Theory Instance_Secret_IMem

section ‹Relative Security Instance: Secret Memory›

text ‹ This theory sets up an instance of Relative Security with the secrets as the initial memories›

theory Instance_Secret_IMem
imports Instance_Common "Relative_Security.Relative_Security"
begin

no_notation bot ()
type_synonym secret = "state"

context Prog_Mispred
begin 

fun corrState :: "stateV  stateO  bool" where 
"corrState cfgO cfgA = True"


text ‹Since all our programs will have "Start" followed by the rest, with the rest not containing "Start". 
The secret will be "uploaded" at this Start moment.›
definition isSecV :: "stateV  bool" where 
"isSecV ss  case ss of (cfg,ibT,ibUT)  (pcOf cfg = 0)"
text ‹We consider the entire initial state as a secret:›
fun getSecV :: "stateV  secret" where 
"getSecV (cfg,ibT,ibUT) = stateOf cfg"

text ‹The secrecy infrastructure is similar to that of the "original" semantics:›
definition isSecO :: "stateO  bool" where 
"isSecO ss  case ss of (pstate,cfg,cfgs,ibT,ibUT,ls)  (pcOf cfg = 0  cfgs = [])"
fun getSecO :: "stateO  secret" where 
"getSecO (pstate,cfg,cfgs,ibT,ibUT,ls) = stateOf cfg"
lemma isSecV_iff:"isSecV ss  pcOf (fst ss) = 0" 
  unfolding isSecV_def 
  by (simp add: case_prod_beta)

lemma validTransO_iff_nextS: "validTransO (s1,    s2) = (¬ finalS s1  (stepS s1 s2))"
  unfolding finalS_def final_def 
by simp (metis old.prod.exhaust)

end (* context Prog_Mispred *)


sublocale Prog_Mispred_Init < Rel_Sec where 
  validTransV = validTransV and istateV = istateV  
  and finalV = finalN
  and isSecV = isSecV and getSecV = getSecV
  and isIntV = isIntV and getIntV = getIntV  
  (* *)
  and validTransO = validTransO and istateO = istateO
  and finalO = finalS
  and isSecO = isSecO  and getSecO = getSecO
  and isIntO = isIntO and getIntO = getIntO 
  and corrState = corrState 
  apply standard 
  subgoal by (simp add: finalN_defs)
  subgoal for s by (cases s, simp)
  subgoal for s apply(cases s) subgoal for cfg ibT ibUT ls apply(cases cfg) subgoal for n st 
  unfolding isSecV_def  
  using stebB_0[of st ibT ibUT] stepB_iff_nextB by fastforce . .
  subgoal by (simp add: finalS_defs)
  subgoal by (simp add: finalS_defs)  
  subgoal for ss apply(cases ss) subgoal for ps cfg cfgs ibT ibUT ls apply(cases cfg) subgoal for n st 
  unfolding isSecO_def finalS_def final_def
  using stepS_0[of ps st ibT ibUT ls] by auto . . .


(* *)


context Prog_Mispred_Init 
begin

lemmas reachV_induct = Van.reach.induct[split_format(complete)]
lemmas reachO_induct = Opt.reach.induct[split_format(complete)]

lemma is_getTrustedInput_getActV[simp]: 
"(prog!(pcOf cfg)) = Input T s  getActV (cfg,ibT,ibUT,ls) = lhd ibT"
by (cases "prog!(pcOf cfg)", auto simp: Van.getAct_def)

lemma not_is_getTrustedInput_getActV[simp]: 
"¬ is_getInput (prog!(pcOf cfg))  getActV (cfg,ibT,ibUT,ls) = noninform"
apply (cases "prog!(pcOf cfg)", auto simp: Van.getAct_def )
  subgoal for x by (cases x, simp_all) . 

lemma is_Output_getObsV[simp]: 
"(prog!(pcOf cfg)) = Output U out  getObsV (cfg,ibT,ibUT,ls) = 
 (outOf (prog!(pcOf cfg)) (stateOf cfg), ls)"
by (cases "prog!(pcOf cfg)", auto simp: Van.getObs_def)

lemma not_is_Output_getObsV[simp]: 
"¬ is_Output (prog!(pcOf cfg))  getObsV (cfg,ibT,ibUT,ls) = "
apply (cases "prog!(pcOf cfg)", auto simp: Van.getObs_def)
  subgoal for x by (cases x, simp_all) . 
(* *)

lemma is_getTrustedInput_Nil_getActO[simp]: 
"(prog!(pcOf cfg)) = Input T s  getActO (pstate,cfg,[],ibT,ibUT,ls) = lhd ibT"
by (cases "prog!(pcOf cfg)", auto simp: Opt.getAct_def)

lemma not_is_getTrustedInput_Nil_getActO[simp]: 
"¬ is_getInput (prog!(pcOf cfg))
  cfgs  []  getActO (pstate,cfg,cfgs,ibT,ibUT,ls) = "
apply (cases cfgs, auto)
apply (cases "prog!(pcOf cfg)", auto simp: Opt.getAct_def)
  subgoal for x by (cases x, simp_all) . 

lemma is_Output_Nil_getObsO[simp]: 
"prog!(pcOf cfg) = Output U s  
 getObsO (pstate,cfg,[],ibT,ibUT,ls) = (outOf (prog!(pcOf cfg)) (stateOf cfg), ls)"
  by (cases "prog!(pcOf cfg)", auto simp: Opt.getObs_def)

lemma not_is_Output_Nil_getObsO[simp]: 
"¬ is_Output (prog!(pcOf cfg))  cfgs  []  getObsO (pstate,cfg,cfgs,ibT,ibUT,ls) = "
apply (cases cfgs, auto)
apply (cases "prog!(pcOf cfg)", auto simp: Opt.getObs_def)
  subgoal for x by (cases x, simp_all) . 
(* *)

lemma getActV_simps: 
"getActV (cfg,ibT,ibUT,ls) = 
 (case prog!(pcOf cfg) of 
    Input T _  lhd ibT
   |Input U _  lhd ibUT
   |_   
 )"
  unfolding Van.getAct_def 
  apply (simp split: com.splits, safe)
  subgoal for t by(cases t, simp_all)
  subgoal for t by(cases t, simp_all) .

lemma getObsV_simps: 
"getObsV (cfg,ibT,ibUT,ls) = 
 (case prog!(pcOf cfg) of 
    Output U _  (outOf (prog!(pcOf cfg)) (stateOf cfg), ls)
   |_   
 )"
unfolding Van.getObs_def 
  apply (simp split: com.splits, safe)
  subgoal for t by(cases t, simp_all) 
  subgoal for t by(cases t, simp_all) .

lemma getActO_simps: 
"getActO (pstate,cfg,cfgs,ibT,ibUT,ls) = 
 (case (cfgs,prog!(pcOf cfg)) of 
    ([],Input T _)  lhd ibT
   |([],Input U _)  lhd ibUT
   |_   
 )"
  apply (simp split: com.splits list.splits, safe)
  unfolding Opt.getAct_def 
  subgoal for t by(cases t, simp_all) .

lemma getObsO_simps: 
"getObsO (pstate,cfg,cfgs,ibT,ibUT,ls) = 
 (case (cfgs,prog!(pcOf cfg)) of 
    ([],Output U _)  (outOf (prog!(pcOf cfg)) (stateOf cfg), ls)
   |_   
 )"
  unfolding Opt.getObs_def
  apply (simp split: com.splits list.splits, safe)  
  subgoal for t by(cases t, simp_all) 
  subgoal for t by(cases t, simp_all) .


end (* context Prog_Mispred_Init *)


end