ
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(pstate3 = pstate4 ∧
cfg1 = cfg3 ∧ cfg2 = cfg4 ∧
pcOf cfg3 = pcOf cfg4 ∧ map pcOf cfgs3 = map pcOf cfgs4 ∧
pcOf cfg3 ∈ PC ∧ pcOf ` (set cfgs3) ⊆ PC ∧
array_base aa1 (getAvstore (stateOf cfg3)) = array_base aa1 (getAvstore (stateOf cfg4)) ∧
(∀cfg3'∈set cfgs3. array_base aa1 (getAvstore (stateOf cfg3')) = array_base aa1 (getAvstore (stateOf cfg3))) ∧
(∀cfg4'∈set cfgs4. array_base aa1 (getAvstore (stateOf cfg4')) = array_base aa1 (getAvstore (stateOf cfg4))) ∧
array_base aa2 (getAvstore (stateOf cfg3)) = array_base aa2 (getAvstore (stateOf cfg4)) ∧
(∀cfg3'∈set cfgs3. array_base aa2 (getAvstore (stateOf cfg3')) = array_base aa2 (getAvstore (stateOf cfg3))) ∧
(∀cfg4'∈set cfgs4. array_base aa2 (getAvstore (stateOf cfg4')) = array_base aa2 (getAvstore (stateOf cfg4))) ∧
(statA = Diff ⟶ statO = Diff)))"
lemma common_implies: "common
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
pcOf cfg1 < 9 ∧ pcOf cfg2 = pcOf cfg1"
unfolding common_def PC_def by (auto simp: image_def subset_eq)
definition Δ0 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ0 = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
ibUT1 = ibUT3 ∧ ibUT2 = ibUT4 ∧
(pcOf cfg3 > 1 ⟶ same_var_o xx cfg3 cfgs3 cfg4 cfgs4) ∧
(pcOf cfg3 < 2 ⟶ ibUT1≠LNil ∧ ibUT2≠LNil ∧ ibUT3≠LNil ∧ ibUT4≠LNil) ∧
pcOf cfg3 ∈ beforeInput ∧
ls1 = ls3 ∧ ls2 = ls4 ∧
noMisSpec cfgs3
))"
lemmas Δ0_defs = Δ0_def common_def PC_def beforeInput_def noMisSpec_def same_var_o_def
lemma Δ0_implies: "Δ0 num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
(pcOf cfg3 = 1 ⟶ ibUT3 ≠ LNil) ∧
(pcOf cfg4 = 1 ⟶ ibUT4 ≠ LNil) ∧
pcOf cfg1 < 8 ∧ pcOf cfg2 = pcOf cfg1 ∧
cfgs3 = [] ∧ pcOf cfg3 < 8 ∧
cfgs4 = [] ∧ pcOf cfg4 < 8"
unfolding Δ0_defs
apply(intro conjI)
apply simp_all
by (metis map_is_Nil_conv)
definition Δ1 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ1 = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(common
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
pcOf cfg3 ∈ afterInput ∧
same_var_o xx cfg3 cfgs3 cfg4 cfgs4 ∧
ls1 = ls3 ∧ ls2 = ls4 ∧
noMisSpec cfgs3
))"
lemmas Δ1_defs = Δ1_def common_def PC_def afterInput_def same_var_o_def noMisSpec_def
lemma Δ1_implies: "Δ1 num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
pcOf cfg1 < 8 ∧
cfgs3 = [] ∧ pcOf cfg3 ≠ 1 ∧ pcOf cfg3 < 8 ∧
cfgs4 = [] ∧ pcOf cfg4 ≠ 1 ∧ pcOf cfg4 < 8"
unfolding Δ1_defs
apply(intro conjI) apply simp_all
using One_nat_def verit_eq_simplify(10,12) apply linarith
apply (metis list.map_disc_iff)
by linarith
definition Δ2 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ2 = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(common
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
pcOf cfg3 = startOfThenBranch ∧
pcOf (last cfgs3) = elseBranch ∧
same_var_o xx cfg3 cfgs3 cfg4 cfgs4 ∧
ls1 = ls3 ∧ ls2 = ls4 ∧
misSpecL1 cfgs3
))"
lemmas Δ2_defs = Δ2_def common_def PC_def same_var_def startOfThenBranch_def
misSpecL1_def elseBranch_def
lemma Δ2_implies: "Δ2 num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
pcOf (last cfgs3) = 7 ∧ pcOf cfg3 = 4 ∧
pcOf (last cfgs4) = pcOf (last cfgs3) ∧
pcOf cfg3 = pcOf cfg4 ∧
length cfgs3 = Suc 0 ∧
length cfgs3 = length cfgs4"
apply(intro conjI)
unfolding Δ2_defs apply simp_all
apply (simp add: image_subset_iff)
apply (metis last_map map_is_Nil_conv)
by (metis length_map)
definition Δ3 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ3 = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
pcOf cfg3 = elseBranch ∧
pcOf (last cfgs3) ∈ inThenBranchBeforeFence ∧
same_var_o xx cfg3 cfgs3 cfg4 cfgs4 ∧
Language_Prelims.dist ls3 ls4 ⊆ Language_Prelims.dist ls1 ls2 ∧
(pcOf (last cfgs3) = 4 ⟶ ls1 = ls3 ∧ ls2 = ls4) ∧
misSpecL1 cfgs3
))"
lemmas Δ3_defs = Δ3_def common_def PC_def inThenBranchBeforeFence_def
beforeAssign_vv_def misSpecL1_def elseBranch_def
same_var_o_def
lemma Δ3_implies: "Δ3 num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
(pcOf (last cfgs3) = 4 ∨ pcOf (last cfgs3) = 5) ∧ pcOf cfg3 = 7 ∧
pcOf (last cfgs4) = pcOf (last cfgs3) ∧
pcOf cfg3 = pcOf cfg4 ∧
array_base aa1 (getAvstore (stateOf (last cfgs3))) = array_base aa1 (getAvstore (stateOf cfg3)) ∧
array_base aa1 (getAvstore (stateOf (last cfgs4))) = array_base aa1 (getAvstore (stateOf cfg4)) ∧
length cfgs3 = Suc 0 ∧
length cfgs3 = length cfgs4 ∧
vstore (getVstore (stateOf (last cfgs3))) xx = vstore (getVstore (stateOf (last cfgs4))) xx"
apply(intro conjI)
unfolding Δ3_defs apply simp_all
apply (simp add: image_subset_iff)
apply (metis last_map map_is_Nil_conv)
apply (metis last_in_set list.size(3) n_not_Suc_n)
apply (metis One_nat_def last_in_set length_0_conv length_map zero_neq_one)
apply (metis length_map)
by (metis last_in_set list.map_disc_iff)
definition Δ1' :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ1' = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(common
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
pcOf cfg3 = elseBranch ∧
same_var_o xx cfg3 cfgs3 cfg4 cfgs4 ∧
Language_Prelims.dist ls3 ls4 ⊆ Language_Prelims.dist ls1 ls2 ∧
noMisSpec cfgs3
))"
lemmas Δ1'_defs = Δ1'_def common_def PC_def afterInput_def same_var_o_def noMisSpec_def
elseBranch_def
lemma Δ1'_implies: "Δ1' num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
pcOf cfg1 < 8 ∧
cfgs3 = [] ∧ pcOf cfg3 ≠ 1 ∧ pcOf cfg3 < 8 ∧
cfgs4 = [] ∧ pcOf cfg4 ≠ 1 ∧ pcOf cfg4 < 8"
unfolding Δ1'_defs
apply(intro conjI) apply simp_all
by (metis list.map_disc_iff)
definition Δ4 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ4 = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(pcOf cfg3 = endPC ∧ pcOf cfg4 = endPC ∧ cfgs3 = [] ∧ cfgs4 = [] ∧
pcOf cfg1 = endPC ∧ pcOf cfg2 = endPC))"
lemmas Δ4_defs = Δ4_def common_def endPC_def
lemma init: "initCond Δ0"
unfolding initCond_def apply(intro allI)
subgoal for s3 s4 apply(cases s3, cases s4)
subgoal for pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4
apply clarify
apply(rule exI[of _ "(cfg3, ibT3, ibUT3, ls3)"])
apply(cases "getAvstore (stateOf cfg3)")
apply(rule exI[of _ "(cfg4, ibT4, ibUT4, ls4)"])
apply(cases "getAvstore (stateOf cfg4)")
unfolding Δ0_defs array_base_def by auto . .
lemma step0: "unwindIntoCond Δ0 (oor Δ0 Δ1)"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ0: "Δ0 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg3 cfg4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
have f1:"¬finalN ss1"
using Δ0 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ0_defs
by simp
have f2:"¬finalN ss2"
using Δ0 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ0_defs
by simp
have f3:"¬finalS ss3"
using Δ0 unfolding ss apply-apply(frule Δ0_implies)
using finalS_cond by simp
have f4:"¬finalS ss4"
using Δ0 unfolding ss apply-apply(frule Δ0_implies)
using finalS_cond by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_defs)
show "match2 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_defs)
show "match12 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI2, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg3 cfg4
show "eqSec ss1 ss3"
using v sa Δ0 unfolding ss
by (simp add: Δ0_defs eqSec_def)
show "eqSec ss2 ss4"
using v sa Δ0 unfolding ss
apply (simp add: Δ0_defs eqSec_def)
by (metis length_0_conv length_map)
show "Van.eqAct ss1 ss2"
using v sa Δ0 unfolding ss
unfolding Opt.eqAct_def Van.eqAct_def
apply(simp_all add: Δ0_defs)
by (metis f3 map_is_Nil_conv ss3)
show "match12_12 (oor Δ0 Δ1) ss3' ss4' statA' ss1 ss2 statO"
unfolding match12_12_def
proof(rule exI[of _ "nextN ss1"], rule exI[of _ "nextN ss2"],unfold Let_def, intro conjI impI)
show "validTransV (ss1, nextN ss1)"
by (simp add: f1 nextN_stepN)
show "validTransV (ss2, nextN ss2)"
by (simp add: f2 nextN_stepN)
{assume sstat: "statA' = Diff"
show "sstatO' statO ss1 ss2 = Diff"
using v sa Δ0 sstat unfolding ss cfg statA' apply simp
apply(simp add: Δ0_defs sstatO'_def sstatA'_def finalS_def final_def)
using cases_7[of pc3] apply(elim disjE)
apply simp_all apply(cases statO, simp_all) apply(cases statA, simp_all)
apply(cases statO, simp_all) apply (cases statA, simp_all)
by (smt (z3) status.distinct status.exhaust newStat.simps)+
} note stat = this
show "oor Δ0 Δ1 ∞ ss3' ss4' statA' (nextN ss1) (nextN ss2) (sstatO' statO ss1 ss2)"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case spec_normal
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case spec_mispred
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case spec_Fence
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case spec_resolve
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case nonspec_mispred
then show ?thesis using sa Δ0 stat unfolding ss apply (simp add: Δ0_defs)
by (metis is_If_pc less_Suc_eq nat_less_le numeral_1_eq_Suc_0 numeral_3_eq_3
one_eq_numeral_iff semiring_norm(83) zero_less_numeral zero_neq_numeral)
next
case nonspec_normal note nn3 = nonspec_normal
show ?thesis
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_mispred
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_normal
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_mispred
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_Fence
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_resolve
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case nonspec_normal note nn4=nonspec_normal
show ?thesis using sa stat Δ0 v3 v4 nn3 nn4 f4 unfolding ss cfg hh Opt.eqAct_def
apply clarsimp
using cases_7[of pc3] apply(elim disjE)
subgoal apply(rule oorI1) by (simp add: Δ0_defs)
subgoal apply(rule oorI2) apply (simp add: Δ0_defs,auto)
unfolding Δ1_defs
subgoal by (simp add: Δ0_defs)
subgoal by (simp add: Δ0_defs) .
by (simp add: Δ0_defs)+
qed
qed
qed
qed
qed
qed
lemma step1: "unwindIntoCond Δ1 (oor4 Δ1 Δ2 Δ3 Δ4)"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ1: "Δ1 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc1 vs1 avst1 h1 p1 where
cfg1: "cfg1 = Config pc1 (State (Vstore vs1) avst1 h1 p1)"
by (cases cfg1) (metis state.collapse vstore.collapse)
obtain pc2 vs2 avst2 h2 p2 where
cfg2: "cfg2 = Config pc2 (State (Vstore vs2) avst2 h2 p2)"
by (cases cfg2) (metis state.collapse vstore.collapse)
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg1 cfg2 cfg3 cfg4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
have f1:"¬finalN ss1"
using Δ1 finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1_defs
by simp linarith
have f2:"¬finalN ss2"
using Δ1 finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1_defs
by simp linarith
have f3:"¬finalS ss3"
using Δ1 unfolding ss apply-apply(frule Δ1_implies)
using finalS_cond by simp
have f4:"¬finalS ss4"
using Δ1 unfolding ss apply-apply(frule Δ1_implies)
using finalS_cond by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI2, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
show "eqSec ss1 ss3"
using v sa Δ1 unfolding ss
by (simp add: Δ1_defs eqSec_def)
show "eqSec ss2 ss4"
using v sa Δ1 unfolding ss
apply (simp add: Δ1_defs eqSec_def)
by (metis length_0_conv length_map)
show "Van.eqAct ss1 ss2"
using v sa Δ1 unfolding ss Van.eqAct_def
apply (simp_all add: Δ1_defs)
by linarith
show "match12_12 (oor4 Δ1 Δ2 Δ3 Δ4) ss3' ss4' statA' ss1 ss2 statO"
unfolding match12_12_def
proof(rule exI[of _ "nextN ss1"], rule exI[of _ "nextN ss2"], unfold Let_def, intro conjI impI)
show "validTransV (ss1, nextN ss1)"
by (simp add: f1 nextN_stepN)
show "validTransV (ss2, nextN ss2)"
by (simp add: f2 nextN_stepN)
{assume sstat: "statA' = Diff"
show "sstatO' statO ss1 ss2 = Diff"
using v sa Δ1 sstat unfolding ss cfg statA'
apply(simp add: Δ1_defs sstatO'_def sstatA'_def)
using cases_7[of pc3] apply(elim disjE)
defer 1 defer 1
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
by simp+
} note stat = this
show "(oor4 Δ1 Δ2 Δ3 Δ4) ∞ ss3' ss4' statA' (nextN ss1) (nextN ss2) (sstatO' statO ss1 ss2)"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case spec_normal
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case spec_mispred
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case spec_Fence
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case spec_resolve
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case nonspec_mispred note nm3 = nonspec_mispred
show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_normal
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_mispred
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_Fence
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_resolve
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case nonspec_mispred note nm4 = nonspec_mispred
then show ?thesis
using sa Δ1 stat v3 v4 nm3 nm4 unfolding ss cfg hh apply clarsimp
using cases_7[of pc3] apply(elim disjE)
subgoal by simp
subgoal by simp
subgoal by simp
subgoal using xx_NN_cases[of vs3] apply(elim disjE)
subgoal apply(rule oor4I2) by (simp add: Δ1_defs Δ2_defs)
subgoal apply(rule oor4I3) by (simp add: Δ1_defs Δ3_defs) .
by (simp_all add: Δ1_defs)+
qed
next
case nonspec_normal note nn3 = nonspec_normal
show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_mispred
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_normal
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_mispred
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_Fence
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_resolve
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case nonspec_normal
then show ?thesis using sa Δ1 stat v3 v4 nn3 unfolding ss cfg hh apply clarsimp
using cases_7[of pc3] apply(elim disjE)
subgoal by (simp add: Δ1_defs)
subgoal by (simp add: Δ1_defs)
subgoal apply(rule oor4I1) by(simp add:Δ1_defs)
subgoal using xx_NN_cases[of vs3] apply(elim disjE)
subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
subgoal apply(rule oor4I1) by (simp add: Δ1_defs) .
subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
subgoal apply(rule oor4I4) by (simp add: Δ1_defs Δ4_defs)
subgoal apply(rule oor4I4) by (simp add: Δ1_defs Δ4_defs) .
qed
qed
qed
qed
qed
qed
lemma step2: "unwindIntoCond Δ2 Δ1"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ2: "Δ2 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
lcfgs3: "last cfgs3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases "last cfgs3") (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
lcfgs4: "last cfgs4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases "last cfgs4") (metis state.collapse vstore.collapse)
note lcfgs = lcfgs3 lcfgs4
have f1:"¬finalN ss1"
using Δ2 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ2_defs
by auto
have f2:"¬finalN ss2"
using Δ2 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ2_defs
by auto
have f3:"¬finalS ss3"
using Δ2 unfolding ss apply-apply(frule Δ2_implies)
using finalS_cond_spec by simp
have f4:"¬finalS ss4"
using Δ2 unfolding ss apply-apply(frule Δ2_implies)
using finalS_cond_spec by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react Δ1 ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 Δ1 ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 Δ1 ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 Δ1 ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI1, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
show "¬ isSecO ss3"
using v sa Δ2 unfolding ss by (simp add: Δ2_defs)
show "¬ isSecO ss4"
using v sa Δ2 unfolding ss apply clarsimp
by (simp add: Δ2_defs, linarith)
show stat: "statA = statA' ∨ statO = Diff"
using v sa Δ2
apply (cases ss3, cases ss4, cases ss1, cases ss2)
apply (cases ss3', cases ss4', clarsimp)
unfolding ss statA' apply clarsimp
apply(simp_all add: Δ2_defs sstatA'_def)
apply(cases statO, simp_all) apply(cases statA, simp_all)
unfolding finalS_defs
by (smt (verit, ccfv_SIG) newStat.simps(1))
show "Δ1 ∞ ss3' ss4' statA' ss1 ss2 statO"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ2 unfolding ss by (simp add: Δ2_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ2 unfolding ss by (simp add: Δ2_defs)
next
case spec_normal
then show ?thesis using sa stat Δ2 v3 unfolding ss apply-
apply(frule Δ2_implies) by(simp add: Δ2_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ2 unfolding ss apply-
apply(frule Δ2_implies) by (simp add: Δ2_defs)
next
case spec_Fence
then show ?thesis using sa stat Δ2 unfolding ss apply-
apply(frule Δ2_implies) by (simp add: Δ2_defs)
next
case spec_resolve note sr3 = spec_resolve
show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_normal
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_Fence
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_resolve note sr4 = spec_resolve
show ?thesis using sa stat Δ2 v3 v4 sr3 sr4
unfolding ss lcfgs hh apply-
apply(frule Δ2_implies) apply (simp add: Δ2_defs Δ1_defs) by clarsimp
qed
qed
qed
qed
qed
lemma step3: "unwindIntoCond Δ3 (oor Δ3 Δ1')"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ3: "Δ3 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
lcfgs3: "last cfgs3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases "last cfgs3") (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
lcfgs4: "last cfgs4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases "last cfgs4") (metis state.collapse vstore.collapse)
note lcfgs = lcfgs3 lcfgs4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
have f1:"¬finalN ss1"
using Δ3 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ3_defs
by auto
have f2:"¬finalN ss2"
using Δ3 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ3_defs
by auto
have f3:"¬finalS ss3"
using Δ3 unfolding ss apply-apply(frule Δ3_implies)
using finalS_cond_spec by simp
have f4:"¬finalS ss4"
using Δ3 unfolding ss apply-apply(frule Δ3_implies)
using finalS_cond_spec by simp
have "vs3 xx = vs4 xx"
using Δ3 lcfgs unfolding ss
apply-by(frule Δ3_implies, simp)
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react (oor Δ3 Δ1') ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 (oor Δ3 Δ1') ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 (oor Δ3 Δ1') ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 (oor Δ3 Δ1') ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI1, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
show "¬ isSecO ss3"
using v sa Δ3 unfolding ss by (simp add: Δ3_defs)
show "¬ isSecO ss4"
using v sa Δ3 unfolding ss by (simp add: Δ3_defs)
show stat: "statA = statA' ∨ statO = Diff"
using v sa Δ3
apply (cases ss3, cases ss4, cases ss1, cases ss2)
apply(cases ss3', cases ss4', clarsimp)
unfolding ss statA' apply clarsimp
apply(simp_all add: Δ3_defs sstatA'_def)
apply(cases statO, simp_all) apply(cases statA, simp_all)
unfolding finalS_defs
by (smt (z3) list.size(3) map_eq_imp_length_eq
n_not_Suc_n status.exhaust newStat.simps)
show "oor Δ3 Δ1' ∞ ss3' ss4' statA' ss1 ss2 statO"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ3 lcfgs unfolding ss by (simp_all add: Δ3_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ3 lcfgs unfolding ss by (simp_all add: Δ3_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ3 lcfgs unfolding ss apply-
apply(frule Δ3_implies, clarsimp)
by (auto simp add: Δ3_defs)
next
case spec_normal note sn3 = spec_normal
show ?thesis
using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ3 lcfgs sn3 unfolding ss
by (simp add: Δ3_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ3 lcfgs sn3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ3 lcfgs sn3 unfolding ss
apply (simp add: Δ3_defs)
by (metis config.sel(1) last_map)
next
case spec_Fence
then show ?thesis using sa stat Δ3 lcfgs sn3 unfolding ss
apply (simp add: Δ3_defs)
by (metis config.sel(1) last_map)
next
case spec_resolve
then show ?thesis using sa stat Δ3 lcfgs sn3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_normal note sn4 = spec_normal
show ?thesis
apply(intro oorI1)
unfolding ss Δ3_def apply- apply(clarify,intro conjI)
subgoal using sa stat Δ3 lcfgs v3 v4 sn3 sn4 unfolding ss hh
apply- apply(frule Δ3_implies) apply(simp add: Δ3_defs)
using cases_7[of pc3] apply simp apply(elim disjE)
apply simp_all
by (metis config.collapse config.inject in_set_butlastD last_in_set length_1_butlast length_map state.sel(2))+
subgoal using sa stat Δ3 lcfgs v3 v4 sn3 sn4 unfolding ss hh
apply- apply(frule Δ3_implies) by(simp add: Δ3_defs)
subgoal using sa stat Δ3 lcfgs v3 v4 sn3 sn4 unfolding ss hh
apply- apply(frule Δ3_implies) apply(simp add: Δ3_defs)
using cases_7[of pc3] apply simp apply(elim disjE)
by simp_all
subgoal using sa stat Δ3 lcfgs v3 v4 sn3 sn4 unfolding ss hh
apply- apply(frule Δ3_implies) apply(simp add: Δ3_defs )
using cases_7[of pc3] apply simp apply(elim disjE, simp_all)
unfolding array_loc_def by (metis config.sel(2) dist_insert_su last_in_set state.sel(1) vstore.sel)+
subgoal using sa stat Δ3 lcfgs v3 v4 sn3 sn4 unfolding ss hh
apply- apply(frule Δ3_implies) apply(simp add: Δ3_defs)
using cases_7[of pc3] apply simp apply(elim disjE)
apply simp_all by (metis array_loc_def dist_insert_su)+
subgoal using sa stat Δ3 lcfgs v3 v4 sn3 sn4 unfolding ss hh
apply- apply(frule Δ3_implies) apply(simp add: Δ3_defs)
using cases_7[of pc3] by(elim disjE, simp_all)
subgoal using sa stat Δ3 lcfgs v3 v4 sn3 sn4 unfolding ss hh
apply- apply(frule Δ3_implies) apply(simp_all add: Δ3_defs)
by (metis length_Suc_conv list.size(3)) .
qed
next
case spec_Fence note sf3 = spec_Fence
show ?thesis
using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ3 lcfgs sf3 unfolding ss
by (simp add: Δ3_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ3 lcfgs sf3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ3 lcfgs sf3 unfolding ss
apply (simp add: Δ3_defs)
by (metis com.disc config.sel(1) last_map)
next
case spec_resolve
then show ?thesis using sa stat Δ3 lcfgs sf3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_normal
then show ?thesis using sa stat Δ3 lcfgs sf3 unfolding ss
apply (simp add: Δ3_defs)
by (metis last_map local.spec_Fence(3) local.spec_normal(1) local.spec_normal(4))
next
case spec_Fence note sf4 = spec_Fence
show ?thesis
apply(intro oorI2)
unfolding ss Δ1'_defs
using sa stat Δ3 lcfgs v3 v4 sf3 sf4 unfolding ss hh
apply- by(simp_all add: Δ3_defs Δ1'_defs, blast)
qed
next
case spec_resolve note sr3 = spec_resolve
show ?thesis
using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_normal
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_Fence
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_resolve note sr4 = spec_resolve
show ?thesis
apply(intro oorI2)
using sa stat Δ3 lcfgs v3 v4 sr3 sr4 unfolding ss hh
by(simp add: Δ3_defs Δ1_defs)
qed
qed
qed
qed
qed
lemma step1': "unwindIntoCond Δ1' Δ4"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ1': "Δ1' n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg3 cfg4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
have f1:"¬finalN ss1"
using Δ1' finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1'_defs
by simp
have f2:"¬finalN ss2"
using Δ1' finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1'_defs
by simp
have f3:"¬finalS ss3"
using Δ1' unfolding ss apply-apply(frule Δ1'_implies)
using finalS_cond by simp
have f4:"¬finalS ss4"
using Δ1' unfolding ss apply-apply(frule Δ1'_implies)
using finalS_cond by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 Δ4 ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI2, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
show "eqSec ss1 ss3"
using v sa Δ1' unfolding ss
by (simp add: Δ1'_defs eqSec_def)
show "eqSec ss2 ss4"
using v sa Δ1' unfolding ss
by (simp add: Δ1'_defs eqSec_def)
show "Van.eqAct ss1 ss2"
using v sa Δ1' unfolding ss Van.eqAct_def
by (simp_all add: Δ1'_defs)
show "match12_12 Δ4 ss3' ss4' statA' ss1 ss2 statO"
unfolding match12_12_def
proof(rule exI[of _ "nextN ss1"], rule exI[of _ "nextN ss2"], unfold Let_def, intro conjI impI)
show "validTransV (ss1, nextN ss1)"
by (simp add: f1 nextN_stepN)
show "validTransV (ss2, nextN ss2)"
by (simp add: f2 nextN_stepN)
{assume sstat: "statA' = Diff"
show "sstatO' statO ss1 ss2 = Diff"
using v sa Δ1' sstat unfolding ss cfg statA'
apply(simp add: Δ1'_defs sstatO'_def sstatA'_def)
apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
} note stat = this
show "Δ4 ∞ ss3' ss4' statA' (nextN ss1) (nextN ss2) (sstatO' statO ss1 ss2)"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case spec_normal
then show ?thesis using sa Δ1' stat unfolding ss by (simp add: Δ1'_defs)
next
case spec_mispred
then show ?thesis using sa Δ1' stat unfolding ss by (simp add: Δ1'_defs)
next
case spec_Fence
then show ?thesis using sa Δ1' stat unfolding ss by (simp add: Δ1'_defs)
next
case spec_resolve
then show ?thesis using sa Δ1' stat unfolding ss by (simp add: Δ1'_defs)
next
case nonspec_mispred
then show ?thesis using sa Δ1' stat unfolding ss by (simp add: Δ1'_defs)
next
case nonspec_normal note nn3 = nonspec_normal
show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_mispred
then show ?thesis using sa Δ1' stat nn3 unfolding ss by (simp add: Δ1'_defs)
next
case spec_normal
then show ?thesis using sa Δ1' stat nn3 unfolding ss by (simp add: Δ1'_defs)
next
case spec_mispred
then show ?thesis using sa Δ1' stat nn3 unfolding ss by (simp add: Δ1'_defs)
next
case spec_Fence
then show ?thesis using sa Δ1' stat nn3 unfolding ss by (simp add: Δ1'_defs)
next
case spec_resolve
then show ?thesis using sa Δ1' stat nn3 unfolding ss by (simp add: Δ1'_defs)
next
case nonspec_normal
then show ?thesis using sa Δ1' stat v3 v4 nn3 unfolding ss cfg hh apply clarsimp
by (auto simp add: Δ1'_defs Δ4_defs)
qed
qed
qed
qed
qed
qed
lemma stepe: "unwindIntoCond Δ4 Δ4"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ4: "Δ4 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg3 cfg4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using Δ4 Opt.final_def Prog.endPC_def finalS_def stepS_endPC endPC_def finalB_endPC
unfolding Δ4_defs ss by clarsimp
then show "isIntO ss3 = isIntO ss4" by simp
show "react Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 Δ4 ss3 ss4 statA ss1 ss2 statO"
apply(rule match12_simpleI) using Δ4 unfolding ss apply (simp add: Δ4_defs)
by (simp add: stepS_endPC)
qed
qed
lemmas theConds = step0 step1 step2 step3 step1' stepe
proposition rsecure
proof-
define m where m: "m ≡ (6::nat)"
define Δs where Δs: "Δs ≡ λi::nat.
if i = 0 then Δ0
else if i = 1 then Δ1
else if i = 2 then Δ2
else if i = 3 then Δ3
else if i = 4 then Δ4
else Δ1'"
define nxt where nxt: "nxt ≡ λi::nat.
if i = 0 then {0,1::nat}
else if i = 1 then {1,2,3,4}
else if i = 2 then {1}
else if i = 3 then {3,5}
else {4}"
show ?thesis apply(rule distrib_unwind_rsecure[of m nxt Δs])
subgoal unfolding m by auto
subgoal unfolding nxt m by auto
subgoal using init unfolding Δs by auto
subgoal
unfolding m nxt Δs apply (simp split: if_splits)
using theConds
unfolding oor_def oor4_def by auto .
qed
end