Theory Counterclockwise_2D_Strict
section ‹CCW for Nonaligned Points in the Plane›
theory Counterclockwise_2D_Strict
imports
Counterclockwise_Vector
Affine_Arithmetic_Auxiliarities
begin
text ‹\label{sec:counterclockwise2d}›
subsection ‹Determinant›
type_synonym point = "real*real"
fun det3::"point ⇒ point ⇒ point ⇒ real" where "det3 (xp, yp) (xq, yq) (xr, yr) =
xp * yq + yp * xr + xq * yr - yq * xr - yp * xq - xp * yr"
lemma det3_def':
"det3 p q r = fst p * snd q + snd p * fst r + fst q * snd r -
snd q * fst r - snd p * fst q - fst p * snd r"
by (cases p q r rule: prod.exhaust[case_product prod.exhaust[case_product prod.exhaust]]) auto
lemma det3_eq_det: "det3 (xa, ya) (xb, yb) (xc, yc) =
det (vector [vector [xa, ya, 1], vector [xb, yb, 1], vector [xc, yc, 1]]::real^3^3)"
unfolding Determinants.det_def UNIV_3
by (auto simp: sum_over_permutations_insert
vector_3 sign_swap_id permutation_swap_id sign_compose)
declare det3.simps[simp del]
lemma det3_self23[simp]: "det3 a b b = 0"
and det3_self12[simp]: "det3 b b a = 0"
by (auto simp: det3_def')
lemma
coll_ex_scaling:
assumes "b ≠ c"
assumes d: "det3 a b c = 0"
shows "∃r. a = b + r *⇩R (c - b)"
proof -
from assms have "fst b ≠ fst c ∨ snd b ≠ snd c" by (auto simp: prod_eq_iff)
thus ?thesis
proof
assume neq: "fst b ≠ fst c"
with d have "snd a = ((fst a - fst b) * snd c + (fst c - fst a) * snd b) / (fst c - fst b)"
by (auto simp: det3_def' field_simps)
hence "snd a = ((fst a - fst b)/ (fst c - fst b)) * snd c +
((fst c - fst a)/ (fst c - fst b)) * snd b"
by (simp add: add_divide_distrib)
hence "snd a = snd b + (fst a - fst b) * snd c / (fst c - fst b) +
((fst c - fst a) - (fst c - fst b)) * snd b / (fst c - fst b)"
using neq
by (simp add: field_simps)
hence "snd a = snd b + ((fst a - fst b) * snd c + (- fst a + fst b) * snd b) / (fst c - fst b)"
unfolding add_divide_distrib
by (simp add: algebra_simps)
also
have "(fst a - fst b) * snd c + (- fst a + fst b) * snd b = (fst a - fst b) * (snd c - snd b)"
by (simp add: algebra_simps)
finally have "snd a = snd b + (fst a - fst b) / (fst c - fst b) * (snd c - snd b)"
by simp
moreover
hence "fst a = fst b + (fst a - fst b) / (fst c - fst b) * (fst c - fst b)"
using neq by simp
ultimately have "a = b + ((fst a - fst b) / (fst c - fst b)) *⇩R (c - b)"
by (auto simp: prod_eq_iff)
thus ?thesis by blast
next
assume neq: "snd b ≠ snd c"
with d have "fst a = ((snd a - snd b) * fst c + (snd c - snd a) * fst b) / (snd c - snd b)"
by (auto simp: det3_def' field_simps)
hence "fst a = ((snd a - snd b)/ (snd c - snd b)) * fst c +
((snd c - snd a)/ (snd c - snd b)) * fst b"
by (simp add: add_divide_distrib)
hence "fst a = fst b + (snd a - snd b) * fst c / (snd c - snd b) +
((snd c - snd a) - (snd c - snd b)) * fst b / (snd c - snd b)"
using neq
by (simp add: field_simps)
hence "fst a = fst b + ((snd a - snd b) * fst c + (- snd a + snd b) * fst b) / (snd c - snd b)"
unfolding add_divide_distrib
by (simp add: algebra_simps)
also
have "(snd a - snd b) * fst c + (- snd a + snd b) * fst b = (snd a - snd b) * (fst c - fst b)"
by (simp add: algebra_simps)
finally have "fst a = fst b + (snd a - snd b) / (snd c - snd b) * (fst c - fst b)"
by simp
moreover
hence "snd a = snd b + (snd a - snd b) / (snd c - snd b) * (snd c - snd b)"
using neq by simp
ultimately have "a = b + ((snd a - snd b) / (snd c - snd b)) *⇩R (c - b)"
by (auto simp: prod_eq_iff)
thus ?thesis by blast
qed
qed
lemma cramer: "¬det3 s t q = 0 ⟹
(det3 t p r) = ((det3 t q r) * (det3 s t p) + (det3 t p q) * (det3 s t r))/(det3 s t q)"
by (auto simp: det3_def' field_simps)
lemma convex_comb_dets:
assumes "det3 p q r > 0"
shows "s = (det3 s q r / det3 p q r) *⇩R p + (det3 p s r / det3 p q r) *⇩R q +
(det3 p q s / det3 p q r) *⇩R r"
(is "?lhs = ?rhs")
proof -
from assms have "det3 p q r *⇩R ?lhs = det3 p q r *⇩R ?rhs"
by (simp add: field_simps prod_eq_iff scaleR_add_right) (simp add: algebra_simps det3_def')
thus ?thesis using assms by simp
qed
lemma four_points_aligned:
assumes c: "det3 t p q = 0" "det3 t q r = 0"
assumes distinct: "distinct5 t s p q r"
shows "det3 t r p = 0" "det3 p q r = 0"
proof -
from distinct have d: "p ≠ q" "q ≠ r" by (auto)
from coll_ex_scaling[OF d(1) c(1)] obtain s1 where s1: "t = p + s1 *⇩R (q - p)" by auto
from coll_ex_scaling[OF d(2) c(2)] obtain s2 where s2: "t = q + s2 *⇩R (r - q)" by auto
from distinct s1 have ne: "1 - s1 ≠ 0" by auto
from s1 s2 have "(1 - s1) *⇩R p = (1 - s1 - s2) *⇩R q + s2 *⇩R r"
by (simp add: algebra_simps)
hence "(1 - s1) *⇩R p /⇩R (1 - s1)= ((1 - s1 - s2) *⇩R q + s2 *⇩R r) /⇩R (1 - s1)"
by simp
with ne have p: "p = ((1 - s1 - s2) / (1 - s1)) *⇩R q + (s2 / (1 - s1)) *⇩R r"
using ne
by (simp add: prod_eq_iff inverse_eq_divide add_divide_distrib)
define k1 where "k1 = (1 - s1 - s2) / (1 - s1)"
define k2 where "k2 = s2 / (1 - s1)"
have "det3 t r p = det3 0 (k1 *⇩R q + (k2 - 1) *⇩R r)
(k1 *⇩R q + (k2 - 1) *⇩R r + (- s1 * (k1 - 1)) *⇩R q - (s1 * k2) *⇩R r)"
unfolding s1 p k1_def[symmetric] k2_def[symmetric]
by (simp add: algebra_simps det3_def')
also have "- s1 * (k1 - 1) = s1 * k2"
using ne by (auto simp: k1_def field_simps k2_def)
also
have "1 - k1 = k2"
using ne
by (auto simp: k2_def k1_def field_simps)
have k21: "k2 - 1 = -k1"
using ne
by (auto simp: k2_def k1_def field_simps)
finally have "det3 t r p = det3 0 (k1 *⇩R (q - r)) ((k1 + (s1 * k2)) *⇩R (q - r))"
by (auto simp: algebra_simps)
also have "… = 0"
by (simp add: algebra_simps det3_def')
finally show "det3 t r p = 0" .
have "det3 p q r = det3 (k1 *⇩R q + k2 *⇩R r) q r"
unfolding p k1_def[symmetric] k2_def[symmetric] ..
also have "… = det3 0 (r - q) (k1 *⇩R q + (-k1) *⇩R r)"
unfolding k21[symmetric]
by (auto simp: algebra_simps det3_def')
also have "… = det3 0 (r - q) (-k1 *⇩R (r - q))"
by (auto simp: det3_def' algebra_simps)
also have "… = 0"
by (auto simp: det3_def')
finally show "det3 p q r = 0" .
qed
lemma det_identity:
"det3 t p q * det3 t s r + det3 t q r * det3 t s p + det3 t r p * det3 t s q = 0"
by (auto simp: det3_def' algebra_simps)
lemma det3_eq_zeroI:
assumes "p = q + x *⇩R (t - q)"
shows "det3 q t p = 0"
unfolding assms
by (auto simp: det3_def' algebra_simps)
lemma det3_rotate: "det3 a b c = det3 c a b"
by (auto simp: det3_def')
lemma det3_switch: "det3 a b c = - det3 a c b"
by (auto simp: det3_def')
lemma det3_switch': "det3 a b c = - det3 b a c"
by (auto simp: det3_def')
lemma det3_pos_transitive_coll:
"det3 t s p > 0 ⟹ det3 t s r ≥ 0 ⟹ det3 t p q ≥ 0 ⟹
det3 t q r > 0 ⟹ det3 t s q = 0 ⟹ det3 t p r > 0"
using det_identity[of t p q s r]
by (metis add.commute add_less_same_cancel1 det3_switch det3_switch' less_eq_real_def
less_not_sym monoid_add_class.add.left_neutral mult_pos_pos mult_zero_left mult_zero_right)
lemma det3_pos_transitive:
"det3 t s p > 0 ⟹ det3 t s q ≥ 0 ⟹ det3 t s r ≥ 0 ⟹ det3 t p q ≥ 0 ⟹
det3 t q r > 0 ⟹ det3 t p r > 0"
apply (cases "det3 t s q ≠ 0")
using cramer[of q t s p r]
apply (force simp: det3_rotate[of q t p] det3_rotate[of p q t] det3_switch[of t p s]
det3_switch'[of q t r] det3_rotate[of q t s] det3_rotate[of s q t]
intro!: divide_pos_pos add_nonneg_pos)
apply (metis det3_pos_transitive_coll)
done
lemma det3_zero_translate_plus[simp]: "det3 (a + x) (b + x) (c + x) = 0 ⟷ det3 a b c = 0"
by (auto simp: algebra_simps det3_def')
lemma det3_zero_translate_plus'[simp]: "det3 (a) (a + b) (a + c) = 0 ⟷ det3 0 b c = 0"
by (auto simp: algebra_simps det3_def')
lemma
det30_zero_scaleR1:
"0 < e ⟹ det3 0 xr P = 0 ⟹ det3 0 (e *⇩R xr) P = 0"
by (auto simp: zero_prod_def algebra_simps det3_def')
lemma det3_same[simp]: "det3 a x x = 0"
by (auto simp: det3_def')
lemma
det30_zero_scaleR2:
"0 < e ⟹ det3 0 P xr = 0 ⟹ det3 0 P (e *⇩R xr) = 0"
by (auto simp: zero_prod_def algebra_simps det3_def')
lemma det3_eq_zero: "e ≠ 0 ⟹ det3 0 xr (e *⇩R Q) = 0 ⟷ det3 0 xr Q = 0"
by (auto simp: det3_def')
lemma det30_plus_scaled3[simp]: "det3 0 a (b + x *⇩R a) = 0 ⟷ det3 0 a b = 0"
by (auto simp: det3_def' algebra_simps)
lemma det30_plus_scaled2[simp]:
shows "det3 0 (a + x *⇩R a) b = 0 ⟷ (if x = -1 then True else det3 0 a b = 0)"
(is "?lhs = ?rhs")
proof
assume "det3 0 (a + x *⇩R a) b = 0"
hence "fst a * snd b * (1 + x) = fst b * snd a * (1 + x)"
by (simp add: algebra_simps det3_def')
thus ?rhs
by (auto simp add: det3_def')
qed (auto simp: det3_def' algebra_simps split: if_split_asm)
lemma det30_uminus2[simp]: "det3 0 (-a) (b) = 0 ⟷ det3 0 a b = 0"
and det30_uminus3[simp]: "det3 0 a (-b) = 0 ⟷ det3 0 a b = 0"
by (auto simp: det3_def' algebra_simps)
lemma det30_minus_scaled3[simp]: "det3 0 a (b - x *⇩R a) = 0 ⟷ det3 0 a b = 0"
using det30_plus_scaled3[of a b "-x"] by simp
lemma det30_scaled_minus3[simp]: "det3 0 a (e *⇩R a - b) = 0 ⟷ det3 0 a b = 0"
using det30_plus_scaled3[of a "-b" e]
by (simp add: algebra_simps)
lemma det30_minus_scaled2[simp]:
"det3 0 (a - x *⇩R a) b = 0 ⟷ (if x = 1 then True else det3 0 a b = 0)"
using det30_plus_scaled2[of a "-x" b] by simp
lemma det3_nonneg_scaleR1:
"0 < e ⟹ det3 0 xr P ≥ 0 ⟹ det3 0 (e*⇩Rxr) P ≥ 0"
by (auto simp add: det3_def' algebra_simps)
lemma det3_nonneg_scaleR1_eq:
"0 < e ⟹ det3 0 (e*⇩Rxr) P ≥ 0 ⟷ det3 0 xr P ≥ 0"
by (auto simp add: det3_def' algebra_simps)
lemma det3_translate_origin: "NO_MATCH 0 p ⟹ det3 p q r = det3 0 (q - p) (r - p)"
by (auto simp: det3_def' algebra_simps)
lemma det3_nonneg_scaleR_segment2:
assumes "det3 x y z ≥ 0"
assumes "a > 0"
shows "det3 x ((1 - a) *⇩R x + a *⇩R y) z ≥ 0"
proof -
from assms have "0 ≤ det3 0 (a *⇩R (y - x)) (z - x)"
by (intro det3_nonneg_scaleR1) (simp_all add: det3_translate_origin)
thus ?thesis
by (simp add: algebra_simps det3_translate_origin)
qed
lemma det3_nonneg_scaleR_segment1:
assumes "det3 x y z ≥ 0"
assumes "0 ≤ a" "a < 1"
shows "det3 ((1 - a) *⇩R x + a *⇩R y) y z ≥ 0"
proof -
from assms have "det3 0 ((1 - a) *⇩R (y - x)) (z - x + (- a) *⇩R (y - x)) ≥ 0"
by (subst det3_nonneg_scaleR1_eq) (auto simp add: det3_def' algebra_simps)
thus ?thesis
by (auto simp: algebra_simps det3_translate_origin)
qed
subsection ‹Strict CCW Predicate›
definition "ccw' p q r ⟷ 0 < det3 p q r"
interpretation ccw': ccw_vector_space ccw'
by unfold_locales (auto simp: ccw'_def det3_def' algebra_simps)
interpretation ccw': linorder_list0 "ccw' x" for x .
lemma ccw'_contra: "ccw' t r q ⟹ ccw' t q r = False"
by (auto simp: ccw'_def det3_def' algebra_simps)
lemma not_ccw'_eq: "¬ ccw' t p s ⟷ ccw' t s p ∨ det3 t s p = 0"
by (auto simp: ccw'_def det3_def' algebra_simps)
lemma neq_left_right_of: "ccw' a b c ⟹ ccw' a c d ⟹ b ≠ d"
by (auto simp: ccw'_def det3_def' algebra_simps)
lemma ccw'_subst_collinear:
assumes "det3 t r s = 0"
assumes "s ≠ t"
assumes "ccw' t r p"
shows "ccw' t s p ∨ ccw' t p s"
proof cases
assume "r ≠ s"
from assms have "det3 r s t = 0"
by (auto simp: algebra_simps det3_def')
from coll_ex_scaling[OF assms(2) this]
obtain x where s: "r = s + x *⇩R (t - s)" by auto
from assms(3)[simplified ccw'_def s]
have "0 < det3 0 (s + x *⇩R (t - s) - t) (p - t)"
by (auto simp: algebra_simps det3_def')
also have "s + x *⇩R (t - s) - t = (1 - x) *⇩R (s - t)"
by (simp add: algebra_simps)
finally have ccw': "ccw' 0 ((1 - x) *⇩R (s - t)) (p - t)"
by (simp add: ccw'_def)
hence "x ≠ 1" by (auto simp add: det3_def' ccw'_def)
{
assume "x < 1"
hence ?thesis using ccw'
by (auto simp: not_ccw'_eq ccw'.translate_origin)
} moreover {
assume "x > 1"
hence ?thesis using ccw'
by (auto simp: not_ccw'_eq ccw'.translate_origin)
} ultimately show ?thesis using ‹x ≠ 1› by arith
qed (insert assms, simp)
lemma ccw'_sorted_scaleR: "ccw'.sortedP 0 xs ⟹ r > 0 ⟹ ccw'.sortedP 0 (map ((*⇩R) r) xs)"
by (induct xs) (auto intro!: ccw'.sortedP.Cons elim!: ccw'.sortedP_Cons simp del: scaleR_Pair)
subsection ‹Collinearity›
abbreviation "coll a b c ≡ det3 a b c = 0"
lemma coll_zero[intro, simp]: "coll 0 z 0"
by (auto simp: det3_def')
lemma coll_zero1[intro, simp]: "coll 0 0 z"
by (auto simp: det3_def')
lemma coll_self[intro, simp]: "coll 0 z z"
by auto
lemma ccw'_not_coll:
"ccw' a b c ⟹ ¬coll a b c"
"ccw' a b c ⟹ ¬coll a c b"
"ccw' a b c ⟹ ¬coll b a c"
"ccw' a b c ⟹ ¬coll b c a"
"ccw' a b c ⟹ ¬coll c a b"
"ccw' a b c ⟹ ¬coll c b a"
by (auto simp: det3_def' ccw'_def algebra_simps)
lemma coll_add: "coll 0 x y ⟹ coll 0 x z ⟹ coll 0 x (y + z)"
by (auto simp: det3_def' algebra_simps)
lemma coll_scaleR_left_eq[simp]: "coll 0 (r *⇩R x) y ⟷ r = 0 ∨ coll 0 x y"
by (auto simp: det3_def' algebra_simps)
lemma coll_scaleR_right_eq[simp]: "coll 0 y (r *⇩R x) ⟷ r = 0 ∨ coll 0 y x"
by (auto simp: det3_def' algebra_simps)
lemma coll_scaleR: "coll 0 x y ⟹ coll 0 (r *⇩R x) y"
by (auto simp: det3_def' algebra_simps)
lemma coll_sum_list: "(⋀y. y ∈ set ys ⟹ coll 0 x y) ⟹ coll 0 x (sum_list ys)"
by (induct ys) (auto intro!: coll_add)
lemma scaleR_left_normalize:
fixes a ::real and b c::"'a::real_vector"
shows "a *⇩R b = c ⟷ (if a = 0 then c = 0 else b = c /⇩R a)"
by (auto simp: field_simps)
lemma coll_scale_pair: "coll 0 (a, b) (c, d) ⟹ (a, b) ≠ 0 ⟹ (∃x. (c, d) = x *⇩R (a, b))"
by (auto intro: exI[where x="c/a"] exI[where x="d/b"] simp: det3_def' field_simps prod_eq_iff)
lemma coll_scale: "coll 0 r q ⟹ r ≠ 0 ⟹ (∃x. q = x *⇩R r)"
using coll_scale_pair[of "fst r" "snd r" "fst q" "snd q"]
by simp
lemma coll_add_trans:
assumes "coll 0 x (y + z)"
assumes "coll 0 y z"
assumes "x ≠ 0"
assumes "y ≠ 0"
assumes "z ≠ 0"
assumes "y + z ≠ 0"
shows "coll 0 x z"
proof (cases "snd z = 0")
case True
hence "snd y = 0"
using assms
by (cases z) (auto simp add: zero_prod_def det3_def')
with True assms have "snd x = 0"
by (cases y, cases z) (auto simp add: zero_prod_def det3_def')
from ‹snd x = 0› ‹snd y = 0› ‹snd z = 0›
show ?thesis
by (auto simp add: zero_prod_def det3_def')
next
case False
note z = False
hence "snd y ≠ 0"
using assms
by (cases y) (auto simp add: zero_prod_def det3_def')
with False assms have "snd x ≠ 0"
apply (cases x)
apply (cases y)
apply (cases z)
apply (auto simp add: zero_prod_def det3_def')
apply (metis mult.commute mult_eq_0_iff ring_class.ring_distribs(1))
done
with False assms ‹snd y ≠ 0› have yz: "snd (y + z) ≠ 0"
by (cases x; cases y; cases z) (auto simp add: det3_def' zero_prod_def)
from coll_scale[OF assms(1) assms(3)] coll_scale[OF assms(2) assms(4)]
obtain r s where rs: "y + z = r *⇩R x" "z = s *⇩R y"
by auto
with z have "s ≠ 0"
by (cases x; cases y; cases z) (auto simp: zero_prod_def)
with rs z yz have "r ≠ 0"
by (cases x; cases y; cases z) (auto simp: zero_prod_def)
from ‹s ≠ 0› rs have "y = r *⇩R x - z" "y = z /⇩R s"
by (auto simp: inverse_eq_divide algebra_simps)
hence "r *⇩R x - z = z /⇩R s" by simp
hence "r *⇩R x = (1 + inverse s) *⇩R z"
by (auto simp: inverse_eq_divide algebra_simps)
hence "x = (inverse r * (1 + inverse s)) *⇩R z"
using ‹r ≠ 0› ‹s ≠ 0›
by (auto simp: field_simps scaleR_left_normalize)
from this
show ?thesis
by (auto intro: coll_scaleR)
qed
lemma coll_commute: "coll 0 a b ⟷ coll 0 b a"
by (metis det3_rotate det3_switch' diff_0 diff_self)
lemma coll_add_cancel: "coll 0 a (a + b) ⟹ coll 0 a b"
by (cases a, cases b) (auto simp: det3_def' algebra_simps)
lemma coll_trans:
"coll 0 a b ⟹ coll 0 a c ⟹ a ≠ 0 ⟹ coll 0 b c"
by (metis coll_scale coll_scaleR)
lemma sum_list_posI:
fixes xs::"'a::ordered_comm_monoid_add list"
shows "(⋀x. x ∈ set xs ⟹ x > 0) ⟹ xs ≠ [] ⟹ sum_list xs > 0"
proof (induct xs)
case (Cons x xs)
thus ?case
by (cases "xs = []") (auto intro!: add_pos_pos)
qed simp
lemma nonzero_fstI[intro, simp]: "fst x ≠ 0 ⟹ x ≠ 0"
and nonzero_sndI[intro, simp]: "snd x ≠ 0 ⟹ x ≠ 0"
by auto
lemma coll_sum_list_trans:
"xs ≠ [] ⟹ coll 0 a (sum_list xs) ⟹ (⋀x. x ∈ set xs ⟹ coll 0 x y) ⟹
(⋀x. x ∈ set xs ⟹ coll 0 x (sum_list xs)) ⟹
(⋀x. x ∈ set xs ⟹ snd x > 0) ⟹ a ≠ 0 ⟹ coll 0 a y"
proof (induct xs rule: list_nonempty_induct)
case (single x)
from single(1) single(2)[of x] single(4)[of x] have "coll 0 x a" "coll 0 x y" "x ≠ 0"
by (auto simp: coll_commute)
thus ?case by (rule coll_trans)
next
case (cons x xs)
from cons(5)[of x] ‹a ≠ 0› cons(6)[of x]
have *: "coll 0 x (sum_list xs)" "a ≠ 0" "x ≠ 0" by (force simp add: coll_add_cancel)+
have "0 < snd (sum_list (x#xs))"
unfolding snd_sum_list
by (rule sum_list_posI) (auto intro!: add_pos_pos cons simp: snd_sum_list)
hence "x + sum_list xs ≠ 0" by simp
from coll_add_trans[OF cons(3)[simplified] * _ this]
have cH: "coll 0 a (sum_list xs)"
by (cases "sum_list xs = 0") auto
from cons(4) have cy: "(⋀x. x ∈ set xs ⟹ coll 0 x y)" by simp
{
fix y assume "y ∈ set xs"
hence "snd (sum_list xs) > 0"
unfolding snd_sum_list
by (intro sum_list_posI) (auto intro!: add_pos_pos cons simp: snd_sum_list)
hence "sum_list xs ≠ 0" by simp
from cons(5)[of x] have "coll 0 x (sum_list xs)"
by (simp add: coll_add_cancel)
from cons(5)[of y]
have "coll 0 y (sum_list xs)"
using ‹y ∈ set xs› cons(6)[of y] ‹x + sum_list xs ≠ 0›
apply (cases "y = x")
subgoal by (force simp add: coll_add_cancel)
subgoal by (force simp: dest!: coll_add_trans[OF _ *(1) _ *(3)])
done
} note cl = this
show ?case
by (rule cons(2)[OF cH cy cl cons(6) ‹a ≠ 0›]) auto
qed
lemma sum_list_coll_ex_scale:
assumes coll: "⋀x. x ∈ set xs ⟹ coll 0 z x"
assumes nz: "z ≠ 0"
shows "∃r. sum_list xs = r *⇩R z"
proof -
{
fix i assume i: "i < length xs"
hence nth: "xs ! i ∈ set xs" by simp
note coll_scale[OF coll[OF nth] ‹z ≠ 0›]
} then obtain r where r: "⋀i. i < length xs ⟹ r i *⇩R z = xs ! i"
by metis
have "xs = map ((!) xs) [0..<length xs]" by (simp add: map_nth)
also have "… = map (λi. r i *⇩R z) [0..<length xs]"
by (auto simp: r)
also have "sum_list … = (∑i←[0..<length xs]. r i) *⇩R z"
by (simp add: sum_list_sum_nth scaleR_sum_left)
finally show ?thesis ..
qed
lemma sum_list_filter_coll_ex_scale: "z ≠ 0 ⟹ ∃r. sum_list (filter (coll 0 z) zs) = r *⇩R z"
by (rule sum_list_coll_ex_scale) simp
end