Theory Intersection
section ‹Intersection›
theory Intersection
imports
"HOL-Library.Monad_Syntax"
Polygon
Counterclockwise_2D_Arbitrary
Affine_Form
begin
text ‹\label{sec:intersection}›
subsection ‹Polygons and @{term ccw}, @{term lex}, @{term psi}, @{term coll}›
lemma polychain_of_ccw_conjunction:
assumes sorted: "ccw'.sortedP 0 Ps"
assumes z: "z ∈ set (polychain_of Pc Ps)"
shows "list_all (λ(xi, xj). ccw xi xj (fst z) ∧ ccw xi xj (snd z)) (polychain_of Pc Ps)"
using assms
proof (induction Ps arbitrary: Pc z rule: list.induct)
case (Cons P Ps)
{
assume "set Ps = {}"
hence ?case using Cons by simp
} moreover {
assume "set Ps ≠ {}"
hence "Ps ≠ []" by simp
{
fix a assume "a ∈ set Ps"
hence "ccw' 0 P a"
using Cons.prems
by (auto elim!: linorder_list0.sortedP_Cons)
} note ccw' = this
have sorted': "linorder_list0.sortedP (ccw' 0) Ps"
using Cons.prems
by (auto elim!: linorder_list0.sortedP_Cons)
from in_set_polychain_of_imp_sum_list[OF Cons(3)]
obtain d
where d: "z = (Pc + sum_list (take d (P # Ps)), Pc + sum_list (take (Suc d) (P # Ps)))" .
from Cons(3)
have disj: "z = (Pc, Pc + P) ∨ z ∈ set (polychain_of (Pc + P) Ps)"
by auto
let ?th = "λ(xi, xj). ccw xi xj Pc ∧ ccw xi xj (Pc + P)"
have la: "list_all ?th (polychain_of (Pc + P) Ps)"
proof (rule list_allI)
fix x assume x: "x ∈ set (polychain_of (Pc + P) Ps)"
from in_set_polychain_of_imp_sum_list[OF this]
obtain e where e: "x = (Pc + P + sum_list (take e Ps), Pc + P + sum_list (take (Suc e) Ps))"
by auto
{
assume "e ≥ length Ps"
hence "?th x" by (auto simp: e)
} moreover {
assume "e < length Ps"
have 0: "⋀e. e < length Ps ⟹ ccw' 0 P (Ps ! e)"
by (rule ccw') simp
have 2: "0 < e ⟹ ccw' 0 (P + sum_list (take e Ps)) (Ps ! e)"
using ‹e < length Ps›
by (auto intro!: ccw'.add1 0 ccw'.sum2 sorted' ccw'.sorted_nth_less
simp: sum_list_sum_nth)
have "ccw Pc (Pc + P + sum_list (take e Ps)) (Pc + P + sum_list (take (Suc e) Ps))"
by (cases "e = 0")
(auto simp add: ccw_translate_origin take_Suc_eq add.assoc[symmetric] 0 2
intro!: ccw'_imp_ccw intro: cyclic)
hence "ccw (Pc + P + sum_list (take e Ps)) (Pc + P + sum_list (take (Suc e) Ps)) Pc"
by (rule cyclic)
moreover
have "0 < e ⟹ ccw 0 (Ps ! e) (- sum_list (take e Ps))"
using ‹e < length Ps›
by (auto simp add: take_Suc_eq add.assoc[symmetric]
sum_list_sum_nth
intro!: ccw'_imp_ccw ccw'.sum2 sorted' ccw'.sorted_nth_less)
hence "ccw (Pc + P + sum_list (take e Ps)) (Pc + P + sum_list (take (Suc e) Ps)) (Pc + P)"
by (cases "e = 0") (simp_all add: ccw_translate_origin take_Suc_eq)
ultimately have "?th x"
by (auto simp add: e)
} ultimately show "?th x" by arith
qed
from disj have ?case
proof
assume z: "z ∈ set (polychain_of (Pc + P) Ps)"
have "ccw 0 P (sum_list (take d (P # Ps)))"
proof (cases d)
case (Suc e) note e = this
show ?thesis
proof (cases e)
case (Suc f)
have "ccw 0 P (P + sum_list (take (Suc f) Ps))"
using z
by (force simp add: sum_list_sum_nth intro!: ccw'.sum intro: ccw' ccw'_imp_ccw)
thus ?thesis
by (simp add: e Suc)
qed (simp add: e)
qed simp
hence "ccw Pc (Pc + P) (fst z)"
by (simp add: d ccw_translate_origin)
moreover
from z have "ccw 0 P (P + sum_list (take d Ps))"
by (cases d, force)
(force simp add: sum_list_sum_nth intro!: ccw'_imp_ccw ccw'.sum intro: ccw')+
hence "ccw Pc (Pc + P) (snd z)"
by (simp add: d ccw_translate_origin)
moreover
from z Cons.prems have "list_all (λ(xi, xj). ccw xi xj (fst z) ∧ ccw xi xj (snd z))
(polychain_of (Pc + P) Ps)"
by (intro Cons.IH) (auto elim!: linorder_list0.sortedP_Cons)
ultimately show ?thesis by simp
qed (simp add: la)
} ultimately show ?case by blast
qed simp
lemma lex_polychain_of_center:
"d ∈ set (polychain_of x0 xs) ⟹ list_all (λx. lex x 0) xs ⟹ lex (snd d) x0"
proof (induction xs arbitrary: x0)
case (Cons x xs) thus ?case
by (auto simp add: lex_def lex_translate_origin dest!: Cons.IH)
qed (auto simp: lex_translate_origin)
lemma lex_polychain_of_last:
"(c, d) ∈ set (polychain_of x0 xs) ⟹ list_all (λx. lex x 0) xs ⟹
lex (snd (last (polychain_of x0 xs))) d"
proof (induction xs arbitrary: x0 c d)
case (Cons x xs)
let ?c1 = "c = x0 ∧ d = x0 + x"
let ?c2 = "(c, d) ∈ set (polychain_of (x0 + x) xs)"
from Cons(2) have "?c1 ∨ ?c2" by auto
thus ?case
proof
assume ?c1
with Cons.prems show ?thesis
by (auto intro!: lex_polychain_of_center)
next
assume ?c2
from Cons.IH[OF this] Cons.prems
show ?thesis
by auto
qed
qed (auto simp: lex_translate_origin)
lemma distinct_fst_polychain_of:
assumes "list_all (λx. x ≠ 0) xs"
assumes "list_all (λx. lex x 0) xs"
shows "distinct (map fst (polychain_of x0 xs))"
using assms
proof (induction xs arbitrary: x0)
case Nil
thus ?case by simp
next
case (Cons x xs)
hence "⋀d. list_all (λx. lex x 0) (x # take d xs)"
by (auto simp: list_all_iff dest!: in_set_takeD)
from sum_list_nlex_eq_zero_iff[OF this] Cons.prems
show ?case
by (cases "xs = []") (auto intro!: Cons.IH elim!: in_set_polychain_of_imp_sum_list)
qed
lemma distinct_snd_polychain_of:
assumes "list_all (λx. x ≠ 0) xs"
assumes "list_all (λx. lex x 0) xs"
shows "distinct (map snd (polychain_of x0 xs))"
using assms
proof (induction xs arbitrary: x0)
case Nil
thus ?case by simp
next
case (Cons x xs)
have contra:
"⋀d. xs ≠ [] ⟹ list_all (λx. x ≠ 0) xs ⟹ list_all ((=) 0) (take (Suc d) xs) ⟹ False"
by (auto simp: neq_Nil_conv)
from Cons have "⋀d. list_all (λx. lex x 0) (take (Suc d) xs)"
by (auto simp: list_all_iff dest!: in_set_takeD)
from sum_list_nlex_eq_zero_iff[OF this] Cons.prems contra
show ?case
by (cases "xs = []") (auto intro!: Cons.IH elim!: in_set_polychain_of_imp_sum_list dest!: contra)
qed
subsection ‹Orient all entries›
lift_definition nlex_pdevs::"point pdevs ⇒ point pdevs"
is "λx n. if lex 0 (x n) then - x n else x n" by simp
lemma pdevs_apply_nlex_pdevs[simp]: "pdevs_apply (nlex_pdevs x) n =
(if lex 0 (pdevs_apply x n) then - pdevs_apply x n else pdevs_apply x n)"
by transfer simp
lemma nlex_pdevs_zero_pdevs[simp]: "nlex_pdevs zero_pdevs = zero_pdevs"
by (auto intro!: pdevs_eqI)
lemma pdevs_domain_nlex_pdevs[simp]: "pdevs_domain (nlex_pdevs x) = pdevs_domain x"
by (auto simp: pdevs_domain_def)
lemma degree_nlex_pdevs[simp]: "degree (nlex_pdevs x) = degree x"
by (rule degree_cong) auto
lemma
pdevs_val_nlex_pdevs:
assumes "e ∈ UNIV → I" "uminus ` I = I"
obtains e' where "e' ∈ UNIV → I" "pdevs_val e x = pdevs_val e' (nlex_pdevs x)"
using assms
by (atomize_elim, intro exI[where x="λn. if lex 0 (pdevs_apply x n) then - e n else e n"])
(force simp: pdevs_val_pdevs_domain intro!: sum.cong)
lemma
pdevs_val_nlex_pdevs2:
assumes "e ∈ UNIV → I" "uminus ` I = I"
obtains e' where "e' ∈ UNIV → I" "pdevs_val e (nlex_pdevs x) = pdevs_val e' x"
using assms
by (atomize_elim, intro exI[where x="λn. (if lex 0 (pdevs_apply x n) then - e n else e n)"])
(force simp: pdevs_val_pdevs_domain intro!: sum.cong)
lemma
pdevs_val_selsort_ccw:
assumes "distinct xs"
assumes "e ∈ UNIV → I"
obtains e' where "e' ∈ UNIV → I"
"pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list (ccw.selsort 0 xs))"
proof -
have "set xs = set (ccw.selsort 0 xs)" "distinct xs" "distinct (ccw.selsort 0 xs)"
by (simp_all add: assms)
from this assms(2) obtain e'
where "e' ∈ UNIV → I"
"pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list (ccw.selsort 0 xs))"
by (rule pdevs_val_permute)
thus thesis ..
qed
lemma
pdevs_val_selsort_ccw2:
assumes "distinct xs"
assumes "e ∈ UNIV → I"
obtains e' where "e' ∈ UNIV → I"
"pdevs_val e (pdevs_of_list (ccw.selsort 0 xs)) = pdevs_val e' (pdevs_of_list xs)"
proof -
have "set (ccw.selsort 0 xs) = set xs" "distinct (ccw.selsort 0 xs)" "distinct xs"
by (simp_all add: assms)
from this assms(2) obtain e'
where "e' ∈ UNIV → I"
"pdevs_val e (pdevs_of_list (ccw.selsort 0 xs)) = pdevs_val e' (pdevs_of_list xs)"
by (rule pdevs_val_permute)
thus thesis ..
qed
lemma lex_nlex_pdevs: "lex (pdevs_apply (nlex_pdevs x) i) 0"
by (auto simp: lex_def algebra_simps prod_eq_iff)
subsection ‹Lowest Vertex›
definition lowest_vertex::"'a::ordered_euclidean_space aform ⇒ 'a" where
"lowest_vertex X = fst X - sum_list (map snd (list_of_pdevs (snd X)))"
lemma snd_abs: "snd (abs x) = abs (snd x)"
by (metis abs_prod_def snd_conv)
lemma lowest_vertex:
fixes X Y::"(real*real) aform"
assumes "e ∈ UNIV → {-1 .. 1}"
assumes "⋀i. snd (pdevs_apply (snd X) i) ≥ 0"
assumes "⋀i. abs (snd (pdevs_apply (snd Y) i)) = abs (snd (pdevs_apply (snd X) i))"
assumes "degree_aform Y = degree_aform X"
assumes "fst Y = fst X"
shows "snd (lowest_vertex X) ≤ snd (aform_val e Y)"
proof -
from abs_pdevs_val_le_tdev[OF assms(1), of "snd Y"]
have "snd ¦pdevs_val e (snd Y)¦ ≤ (∑i<degree_aform Y. ¦snd (pdevs_apply (snd X) i)¦)"
unfolding lowest_vertex_def
by (auto simp: aform_val_def tdev_def less_eq_prod_def snd_sum snd_abs assms)
also have "… = (∑i<degree_aform X. snd (pdevs_apply (snd X) i))"
by (simp add: assms)
also have "… ≤ snd (sum_list (map snd (list_of_pdevs (snd X))))"
by (simp add: sum_list_list_of_pdevs dense_list_of_pdevs_def sum_list_distinct_conv_sum_set
snd_sum atLeast0LessThan)
finally show ?thesis
by (auto simp: aform_val_def lowest_vertex_def minus_le_iff snd_abs abs_real_def assms
split: if_split_asm)
qed
lemma sum_list_nonposI:
fixes xs::"'a::ordered_comm_monoid_add list"
shows "list_all (λx. x ≤ 0) xs ⟹ sum_list xs ≤ 0"
by (induct xs) (auto simp: intro!: add_nonpos_nonpos)
lemma center_le_lowest:
"fst (fst X) ≤ fst (lowest_vertex (fst X, nlex_pdevs (snd X)))"
by (auto simp: lowest_vertex_def fst_sum_list intro!: sum_list_nonposI)
(auto simp: lex_def list_all_iff list_of_pdevs_def dest!: in_set_butlastD split: if_split_asm)
lemma lowest_vertex_eq_center_iff:
"lowest_vertex (x0, nlex_pdevs (snd X)) = x0 ⟷ snd X = zero_pdevs"
proof
assume "lowest_vertex (x0, nlex_pdevs (snd X)) = x0"
then have "sum_list (map snd (list_of_pdevs (nlex_pdevs (snd X)))) = 0"
by (simp add: lowest_vertex_def)
moreover have "list_all (λx. Counterclockwise_2D_Arbitrary.lex x 0)
(map snd (list_of_pdevs (nlex_pdevs (snd X))))"
by (auto simp add: list_all_iff list_of_pdevs_def)
ultimately have "∀x∈set (list_of_pdevs (nlex_pdevs (snd X))). snd x = 0"
by (simp add: sum_list_nlex_eq_zero_iff list_all_iff)
then have "pdevs_apply (snd X) i = pdevs_apply zero_pdevs i" for i
by (simp add: list_of_pdevs_def split: if_splits)
then show "snd X = zero_pdevs"
by (rule pdevs_eqI)
qed (simp add: lowest_vertex_def)
subsection ‹Collinear Generators›
lemma scaleR_le_self_cancel:
fixes c::"'a::ordered_real_vector"
shows "a *⇩R c ≤ c ⟷ (1 < a ∧ c ≤ 0 ∨ a < 1 ∧ 0 ≤ c ∨ a = 1)"
using scaleR_le_0_iff[of "a - 1" c]
by (simp add: algebra_simps)
lemma pdevs_val_coll:
assumes coll: "list_all (coll 0 x) xs"
assumes nlex: "list_all (λx. lex x 0) xs"
assumes "x ≠ 0"
assumes "f ∈ UNIV → {-1 .. 1}"
obtains e where "e ∈ {-1 .. 1}" "pdevs_val f (pdevs_of_list xs) = e *⇩R (sum_list xs)"
proof cases
assume "sum_list xs = 0"
have "pdevs_of_list xs = zero_pdevs"
by (auto intro!: pdevs_eqI sum_list_nlex_eq_zeroI[OF nlex ‹sum_list xs = 0›]
simp: pdevs_apply_pdevs_of_list list_all_iff dest!: nth_mem)
hence "0 ∈ {-1 .. 1::real}" "pdevs_val f (pdevs_of_list xs) = 0 *⇩R sum_list xs"
by simp_all
thus ?thesis ..
next
assume "sum_list xs ≠ 0"
have "sum_list (map abs xs) ≥ 0"
by (auto intro!: sum_list_nonneg)
hence [simp]: "¬sum_list (map abs xs) ≤ 0"
by (metis ‹sum_list xs ≠ 0› abs_le_zero_iff antisym_conv sum_list_abs)
have collist: "list_all (coll 0 (sum_list xs)) xs"
proof (rule list_allI)
fix y assume "y ∈ set xs"
hence "coll 0 x y"
using coll by (auto simp: list_all_iff)
also have "coll 0 x (sum_list xs)"
using coll by (auto simp: list_all_iff intro!: coll_sum_list)
finally (coll_trans)
show "coll 0 (sum_list xs) y"
by (simp add: coll_commute ‹x ≠ 0›)
qed
{
fix i assume "i < length xs"
hence "∃r. xs ! i = r *⇩R (sum_list xs)"
by (metis (mono_tags) coll_scale nth_mem ‹sum_list xs ≠ 0› list_all_iff collist)
} then obtain r where r: "⋀i. i < length xs ⟹ (xs ! i) = r i *⇩R (sum_list xs)"
by metis
let ?coll = "pdevs_of_list xs"
have "pdevs_val f (pdevs_of_list xs) =
(∑i<degree (pdevs_of_list xs). f i *⇩R xs ! i)"
unfolding pdevs_val_sum
by (simp add: pdevs_apply_pdevs_of_list less_degree_pdevs_of_list_imp_less_length)
also have "… = (∑i<degree ?coll. (f i * r i) *⇩R (sum_list xs))"
by (simp add: r less_degree_pdevs_of_list_imp_less_length)
also have "… = (∑i<degree ?coll. f i * r i) *⇩R (sum_list xs)"
by (simp add: algebra_simps scaleR_sum_left)
finally have eq: "pdevs_val f ?coll = (∑i<degree ?coll. f i * r i) *⇩R (sum_list xs)"
(is "_ = ?e *⇩R _")
.
have "abs (pdevs_val f ?coll) ≤ tdev ?coll"
using assms(4)
by (intro abs_pdevs_val_le_tdev) (auto simp: Pi_iff less_imp_le)
also have "… = sum_list (map abs xs)" using assms by simp
also note eq
finally have less: "¦?e¦ *⇩R abs (sum_list xs) ≤ sum_list (map abs xs)" by (simp add: abs_scaleR)
also have "¦sum_list xs¦ = sum_list (map abs xs)"
using coll ‹x ≠ 0› nlex
by (rule abs_sum_list_coll)
finally have "?e ∈ {-1 .. 1}"
by (auto simp add: less_le scaleR_le_self_cancel)
thus ?thesis using eq ..
qed
lemma scaleR_eq_self_cancel:
fixes x::"'a::real_vector"
shows "a *⇩R x = x ⟷ a = 1 ∨ x = 0"
using scaleR_cancel_right[of a x 1]
by simp
lemma abs_pdevs_val_less_tdev:
assumes "e ∈ UNIV → {-1 <..< 1}" "degree x > 0"
shows "¦pdevs_val e x¦ < tdev x"
proof -
have bnds: "⋀i. ¦e i¦ < 1" "⋀i. ¦e i¦ ≤ 1"
using assms
by (auto simp: Pi_iff abs_less_iff order.strict_implies_order)
moreover
let ?w = "degree x - 1"
have witness: "¦e ?w¦ *⇩R ¦pdevs_apply x ?w¦ < ¦pdevs_apply x ?w¦"
using degree_least_nonzero[of x] assms bnds
by (intro neq_le_trans) (auto simp: scaleR_eq_self_cancel Pi_iff
intro!: scaleR_left_le_one_le neq_le_trans
intro: abs_leI less_imp_le dest!: order.strict_implies_not_eq)
ultimately
show ?thesis
using assms witness bnds
by (auto simp: pdevs_val_sum tdev_def abs_scaleR
intro!: le_less_trans[OF sum_abs] sum_strict_mono_ex1 scaleR_left_le_one_le)
qed
lemma pdevs_val_coll_strict:
assumes coll: "list_all (coll 0 x) xs"
assumes nlex: "list_all (λx. lex x 0) xs"
assumes "x ≠ 0"
assumes "f ∈ UNIV → {-1 <..< 1}"
obtains e where "e ∈ {-1 <..< 1}" "pdevs_val f (pdevs_of_list xs) = e *⇩R (sum_list xs)"
proof cases
assume "sum_list xs = 0"
have "pdevs_of_list xs = zero_pdevs"
by (auto intro!: pdevs_eqI sum_list_nlex_eq_zeroI[OF nlex ‹sum_list xs = 0›]
simp: pdevs_apply_pdevs_of_list list_all_iff dest!: nth_mem)
hence "0 ∈ {-1 <..< 1::real}" "pdevs_val f (pdevs_of_list xs) = 0 *⇩R sum_list xs"
by simp_all
thus ?thesis ..
next
assume "sum_list xs ≠ 0"
have "sum_list (map abs xs) ≥ 0"
by (auto intro!: sum_list_nonneg)
hence [simp]: "¬sum_list (map abs xs) ≤ 0"
by (metis ‹sum_list xs ≠ 0› abs_le_zero_iff antisym_conv sum_list_abs)
have "∃x ∈ set xs. x ≠ 0"
proof (rule ccontr)
assume "¬ (∃x∈set xs. x ≠ 0)"
hence "⋀x. x ∈ set xs ⟹ x = 0" by auto
hence "sum_list xs = 0"
by (auto simp: sum_list_eq_0_iff_nonpos list_all_iff less_eq_prod_def prod_eq_iff fst_sum_list
snd_sum_list)
thus False using ‹sum_list xs ≠ 0› by simp
qed
then obtain i where i: "i < length xs" "xs ! i ≠ 0"
by (metis in_set_conv_nth)
hence "i < degree (pdevs_of_list xs)"
by (auto intro!: degree_gt simp: pdevs_apply_pdevs_of_list)
hence deg_pos: "0 < degree (pdevs_of_list xs)" by simp
have collist: "list_all (coll 0 (sum_list xs)) xs"
proof (rule list_allI)
fix y assume "y ∈ set xs"
hence "coll 0 x y"
using coll by (auto simp: list_all_iff)
also have "coll 0 x (sum_list xs)"
using coll by (auto simp: list_all_iff intro!: coll_sum_list)
finally (coll_trans)
show "coll 0 (sum_list xs) y"
by (simp add: coll_commute ‹x ≠ 0›)
qed
{
fix i assume "i < length xs"
hence "∃r. xs ! i = r *⇩R (sum_list xs)"
by (metis (mono_tags, lifting) ‹sum_list xs ≠ 0› coll_scale collist list_all_iff nth_mem)
} then obtain r where r: "⋀i. i < length xs ⟹ (xs ! i) = r i *⇩R (sum_list xs)"
by metis
let ?coll = "pdevs_of_list xs"
have "pdevs_val f (pdevs_of_list xs) =
(∑i<degree (pdevs_of_list xs). f i *⇩R xs ! i)"
unfolding pdevs_val_sum
by (simp add: less_degree_pdevs_of_list_imp_less_length pdevs_apply_pdevs_of_list)
also have "… = (∑i<degree ?coll. (f i * r i) *⇩R (sum_list xs))"
by (simp add: r less_degree_pdevs_of_list_imp_less_length)
also have "… = (∑i<degree ?coll. f i * r i) *⇩R (sum_list xs)"
by (simp add: algebra_simps scaleR_sum_left)
finally have eq: "pdevs_val f ?coll = (∑i<degree ?coll. f i * r i) *⇩R (sum_list xs)"
(is "_ = ?e *⇩R _")
.
have "abs (pdevs_val f ?coll) < tdev ?coll"
using assms(4)
by (intro abs_pdevs_val_less_tdev) (auto simp: Pi_iff less_imp_le deg_pos)
also have "… = sum_list (map abs xs)" using assms by simp
also note eq
finally have less: "¦?e¦ *⇩R abs (sum_list xs) < sum_list (map abs xs)" by (simp add: abs_scaleR)
also have "¦sum_list xs¦ = sum_list (map abs xs)"
using coll ‹x ≠ 0› nlex
by (rule abs_sum_list_coll)
finally have "?e ∈ {-1 <..< 1}"
by (auto simp add: less_le scaleR_le_self_cancel)
thus ?thesis using eq ..
qed
subsection ‹Independent Generators›
fun independent_pdevs::"point list ⇒ point list"
where
"independent_pdevs [] = []"
| "independent_pdevs (x#xs) =
(let
(cs, is) = List.partition (coll 0 x) xs;
s = x + sum_list cs
in (if s = 0 then [] else [s]) @ independent_pdevs is)"
lemma in_set_independent_pdevsE:
assumes "y ∈ set (independent_pdevs xs)"
obtains x where "x∈set xs" "coll 0 x y"
proof atomize_elim
show "∃x. x ∈ set xs ∧ coll 0 x y"
using assms
proof (induct xs rule: independent_pdevs.induct)
case 1 thus ?case by simp
next
case (2 z zs)
let ?c1 = "y = z + sum_list (filter (coll 0 z) zs)"
let ?c2 = "y ∈ set (independent_pdevs (filter (Not ∘ coll 0 z) zs))"
from 2
have "?c1 ∨ ?c2"
by (auto simp: Let_def split: if_split_asm)
thus ?case
proof
assume ?c2
hence "y ∈ set (independent_pdevs (snd (partition (coll 0 z) zs)))"
by simp
from 2(1)[OF refl prod.collapse refl this]
show ?case
by auto
next
assume y: ?c1
show ?case
unfolding y
by (rule exI[where x="z"]) (auto intro!: coll_add coll_sum_list )
qed
qed
qed
lemma in_set_independent_pdevs_nonzero: "x ∈ set (independent_pdevs xs) ⟹ x ≠ 0"
proof (induct xs rule: independent_pdevs.induct)
case (2 y ys)
from 2(1)[OF refl prod.collapse refl] 2(2)
show ?case
by (auto simp: Let_def split: if_split_asm)
qed simp
lemma independent_pdevs_pairwise_non_coll:
assumes "x ∈ set (independent_pdevs xs)"
assumes "y ∈ set (independent_pdevs xs)"
assumes "⋀x. x ∈ set xs ⟹ x ≠ 0"
assumes "x ≠ y"
shows "¬ coll 0 x y"
using assms
proof (induct xs rule: independent_pdevs.induct)
case 1 thus ?case by simp
next
case (2 z zs)
from 2 have "z ≠ 0" by simp
from 2(2) have "x ≠ 0" by (rule in_set_independent_pdevs_nonzero)
from 2(3) have "y ≠ 0" by (rule in_set_independent_pdevs_nonzero)
let ?c = "filter (coll 0 z) zs"
let ?nc = "filter (Not ∘ coll 0 z) zs"
{
assume "x ∈ set (independent_pdevs ?nc)" "y ∈ set (independent_pdevs ?nc)"
hence "¬coll 0 x y"
by (intro 2(1)[OF refl prod.collapse refl _ _ 2(4) 2(5)]) auto
} note IH = this
{
fix x assume "x ≠ 0" "z + sum_list ?c ≠ 0"
"coll 0 x (z + sum_list ?c)"
hence "x ∉ set (independent_pdevs ?nc)"
using sum_list_filter_coll_ex_scale[OF ‹z ≠ 0›, of "z#zs"]
by (auto elim!: in_set_independent_pdevsE simp: coll_commute)
(metis (no_types) ‹x ≠ 0› coll_scale coll_scaleR)
} note nc = this
from 2(2,3,4,5) nc[OF ‹x ≠ 0›] nc[OF ‹y ≠ 0›]
show ?case
by (auto simp: Let_def IH coll_commute split: if_split_asm)
qed
lemma distinct_independent_pdevs[simp]:
shows "distinct (independent_pdevs xs)"
proof (induct xs rule: independent_pdevs.induct)
case 1 thus ?case by simp
next
case (2 x xs)
let ?is = "independent_pdevs (filter (Not ∘ coll 0 x) xs)"
have "distinct ?is"
by (rule 2) (auto intro!: 2)
thus ?case
proof (clarsimp simp add: Let_def)
let ?s = "x + sum_list (filter (coll 0 x) xs)"
assume s: "?s ≠ 0" "?s ∈ set ?is"
from in_set_independent_pdevsE[OF s(2)]
obtain y where y:
"y ∈ set (filter (Not ∘ coll 0 x) xs)"
"coll 0 y (x + sum_list (filter (coll 0 x) xs))"
by auto
{
assume "y = 0 ∨ x = 0 ∨ sum_list (filter (coll 0 x) xs) = 0"
hence False using s y by (auto simp: coll_commute)
} moreover {
assume "y ≠ 0" "x ≠ 0" "sum_list (filter (coll 0 x) xs) ≠ 0"
"sum_list (filter (coll 0 x) xs) + x ≠ 0"
have *: "coll 0 (sum_list (filter (coll 0 x) xs)) x"
by (auto intro!: coll_sum_list simp: coll_commute)
have "coll 0 y (sum_list (filter (coll 0 x) xs) + x)"
using s y by (simp add: add.commute)
hence "coll 0 y x" using *
by (rule coll_add_trans) fact+
hence False using s y by (simp add: coll_commute)
} ultimately show False using s y by (auto simp: add.commute)
qed
qed
lemma in_set_independent_pdevs_invariant_nlex:
"x ∈ set (independent_pdevs xs) ⟹ (⋀x. x ∈ set xs ⟹ lex x 0) ⟹
(⋀x. x ∈ set xs ⟹ x ≠ 0) ⟹ Counterclockwise_2D_Arbitrary.lex x 0"
proof (induction xs arbitrary: x rule: independent_pdevs.induct )
case 1 thus ?case by simp
next
case (2 y ys)
from 2 have "y ≠ 0" by auto
from 2(2)
have "x ∈ set (independent_pdevs (filter (Not ∘ coll 0 y) ys)) ∨
x = y + sum_list (filter (coll 0 y) ys)"
by (auto simp: Let_def split: if_split_asm)
thus ?case
proof
assume "x ∈ set (independent_pdevs (filter (Not ∘ coll 0 y) ys))"
from 2(1)[OF refl prod.collapse refl, simplified, OF this 2(3,4)]
show ?case by simp
next
assume "x = y + sum_list (filter (coll 0 y) ys)"
also have "lex … 0"
by (force intro: nlex_add nlex_sum simp: sum_list_sum_nth
dest: nth_mem intro: 2(3))
finally show ?case .
qed
qed
lemma
pdevs_val_independent_pdevs2:
assumes "e ∈ UNIV → I"
shows "∃e'. e' ∈ UNIV → I ∧
pdevs_val e (pdevs_of_list (independent_pdevs xs)) = pdevs_val e' (pdevs_of_list xs)"
using assms
proof (induct xs arbitrary: e rule: independent_pdevs.induct)
case 1 thus ?case by force
next
case (2 x xs)
let ?coll = "(filter (coll 0 x) (x#xs))"
let ?ncoll = "(filter (Not o coll 0 x) (x#xs))"
let ?e0 = "if sum_list ?coll = 0 then e else e ∘ (+) (Suc 0)"
have "pdevs_val e (pdevs_of_list (independent_pdevs (x#xs))) =
e 0 *⇩R (sum_list ?coll) + pdevs_val ?e0 (pdevs_of_list (independent_pdevs ?ncoll))"
(is "_ = ?vc + ?vnc")
by (simp add: Let_def)
also
have e_split: "(λ_. e 0) ∈ UNIV → I" "?e0 ∈ UNIV → I"
using 2(2) by auto
from 2(1)[OF refl prod.collapse refl e_split(2)]
obtain e' where e': "e' ∈ UNIV → I" and "?vnc = pdevs_val e' (pdevs_of_list ?ncoll)"
by (auto simp add: o_def)
note this(2)
also
have "?vc = pdevs_val (λ_. e 0) (pdevs_of_list ?coll)"
by (simp add: pdevs_val_const_pdevs_of_list)
also
from pdevs_val_pdevs_of_list_append[OF e_split(1) e'] obtain e'' where
e'': "e'' ∈ UNIV → I"
and "pdevs_val (λ_. e 0) (pdevs_of_list ?coll) + pdevs_val e' (pdevs_of_list ?ncoll) =
pdevs_val e'' (pdevs_of_list (?coll @ ?ncoll))"
by metis
note this(2)
also
from pdevs_val_perm[OF partition_permI e'', of "coll 0 x" "x#xs"]
obtain e''' where e''': "e''' ∈ UNIV → I"
and "… = pdevs_val e''' (pdevs_of_list (x # xs))"
by metis
note this(2)
finally show ?case using e''' by auto
qed
lemma list_all_filter: "list_all p (filter p xs)"
by (induct xs) auto
lemma pdevs_val_independent_pdevs:
assumes "list_all (λx. lex x 0) xs"
assumes "list_all (λx. x ≠ 0) xs"
assumes "e ∈ UNIV → {-1 .. 1}"
shows "∃e'. e' ∈ UNIV → {-1 .. 1} ∧ pdevs_val e (pdevs_of_list xs) =
pdevs_val e' (pdevs_of_list (independent_pdevs xs))"
using assms(1,2,3)
proof (induct xs arbitrary: e rule: independent_pdevs.induct)
case 1 thus ?case by force
next
case (2 x xs)
let ?coll = "(filter (coll 0 x) (x#xs))"
let ?ncoll = "(filter (Not o coll 0 x) xs)"
from 2 have "x ≠ 0" by simp
from pdevs_val_partition[OF 2(4), of "x#xs" "coll 0 x"]
obtain f g where part: "pdevs_val e (pdevs_of_list (x # xs)) =
pdevs_val f (pdevs_of_list ?coll) +
pdevs_val g (pdevs_of_list (filter (Not o coll 0 x) (x#xs)))"
and f: "f ∈ UNIV → {-1 .. 1}" and g: "g ∈ UNIV → {-1 .. 1}"
by blast
note part
also
have "list_all (λx. lex x 0) (filter (coll 0 x) (x#xs))"
using 2(2) by (auto simp: inner_prod_def list_all_iff)
from pdevs_val_coll[OF list_all_filter this ‹x ≠ 0› f]
obtain f' where "pdevs_val f (pdevs_of_list ?coll) = f' *⇩R sum_list (filter (coll 0 x) (x#xs))"
and f': "f' ∈ {-1 .. 1}"
by blast
note this(1)
also
have "filter (Not o coll 0 x) (x#xs) = ?ncoll"
by simp
also
from 2(2) have "list_all (λx. lex x 0) ?ncoll" "list_all (λx. x ≠ 0) ?ncoll"
by (auto simp: list_all_iff)
from 2(1)[OF refl partition_filter_conv[symmetric] refl this g]
obtain g'
where "pdevs_val g (pdevs_of_list ?ncoll) =
pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll))"
and g': "g' ∈ UNIV → {-1 .. 1}"
by metis
note this(1)
also
define h where "h = (if sum_list ?coll ≠ 0 then rec_nat f' (λi _. g' i) else g')"
have "f' *⇩R sum_list ?coll + pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll))
= pdevs_val h (pdevs_of_list (independent_pdevs (x#xs)))"
by (simp add: h_def o_def Let_def)
finally
have "pdevs_val e (pdevs_of_list (x # xs)) =
pdevs_val h (pdevs_of_list (independent_pdevs (x # xs)))" .
moreover have "h ∈ UNIV → {-1 .. 1}"
proof
fix i show "h i ∈ {-1 .. 1}"
using f' g'
by (cases i) (auto simp: h_def)
qed
ultimately show ?case by blast
qed
lemma
pdevs_val_independent_pdevs_strict:
assumes "list_all (λx. lex x 0) xs"
assumes "list_all (λx. x ≠ 0) xs"
assumes "e ∈ UNIV → {-1 <..< 1}"
shows "∃e'. e' ∈ UNIV → {-1 <..< 1} ∧ pdevs_val e (pdevs_of_list xs) =
pdevs_val e' (pdevs_of_list (independent_pdevs xs))"
using assms(1,2,3)
proof (induct xs arbitrary: e rule: independent_pdevs.induct)
case 1 thus ?case by force
next
case (2 x xs)
let ?coll = "(filter (coll 0 x) (x#xs))"
let ?ncoll = "(filter (Not o coll 0 x) xs)"
from 2 have "x ≠ 0" by simp
from pdevs_val_partition[OF 2(4), of "x#xs" "coll 0 x"]
obtain f g
where part: "pdevs_val e (pdevs_of_list (x # xs)) =
pdevs_val f (pdevs_of_list ?coll) +
pdevs_val g (pdevs_of_list (filter (Not o coll 0 x) (x#xs)))"
and f: "f ∈ UNIV → {-1 <..< 1}" and g: "g ∈ UNIV → {-1 <..< 1}"
by blast
note part
also
have "list_all (λx. lex x 0) (filter (coll 0 x) (x#xs))"
using 2(2) by (auto simp: inner_prod_def list_all_iff)
from pdevs_val_coll_strict[OF list_all_filter this ‹x ≠ 0› f]
obtain f' where "pdevs_val f (pdevs_of_list ?coll) = f' *⇩R sum_list (filter (coll 0 x) (x#xs))"
and f': "f' ∈ {-1 <..< 1}"
by blast
note this(1)
also
have "filter (Not o coll 0 x) (x#xs) = ?ncoll"
by simp
also
from 2(2) have "list_all (λx. lex x 0) ?ncoll" "list_all (λx. x ≠ 0) ?ncoll"
by (auto simp: list_all_iff)
from 2(1)[OF refl partition_filter_conv[symmetric] refl this g]
obtain g'
where "pdevs_val g (pdevs_of_list ?ncoll) =
pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll))"
and g': "g' ∈ UNIV → {-1 <..< 1}"
by metis
note this(1)
also
define h where "h = (if sum_list ?coll ≠ 0 then rec_nat f' (λi _. g' i) else g')"
have "f' *⇩R sum_list ?coll + pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll))
= pdevs_val h (pdevs_of_list (independent_pdevs (x#xs)))"
by (simp add: h_def o_def Let_def)
finally
have "pdevs_val e (pdevs_of_list (x # xs)) =
pdevs_val h (pdevs_of_list (independent_pdevs (x # xs)))" .
moreover have "h ∈ UNIV → {-1 <..< 1}"
proof
fix i show "h i ∈ {-1 <..< 1}"
using f' g'
by (cases i) (auto simp: h_def)
qed
ultimately show ?case by blast
qed
lemma sum_list_independent_pdevs: "sum_list (independent_pdevs xs) = sum_list xs"
proof (induct xs rule: independent_pdevs.induct)
case (2 y ys)
from 2[OF refl prod.collapse refl]
show ?case
using sum_list_partition[of "coll 0 y" ys, symmetric]
by (auto simp: Let_def)
qed simp
lemma independent_pdevs_eq_Nil_iff:
"list_all (λx. lex x 0) xs ⟹ list_all (λx. x ≠ 0) xs ⟹ independent_pdevs xs = [] ⟷ xs = []"
proof (induct xs)
case Nil thus ?case by simp
next
case (Cons x xs)
from Cons(2) have "list_all (λx. lex x 0) (x # filter (coll 0 x) xs)"
by (auto simp: list_all_iff)
from sum_list_nlex_eq_zero_iff[OF this] Cons(3)
show ?case
by (auto simp: list_all_iff)
qed
subsection ‹Independent Oriented Generators›
definition "inl p = independent_pdevs (map snd (list_of_pdevs (nlex_pdevs p)))"
lemma distinct_inl[simp]: "distinct (inl (snd X))"
by (auto simp: inl_def)
lemma in_set_inl_nonzero: "x ∈ set (inl xs) ⟹ x ≠ 0"
by (auto simp: inl_def in_set_independent_pdevs_nonzero)
lemma
inl_ncoll: "y ∈ set (inl (snd X)) ⟹ z ∈ set (inl (snd X)) ⟹ y ≠ z ⟹ ¬coll 0 y z"
unfolding inl_def
by (rule independent_pdevs_pairwise_non_coll, assumption+)
(auto simp: inl_def list_of_pdevs_nonzero)
lemma in_set_inl_lex: "x ∈ set (inl xs) ⟹ lex x 0"
by (auto simp: inl_def list_of_pdevs_def dest!: in_set_independent_pdevs_invariant_nlex
split: if_split_asm)
interpretation ccw0: linorder_list "ccw 0" "set (inl (snd X))"
proof unfold_locales
fix a b c
show "a ≠ b ⟹ ccw 0 a b ∨ ccw 0 b a"
by (metis UNIV_I ccw_self(1) nondegenerate)
assume a: "a ∈ set (inl (snd X))"
show "ccw 0 a a"
by simp
assume b: "b ∈ set (inl (snd X))"
show "ccw 0 a b ⟹ ccw 0 b a ⟹ a = b"
by (metis ccw_self(1) in_set_inl_nonzero mem_Collect_eq not_ccw_eq a b)
assume c: "c ∈ set (inl (snd X))"
assume distinct: "a ≠ b" "b ≠ c" "a ≠ c"
assume ab: "ccw 0 a b" and bc: "ccw 0 b c"
show "ccw 0 a c"
using a b c ab bc
proof (cases "a = (0, 1)" "b = (0, 1)" "c = (0, 1)"
rule: case_split[case_product case_split[case_product case_split]])
assume nu: "a ≠ (0, 1)" "b ≠ (0, 1)" "c ≠ (0, 1)"
have "distinct5 a b c (0, 1) 0" "in5 UNIV a b c (0, 1) 0"
using a b c distinct nu by (simp_all add: in_set_inl_nonzero)
moreover have "ccw 0 (0, 1) a" "ccw 0 (0, 1) b" "ccw 0 (0, 1) c"
by (auto intro!: nlex_ccw_left in_set_inl_lex a b c)
ultimately show ?thesis using ab bc
by (rule ccw.transitive[where S=UNIV and s="(0, 1)"])
next
assume "a ≠ (0, 1)" "b = (0, 1)" "c ≠ (0, 1)"
thus ?thesis
using ccw_switch23 in_set_inl_lex inl_ncoll nlex_ccw_left a b ab
by blast
next
assume "a ≠ (0, 1)" "b ≠ (0, 1)" "c = (0, 1)"
thus ?thesis
using ccw_switch23 in_set_inl_lex inl_ncoll nlex_ccw_left b c bc
by blast
qed (auto simp add: nlex_ccw_left in_set_inl_lex)
qed
lemma sorted_inl: "ccw.sortedP 0 (ccw.selsort 0 (inl (snd X)))"
by (rule ccw0.sortedP_selsort) auto
lemma sorted_scaled_inl: "ccw.sortedP 0 (map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X))))"
using sorted_inl
by (rule ccw_sorted_scaleR) simp
lemma distinct_selsort_inl: "distinct (ccw.selsort 0 (inl (snd X)))"
by simp
lemma distinct_map_scaleRI:
fixes xs::"'a::real_vector list"
shows "distinct xs ⟹ c ≠ 0 ⟹ distinct (map ((*⇩R) c) xs)"
by (induct xs) auto
lemma distinct_scaled_inl: "distinct (map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X))))"
using distinct_selsort_inl
by (rule distinct_map_scaleRI) simp
lemma ccw'_sortedP_scaled_inl:
"ccw'.sortedP 0 (map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X))))"
using ccw_sorted_implies_ccw'_sortedP
by (rule ccw'_sorted_scaleR) (auto simp: sorted_inl inl_ncoll)
lemma pdevs_val_pdevs_of_list_inl2E:
assumes "e ∈ UNIV → {-1 .. 1}"
obtains e' where "pdevs_val e X = pdevs_val e' (pdevs_of_list (inl X))" "e' ∈ UNIV → {-1 .. 1}"
proof -
let ?l = "map snd (list_of_pdevs (nlex_pdevs X))"
have l: "list_all (λx. Counterclockwise_2D_Arbitrary.lex x 0) ?l"
"list_all (λx. x ≠ 0) (map snd (list_of_pdevs (nlex_pdevs X)))"
by (auto simp: list_all_iff list_of_pdevs_def)
from pdevs_val_nlex_pdevs[OF assms(1)]
obtain e' where "e' ∈ UNIV → {-1 .. 1}" "pdevs_val e X = pdevs_val e' (nlex_pdevs X)"
by auto
note this(2)
also from pdevs_val_of_list_of_pdevs2[OF ‹e' ∈ _›]
obtain e'' where "e'' ∈ UNIV → {-1 .. 1}" "… = pdevs_val e'' (pdevs_of_list ?l)"
by metis
note this(2)
also from pdevs_val_independent_pdevs[OF l ‹e'' ∈ _›]
obtain e'''
where "e''' ∈ UNIV → {-1 .. 1}"
and "… = pdevs_val e''' (pdevs_of_list (independent_pdevs ?l))"
by metis
note this(2)
also have "… = pdevs_val e''' (pdevs_of_list (inl X))"
by (simp add: inl_def)
finally have "pdevs_val e X = pdevs_val e''' (pdevs_of_list (inl X))" .
thus thesis using ‹e''' ∈ _› ..
qed
lemma pdevs_val_pdevs_of_list_inlE:
assumes "e ∈ UNIV → I" "uminus ` I = I" "0 ∈ I"
obtains e' where "pdevs_val e (pdevs_of_list (inl X)) = pdevs_val e' X" "e' ∈ UNIV → I"
proof -
let ?l = "map snd (list_of_pdevs (nlex_pdevs X))"
have "pdevs_val e (pdevs_of_list (inl X)) = pdevs_val e (pdevs_of_list (independent_pdevs ?l))"
by (simp add: inl_def)
also
from pdevs_val_independent_pdevs2[OF ‹e ∈ _›]
obtain e'
where "pdevs_val e (pdevs_of_list (independent_pdevs ?l)) = pdevs_val e' (pdevs_of_list ?l)"
and "e' ∈ UNIV → I"
by auto
note this(1)
also
from pdevs_val_of_list_of_pdevs[OF ‹e' ∈ _› ‹0 ∈ I›, of "nlex_pdevs X"]
obtain e'' where "pdevs_val e' (pdevs_of_list ?l) = pdevs_val e'' (nlex_pdevs X)"
and "e'' ∈ UNIV → I"
by metis
note this(1)
also
from pdevs_val_nlex_pdevs2[OF ‹e'' ∈ _› ‹_ = I›]
obtain e''' where "pdevs_val e'' (nlex_pdevs X) = pdevs_val e''' X" "e''' ∈ UNIV → I"
by metis
note this(1)
finally have "pdevs_val e (pdevs_of_list (inl X)) = pdevs_val e''' X" .
thus ?thesis using ‹e''' ∈ UNIV → I› ..
qed
lemma sum_list_nlex_eq_sum_list_inl:
"sum_list (map snd (list_of_pdevs (nlex_pdevs X))) = sum_list (inl X)"
by (auto simp: inl_def sum_list_list_of_pdevs sum_list_independent_pdevs)
lemma Affine_inl: "Affine (fst X, pdevs_of_list (inl (snd X))) = Affine X"
by (auto simp: Affine_def valuate_def aform_val_def
elim: pdevs_val_pdevs_of_list_inlE[of _ _ "snd X"] pdevs_val_pdevs_of_list_inl2E[of _ "snd X"])
subsection ‹Half Segments›
definition half_segments_of_aform::"point aform ⇒ (point*point) list"
where "half_segments_of_aform X =
(let
x0 = lowest_vertex (fst X, nlex_pdevs (snd X))
in
polychain_of x0 (map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X)))))"
lemma subsequent_half_segments:
fixes X
assumes "Suc i < length (half_segments_of_aform X)"
shows "snd (half_segments_of_aform X ! i) = fst (half_segments_of_aform X ! Suc i)"
using assms
by (cases i) (auto simp: half_segments_of_aform_def Let_def polychain_of_subsequent_eq)
lemma polychain_half_segments_of_aform: "polychain (half_segments_of_aform X)"
by (auto simp: subsequent_half_segments intro!: polychainI)
lemma fst_half_segments:
"half_segments_of_aform X ≠ [] ⟹
fst (half_segments_of_aform X ! 0) = lowest_vertex (fst X, nlex_pdevs (snd X))"
by (auto simp: half_segments_of_aform_def Let_def o_def split_beta')
lemma nlex_half_segments_of_aform: "(a, b) ∈ set (half_segments_of_aform X) ⟹ lex b a"
by (auto simp: half_segments_of_aform_def prod_eq_iff lex_def
dest!: in_set_polychain_ofD in_set_inl_lex)
lemma ccw_half_segments_of_aform_all:
assumes cd: "(c, d) ∈ set (half_segments_of_aform X)"
shows "list_all (λ(xi, xj). ccw xi xj c ∧ ccw xi xj d) (half_segments_of_aform X)"
proof -
have
"list_all (λ(xi, xj). ccw xi xj (fst (c, d)) ∧ ccw xi xj (snd (c, d)))
(polychain_of (lowest_vertex (fst X, nlex_pdevs (snd X)))
((map ((*⇩R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X))))))"
using ccw'_sortedP_scaled_inl cd[unfolded half_segments_of_aform_def Let_def]
by (rule polychain_of_ccw_conjunction)
thus ?thesis
unfolding half_segments_of_aform_def[unfolded Let_def, symmetric] fst_conv snd_conv .
qed
lemma ccw_half_segments_of_aform:
assumes ij: "(xi, xj) ∈ set (half_segments_of_aform X)"
assumes c: "(c, d) ∈ set (half_segments_of_aform X)"
shows "ccw xi xj c" "ccw xi xj d"
using ccw_half_segments_of_aform_all[OF c] ij
by (auto simp add: list_all_iff)
lemma half_segments_of_aform1:
assumes ch: "x ∈ convex hull set (map fst (half_segments_of_aform X))"
assumes ab: "(a, b) ∈ set (half_segments_of_aform X)"
shows "ccw a b x"
using finite_set _ ch
proof (rule ccw.convex_hull)
fix c assume "c ∈ set (map fst (half_segments_of_aform X))"
then obtain d where "(c, d) ∈ set (half_segments_of_aform X)" by auto
with ab show "ccw a b c"
by (rule ccw_half_segments_of_aform(1))
qed (insert ab, simp add: nlex_half_segments_of_aform)
lemma half_segments_of_aform2:
assumes ch: "x ∈ convex hull set (map snd (half_segments_of_aform X))"
assumes ab: "(a, b) ∈ set (half_segments_of_aform X)"
shows "ccw a b x"
using finite_set _ ch
proof (rule ccw.convex_hull)
fix d assume "d ∈ set (map snd (half_segments_of_aform X))"
then obtain c where "(c, d) ∈ set (half_segments_of_aform X)" by auto
with ab show "ccw a b d"
by (rule ccw_half_segments_of_aform(2))
qed (insert ab, simp add: nlex_half_segments_of_aform)
lemma
in_set_half_segments_of_aform_aform_valE:
assumes "(x2, y2) ∈ set (half_segments_of_aform X)"
obtains e where "y2 = aform_val e X" "e ∈ UNIV → {-1 .. 1}"
proof -
from assms obtain d where
"y2 = lowest_vertex (fst X, nlex_pdevs (snd X)) +
sum_list (take (Suc d) (map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X)))))"
by (auto simp: half_segments_of_aform_def elim!: in_set_polychain_of_imp_sum_list)
also have "lowest_vertex (fst X, nlex_pdevs (snd X)) =
fst X - sum_list (map snd (list_of_pdevs (nlex_pdevs (snd X))))"
by (simp add: lowest_vertex_def)
also have "sum_list (map snd (list_of_pdevs (nlex_pdevs (snd X)))) =
pdevs_val (λ_. 1) (nlex_pdevs (snd X))"
by (auto simp: pdevs_val_sum_list)
also
have "sum_list (take (Suc d) (map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X))))) =
pdevs_val (λi. if i ≤ d then 2 else 0) (pdevs_of_list (ccw.selsort 0 (inl (snd X))))"
(is "_ = pdevs_val ?e _")
by (subst sum_list_take_pdevs_val_eq)
(auto simp: pdevs_val_sum if_distrib pdevs_apply_pdevs_of_list
degree_pdevs_of_list_scaleR intro!: sum.cong )
also
obtain e'' where "… = pdevs_val e'' (pdevs_of_list (inl (snd X)))" "e'' ∈ UNIV → {0..2}"
by (auto intro: pdevs_val_selsort_ccw2[of "inl (snd X)" ?e "{0 .. 2}"])
note this(1)
also note inl_def
also
let ?l = "map snd (list_of_pdevs (nlex_pdevs (snd X)))"
from pdevs_val_independent_pdevs2[OF ‹e'' ∈ _›]
obtain e'''
where "pdevs_val e'' (pdevs_of_list (independent_pdevs ?l)) = pdevs_val e''' (pdevs_of_list ?l)"
and "e''' ∈ UNIV → {0..2}"
by auto
note this(1)
also
have "0 ∈ {0 .. 2::real}" by simp
from pdevs_val_of_list_of_pdevs[OF ‹e''' ∈ _› this, of "nlex_pdevs (snd X)"]
obtain e'''' where "pdevs_val e''' (pdevs_of_list ?l) = pdevs_val e'''' (nlex_pdevs (snd X))"
and "e'''' ∈ UNIV → {0 .. 2}"
by metis
note this(1)
finally have
"y2 = fst X + (pdevs_val e'''' (nlex_pdevs (snd X)) - pdevs_val (λ_. 1) (nlex_pdevs (snd X)))"
by simp
also have "pdevs_val e'''' (nlex_pdevs (snd X)) - pdevs_val (λ_. 1) (nlex_pdevs (snd X)) =
pdevs_val (λi. e'''' i - 1) (nlex_pdevs (snd X))"
by (simp add: pdevs_val_minus)
also
have "(λi. e'''' i - 1) ∈ UNIV → {-1 .. 1}" using ‹e'''' ∈ _› by auto
from pdevs_val_nlex_pdevs2[OF this]
obtain f where "f ∈ UNIV → {-1 .. 1}"
and "pdevs_val (λi. e'''' i - 1) (nlex_pdevs (snd X)) = pdevs_val f (snd X)"
by auto
note this(2)
finally have "y2 = aform_val f X" by (simp add: aform_val_def)
thus ?thesis using ‹f ∈ _› ..
qed
lemma fst_hd_half_segments_of_aform:
assumes "half_segments_of_aform X ≠ []"
shows "fst (hd (half_segments_of_aform X)) = lowest_vertex (fst X, (nlex_pdevs (snd X)))"
using assms
by (auto simp: half_segments_of_aform_def Let_def fst_hd_polychain_of)
lemma
"linorder_list0.sortedP (ccw' (lowest_vertex (fst X, nlex_pdevs (snd X))))
(map snd (half_segments_of_aform X))"
(is "linorder_list0.sortedP (ccw' ?x0) ?ms")
unfolding half_segments_of_aform_def Let_def
by (rule ccw'_sortedP_polychain_of_snd) (rule ccw'_sortedP_scaled_inl)
lemma rev_zip: "length xs = length ys ⟹ rev (zip xs ys) = zip (rev xs) (rev ys)"
by (induct xs ys rule: list_induct2) auto
lemma zip_upt_self_aux: "zip [0..<length xs] xs = map (λi. (i, xs ! i)) [0..<length xs]"
by (auto intro!: nth_equalityI)
lemma half_segments_of_aform_strict:
assumes "e ∈ UNIV → {-1 <..< 1}"
assumes "seg ∈ set (half_segments_of_aform X)"
assumes "length (half_segments_of_aform X) ≠ 1"
shows "ccw' (fst seg) (snd seg) (aform_val e X)"
using assms unfolding half_segments_of_aform_def Let_def
proof -
have len: "length (map ((*⇩R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X)))) ≠ 1"
using assms by (auto simp: half_segments_of_aform_def)
have "aform_val e X = fst X + pdevs_val e (snd X)"
by (simp add: aform_val_def)
also
obtain e' where "e' ∈ UNIV → {-1 <..< 1}"
"pdevs_val e (snd X) = pdevs_val e' (nlex_pdevs (snd X))"
using pdevs_val_nlex_pdevs[OF ‹e ∈ _›]
by auto
note this(2)
also obtain e'' where "e'' ∈ UNIV → {-1 <..< 1}"
"… = pdevs_val e'' (pdevs_of_list (map snd (list_of_pdevs (nlex_pdevs (snd X)))))"
by (metis pdevs_val_of_list_of_pdevs2[OF ‹e' ∈ _›])
note this(2)
also
obtain e''' where "e''' ∈ UNIV → {-1 <..< 1}" "… = pdevs_val e''' (pdevs_of_list (inl (snd X)))"
unfolding inl_def
using
pdevs_val_independent_pdevs_strict[OF list_all_list_of_pdevsI,
OF lex_nlex_pdevs list_of_pdevs_all_nonzero ‹e'' ∈ _›]
by metis
note this(2)
also
from pdevs_val_selsort_ccw[OF distinct_inl ‹e''' ∈ _›]
obtain f where "f ∈ UNIV → {-1 <..< 1}"
"… = pdevs_val f (pdevs_of_list (linorder_list0.selsort (ccw 0) (inl (snd X))))"
(is "_ = pdevs_val _ (pdevs_of_list ?sl)")
by metis
note this(2)
also have "… = pdevs_val (λi. f i + 1) (pdevs_of_list ?sl) +
lowest_vertex (fst X, nlex_pdevs (snd X)) - fst X"
proof -
have "sum_list (dense_list_of_pdevs (nlex_pdevs (snd X))) =
sum_list (dense_list_of_pdevs (pdevs_of_list (ccw.selsort 0 (inl (snd X)))))"
by (subst dense_list_of_pdevs_pdevs_of_list)
(auto simp: in_set_independent_pdevs_nonzero dense_list_of_pdevs_pdevs_of_list inl_def
sum_list_distinct_selsort sum_list_independent_pdevs sum_list_list_of_pdevs)
thus ?thesis
by (auto simp add: pdevs_val_add lowest_vertex_def algebra_simps pdevs_val_sum_list
sum_list_list_of_pdevs in_set_inl_nonzero dense_list_of_pdevs_pdevs_of_list)
qed
also have "pdevs_val (λi. f i + 1) (pdevs_of_list ?sl) =
pdevs_val (λi. 1/2 * (f i + 1)) (pdevs_of_list (map ((*⇩R) 2) ?sl))"
(is "_ = pdevs_val ?f' (pdevs_of_list ?ssl)")
by (subst pdevs_val_cmul) (simp add: pdevs_of_list_map_scaleR)
also
have "distinct ?ssl" "?f' ∈ UNIV → {0<..<1}" using ‹f ∈ _›
by (auto simp: distinct_map_scaleRI Pi_iff algebra_simps real_0_less_add_iff)
from pdevs_of_list_sum[OF this]
obtain g where "g ∈ UNIV → {0<..<1}"
"pdevs_val ?f' (pdevs_of_list ?ssl) = (∑P∈set ?ssl. g P *⇩R P)"
by blast
note this(2)
finally
have "aform_val e X = lowest_vertex (fst X, nlex_pdevs (snd X)) + (∑P∈set ?ssl. g P *⇩R P)"
by simp
also
have "ccw' (fst seg) (snd seg) …"
using ‹g ∈ _› _ len ‹seg ∈ _›[unfolded half_segments_of_aform_def Let_def]
by (rule in_polychain_of_ccw) (simp add: ccw'_sortedP_scaled_inl)
finally show ?thesis .
qed
lemma half_segments_of_aform_strict_all:
assumes "e ∈ UNIV → {-1 <..< 1}"
assumes "length (half_segments_of_aform X) ≠ 1"
shows "list_all (λseg. ccw' (fst seg) (snd seg) (aform_val e X)) (half_segments_of_aform X)"
using assms
by (auto intro!: half_segments_of_aform_strict simp: list_all_iff)
lemma list_allD: "list_all P xs ⟹ x ∈ set xs ⟹ P x"
by (auto simp: list_all_iff)
lemma minus_one_less_multI:
fixes e x::real
shows "- 1 ≤ e ⟹ 0 < x ⟹ x < 1 ⟹ - 1 < e * x"
by (metis abs_add_one_gt_zero abs_real_def le_less_trans less_not_sym mult_less_0_iff
mult_less_cancel_left1 real_0_less_add_iff)
lemma less_one_multI:
fixes e x::real
shows "e ≤ 1 ⟹ 0 < x ⟹ x < 1 ⟹ e * x < 1"
by (metis (erased, opaque_lifting) less_eq_real_def monoid_mult_class.mult.left_neutral
mult_strict_mono zero_less_one)
lemma ccw_half_segments_of_aform_strictI:
assumes "e ∈ UNIV → {-1 <..< 1}"
assumes "(s1, s2) ∈ set (half_segments_of_aform X)"
assumes "length (half_segments_of_aform X) ≠ 1"
assumes "x = (aform_val e X)"
shows "ccw' s1 s2 x"
using half_segments_of_aform_strict[OF assms(1-3)] assms(4) by simp
lemma
ccw'_sortedP_subsequent:
assumes "Suc i < length xs" "ccw'.sortedP 0 (map dirvec xs)" "fst (xs ! Suc i) = snd (xs ! i)"
shows "ccw' (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i))"
using assms
proof (induct xs arbitrary: i)
case Nil thus ?case by simp
next
case (Cons x xs)
thus ?case
by (auto simp: nth_Cons dirvec_minus split: nat.split elim!: ccw'.sortedP_Cons)
(metis (no_types, lifting) ccw'.renormalize length_greater_0_conv nth_mem prod.case_eq_if)
qed
lemma ccw'_sortedP_uminus: "ccw'.sortedP 0 xs ⟹ ccw'.sortedP 0 (map uminus xs)"
by (induct xs) (auto intro!: ccw'.sortedP.Cons elim!: ccw'.sortedP_Cons simp del: uminus_Pair)
lemma subsequent_half_segments_ccw:
fixes X
assumes "Suc i < length (half_segments_of_aform X)"
shows "ccw' (fst (half_segments_of_aform X ! i)) (snd (half_segments_of_aform X ! i))
(snd (half_segments_of_aform X ! Suc i))"
using assms
by (intro ccw'_sortedP_subsequent )
(auto simp: subsequent_half_segments half_segments_of_aform_def
sorted_inl polychain_of_subsequent_eq intro!: ccw_sorted_implies_ccw'_sortedP[OF inl_ncoll]
ccw'_sorted_scaleR)
lemma convex_polychain_half_segments_of_aform: "convex_polychain (half_segments_of_aform X)"
proof cases
assume "length (half_segments_of_aform X) = 1"
thus ?thesis
by (auto simp: length_Suc_conv convex_polychain_def polychain_def)
next
assume len: "length (half_segments_of_aform X) ≠ 1"
show ?thesis
by (rule convex_polychainI)
(simp_all add: polychain_half_segments_of_aform subsequent_half_segments_ccw
ccw'_def[symmetric])
qed
lemma hd_distinct_neq_last: "distinct xs ⟹ length xs > 1 ⟹ hd xs ≠ last xs"
by (metis One_nat_def add_Suc_right distinct.simps(2) last.simps last_in_set less_irrefl
list.exhaust list.sel(1) list.size(3) list.size(4) add.right_neutral nat_neq_iff not_less0)
lemma ccw_hd_last_half_segments_dirvec:
assumes "length (half_segments_of_aform X) > 1"
shows "ccw' 0 (dirvec (hd (half_segments_of_aform X))) (dirvec (last (half_segments_of_aform X)))"
proof -
let ?i = "ccw.selsort 0 (inl (snd X))"
let ?s = "map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X)))"
from assms have l: "1 < length (inl (snd X))" "inl (snd X) ≠ []"
using assms by (auto simp add: half_segments_of_aform_def)
hence "hd ?i ∈ set ?i" "last ?i ∈ set ?i"
by (auto intro!: hd_in_set last_in_set simp del: ccw.set_selsort)
hence "¬coll 0 (hd ?i) (last ?i)" using l
by (intro inl_ncoll[of _ X]) (auto simp: hd_distinct_neq_last)
hence "¬coll 0 (hd ?s) (last ?s)" using l
by (auto simp: hd_map last_map)
hence "ccw' 0 (hd (map ((*⇩R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X)))))
(last (map ((*⇩R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X)))))"
using assms
by (auto simp add: half_segments_of_aform_def
intro!: sorted_inl ccw_sorted_scaleR ccw.hd_last_sorted ccw_ncoll_imp_ccw)
with assms show ?thesis
by (auto simp add: half_segments_of_aform_def Let_def
dirvec_hd_polychain_of dirvec_last_polychain_of length_greater_0_conv[symmetric]
simp del: polychain_of.simps length_greater_0_conv
split: if_split_asm)
qed
lemma map_fst_half_segments_aux_eq: "[] ≠ half_segments_of_aform X ⟹
map fst (half_segments_of_aform X) =
fst (hd (half_segments_of_aform X))#butlast (map snd (half_segments_of_aform X))"
by (rule nth_equalityI)
(auto simp: nth_Cons hd_conv_nth nth_butlast subsequent_half_segments split: nat.split)
lemma le_less_Suc_eq: "x - Suc 0 ≤ (i::nat) ⟹ i < x ⟹ x - Suc 0 = i"
by simp
lemma map_snd_half_segments_aux_eq: "half_segments_of_aform X ≠ [] ⟹
map snd (half_segments_of_aform X) =
tl (map fst (half_segments_of_aform X)) @ [snd (last (half_segments_of_aform X))]"
by (rule nth_equalityI)
(auto simp: nth_Cons hd_conv_nth nth_append nth_tl subsequent_half_segments
not_less last_conv_nth algebra_simps dest!: le_less_Suc_eq
split: nat.split)
lemma ccw'_sortedP_snd_half_segments_of_aform:
"ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X))) (map snd (half_segments_of_aform X))"
by (auto simp: half_segments_of_aform_def Let_def
intro!: ccw'.sortedP.Cons ccw'_sortedP_polychain_of_snd ccw'_sortedP_scaled_inl)
lemma
lex_half_segments_lowest_vertex:
assumes "(c, d) ∈ set (half_segments_of_aform X)"
shows "lex d (lowest_vertex (fst X, nlex_pdevs (snd X)))"
unfolding half_segments_of_aform_def Let_def
by (rule lex_polychain_of_center[OF assms[unfolded half_segments_of_aform_def Let_def],
unfolded snd_conv])
(auto simp: list_all_iff lex_def dest!: in_set_inl_lex)
lemma
lex_half_segments_lowest_vertex':
assumes "d ∈ set (map snd (half_segments_of_aform X))"
shows "lex d (lowest_vertex (fst X, nlex_pdevs (snd X)))"
using assms
by (auto intro: lex_half_segments_lowest_vertex)
lemma
lex_half_segments_last:
assumes "(c, d) ∈ set (half_segments_of_aform X)"
shows "lex (snd (last (half_segments_of_aform X))) d"
using assms
unfolding half_segments_of_aform_def Let_def
by (rule lex_polychain_of_last) (auto simp: list_all_iff lex_def dest!: in_set_inl_lex)
lemma
lex_half_segments_last':
assumes "d ∈ set (map snd (half_segments_of_aform X))"
shows "lex (snd (last (half_segments_of_aform X))) d"
using assms
by (auto intro: lex_half_segments_last)
lemma
ccw'_half_segments_lowest_last:
assumes set_butlast: "(c, d) ∈ set (butlast (half_segments_of_aform X))"
assumes ne: "inl (snd X) ≠ []"
shows "ccw' (lowest_vertex (fst X, nlex_pdevs (snd X))) d (snd (last (half_segments_of_aform X)))"
using set_butlast
unfolding half_segments_of_aform_def Let_def
by (rule ccw'_polychain_of_sorted_center_last) (auto simp: ne ccw'_sortedP_scaled_inl)
lemma distinct_fst_half_segments:
"distinct (map fst (half_segments_of_aform X))"
by (auto simp: half_segments_of_aform_def list_all_iff lex_scale1_zero
simp del: scaleR_Pair
intro!: distinct_fst_polychain_of
dest: in_set_inl_nonzero in_set_inl_lex)
lemma distinct_snd_half_segments:
"distinct (map snd (half_segments_of_aform X))"
by (auto simp: half_segments_of_aform_def list_all_iff lex_scale1_zero
simp del: scaleR_Pair
intro!: distinct_snd_polychain_of
dest: in_set_inl_nonzero in_set_inl_lex)
subsection ‹Mirror›
definition "mirror_point x y = 2 *⇩R x - y"
lemma ccw'_mirror_point3[simp]:
"ccw' (mirror_point x y) (mirror_point x z) (mirror_point x w) ⟷ ccw' y z w "
by (auto simp: mirror_point_def det3_def' ccw'_def algebra_simps)
lemma mirror_point_self_inverse[simp]:
fixes x::"'a::real_vector"
shows "mirror_point p (mirror_point p x) = x"
by (auto simp: mirror_point_def scaleR_2)
lemma mirror_half_segments_of_aform:
assumes "e ∈ UNIV → {-1 <..< 1}"
assumes "length (half_segments_of_aform X) ≠ 1"
shows "list_all (λseg. ccw' (fst seg) (snd seg) (aform_val e X))
(map (pairself (mirror_point (fst X))) (half_segments_of_aform X))"
unfolding list_all_length
proof safe
let ?m = "map (pairself (mirror_point (fst X))) (half_segments_of_aform X)"
fix n assume "n < length ?m"
hence "ccw' (fst (half_segments_of_aform X ! n)) (snd (half_segments_of_aform X ! n))
(aform_val (- e) X)"
using assms
by (auto dest!: nth_mem intro!: half_segments_of_aform_strict)
also have "aform_val (-e) X = 2 *⇩R fst X - aform_val e X"
by (auto simp: aform_val_def pdevs_val_sum algebra_simps scaleR_2 sum_negf)
finally have le:
"ccw' (fst (half_segments_of_aform X ! n)) (snd (half_segments_of_aform X ! n))
(2 *⇩R fst X - aform_val e X)"
.
have eq: "(map (pairself (mirror_point (fst X))) (half_segments_of_aform X) ! n) =
(2 *⇩R fst X - fst ((half_segments_of_aform X) ! n),
2 *⇩R fst X - snd ((half_segments_of_aform X) ! n))"
using ‹n < length ?m›
by (cases "half_segments_of_aform X ! n") (auto simp add: mirror_point_def)
show "ccw' (fst (?m ! n)) (snd (?m ! n)) (aform_val e X)"
using le
unfolding eq
by (auto simp: algebra_simps ccw'_def det3_def')
qed
lemma last_half_segments:
assumes "half_segments_of_aform X ≠ []"
shows "snd (last (half_segments_of_aform X)) =
mirror_point (fst X) (lowest_vertex (fst X, nlex_pdevs (snd X)))"
using assms
by (auto simp add: half_segments_of_aform_def Let_def lowest_vertex_def mirror_point_def scaleR_2
scaleR_sum_list[symmetric] last_polychain_of sum_list_distinct_selsort inl_def
sum_list_independent_pdevs sum_list_list_of_pdevs)
lemma convex_polychain_map_mirror:
assumes "convex_polychain hs"
shows "convex_polychain (map (pairself (mirror_point x)) hs)"
proof (rule convex_polychainI)
qed (insert assms, auto simp: convex_polychain_def polychain_map_pairself pairself_apply
mirror_point_def det3_def' algebra_simps)
lemma ccw'_mirror_point0:
"ccw' (mirror_point x y) z w ⟷ ccw' y (mirror_point x z) (mirror_point x w)"
by (metis ccw'_mirror_point3 mirror_point_self_inverse)
lemma ccw'_sortedP_mirror:
"ccw'.sortedP x0 (map (mirror_point p0) xs) ⟷ ccw'.sortedP (mirror_point p0 x0) xs"
by (induct xs)
(simp_all add: linorder_list0.sortedP.Nil linorder_list0.sortedP_Cons_iff ccw'_mirror_point0)
lemma ccw'_sortedP_mirror2:
"ccw'.sortedP (mirror_point p0 x0) (map (mirror_point p0) xs) ⟷ ccw'.sortedP x0 xs"
using ccw'_sortedP_mirror[of "mirror_point p0 x0" p0 xs]
by simp
lemma map_mirror_o_snd_polychain_of_eq: "map (mirror_point x0 ∘ snd) (polychain_of y xs) =
map snd (polychain_of (mirror_point x0 y) (map uminus xs))"
by (induct xs arbitrary: x0 y) (auto simp: mirror_point_def o_def algebra_simps)
lemma lowest_vertex_eq_mirror_last:
"half_segments_of_aform X ≠ [] ⟹
(lowest_vertex (fst X, nlex_pdevs (snd X))) =
mirror_point (fst X) (snd (last (half_segments_of_aform X)))"
using last_half_segments[of X] by simp
lemma snd_last: "xs ≠ [] ⟹ snd (last xs) = last (map snd xs)"
by (induct xs) auto
lemma mirror_point_snd_last_eq_lowest:
"half_segments_of_aform X ≠ [] ⟹
mirror_point (fst X) (last (map snd (half_segments_of_aform X))) =
lowest_vertex (fst X, nlex_pdevs (snd X))"
by (simp add: lowest_vertex_eq_mirror_last snd_last)
lemma lex_mirror_point: "lex (mirror_point x0 a) (mirror_point x0 b) ⟹ lex b a"
by (auto simp: mirror_point_def lex_def)
lemma ccw'_mirror_point:
"ccw' (mirror_point x0 a) (mirror_point x0 b) (mirror_point x0 c) ⟹ ccw' a b c"
by (auto simp: mirror_point_def)
lemma inj_mirror_point: "inj (mirror_point (x::'a::real_vector))"
by (auto simp: mirror_point_def inj_on_def algebra_simps)
lemma
distinct_map_mirror_point_eq:
"distinct (map (mirror_point (x::'a::real_vector)) xs) = distinct xs"
by (auto simp: distinct_map intro!: subset_inj_on[OF inj_mirror_point])
lemma eq_self_mirror_iff: fixes x::"'a::real_vector" shows "x = mirror_point y x ⟷ x = y"
by (auto simp: mirror_point_def algebra_simps scaleR_2[symmetric])
subsection ‹Full Segments›
definition segments_of_aform::"point aform ⇒ (point * point) list"
where "segments_of_aform X =
(let hs = half_segments_of_aform X in hs @ map (pairself (mirror_point (fst X))) hs)"
lemma segments_of_aform_strict:
assumes "e ∈ UNIV → {-1 <..< 1}"
assumes "length (half_segments_of_aform X) ≠ 1"
shows "list_all (λseg. ccw' (fst seg) (snd seg) (aform_val e X)) (segments_of_aform X)"
using assms
by (auto simp: segments_of_aform_def Let_def mirror_half_segments_of_aform
half_segments_of_aform_strict_all)
lemma mirror_point_aform_val[simp]: "mirror_point (fst X) (aform_val e X) = aform_val (- e) X"
by (auto simp: mirror_point_def aform_val_def pdevs_val_sum algebra_simps scaleR_2 sum_negf)
lemma
in_set_segments_of_aform_aform_valE:
assumes "(x2, y2) ∈ set (segments_of_aform X)"
obtains e where "y2 = aform_val e X" "e ∈ UNIV → {-1 .. 1}"
using assms
proof (auto simp: segments_of_aform_def Let_def)
assume "(x2, y2) ∈ set (half_segments_of_aform X)"
from in_set_half_segments_of_aform_aform_valE[OF this]
obtain e where "y2 = aform_val e X" "e ∈ UNIV → {- 1..1}" by auto
thus ?thesis ..
next
fix a b aa ba
assume "((a, b), aa, ba) ∈ set (half_segments_of_aform X)"
from in_set_half_segments_of_aform_aform_valE[OF this]
obtain e where e: "(aa, ba) = aform_val e X" "e ∈ UNIV → {- 1..1}" by auto
assume "y2 = mirror_point (fst X) (aa, ba)"
hence "y2 = aform_val (-e) X" "(-e) ∈ UNIV → {-1 .. 1}" using e by auto
thus ?thesis ..
qed
lemma
last_half_segments_eq_mirror_hd:
assumes "half_segments_of_aform X ≠ []"
shows "snd (last (half_segments_of_aform X)) = mirror_point (fst X) (fst (hd (half_segments_of_aform X)))"
by (simp add: last_half_segments assms fst_hd_half_segments_of_aform)
lemma polychain_segments_of_aform: "polychain (segments_of_aform X)"
by (auto simp: segments_of_aform_def Let_def polychain_half_segments_of_aform
polychain_map_pairself last_half_segments_eq_mirror_hd hd_map pairself_apply
intro!: polychain_appendI)
lemma segments_of_aform_closed:
assumes "segments_of_aform X ≠ []"
shows "fst (hd (segments_of_aform X)) = snd (last (segments_of_aform X))"
using assms
by (auto simp: segments_of_aform_def Let_def fst_hd_half_segments_of_aform last_map
pairself_apply last_half_segments mirror_point_def)
lemma convex_polychain_segments_of_aform:
assumes "1 < length (half_segments_of_aform X)"
shows "convex_polychain (segments_of_aform X)"
unfolding segments_of_aform_def Let_def
using ccw_hd_last_half_segments_dirvec[OF assms]
by (intro convex_polychain_appendI)
(auto
simp: convex_polychain_half_segments_of_aform convex_polychain_map_mirror dirvec_minus hd_map
pairself_apply last_half_segments mirror_point_def fst_hd_half_segments_of_aform det3_def'
algebra_simps ccw'_def
intro!: polychain_appendI polychain_half_segments_of_aform polychain_map_pairself)
lemma convex_polygon_segments_of_aform:
assumes "1 < length (half_segments_of_aform X)"
shows "convex_polygon (segments_of_aform X)"
proof -
from assms have hne: "half_segments_of_aform X ≠ []"
by auto
from convex_polychain_segments_of_aform[OF assms]
have "convex_polychain (segments_of_aform X)" .
thus ?thesis
by (auto simp: convex_polygon_def segments_of_aform_closed)
qed
lemma
previous_segments_of_aformE:
assumes "(y, z) ∈ set (segments_of_aform X)"
obtains x where "(x, y) ∈ set (segments_of_aform X)"
proof -
from assms have ne[simp]: "segments_of_aform X ≠ []"
by auto
from assms
obtain i where i: "i<length (segments_of_aform X)" "(segments_of_aform X) ! i = (y, z)"
by (auto simp: in_set_conv_nth)
show ?thesis
proof (cases i)
case 0
with segments_of_aform_closed[of X] assms
have "(fst (last (segments_of_aform X)), y) ∈ set (segments_of_aform X)"
by (metis fst_conv hd_conv_nth i(2) last_in_set ne snd_conv surj_pair)
thus ?thesis ..
next
case (Suc j)
have "(fst (segments_of_aform X ! j), snd (segments_of_aform X ! j)) ∈
set (segments_of_aform X)"
using Suc i(1) by auto
also
from i have "y = fst (segments_of_aform X ! i)"
by auto
hence "snd (segments_of_aform X ! j) = y"
using polychain_segments_of_aform[of X] i(1) Suc
by (auto simp: polychain_def Suc)
finally have "(fst (segments_of_aform X ! j), y) ∈ set (segments_of_aform X)" .
thus ?thesis ..
qed
qed
lemma fst_compose_pairself: "fst o pairself f = f o fst"
and snd_compose_pairself: "snd o pairself f = f o snd"
by (auto simp: pairself_apply)
lemma in_set_butlastI: "xs ≠ [] ⟹ x ∈ set xs ⟹ x ≠ last xs ⟹ x ∈ set (butlast xs)"
by (induct xs) (auto split: if_splits)
lemma distinct_in_set_butlastD:
"x ∈ set (butlast xs) ⟹ distinct xs ⟹ x ≠ last xs"
by (induct xs) auto
lemma distinct_in_set_tlD:
"x ∈ set (tl xs) ⟹ distinct xs ⟹ x ≠ hd xs"
by (induct xs) auto
lemma ccw'_sortedP_snd_segments_of_aform:
assumes "length (inl (snd X)) > 1"
shows
"ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X)))
(butlast (map snd (segments_of_aform X)))"
proof cases
assume "[] = half_segments_of_aform X"
from this show ?thesis
by (simp add: segments_of_aform_def Let_def ccw'.sortedP.Nil)
next
assume H: "[] ≠ half_segments_of_aform X"
let ?m = "mirror_point (fst X)"
have ne: "inl (snd X) ≠ []" using assms by auto
have "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X)))
(map snd (half_segments_of_aform X) @ butlast (map (?m ∘ snd)
(half_segments_of_aform X)))"
proof (rule ccw'.sortedP_appendI)
show "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X))) (map snd (half_segments_of_aform X))"
by (rule ccw'_sortedP_snd_half_segments_of_aform)
have "butlast (map (?m ∘ snd) (half_segments_of_aform X)) =
butlast
(map (?m ∘ snd) (polychain_of (lowest_vertex (fst X, nlex_pdevs (snd X)))
(map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X))))))"
by (simp add: half_segments_of_aform_def)
also have "… =
map snd
(butlast
(polychain_of (?m (lowest_vertex (fst X, nlex_pdevs (snd X))))
(map uminus (map ((*⇩R) 2) (ccw.selsort 0 (inl (snd X)))))))"
(is "_ = map snd (butlast (polychain_of ?x ?xs))")
by (simp add: map_mirror_o_snd_polychain_of_eq map_butlast)
also
{
have "ccw'.sortedP 0 ?xs"
by (intro ccw'_sortedP_uminus ccw'_sortedP_scaled_inl)
moreover
have "ccw'.sortedP ?x (map snd (polychain_of ?x ?xs))"
unfolding ccw'_sortedP_mirror[symmetric] map_map map_mirror_o_snd_polychain_of_eq
by (auto simp add: o_def intro!: ccw'_sortedP_polychain_of_snd ccw'_sortedP_scaled_inl)
ultimately
have "ccw'.sortedP (snd (last (polychain_of ?x ?xs)))
(map snd (butlast (polychain_of ?x ?xs)))"
by (rule ccw'_sortedP_convex_rotate_aux)
}
also have "(snd (last (polychain_of ?x ?xs))) =
?m (last (map snd (half_segments_of_aform X)))"
by (simp add: half_segments_of_aform_def ne map_mirror_o_snd_polychain_of_eq
last_map[symmetric, where f="?m"]
last_map[symmetric, where f="snd"])
also have "… = lowest_vertex (fst X, nlex_pdevs (snd X))"
using ne H
by (auto simp: lowest_vertex_eq_mirror_last snd_last)
finally show "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X)))
(butlast (map (?m ∘ snd) (half_segments_of_aform X)))" .
next
fix x y
assume seg: "x ∈ set (map snd (half_segments_of_aform X))"
and mseg: "y ∈ set (butlast (map (?m ∘ snd) (half_segments_of_aform X)))"
from seg assms have neq_Nil: "inl (snd X) ≠ []" "half_segments_of_aform X ≠ []"
by auto
from seg obtain a where a: "(a, x) ∈ set (half_segments_of_aform X)"
by auto
from mseg obtain b
where mirror_y: "(b, ?m y) ∈ set (butlast (half_segments_of_aform X))"
by (auto simp: map_butlast[symmetric])
let ?l = "lowest_vertex (fst X, nlex_pdevs (snd X))"
let ?ml = "?m ?l"
have mirror_eq_last: "?ml = snd (last (half_segments_of_aform X))"
using seg H
by (intro last_half_segments[symmetric]) simp
define r
where "r = ?l + (0, abs (snd x - snd ?l) + abs (snd y - snd ?l) + abs (snd ?ml - snd ?l) + 1)"
have d1: "x ≠ r" "y ≠ r" "?l ≠ r" "?ml ≠ r"
by (auto simp: r_def plus_prod_def prod_eq_iff)
have "distinct (map (?m ∘ snd) (half_segments_of_aform X))"
unfolding map_comp_map[symmetric]
unfolding o_def distinct_map_mirror_point_eq
by (rule distinct_snd_half_segments)
from distinct_in_set_butlastD[OF ‹y ∈ _› this]
have "?l ≠ y"
by (simp add: neq_Nil lowest_vertex_eq_mirror_last last_map)
moreover have "?l ≠ ?ml"
using neq_Nil by (auto simp add: eq_self_mirror_iff lowest_vertex_eq_center_iff inl_def)
ultimately
have d2: "?l ≠ y" "?l ≠ ?ml"
by auto
have *: "ccw' ?l (?m y) ?ml"
by (metis mirror_eq_last ccw'_half_segments_lowest_last mirror_y neq_Nil(1))
have "ccw' ?ml y ?l"
by (rule ccw'_mirror_point[of "fst X"]) (simp add: *)
hence lmy: "ccw' ?l ?ml y"
by (simp add: ccw'_def det3_def' algebra_simps)
let ?ccw = "ccw' (lowest_vertex (fst X, nlex_pdevs (snd X))) x y"
{
assume "x ≠ ?ml"
hence x_butlast: "(a, x) ∈ set (butlast (half_segments_of_aform X))"
unfolding mirror_eq_last
using a
by (auto intro!: in_set_butlastI simp: prod_eq_iff)
have "ccw' ?l x ?ml"
by (metis mirror_eq_last ccw'_half_segments_lowest_last x_butlast neq_Nil(1))
} note lxml = this
{
assume "x = ?ml"
hence ?ccw
by (simp add: lmy)
} moreover {
assume "x ≠ ?ml" "y = ?ml"
hence ?ccw
by (simp add: lxml)
} moreover {
assume d3: "x ≠ ?ml" "y ≠ ?ml"
from ‹x ∈ set _›
have "x ∈ set (map snd (half_segments_of_aform X))" by force
hence "x ∈ set (tl (map fst (half_segments_of_aform X)))"
using d3
unfolding map_snd_half_segments_aux_eq[OF neq_Nil(2)]
by (auto simp: mirror_eq_last)
from distinct_in_set_tlD[OF this distinct_fst_half_segments]
have "?l ≠ x"
by (simp add: fst_hd_half_segments_of_aform neq_Nil hd_map)
from lxml[OF ‹x ≠ ?ml›] ‹ccw' ?l ?ml y›
have d4: "x ≠ y"
by (rule neq_left_right_of lxml)
have "distinct5 x ?ml y r ?l"
using d1 d2 ‹?l ≠ x› d3 d4
by simp_all
moreover
note _
moreover
have "lex x ?l"
by (rule lex_half_segments_lowest_vertex) fact
hence "ccw ?l r x"
unfolding r_def by (rule lex_ccw_left) simp
moreover
have "lex ?ml ?l"
using last_in_set[OF H[symmetric]]
by (auto simp: mirror_eq_last intro: lex_half_segments_lowest_vertex')
hence "ccw ?l r ?ml"
unfolding r_def by (rule lex_ccw_left) simp
moreover
have "lex (?m (lowest_vertex (fst X, nlex_pdevs (snd X)))) (?m y)"
using mirror_y
by (force dest!: in_set_butlastD intro: lex_half_segments_last' simp: mirror_eq_last )
hence "lex y ?l"
by (rule lex_mirror_point)
hence "ccw ?l r y"
unfolding r_def by (rule lex_ccw_left) simp
moreover
from ‹x ≠ ?ml› have "ccw ?l x ?ml"
by (simp add: ccw_def lxml)
moreover
from lmy have "ccw ?l ?ml y"
by (simp add: ccw_def)
ultimately
have "ccw ?l x y"
by (rule ccw.transitive[where S=UNIV]) simp
moreover
{
have "x ≠ ?l" using ‹?l ≠ x› by simp
moreover
have "lex (?m y) (?m ?ml)"
using mirror_y
by (force intro: lex_half_segments_lowest_vertex in_set_butlastD)
hence "lex ?ml y"
by (rule lex_mirror_point)
moreover
from a have "lex ?ml x"
unfolding mirror_eq_last
by (rule lex_half_segments_last)
moreover note ‹lex y ?l› ‹lex x ?l› ‹ccw' ?l x ?ml› ‹ccw' ?l ?ml y›
ultimately
have ncoll: "¬ coll ?l x y"
by (rule not_coll_ordered_lexI)
}
ultimately have ?ccw
by (simp add: ccw_def)
} ultimately show ?ccw
by blast
qed
thus ?thesis using H
by (simp add: segments_of_aform_def Let_def butlast_append snd_compose_pairself)
qed
lemma polychain_of_segments_of_aform1:
assumes "length (segments_of_aform X) = 1"
shows "False"
using assms
by (auto simp: segments_of_aform_def Let_def half_segments_of_aform_def add_is_1
split: if_split_asm)
lemma polychain_of_segments_of_aform2:
assumes "segments_of_aform X = [x, y]"
assumes "between (fst x, snd x) p"
shows "p ∈ convex hull set (map fst (segments_of_aform X))"
proof -
from polychain_segments_of_aform[of X] segments_of_aform_closed[of X] assms
have "fst y = snd x" "snd y = fst x" by (simp_all add: polychain_def)
thus ?thesis
using assms
by (cases x) (auto simp: between_mem_convex_hull)
qed
lemma append_eq_2:
assumes "length xs = length ys"
shows "xs @ ys = [x, y] ⟷ xs = [x] ∧ ys = [y]"
using assms
proof (cases xs)
case (Cons z zs)
thus ?thesis using assms by (cases zs) auto
qed simp
lemma segments_of_aform_line_segment:
assumes "segments_of_aform X = [x, y]"
assumes "e ∈ UNIV → {-1 .. 1}"
shows "aform_val e X ∈ closed_segment (fst x) (snd x)"
proof -
from pdevs_val_pdevs_of_list_inl2E[OF ‹e ∈ _›, of "snd X"]
obtain e' where e': "pdevs_val e (snd X) = pdevs_val e' (pdevs_of_list (inl (snd X)))"
"e' ∈ UNIV → {- 1..1}" .
from e' have "0 ≤ 1 + e' 0" by (auto simp: Pi_iff dest!: spec[where x=0])
with assms e' show ?thesis
by (auto simp: segments_of_aform_def Let_def append_eq_2 half_segments_of_aform_def
polychain_of_singleton_iff mirror_point_def ccw.selsort_singleton_iff lowest_vertex_def
aform_val_def sum_list_nlex_eq_sum_list_inl closed_segment_def Pi_iff
intro!: exI[where x="(1 + e' 0) / 2"])
(auto simp: algebra_simps)
qed
subsection ‹Continuous Generalization›
lemma LIMSEQ_minus_fract_mult:
"(λn. r * (1 - 1 / real (Suc (Suc n)))) ⇢ r"
by (rule tendsto_eq_rhs[OF tendsto_mult[where a=r and b = 1]])
(auto simp: inverse_eq_divide[symmetric] simp del: of_nat_Suc
intro: filterlim_compose[OF LIMSEQ_inverse_real_of_nat filterlim_Suc] tendsto_eq_intros)
lemma det3_nonneg_segments_of_aform:
assumes "e ∈ UNIV → {-1 .. 1}"
assumes "length (half_segments_of_aform X) ≠ 1"
shows "list_all (λseg. det3 (fst seg) (snd seg) (aform_val e X) ≥ 0) (segments_of_aform X)"
unfolding list_all_iff
proof safe
fix a b c d
assume seg: "((a, b), c, d) ∈ set (segments_of_aform X)" (is "?seg ∈ _")
define normal_of_segment
where "normal_of_segment = (λ((a0, a1), b0, b1). (b1 - a1, a0 - b0)::real*real)"
define support_of_segment
where "support_of_segment = (λ(a, b). normal_of_segment (a, b) ∙ a)"
have "closed ((λx. x ∙ normal_of_segment ?seg) -` {..support_of_segment ?seg})" (is "closed ?cl")
by (auto intro!: continuous_intros closed_vimage)
moreover
define f where "f n i = e i * ( 1 - 1 / (Suc (Suc n)))" for n i
have "∀n. aform_val (f n) X ∈ ?cl"
proof
fix n
have "f n ∈ UNIV → {-1 <..< 1}"
using assms
by (auto simp: f_def Pi_iff intro!: less_one_multI minus_one_less_multI)
from list_allD[OF segments_of_aform_strict[OF this assms(2)] seg]
show "aform_val (f n) X ∈ (λx. x ∙ normal_of_segment ((a, b), c, d)) -`
{..support_of_segment ((a, b), c, d)}"
by (auto simp: list_all_iff normal_of_segment_def support_of_segment_def
det3_def' field_simps inner_prod_def ccw'_def)
qed
moreover
have "⋀i. (λn. f n i) ⇢ e i"
unfolding f_def
by (rule LIMSEQ_minus_fract_mult)
hence "(λn. aform_val (f n) X) ⇢ aform_val e X"
by (auto simp: aform_val_def pdevs_val_sum intro!: tendsto_intros)
ultimately have "aform_val e X ∈ ?cl"
by (meson closed_sequentially)
thus "det3 (fst ?seg) (snd ?seg) (aform_val e X) ≥ 0"
by (auto simp: list_all_iff normal_of_segment_def support_of_segment_def det3_def' field_simps
inner_prod_def)
qed
lemma det3_nonneg_segments_of_aformI:
assumes "e ∈ UNIV → {-1 .. 1}"
assumes "length (half_segments_of_aform X) ≠ 1"
assumes "seg ∈ set (segments_of_aform X)"
shows "det3 (fst seg) (snd seg) (aform_val e X) ≥ 0"
using assms det3_nonneg_segments_of_aform by (auto simp: list_all_iff)
subsection ‹Intersection of Vertical Line with Segment›
fun intersect_segment_xline'::"nat ⇒ point * point ⇒ real ⇒ point option"
where "intersect_segment_xline' p ((x0, y0), (x1, y1)) xl =
(if x0 ≤ xl ∧ xl ≤ x1 then
if x0 = x1 then Some ((min y0 y1), (max y0 y1))
else
let
yl = truncate_down p (truncate_down p (real_divl p (y1 - y0) (x1 - x0) * (xl - x0)) + y0);
yr = truncate_up p (truncate_up p (real_divr p (y1 - y0) (x1 - x0) * (xl - x0)) + y0)
in Some (yl, yr)
else None)"
lemma norm_pair_fst0[simp]: "norm (0, x) = norm x"
by (auto simp: norm_prod_def)
lemmas add_right_mono_le = order_trans[OF add_right_mono]
lemmas mult_right_mono_le = order_trans[OF mult_right_mono]
lemmas add_right_mono_ge = order_trans[OF _ add_right_mono]
lemmas mult_right_mono_ge = order_trans[OF _ mult_right_mono]
lemma dest_segment:
fixes x b::real
assumes "(x, b) ∈ closed_segment (x0, y0) (x1, y1)"
assumes "x0 ≠ x1"
shows "b = (y1 - y0) * (x - x0) / (x1 - x0) + y0"
proof -
from assms obtain u where u: "x = x0 *⇩R (1 - u) + u * x1" "b = y0 *⇩R (1 - u) + u * y1" "0 ≤ u" "u ≤ 1"
by (auto simp: closed_segment_def algebra_simps)
show "b = (y1 - y0) * (x - x0) / (x1 - x0) + y0 "
using assms by (auto simp: closed_segment_def field_simps u)
qed
lemma intersect_segment_xline':
assumes "intersect_segment_xline' prec (p0, p1) x = Some (m, M)"
shows "closed_segment p0 p1 ∩ {p. fst p = x} ⊆ {(x, m) .. (x, M)}"
using assms
proof (cases p0)
case (Pair x0 y0) note p0 = this
show ?thesis
proof (cases p1)
case (Pair x1 y1) note p1 = this
{
assume "x0 = x1" "x = x1" "m = min y0 y1" "M = max y0 y1"
hence ?thesis
by (force simp: abs_le_iff p0 p1 min_def max_def algebra_simps dest: segment_bound
split: if_split_asm)
} thus ?thesis
using assms
by (auto simp: abs_le_iff p0 p1 split: if_split_asm
intro!: truncate_up_le truncate_down_le
add_right_mono_le[OF truncate_down]
add_right_mono_le[OF real_divl]
add_right_mono_le[OF mult_right_mono_le[OF real_divl]]
add_right_mono_ge[OF _ truncate_up]
add_right_mono_ge[OF _ mult_right_mono_ge[OF _ real_divr]]
dest!: dest_segment)
qed
qed
lemma
in_segment_fst_le:
fixes x0 x1 b::real
assumes "x0 ≤ x1" "(x, b) ∈ closed_segment (x0, y0) (x1, y1)"
shows "x ≤ x1"
using assms using mult_left_mono[OF ‹x0 ≤ x1›, where c="1 - u" for u]
by (force simp add: min_def max_def split: if_split_asm
simp add: algebra_simps not_le closed_segment_def)
lemma
in_segment_fst_ge:
fixes x0 x1 b::real
assumes "x0 ≤ x1" "(x, b) ∈ closed_segment (x0, y0) (x1, y1)"
shows "x0 ≤ x"
using assms using mult_left_mono[OF ‹x0 ≤ x1›]
by (force simp add: min_def max_def split: if_split_asm
simp add: algebra_simps not_le closed_segment_def)
lemma intersect_segment_xline'_eq_None:
assumes "intersect_segment_xline' prec (p0, p1) x = None"
assumes "fst p0 ≤ fst p1"
shows "closed_segment p0 p1 ∩ {p. fst p = x} = {}"
using assms
by (cases p0, cases p1)
(auto simp: abs_le_iff split: if_split_asm dest: in_segment_fst_le in_segment_fst_ge)
fun intersect_segment_xline
where "intersect_segment_xline prec ((a, b), (c, d)) x =
(if a ≤ c then intersect_segment_xline' prec ((a, b), (c, d)) x
else intersect_segment_xline' prec ((c, d), (a, b)) x)"
lemma closed_segment_commute: "closed_segment a b = closed_segment b a"
by (meson convex_contains_segment convex_closed_segment dual_order.antisym ends_in_segment)
lemma intersect_segment_xline:
assumes "intersect_segment_xline prec (p0, p1) x = Some (m, M)"
shows "closed_segment p0 p1 ∩ {p. fst p = x} ⊆ {(x, m) .. (x, M)}"
using assms
by (cases p0, cases p1)
(auto simp: closed_segment_commute split: if_split_asm simp del: intersect_segment_xline'.simps
dest!: intersect_segment_xline')
lemma intersect_segment_xline_fst_snd:
assumes "intersect_segment_xline prec seg x = Some (m, M)"
shows "closed_segment (fst seg) (snd seg) ∩ {p. fst p = x} ⊆ {(x, m) .. (x, M)}"
using intersect_segment_xline[of prec "fst seg" "snd seg" x m M] assms
by simp
lemma intersect_segment_xline_eq_None:
assumes "intersect_segment_xline prec (p0, p1) x = None"
shows "closed_segment p0 p1 ∩ {p. fst p = x} = {}"
using assms
by (cases p0, cases p1)
(auto simp: closed_segment_commute split: if_split_asm simp del: intersect_segment_xline'.simps
dest!: intersect_segment_xline'_eq_None)
lemma inter_image_empty_iff: "(X ∩ {p. f p = x} = {}) ⟷ (x ∉ f ` X)"
by auto
lemma fst_closed_segment[simp]: "fst ` closed_segment a b = closed_segment (fst a) (fst b)"
by (force simp: closed_segment_def)
lemma intersect_segment_xline_eq_empty:
fixes p0 p1::"real * real"
assumes "closed_segment p0 p1 ∩ {p. fst p = x} = {}"
shows "intersect_segment_xline prec (p0, p1) x = None"
using assms
by (cases p0, cases p1)
(auto simp: inter_image_empty_iff closed_segment_eq_real_ivl split: if_split_asm)
lemma intersect_segment_xline_le:
assumes "intersect_segment_xline prec y xl = Some (m0, M0)"
shows "m0 ≤ M0"
using assms
by (cases y) (auto simp: min_def split: if_split_asm intro!: truncate_up_le truncate_down_le
order_trans[OF real_divl] order_trans[OF _ real_divr] mult_right_mono)
lemma intersect_segment_xline_None_iff:
fixes p0 p1::"real * real"
shows "intersect_segment_xline prec (p0, p1) x = None ⟷ closed_segment p0 p1 ∩ {p. fst p = x} = {}"
by (auto intro!: intersect_segment_xline_eq_empty dest!: intersect_segment_xline_eq_None)
subsection ‹Bounds on Vertical Intersection with Oriented List of Segments›
primrec bound_intersect_2d where
"bound_intersect_2d prec [] x = None"
| "bound_intersect_2d prec (X # Xs) xl =
(case bound_intersect_2d prec Xs xl of
None ⇒ intersect_segment_xline prec X xl
| Some (m, M) ⇒
(case intersect_segment_xline prec X xl of
None ⇒ Some (m, M)
| Some (m', M') ⇒ Some (min m' m, max M' M)))"
lemma
bound_intersect_2d_eq_None:
assumes "bound_intersect_2d prec Xs x = None"
assumes "X ∈ set Xs"
shows "intersect_segment_xline prec X x = None"
using assms by (induct Xs) (auto split: option.split_asm)
lemma bound_intersect_2d_upper:
assumes "bound_intersect_2d prec Xs x = Some (m, M)"
obtains X m' where "X ∈ set Xs" "intersect_segment_xline prec X x = Some (m', M)"
"⋀X m' M' . X ∈ set Xs ⟹ intersect_segment_xline prec X x = Some (m', M') ⟹ M' ≤ M"
proof atomize_elim
show "∃X m'. X ∈ set Xs ∧ intersect_segment_xline prec X x = Some (m', M) ∧
(∀X m' M'. X ∈ set Xs ⟶ intersect_segment_xline prec X x = Some (m', M') ⟶ M' ≤ M)"
using assms
proof (induct Xs arbitrary: m M)
case Nil thus ?case by (simp add: bound_intersect_2d_def)
next
case (Cons X Xs)
show ?case
proof (cases "bound_intersect_2d prec Xs x")
case None
thus ?thesis using Cons
by (intro exI[where x=X] exI[where x=m])
(simp del: intersect_segment_xline.simps add: bound_intersect_2d_eq_None)
next
case (Some mM)
note Some1=this
then obtain m' M' where mM: "mM = (m', M')" by (cases mM)
from Cons(1)[OF Some[unfolded mM]]
obtain X' m'' where X': "X' ∈ set Xs"
and m'': "intersect_segment_xline prec X' x = Some (m'', M')"
and max: "⋀X m' M'a. X ∈ set Xs ⟹ intersect_segment_xline prec X x = Some (m', M'a) ⟹
M'a ≤ M'"
by auto
show ?thesis
proof (cases "intersect_segment_xline prec X x")
case None thus ?thesis using Some1 mM Cons(2) X' m'' max
by (intro exI[where x= X'] exI[where x= m''])
(auto simp del: intersect_segment_xline.simps split: option.split_asm)
next
case (Some mM''')
thus ?thesis using Some1 mM Cons(2) X' m''
by (cases mM''')
(force simp: max_def min_def simp del: intersect_segment_xline.simps
split: option.split_asm if_split_asm dest!: max
intro!: exI[where x= "if M' ≥ snd mM''' then X' else X"]
exI[where x= "if M' ≥ snd mM''' then m'' else fst mM'''"])
qed
qed
qed
qed
lemma bound_intersect_2d_lower:
assumes "bound_intersect_2d prec Xs x = Some (m, M)"
obtains X M' where "X ∈ set Xs" "intersect_segment_xline prec X x = Some (m, M')"
"⋀X m' M' . X ∈ set Xs ⟹ intersect_segment_xline prec X x = Some (m', M') ⟹ m ≤ m'"
proof atomize_elim
show "∃X M'. X ∈ set Xs ∧ intersect_segment_xline prec X x = Some (m, M') ∧
(∀X m' M'. X ∈ set Xs ⟶ intersect_segment_xline prec X x = Some (m', M') ⟶ m ≤ m')"
using assms
proof (induct Xs arbitrary: m M)
case Nil thus ?case by (simp add: bound_intersect_2d_def)
next
case (Cons X Xs)
show ?case
proof (cases "bound_intersect_2d prec Xs x")
case None
thus ?thesis using Cons
by (intro exI[where x= X])
(simp del: intersect_segment_xline.simps add: bound_intersect_2d_eq_None)
next
case (Some mM)
note Some1=this
then obtain m' M' where mM: "mM = (m', M')" by (cases mM)
from Cons(1)[OF Some[unfolded mM]]
obtain X' M'' where X': "X' ∈ set Xs"
and M'': "intersect_segment_xline prec X' x = Some (m', M'')"
and min: "⋀X m'a M'. X ∈ set Xs ⟹ intersect_segment_xline prec X x = Some (m'a, M') ⟹
m' ≤ m'a"
by auto
show ?thesis
proof (cases "intersect_segment_xline prec X x")
case None thus ?thesis using Some1 mM Cons(2) X' M'' min
by (intro exI[where x= X'] exI[where x= M''])
(auto simp del: intersect_segment_xline.simps split: option.split_asm)
next
case (Some mM''')
thus ?thesis using Some1 mM Cons(2) X' M'' min
by (cases mM''')
(force simp: max_def min_def
simp del: intersect_segment_xline.simps
split: option.split_asm if_split_asm
dest!: min
intro!: exI[where x= "if m' ≤ fst mM''' then X' else X"]
exI[where x= "if m' ≤ fst mM''' then M'' else snd mM'''"])
qed
qed
qed
qed
lemma bound_intersect_2d:
assumes "bound_intersect_2d prec Xs x = Some (m, M)"
shows "(⋃(p1, p2) ∈ set Xs. closed_segment p1 p2) ∩ {p. fst p = x} ⊆ {(x, m) .. (x, M)}"
proof (clarsimp, safe)
fix b x0 y0 x1 y1
assume H: "((x0, y0), x1, y1) ∈ set Xs" "(x, b) ∈ closed_segment (x0, y0) (x1, y1)"
hence "intersect_segment_xline prec ((x0, y0), x1, y1) x ≠ None"
by (intro notI)
(auto dest!: intersect_segment_xline_eq_None simp del: intersect_segment_xline.simps)
then obtain e f where ef: "intersect_segment_xline prec ((x0, y0), x1, y1) x = Some (e, f)"
by auto
with H have "m ≤ e"
by (auto intro: bound_intersect_2d_lower[OF assms])
also have "… ≤ b"
using intersect_segment_xline[OF ef] H
by force
finally show "m ≤ b" .
have "b ≤ f"
using intersect_segment_xline[OF ef] H
by force
also have "… ≤ M"
using H ef by (auto intro: bound_intersect_2d_upper[OF assms])
finally show "b ≤ M" .
qed
lemma bound_intersect_2d_eq_None_iff:
"bound_intersect_2d prec Xs x = None ⟷ (∀X∈set Xs. intersect_segment_xline prec X x = None)"
by (induct Xs) (auto simp: split: option.split_asm)
lemma bound_intersect_2d_nonempty:
assumes "bound_intersect_2d prec Xs x = Some (m, M)"
shows "(⋃(p1, p2) ∈ set Xs. closed_segment p1 p2) ∩ {p. fst p = x} ≠ {}"
proof -
from assms have "bound_intersect_2d prec Xs x ≠ None" by simp
then obtain p1 p2 where "(p1, p2) ∈ set Xs" "intersect_segment_xline prec (p1, p2) x ≠ None"
unfolding bound_intersect_2d_eq_None_iff by auto
hence "closed_segment p1 p2 ∩ {p. fst p = x} ≠ {}"
by (simp add: intersect_segment_xline_None_iff)
thus ?thesis using ‹(p1, p2) ∈ set Xs› by auto
qed
lemma bound_intersect_2d_le:
assumes "bound_intersect_2d prec Xs x = Some (m, M)" shows "m ≤ M"
proof -
from bound_intersect_2d_nonempty[OF assms] bound_intersect_2d[OF assms]
show "m ≤ M" by auto
qed
subsection ‹Bounds on Vertical Intersection with General List of Segments›
definition "bound_intersect_2d_ud prec X xl =
(case segments_of_aform X of
[] ⇒ if fst (fst X) = xl then let m = snd (fst X) in Some (m, m) else None
| [x, y] ⇒ intersect_segment_xline prec x xl
| xs ⇒
(case bound_intersect_2d prec (filter (λ((x1, y1), x2, y2). x1 < x2) xs) xl of
Some (m, M') ⇒
(case bound_intersect_2d prec (filter (λ((x1, y1), x2, y2). x1 > x2) xs) xl of
Some (m', M) ⇒ Some (min m m', max M M')
| None ⇒ None)
| None ⇒ None))"
lemma list_cases4:
"⋀x P. (x = [] ⟹ P) ⟹ (⋀y. x = [y] ⟹ P) ⟹
(⋀y z. x = [y, z] ⟹ P) ⟹
(⋀w y z zs. x = w # y # z # zs ⟹ P) ⟹ P"
by (metis list.exhaust)
lemma bound_intersect_2d_ud_segments_of_aform_le:
"bound_intersect_2d_ud prec X xl = Some (m0, M0) ⟹ m0 ≤ M0"
by (cases "segments_of_aform X" rule: list_cases4)
(auto simp: Let_def bound_intersect_2d_ud_def min_def max_def intersect_segment_xline_le
if_split_eq1 split: option.split_asm prod.split_asm list.split_asm
dest!: bound_intersect_2d_le)
lemma pdevs_domain_eq_empty_iff[simp]: "pdevs_domain (snd X) = {} ⟷ snd X = zero_pdevs"
by (auto simp: intro!: pdevs_eqI)
lemma ccw_contr_on_line_left:
assumes "det3 (a, b) (x, c) (x, d) ≥ 0" "a > x"
shows "d ≤ c"
proof -
from assms have "d * (a - x) ≤ c * (a - x)"
by (auto simp: det3_def' algebra_simps)
with assms show "c ≥ d" by auto
qed
lemma ccw_contr_on_line_right:
assumes "det3 (a, b) (x, c) (x, d) ≥ 0" "a < x"
shows "d ≥ c"
proof -
from assms have "c * (x - a) ≤ d * (x - a)"
by (auto simp: det3_def' algebra_simps)
with assms show "d ≥ c" by auto
qed
lemma singleton_contrE:
assumes "⋀x y. x ≠ y ⟹ x ∈ X ⟹ y ∈ X ⟹ False"
assumes "X ≠ {}"
obtains x where "X = {x}"
using assms by blast
lemma segment_intersection_singleton:
fixes xl and a b::"real * real"
defines "i ≡ closed_segment a b ∩ {p. fst p = xl}"
assumes ne1: "fst a ≠ fst b"
assumes upper: "i ≠ {}"
obtains p1 where "i = {p1}"
proof (rule singleton_contrE[OF _ upper])
fix x y assume H: "x ≠ y" "x ∈ i" "y ∈ i"
then obtain u v where uv: "x = u *⇩R b + (1 - u) *⇩R a" "y = v *⇩R b + (1 - v) *⇩R a"
"0 ≤ u" "u ≤ 1" "0 ≤ v" "v ≤ 1"
by (auto simp add: closed_segment_def i_def field_simps)
then have "x + u *⇩R a = a + u *⇩R b" "y + v *⇩R a = a + v *⇩R b"
by simp_all
then have "fst (x + u *⇩R a) = fst (a + u *⇩R b)" "fst (y + v *⇩R a) = fst (a + v *⇩R b)"
by simp_all
then have "u = v * (fst a - fst b) / (fst a - fst b)"
using ne1 H(2,3) ‹0 ≤ u› ‹u ≤ 1› ‹0 ≤ v› ‹v ≤ 1›
by (simp add: closed_segment_def i_def field_simps)
then have "u = v"
by (simp add: ne1)
then show False using H uv
by simp
qed
lemma bound_intersect_2d_ud_segments_of_aform:
assumes "bound_intersect_2d_ud prec X xl = Some (m0, M0)"
assumes "e ∈ UNIV → {-1 .. 1}"
shows "{aform_val e X} ∩ {x. fst x = xl} ⊆ {(xl, m0) .. (xl, M0)}"
proof safe
fix a b
assume safeassms: "(a, b) = aform_val e X" "xl = fst (a, b)"
hence fst_aform_val: "fst (aform_val e X) = xl"
by simp
{
assume len: "length (segments_of_aform X) > 2"
with assms obtain m M m' M'
where lb: "bound_intersect_2d prec
[((x1, y1), x2, y2)←segments_of_aform X . x1 < x2] xl = Some (m, M')"
and ub: "bound_intersect_2d prec
[((x1, y1), x2, y2)←segments_of_aform X . x2 < x1] xl = Some (m', M)"
and minmax: "m0 = min m m'" "M0 = max M M'"
by (auto simp: bound_intersect_2d_ud_def split: option.split_asm list.split_asm )
from bound_intersect_2d_upper[OF ub] obtain X1 m1
where upper:
"X1 ∈ set [((x1, y1), x2, y2)←segments_of_aform X . x2 < x1]"
"intersect_segment_xline prec X1 xl = Some (m1, M)"
by metis
from bound_intersect_2d_lower[OF lb] obtain X2 M2
where lower:
"X2 ∈ set [((x1, y1), x2, y2)←segments_of_aform X . x1 < x2]"
"intersect_segment_xline prec X2 xl = Some (m, M2)"
by metis
from upper(1) lower(1)
have X1: "X1 ∈ set (segments_of_aform X)" "fst (fst X1) > fst (snd X1)"
and X2: "X2 ∈ set (segments_of_aform X)" "fst (fst X2) < fst (snd X2)"
by auto
note upper_seg = intersect_segment_xline_fst_snd[OF upper(2)]
note lower_seg = intersect_segment_xline_fst_snd[OF lower(2)]
from len have lh: "length (half_segments_of_aform X) ≠ 1"
by (auto simp: segments_of_aform_def Let_def)
from X1 have ne1: "fst (fst X1) ≠ fst (snd X1)"
by simp
moreover have "closed_segment (fst X1) (snd X1) ∩ {p. fst p = xl} ≠ {}"
using upper(2)
by (simp add: intersect_segment_xline_None_iff[of prec, symmetric])
ultimately obtain p1 where p1: "closed_segment (fst X1) (snd X1) ∩ {p. fst p = xl} = {p1}"
by (rule segment_intersection_singleton)
then obtain u where u: "p1 = (1 - u) *⇩R fst X1 + u *⇩R (snd X1)" "0 ≤ u" "u ≤ 1"
by (auto simp: closed_segment_def algebra_simps)
have coll1: "det3 (fst X1) p1 (aform_val e X) ≥ 0"
and coll1': "det3 p1 (snd X1) (aform_val e X) ≥ 0"
unfolding atomize_conj
using u
by (cases "u = 0 ∨ u = 1")
(auto simp: u(1) intro: det3_nonneg_scaleR_segment1 det3_nonneg_scaleR_segment2
det3_nonneg_segments_of_aformI[OF ‹e ∈ _› lh X1(1)])
from X2 have ne2: "fst (fst X2) ≠ fst (snd X2)" by simp
moreover
have "closed_segment (fst X2) (snd X2) ∩ {p. fst p = xl} ≠ {}"
using lower(2)
by (simp add: intersect_segment_xline_None_iff[of prec, symmetric])
ultimately
obtain p2 where p2: "closed_segment (fst X2) (snd X2) ∩ {p. fst p = xl} = {p2}"
by (rule segment_intersection_singleton)
then obtain v where v: "p2 = (1 - v) *⇩R fst X2 + v *⇩R (snd X2)" "0 ≤ v" "v ≤ 1"
by (auto simp: closed_segment_def algebra_simps)
have coll2: "det3 (fst X2) p2 (aform_val e X) ≥ 0"
and coll2': "det3 p2 (snd X2) (aform_val e X) ≥ 0"
unfolding atomize_conj
using v
by (cases "v = 0 ∨ v = 1")
(auto simp: v(1) intro: det3_nonneg_scaleR_segment1 det3_nonneg_scaleR_segment2
det3_nonneg_segments_of_aformI[OF ‹e ∈ _› lh X2(1)])
from in_set_segments_of_aform_aform_valE
[of "fst X1" "snd X1" X, unfolded prod.collapse, OF X1(1)]
obtain e1s where e1s: "snd X1 = aform_val e1s X" "e1s ∈ UNIV → {- 1..1}" .
from previous_segments_of_aformE
[of "fst X1" "snd X1" X, unfolded prod.collapse, OF X1(1)]
obtain fX0 where "(fX0, fst X1) ∈ set (segments_of_aform X)" .
from in_set_segments_of_aform_aform_valE[OF this]
obtain e1f where e1f: "fst X1 = aform_val e1f X" "e1f ∈ UNIV → {- 1..1}" .
have "p1 ∈ closed_segment (aform_val e1f X) (aform_val e1s X)"
using p1 by (auto simp: e1s e1f)
with segment_in_aform_val[OF e1s(2) e1f(2), of X]
obtain ep1 where ep1: "ep1 ∈ UNIV → {-1 .. 1}" "p1 = aform_val ep1 X"
by (auto simp: Affine_def valuate_def closed_segment_commute)
from in_set_segments_of_aform_aform_valE
[of "fst X2" "snd X2" X, unfolded prod.collapse, OF X2(1)]
obtain e2s where e2s: "snd X2 = aform_val e2s X" "e2s ∈ UNIV → {- 1..1}" .
from previous_segments_of_aformE
[of "fst X2" "snd X2" X, unfolded prod.collapse, OF X2(1)]
obtain fX02 where "(fX02, fst X2) ∈ set (segments_of_aform X)" .
from in_set_segments_of_aform_aform_valE[OF this]
obtain e2f where e2f: "fst X2 = aform_val e2f X" "e2f ∈ UNIV → {- 1..1}" .
have "p2 ∈ closed_segment (aform_val e2f X) (aform_val e2s X)"
using p2 by (auto simp: e2s e2f)
with segment_in_aform_val[OF e2f(2) e2s(2), of X]
obtain ep2 where ep2: "ep2 ∈ UNIV → {-1 .. 1}" "p2 = aform_val ep2 X"
by (auto simp: Affine_def valuate_def)
from det3_nonneg_segments_of_aformI[OF ep2(1), of X "(fst X1, snd X1)", unfolded prod.collapse,
OF lh X1(1), unfolded ep2(2)[symmetric]]
have c2: "det3 (fst X1) (snd X1) p2 ≥ 0" .
hence c12: "det3 (fst X1) p1 p2 ≥ 0"
using u by (cases "u = 0") (auto simp: u(1) det3_nonneg_scaleR_segment2)
from det3_nonneg_segments_of_aformI[OF ep1(1), of X "(fst X2, snd X2)", unfolded prod.collapse,
OF lh X2(1), unfolded ep1(2)[symmetric]]
have c1: "det3 (fst X2) (snd X2) p1 ≥ 0" .
hence c21: "det3 (fst X2) p2 p1 ≥ 0"
using v by (cases "v = 0") (auto simp: v(1) det3_nonneg_scaleR_segment2)
from p1 p2 have p1p2xl: "fst p1 = xl" "fst p2 = xl"
by (auto simp: det3_def')
from upper_seg p1 have "snd p1 ≤ M" by (auto simp: less_eq_prod_def)
from lower_seg p2 have "m ≤ snd p2" by (auto simp: less_eq_prod_def)
{
have *: "(fst p1, snd (aform_val e X)) = aform_val e X"
by (simp add: prod_eq_iff p1p2xl fst_aform_val)
hence coll:
"det3 (fst (fst X1), snd (fst X1)) (fst p1, snd p1) (fst p1, snd (aform_val e X)) ≥ 0"
and coll':
"det3 (fst (snd X1), snd (snd X1)) (fst p1, snd (aform_val e X)) (fst p1, snd p1) ≥ 0"
using coll1 coll1'
by (auto simp: det3_rotate)
have "snd (aform_val e X) ≤ M"
proof (cases "fst (fst X1) = xl")
case False
have "fst (fst X1) ≥ fst p1"
unfolding u using X1
by (auto simp: algebra_simps intro!: mult_left_mono u)
moreover
have "fst (fst X1) ≠ fst p1"
using False
by (simp add: p1p2xl)
ultimately
have "fst (fst X1) > fst p1" by simp
from ccw_contr_on_line_left[OF coll this]
show ?thesis using ‹snd p1 ≤ M› by simp
next
case True
have "fst (snd X1) * (1 - u) ≤ fst (fst X1) * (1 - u)"
using X1 u
by (auto simp: intro!: mult_right_mono)
hence "fst (snd X1) ≤ fst p1"
unfolding u by (auto simp: algebra_simps)
moreover
have "fst (snd X1) ≠ fst p1"
using True ne1
by (simp add: p1p2xl)
ultimately
have "fst (snd X1) < fst p1" by simp
from ccw_contr_on_line_right[OF coll' this]
show ?thesis using ‹snd p1 ≤ M› by simp
qed
} moreover {
have "(fst p2, snd (aform_val e X)) = aform_val e X"
by (simp add: prod_eq_iff p1p2xl fst_aform_val)
hence coll:
"det3 (fst (fst X2), snd (fst X2)) (fst p2, snd p2) (fst p2, snd (aform_val e X)) ≥ 0"
and coll':
"det3 (fst (snd X2), snd (snd X2)) (fst p2, snd (aform_val e X)) (fst p2, snd p2) ≥ 0"
using coll2 coll2'
by (auto simp: det3_rotate)
have "m ≤ snd (aform_val e X)"
proof (cases "fst (fst X2) = xl")
case False
have "fst (fst X2) ≤ fst p2"
unfolding v using X2
by (auto simp: algebra_simps intro!: mult_left_mono v)
moreover
have "fst (fst X2) ≠ fst p2"
using False
by (simp add: p1p2xl)
ultimately
have "fst (fst X2) < fst p2" by simp
from ccw_contr_on_line_right[OF coll this]
show ?thesis using ‹m ≤ snd p2› by simp
next
case True
have "(1 - v) * fst (snd X2) ≥ (1 - v) * fst (fst X2)"
using X2 v
by (auto simp: intro!: mult_left_mono)
hence "fst (snd X2) ≥ fst p2"
unfolding v by (auto simp: algebra_simps)
moreover
have "fst (snd X2) ≠ fst p2"
using True ne2
by (simp add: p1p2xl)
ultimately
have "fst (snd X2) > fst p2" by simp
from ccw_contr_on_line_left[OF coll' this]
show ?thesis using ‹m ≤ snd p2› by simp
qed
} ultimately have "aform_val e X ∈ {(xl, m) .. (xl, M)}"
by (auto simp: less_eq_prod_def fst_aform_val)
hence "aform_val e X ∈ {(xl, m0) .. (xl, M0)}"
by (auto simp: minmax less_eq_prod_def)
} moreover {
assume "length (segments_of_aform X) = 2"
then obtain a b where s: "segments_of_aform X = [a, b]"
by (auto simp: numeral_2_eq_2 length_Suc_conv)
from segments_of_aform_line_segment[OF this assms(2)]
have "aform_val e X ∈ closed_segment (fst a) (snd a)" .
moreover
from assms
have "intersect_segment_xline prec a xl = Some (m0, M0)"
by (auto simp: bound_intersect_2d_ud_def s)
note intersect_segment_xline_fst_snd[OF this]
ultimately
have "aform_val e X ∈ {(xl, m0) .. (xl, M0)}"
by (auto simp: less_eq_prod_def fst_aform_val)
} moreover {
assume "length (segments_of_aform X) = 1"
from polychain_of_segments_of_aform1[OF this]
have "aform_val e X ∈ {(xl, m0) .. (xl, M0)}" by auto
} moreover {
assume len: "length (segments_of_aform X) = 0"
hence "independent_pdevs (map snd (list_of_pdevs (nlex_pdevs (snd X)))) = []"
by (simp add: segments_of_aform_def Let_def half_segments_of_aform_def inl_def)
hence "snd X = zero_pdevs"
by (subst (asm) independent_pdevs_eq_Nil_iff) (auto simp: list_all_iff list_of_pdevs_def)
hence "aform_val e X = fst X"
by (simp add: aform_val_def)
with len assms have "aform_val e X ∈ {(xl, m0) .. (xl, M0)}"
by (auto simp: bound_intersect_2d_ud_def Let_def split: if_split_asm)
} ultimately have "aform_val e X ∈ {(xl, m0)..(xl, M0)}"
by arith
thus "(a, b) ∈ {(fst (a, b), m0)..(fst (a, b), M0)}"
using safeassms
by simp
qed
subsection ‹Approximation from Orthogonal Directions›
definition inter_aform_plane_ortho::
"nat ⇒ 'a::executable_euclidean_space aform ⇒ 'a ⇒ real ⇒ 'a aform option"
where
"inter_aform_plane_ortho p Z n g = do {
mMs ← those (map (λb. bound_intersect_2d_ud p (inner2_aform Z n b) g) Basis_list);
let l = (∑(b, m)←zip Basis_list (map fst mMs). m *⇩R b);
let u = (∑(b, M)←zip Basis_list (map snd mMs). M *⇩R b);
Some (aform_of_ivl l u)
}"
lemma
those_eq_SomeD:
assumes "those (map f xs) = Some ys"
shows "ys = map (the o f) xs ∧ (∀i.∃y. i < length xs ⟶ f (xs ! i) = Some y)"
using assms
by (induct xs arbitrary: ys) (auto split: option.split_asm simp: o_def nth_Cons split: nat.split)
lemma
sum_list_zip_map:
assumes "distinct xs"
shows "(∑(x, y)←zip xs (map g xs). f x y) = (∑x∈set xs. f x (g x))"
by (force simp add: sum_list_distinct_conv_sum_set assms distinct_zipI1 split_beta'
in_set_zip in_set_conv_nth inj_on_convol_ident
intro!: sum.reindex_cong[where l="λx. (x, g x)"])
lemma
inter_aform_plane_ortho_overappr:
assumes "inter_aform_plane_ortho p Z n g = Some X"
shows "{x. ∀i ∈ Basis. x ∙ i ∈ {y. (g, y) ∈ (λx. (x ∙ n, x ∙ i)) ` Affine Z}} ⊆ Affine X"
proof -
let ?inter = "(λb. bound_intersect_2d_ud p (inner2_aform Z n b) g)"
obtain xs
where xs: "those (map ?inter Basis_list) = Some xs"
using assms by (cases "those (map ?inter Basis_list)") (auto simp: inter_aform_plane_ortho_def)
from those_eq_SomeD[OF this]
obtain y' where xs_eq: "xs = map (the ∘ ?inter) Basis_list"
and y': "⋀i. i < length (Basis_list::'a list) ⟹ ?inter (Basis_list ! i) = Some (y' i)"
by metis
have "∀(i::'a) ∈ Basis. ∃j<length (Basis_list::'a list). i = Basis_list ! j"
by (metis Basis_list in_set_conv_nth)
then obtain j where j:
"⋀i::'a. i∈Basis ⟹ j i < length (Basis_list::'a list)"
"⋀i::'a. i∈Basis ⟹ i = Basis_list ! j i"
by metis
define y where "y = y' o j"
with y' j have y: "⋀i. i ∈ Basis ⟹ ?inter i = Some (y i)"
by (metis comp_def)
hence y_le: "⋀i. i ∈ Basis ⟹ fst (y i) ≤ snd (y i)"
by (auto intro!: bound_intersect_2d_ud_segments_of_aform_le)
hence "(∑b∈Basis. fst (y b) *⇩R b) ≤ (∑b∈Basis. snd (y b) *⇩R b)"
by (auto simp: eucl_le[where 'a='a])
with assms have X: "Affine X = {∑b∈Basis. fst (y b) *⇩R b..∑b∈Basis. snd (y b) *⇩R b}"
by (auto simp: inter_aform_plane_ortho_def sum_list_zip_map xs xs_eq y Affine_aform_of_ivl)
show ?thesis
proof safe
fix x assume x: "∀i∈Basis. x ∙ i ∈ {y. (g, y) ∈ (λx. (x ∙ n, x ∙ i)) ` Affine Z}"
{
fix i::'a assume i: "i ∈ Basis"
from x i have x_in2: "(g, x ∙ i) ∈ (λx. (x ∙ n, x ∙ i)) ` Affine Z"
by auto
from x_in2 obtain e
where e: "e ∈ UNIV → {- 1..1}"
and g: "g = aform_val e Z ∙ n"
and x: "x ∙ i = aform_val e Z ∙ i"
by (auto simp: Affine_def valuate_def)
have "{aform_val e (inner2_aform Z n i)} = {aform_val e (inner2_aform Z n i)} ∩ {x. fst x = g}"
by (auto simp: g inner2_def)
also
from y[OF ‹i ∈ Basis›]
have "?inter i = Some (fst (y i), snd (y i))" by simp
note bound_intersect_2d_ud_segments_of_aform[OF this e]
finally have "x ∙ i ∈ {fst (y i) .. snd (y i)}"
by (auto simp: x inner2_def)
} thus "x ∈ Affine X"
unfolding X
by (auto simp: eucl_le[where 'a='a])
qed
qed
lemma inter_proj_eq:
fixes n g l
defines "G ≡ {x. x ∙ n = g}"
shows "(λx. x ∙ l) ` (Z ∩ G) =
{y. (g, y) ∈ (λx. (x ∙ n, x ∙ l)) ` Z}"
by (auto simp: G_def)
lemma
inter_overappr:
fixes n γ l
shows "Z ∩ {x. x ∙ n = g} ⊆ {x. ∀i ∈ Basis. x ∙ i ∈ {y. (g, y) ∈ (λx. (x ∙ n, x ∙ i)) ` Z}}"
by auto
lemma inter_inter_aform_plane_ortho:
assumes "inter_aform_plane_ortho p Z n g = Some X"
shows "Affine Z ∩ {x. x ∙ n = g} ⊆ Affine X"
proof -
note inter_overappr[of "Affine Z" n g]
also note inter_aform_plane_ortho_overappr[OF assms]
finally show ?thesis .
qed
subsection ‹``Completeness'' of Intersection›
abbreviation "encompasses x seg ≡ det3 (fst seg) (snd seg) x ≥ 0"
lemma encompasses_cases:
"encompasses x seg ∨ encompasses x (snd seg, fst seg)"
by (auto simp: det3_def' algebra_simps)
lemma list_all_encompasses_cases:
assumes "list_all (encompasses p) (x # y # zs)"
obtains "list_all (encompasses p) [x, y, (snd y, fst x)]"
| "list_all (encompasses p) ((fst x, snd y)#zs)"
using encompasses_cases
proof
assume "encompasses p (snd y, fst x)"
hence "list_all (encompasses p) [x, y, (snd y, fst x)]"
using assms by (auto simp: list_all_iff)
thus ?thesis ..
next
assume "encompasses p (snd (snd y, fst x), fst (snd y, fst x))"
hence "list_all (encompasses p) ((fst x, snd y)#zs)"
using assms by (auto simp: list_all_iff)
thus ?thesis ..
qed
lemma triangle_encompassing_polychain_of:
assumes "det3 p a b ≥ 0" "det3 p b c ≥ 0" "det3 p c a ≥ 0"
assumes "ccw' a b c"
shows "p ∈ convex hull {a, b, c}"
proof -
from assms have nn: "det3 b c p ≥ 0" "det3 c a p ≥ 0" "det3 a b p ≥ 0" "det3 a b c ≥ 0"
by (auto simp: det3_def' algebra_simps)
have "det3 a b c *⇩R p = det3 b c p *⇩R a + det3 c a p *⇩R b + det3 a b p *⇩R c"
by (auto simp: det3_def' algebra_simps prod_eq_iff)
hence "inverse (det3 a b c) *⇩R (det3 a b c *⇩R p) =
inverse (det3 a b c) *⇩R (det3 b c p *⇩R a + det3 c a p *⇩R b + det3 a b p *⇩R c)"
by simp
with assms have p_eq: "p =
(det3 b c p / det3 a b c) *⇩R a + (det3 c a p / det3 a b c) *⇩R b + (det3 a b p / det3 a b c) *⇩R c"
(is "_ = scaleR ?u _ + scaleR ?v _ + scaleR ?w _")
by (simp add: inverse_eq_divide algebra_simps ccw'_def)
have det_eq: "det3 b c p / det3 a b c + det3 c a p / det3 a b c + det3 a b p / det3 a b c = 1"
using assms(4)
by (simp add: add_divide_distrib[symmetric] det3_def' algebra_simps ccw'_def)
show ?thesis
unfolding convex_hull_3
using assms(4)
by (blast intro: exI[where x="?u"] exI[where x="?v"] exI[where x="?w"]
intro!: p_eq divide_nonneg_nonneg nn det_eq)
qed
lemma encompasses_convex_polygon3:
assumes "list_all (encompasses p) (x#y#z#zs)"
assumes "convex_polygon (x#y#z#zs)"
assumes "ccw'.sortedP (fst x) (map snd (butlast (x#y#z#zs)))"
shows "p ∈ convex hull (set (map fst (x#y#z#zs)))"
using assms
proof (induct zs arbitrary: x y z p)
case Nil
thus ?case
by (auto simp: det3_def' algebra_simps
elim!: ccw'.sortedP_Cons ccw'.sortedP_Nil
intro!: triangle_encompassing_polychain_of)
next
case (Cons w ws)
from Cons.prems(2) have "snd y = fst z" by auto
from Cons.prems(1)
show ?case
proof (rule list_all_encompasses_cases)
assume "list_all (encompasses p) [x, y, (snd y, fst x)]"
hence "p ∈ convex hull {fst x, fst y, snd y}"
using Cons.prems
by (auto simp: det3_def' algebra_simps
elim!: ccw'.sortedP_Cons ccw'.sortedP_Nil
intro!: triangle_encompassing_polychain_of)
thus ?case
by (rule rev_subsetD[OF _ hull_mono]) (auto simp: ‹snd y = fst z›)
next
assume *: "list_all (encompasses p) ((fst x, snd y) # z # w # ws)"
from Cons.prems
have enc: "ws ≠ [] ⟹ encompasses p (last ws)"
by (auto simp: list_all_iff)
have "set (map fst ((fst x, snd y)#z#w#ws)) ⊆ set (map fst (x # y # z # w # ws))"
by auto
moreover
{
note *
moreover
have "convex_polygon ((fst x, snd y) # z # w # ws)"
by (metis convex_polygon_skip Cons.prems(2,3))
moreover
have "ccw'.sortedP (fst (fst x, snd y)) (map snd (butlast ((fst x, snd y) # z # w # ws)))"
using Cons.prems(3)
by (auto elim!: ccw'.sortedP_Cons intro!: ccw'.sortedP.Cons ccw'.sortedP.Nil
split: if_split_asm)
ultimately have "p ∈ convex hull set (map fst ((fst x, snd y)#z#w#ws))"
by (rule Cons.hyps)
}
ultimately
show "p ∈ convex hull set (map fst (x # y # z # w # ws))"
by (rule subsetD[OF hull_mono])
qed
qed
lemma segments_of_aform_empty_Affine_eq:
assumes "segments_of_aform X = []"
shows "Affine X = {fst X}"
proof -
have "independent_pdevs (map snd (list_of_pdevs (nlex_pdevs (snd X)))) = [] ⟷
(list_of_pdevs (nlex_pdevs (snd X))) = []"
by (subst independent_pdevs_eq_Nil_iff) (auto simp: list_all_iff list_of_pdevs_def )
with assms show ?thesis
by (force simp: aform_val_def list_of_pdevs_def Affine_def valuate_def segments_of_aform_def
Let_def half_segments_of_aform_def inl_def)
qed
lemma not_segments_of_aform_singleton: "segments_of_aform X ≠ [x]"
by (auto simp: segments_of_aform_def Let_def add_is_1 dest!: arg_cong[where f=length])
lemma encompasses_segments_of_aform_in_AffineI:
assumes "length (segments_of_aform X) > 2"
assumes "list_all (encompasses p) (segments_of_aform X)"
shows "p ∈ Affine X"
proof -
from assms(1) obtain x y z zs where eq: "segments_of_aform X = x#y#z#zs"
by (cases "segments_of_aform X" rule: list_cases4) auto
hence "fst x = fst (hd (half_segments_of_aform X))"
by (metis segments_of_aform_def hd_append list.map_disc_iff list.sel(1))
also have "… = lowest_vertex (fst X, nlex_pdevs (snd X))"
using assms
by (intro fst_hd_half_segments_of_aform) (auto simp: segments_of_aform_def)
finally have fstx: "fst x = lowest_vertex (fst X, nlex_pdevs (snd X))" .
have "p ∈ convex hull (set (map fst (segments_of_aform X)))"
using assms(2)
unfolding eq
proof (rule encompasses_convex_polygon3)
show "convex_polygon (x # y # z # zs)"
using assms(1) unfolding eq[symmetric]
by (intro convex_polygon_segments_of_aform) (simp add: segments_of_aform_def Let_def)
show "ccw'.sortedP (fst x) (map snd (butlast (x # y # z # zs)))"
using assms(1)
unfolding fstx map_butlast eq[symmetric]
by (intro ccw'_sortedP_snd_segments_of_aform)
(simp add: segments_of_aform_def Let_def half_segments_of_aform_def)
qed
also have "… ⊆ convex hull (Affine X)"
proof (rule hull_mono, safe)
fix a b assume "(a, b) ∈ set (map fst (segments_of_aform X))"
then obtain c d where "((a, b), c, d) ∈ set (segments_of_aform X)" by auto
from previous_segments_of_aformE[OF this]
obtain x where "(x, a, b) ∈ set (segments_of_aform X)" by auto
from in_set_segments_of_aform_aform_valE[OF this]
obtain e where "(a, b) = aform_val e X" "e ∈ UNIV → {- 1..1}" by auto
thus "(a, b) ∈ Affine X"
by (auto simp: Affine_def valuate_def image_iff)
qed
also have "… = Affine X"
by (simp add: convex_Affine convex_hull_eq)
finally show ?thesis .
qed
end