Fisher's Inequality: Linear Algebraic Proof Techniques for Combinatorics

Chelsea Edmonds 🌐 and Lawrence C. Paulson

April 21, 2022

This is a development version of this entry. It might change over time and is not stable. Please refer to release versions for citations.


Linear algebraic techniques are powerful, yet often underrated tools in combinatorial proofs. This formalisation provides a library including matrix representations of incidence set systems, general formal proof techniques for the rank argument and linear bound argument, and finally a formalisation of a number of variations of the well-known Fisher's inequality. We build on our prior work formalising combinatorial design theory using a locale-centric approach, including extensions such as constant intersect designs and dual incidence systems. In addition to Fisher's inequality, we also formalise proofs on other incidence system properties using the incidence matrix representation, such as design existence, dual system relationships and incidence system isomorphisms. This formalisation is presented in the paper "Formalising Fisher's Inequality: Formal Linear Algebraic Techniques in Combinatorics", accepted to ITP 2022.


BSD License


Session Fishers_Inequality