Theory Domain

(*  Title:      HOL/HOLCF/Domain.thy
    Author:     Brian Huffman
*)

section ‹Domain package›

theory Domain
imports Representable Map_Functions Fixrec
keywords
  "lazy" "unsafe" and
  "domaindef" "domain" :: thy_defn and
  "domain_isomorphism" :: thy_decl
begin

subsection ‹Continuous isomorphisms›

text ‹A locale for continuous isomorphisms›

locale iso =
  fixes abs :: "'a::pcpo  'b::pcpo"
  fixes rep :: "'b  'a"
  assumes abs_iso [simp]: "rep(absx) = x"
  assumes rep_iso [simp]: "abs(repy) = y"
begin

lemma swap: "iso rep abs"
  by (rule iso.intro [OF rep_iso abs_iso])

lemma abs_below: "(absx  absy) = (x  y)"
proof
  assume "absx  absy"
  then have "rep(absx)  rep(absy)" by (rule monofun_cfun_arg)
  then show "x  y" by simp
next
  assume "x  y"
  then show "absx  absy" by (rule monofun_cfun_arg)
qed

lemma rep_below: "(repx  repy) = (x  y)"
  by (rule iso.abs_below [OF swap])

lemma abs_eq: "(absx = absy) = (x = y)"
  by (simp add: po_eq_conv abs_below)

lemma rep_eq: "(repx = repy) = (x = y)"
  by (rule iso.abs_eq [OF swap])

lemma abs_strict: "abs = "
proof -
  have "  rep" ..
  then have "abs  abs(rep)" by (rule monofun_cfun_arg)
  then have "abs  " by simp
  then show ?thesis by (rule bottomI)
qed

lemma rep_strict: "rep = "
  by (rule iso.abs_strict [OF swap])

lemma abs_defin': "absx =   x = "
proof -
  have "x = rep(absx)" by simp
  also assume "absx = "
  also note rep_strict
  finally show "x = " .
qed

lemma rep_defin': "repz =   z = "
  by (rule iso.abs_defin' [OF swap])

lemma abs_defined: "z    absz  "
  by (erule contrapos_nn, erule abs_defin')

lemma rep_defined: "z    repz  "
  by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms)

lemma abs_bottom_iff: "(absx = ) = (x = )"
  by (auto elim: abs_defin' intro: abs_strict)

lemma rep_bottom_iff: "(repx = ) = (x = )"
  by (rule iso.abs_bottom_iff [OF iso.swap]) (rule iso_axioms)

lemma casedist_rule: "repx =   P  x =   P"
  by (simp add: rep_bottom_iff)

lemma compact_abs_rev: "compact (absx)  compact x"
proof (unfold compact_def)
  assume "adm (λy. absx \<notsqsubseteq> y)"
  with cont_Rep_cfun2
  have "adm (λy. absx \<notsqsubseteq> absy)" by (rule adm_subst)
  then show "adm (λy. x \<notsqsubseteq> y)" using abs_below by simp
qed

lemma compact_rep_rev: "compact (repx)  compact x"
  by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms)

lemma compact_abs: "compact x  compact (absx)"
  by (rule compact_rep_rev) simp

lemma compact_rep: "compact x  compact (repx)"
  by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms)

lemma iso_swap: "(x = absy) = (repx = y)"
proof
  assume "x = absy"
  then have "repx = rep(absy)" by simp
  then show "repx = y" by simp
next
  assume "repx = y"
  then have "abs(repx) = absy" by simp
  then show "x = absy" by simp
qed

end


subsection ‹Proofs about take functions›

text ‹
  This section contains lemmas that are used in a module that supports
  the domain isomorphism package; the module contains proofs related
  to take functions and the finiteness predicate.
›

lemma deflation_abs_rep:
  fixes abs and rep and d
  assumes abs_iso: "x. rep(absx) = x"
  assumes rep_iso: "y. abs(repy) = y"
  shows "deflation d  deflation (abs oo d oo rep)"
by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)

lemma deflation_chain_min:
  assumes chain: "chain d"
  assumes defl: "n. deflation (d n)"
  shows "d m(d nx) = d (min m n)x"
proof (rule linorder_le_cases)
  assume "m  n"
  with chain have "d m  d n" by (rule chain_mono)
  then have "d m(d nx) = d mx"
    by (rule deflation_below_comp1 [OF defl defl])
  moreover from m  n have "min m n = m" by simp
  ultimately show ?thesis by simp
next
  assume "n  m"
  with chain have "d n  d m" by (rule chain_mono)
  then have "d m(d nx) = d nx"
    by (rule deflation_below_comp2 [OF defl defl])
  moreover from n  m have "min m n = n" by simp
  ultimately show ?thesis by simp
qed

lemma lub_ID_take_lemma:
  assumes "chain t" and "(n. t n) = ID"
  assumes "n. t nx = t ny" shows "x = y"
proof -
  have "(n. t nx) = (n. t ny)"
    using assms(3) by simp
  then have "(n. t n)x = (n. t n)y"
    using assms(1) by (simp add: lub_distribs)
  then show "x = y"
    using assms(2) by simp
qed

lemma lub_ID_reach:
  assumes "chain t" and "(n. t n) = ID"
  shows "(n. t nx) = x"
using assms by (simp add: lub_distribs)

lemma lub_ID_take_induct:
  assumes "chain t" and "(n. t n) = ID"
  assumes "adm P" and "n. P (t nx)" shows "P x"
proof -
  from chain t have "chain (λn. t nx)" by simp
  from adm P this n. P (t nx) have "P (n. t nx)" by (rule admD)
  with chain t (n. t n) = ID show "P x" by (simp add: lub_distribs)
qed


subsection ‹Finiteness›

text ‹
  Let a ``decisive'' function be a deflation that maps every input to
  either itself or bottom.  Then if a domain's take functions are all
  decisive, then all values in the domain are finite.
›

definition
  decisive :: "('a::pcpo  'a)  bool"
where
  "decisive d  (x. dx = x  dx = )"

lemma decisiveI: "(x. dx = x  dx = )  decisive d"
  unfolding decisive_def by simp

lemma decisive_cases:
  assumes "decisive d" obtains "dx = x" | "dx = "
using assms unfolding decisive_def by auto

lemma decisive_bottom: "decisive "
  unfolding decisive_def by simp

lemma decisive_ID: "decisive ID"
  unfolding decisive_def by simp

lemma decisive_ssum_map:
  assumes f: "decisive f"
  assumes g: "decisive g"
  shows "decisive (ssum_mapfg)"
  apply (rule decisiveI)
  subgoal for s
    apply (cases s, simp_all)
     apply (rule_tac x=x in decisive_cases [OF f], simp_all)
    apply (rule_tac x=y in decisive_cases [OF g], simp_all)
    done
  done

lemma decisive_sprod_map:
  assumes f: "decisive f"
  assumes g: "decisive g"
  shows "decisive (sprod_mapfg)"
  apply (rule decisiveI)
  subgoal for s
    apply (cases s, simp)
    subgoal for x y
      apply (rule decisive_cases [OF f, where x = x], simp_all)
      apply (rule decisive_cases [OF g, where x = y], simp_all)
      done
    done
  done

lemma decisive_abs_rep:
  fixes abs rep
  assumes iso: "iso abs rep"
  assumes d: "decisive d"
  shows "decisive (abs oo d oo rep)"
  apply (rule decisiveI)
  subgoal for s
    apply (rule decisive_cases [OF d, where x="reps"])
     apply (simp add: iso.rep_iso [OF iso])
    apply (simp add: iso.abs_strict [OF iso])
    done
  done

lemma lub_ID_finite:
  assumes chain: "chain d"
  assumes lub: "(n. d n) = ID"
  assumes decisive: "n. decisive (d n)"
  shows "n. d nx = x"
proof -
  have 1: "chain (λn. d nx)" using chain by simp
  have 2: "(n. d nx) = x" using chain lub by (rule lub_ID_reach)
  have "n. d nx = x  d nx = "
    using decisive unfolding decisive_def by simp
  hence "range (λn. d nx)  {x, }"
    by auto
  hence "finite (range (λn. d nx))"
    by (rule finite_subset, simp)
  with 1 have "finite_chain (λn. d nx)"
    by (rule finite_range_imp_finch)
  then have "n. (n. d nx) = d nx"
    unfolding finite_chain_def by (auto simp add: maxinch_is_thelub)
  with 2 show "n. d nx = x" by (auto elim: sym)
qed

lemma lub_ID_finite_take_induct:
  assumes "chain d" and "(n. d n) = ID" and "n. decisive (d n)"
  shows "(n. P (d nx))  P x"
using lub_ID_finite [OF assms] by metis


subsection ‹Proofs about constructor functions›

text ‹Lemmas for proving nchotomy rule:›

lemma ex_one_bottom_iff:
  "(x. P x  x  ) = P ONE"
by simp

lemma ex_up_bottom_iff:
  "(x. P x  x  ) = (x. P (upx))"
by (safe, case_tac x, auto)

lemma ex_sprod_bottom_iff:
 "(y. P y  y  ) =
  (x y. (P (:x, y:)  x  )  y  )"
by (safe, case_tac y, auto)

lemma ex_sprod_up_bottom_iff:
 "(y. P y  y  ) =
  (x y. P (:upx, y:)  y  )"
by (safe, case_tac y, simp, case_tac x, auto)

lemma ex_ssum_bottom_iff:
 "(x. P x  x  ) =
 ((x. P (sinlx)  x  ) 
  (x. P (sinrx)  x  ))"
by (safe, case_tac x, auto)

lemma exh_start: "p =   (x. p = x  x  )"
  by auto

lemmas ex_bottom_iffs =
   ex_ssum_bottom_iff
   ex_sprod_up_bottom_iff
   ex_sprod_bottom_iff
   ex_up_bottom_iff
   ex_one_bottom_iff

text ‹Rules for turning nchotomy into exhaust:›

lemma exh_casedist0: "R; R  P  P" (* like make_elim *)
  by auto

lemma exh_casedist1: "((P  Q  R)  S)  (P  R; Q  R  S)"
  by rule auto

lemma exh_casedist2: "(x. P x  Q)  (x. P x  Q)"
  by rule auto

lemma exh_casedist3: "(P  Q  R)  (P  Q  R)"
  by rule auto

lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3

text ‹Rules for proving constructor properties›

lemmas con_strict_rules =
  sinl_strict sinr_strict spair_strict1 spair_strict2

lemmas con_bottom_iff_rules =
  sinl_bottom_iff sinr_bottom_iff spair_bottom_iff up_defined ONE_defined

lemmas con_below_iff_rules =
  sinl_below sinr_below sinl_below_sinr sinr_below_sinl con_bottom_iff_rules

lemmas con_eq_iff_rules =
  sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_bottom_iff_rules

lemmas sel_strict_rules =
  cfcomp2 sscase1 sfst_strict ssnd_strict fup1

lemma sel_app_extra_rules:
  "sscaseID(sinrx) = "
  "sscaseID(sinlx) = x"
  "sscaseID(sinlx) = "
  "sscaseID(sinrx) = x"
  "fupID(upx) = x"
by (cases "x = ", simp, simp)+

lemmas sel_app_rules =
  sel_strict_rules sel_app_extra_rules
  ssnd_spair sfst_spair up_defined spair_defined

lemmas sel_bottom_iff_rules =
  cfcomp2 sfst_bottom_iff ssnd_bottom_iff

lemmas take_con_rules =
  ssum_map_sinl' ssum_map_sinr' sprod_map_spair' u_map_up
  deflation_strict deflation_ID ID1 cfcomp2


subsection ‹ML setup›

named_theorems domain_deflation "theorems like deflation a ==> deflation (foo_map$a)"
  and domain_map_ID "theorems like foo_map$ID = ID"

ML_file ‹Tools/Domain/domain_take_proofs.ML›
ML_file ‹Tools/cont_consts.ML›
ML_file ‹Tools/cont_proc.ML›
simproc_setup cont ("cont f") = K ContProc.cont_proc

ML_file ‹Tools/Domain/domain_constructors.ML›
ML_file ‹Tools/Domain/domain_induction.ML›


subsection ‹Representations of types›

lemma emb_prj: "emb((prjx)::'a::domain) = castDEFL('a)x"
by (simp add: cast_DEFL)

lemma emb_prj_emb:
  fixes x :: "'a::domain"
  assumes "DEFL('a)  DEFL('b)"
  shows "emb(prj(embx) :: 'b::domain) = embx"
unfolding emb_prj
apply (rule cast.belowD)
apply (rule monofun_cfun_arg [OF assms])
apply (simp add: cast_DEFL)
done

lemma prj_emb_prj:
  assumes "DEFL('a::domain)  DEFL('b::domain)"
  shows "prj(emb(prjx :: 'b)) = (prjx :: 'a)"
 apply (rule emb_eq_iff [THEN iffD1])
 apply (simp only: emb_prj)
 apply (rule deflation_below_comp1)
   apply (rule deflation_cast)
  apply (rule deflation_cast)
 apply (rule monofun_cfun_arg [OF assms])
done

text ‹Isomorphism lemmas used internally by the domain package:›

lemma domain_abs_iso:
  fixes abs and rep
  assumes DEFL: "DEFL('b::domain) = DEFL('a::domain)"
  assumes abs_def: "(abs :: 'a  'b)  prj oo emb"
  assumes rep_def: "(rep :: 'b  'a)  prj oo emb"
  shows "rep(absx) = x"
unfolding abs_def rep_def
by (simp add: emb_prj_emb DEFL)

lemma domain_rep_iso:
  fixes abs and rep
  assumes DEFL: "DEFL('b::domain) = DEFL('a::domain)"
  assumes abs_def: "(abs :: 'a  'b)  prj oo emb"
  assumes rep_def: "(rep :: 'b  'a)  prj oo emb"
  shows "abs(repx) = x"
unfolding abs_def rep_def
by (simp add: emb_prj_emb DEFL)


subsection ‹Deflations as sets›

definition defl_set :: "'a::bifinite defl  'a set"
where "defl_set A = {x. castAx = x}"

lemma adm_defl_set: "adm (λx. x  defl_set A)"
unfolding defl_set_def by simp

lemma defl_set_bottom: "  defl_set A"
unfolding defl_set_def by simp

lemma defl_set_cast [simp]: "castAx  defl_set A"
unfolding defl_set_def by simp

lemma defl_set_subset_iff: "defl_set A  defl_set B  A  B"
apply (simp add: defl_set_def subset_eq cast_below_cast [symmetric])
apply (auto simp add: cast.belowI cast.belowD)
done


subsection ‹Proving a subtype is representable›

text ‹Temporarily relax type constraints.›

setup fold Sign.add_const_constraint
  [ (const_namedefl, SOME typ'a::pcpo itself  udom defl)
  , (const_nameemb, SOME typ'a::pcpo  udom)
  , (const_nameprj, SOME typudom  'a::pcpo)
  , (const_nameliftdefl, SOME typ'a::pcpo itself  udom u defl)
  , (const_nameliftemb, SOME typ'a::pcpo u  udom u)
  , (const_nameliftprj, SOME typudom u  'a::pcpo u) ]

lemma typedef_domain_class:
  fixes Rep :: "'a::pcpo  udom"
  fixes Abs :: "udom  'a::pcpo"
  fixes t :: "udom defl"
  assumes type: "type_definition Rep Abs (defl_set t)"
  assumes below: "(⊑)  λx y. Rep x  Rep y"
  assumes emb: "emb  (Λ x. Rep x)"
  assumes prj: "prj  (Λ x. Abs (casttx))"
  assumes defl: "defl  (λ a::'a itself. t)"
  assumes liftemb: "(liftemb :: 'a u  udom u)  u_mapemb"
  assumes liftprj: "(liftprj :: udom u  'a u)  u_mapprj"
  assumes liftdefl: "(liftdefl :: 'a itself  _)  (λt. liftdefl_ofDEFL('a))"
  shows "OFCLASS('a, domain_class)"
proof
  have emb_beta: "x. embx = Rep x"
    unfolding emb
    apply (rule beta_cfun)
    apply (rule typedef_cont_Rep [OF type below adm_defl_set cont_id])
    done
  have prj_beta: "y. prjy = Abs (castty)"
    unfolding prj
    apply (rule beta_cfun)
    apply (rule typedef_cont_Abs [OF type below adm_defl_set])
    apply simp_all
    done
  have prj_emb: "x::'a. prj(embx) = x"
    using type_definition.Rep [OF type]
    unfolding prj_beta emb_beta defl_set_def
    by (simp add: type_definition.Rep_inverse [OF type])
  have emb_prj: "y. emb(prjy :: 'a) = castty"
    unfolding prj_beta emb_beta
    by (simp add: type_definition.Abs_inverse [OF type])
  show "ep_pair (emb :: 'a  udom) prj"
    apply standard
    apply (simp add: prj_emb)
    apply (simp add: emb_prj cast.below)
    done
  show "castDEFL('a) = emb oo (prj :: udom  'a)"
    by (rule cfun_eqI, simp add: defl emb_prj)
qed (simp_all only: liftemb liftprj liftdefl)

lemma typedef_DEFL:
  assumes "defl  (λa::'a::pcpo itself. t)"
  shows "DEFL('a::pcpo) = t"
unfolding assms ..

text ‹Restore original typing constraints.›

setup fold Sign.add_const_constraint
   [(const_namedefl, SOME typ'a::domain itself  udom defl),
    (const_nameemb, SOME typ'a::domain  udom),
    (const_nameprj, SOME typudom  'a::domain),
    (const_nameliftdefl, SOME typ'a::predomain itself  udom u defl),
    (const_nameliftemb, SOME typ'a::predomain u  udom u),
    (const_nameliftprj, SOME typudom u  'a::predomain u)]

ML_file ‹Tools/domaindef.ML›


subsection ‹Isomorphic deflations›

definition isodefl :: "('a::domain  'a)  udom defl  bool"
  where "isodefl d t  castt = emb oo d oo prj"

definition isodefl' :: "('a::predomain  'a)  udom u defl  bool"
  where "isodefl' d t  castt = liftemb oo u_mapd oo liftprj"

lemma isodeflI: "(x. casttx = emb(d(prjx)))  isodefl d t"
unfolding isodefl_def by (simp add: cfun_eqI)

lemma cast_isodefl: "isodefl d t  castt = (Λ x. emb(d(prjx)))"
unfolding isodefl_def by (simp add: cfun_eqI)

lemma isodefl_strict: "isodefl d t  d = "
unfolding isodefl_def
by (drule cfun_fun_cong [where x=""], simp)

lemma isodefl_imp_deflation:
  fixes d :: "'a::domain  'a"
  assumes "isodefl d t" shows "deflation d"
proof
  note assms [unfolded isodefl_def, simp]
  fix x :: 'a
  show "d(dx) = dx"
    using cast.idem [of t "embx"] by simp
  show "dx  x"
    using cast.below [of t "embx"] by simp
qed

lemma isodefl_ID_DEFL: "isodefl (ID :: 'a  'a) DEFL('a::domain)"
unfolding isodefl_def by (simp add: cast_DEFL)

lemma isodefl_LIFTDEFL:
  "isodefl' (ID :: 'a  'a) LIFTDEFL('a::predomain)"
unfolding isodefl'_def by (simp add: cast_liftdefl u_map_ID)

lemma isodefl_DEFL_imp_ID: "isodefl (d :: 'a  'a) DEFL('a::domain)  d = ID"
unfolding isodefl_def
apply (simp add: cast_DEFL)
apply (simp add: cfun_eq_iff)
apply (rule allI)
apply (drule_tac x="embx" in spec)
apply simp
done

lemma isodefl_bottom: "isodefl  "
unfolding isodefl_def by (simp add: cfun_eq_iff)

lemma adm_isodefl:
  "cont f  cont g  adm (λx. isodefl (f x) (g x))"
unfolding isodefl_def by simp

lemma isodefl_lub:
  assumes "chain d" and "chain t"
  assumes "i. isodefl (d i) (t i)"
  shows "isodefl (i. d i) (i. t i)"
using assms unfolding isodefl_def
by (simp add: contlub_cfun_arg contlub_cfun_fun)

lemma isodefl_fix:
  assumes "d t. isodefl d t  isodefl (fd) (gt)"
  shows "isodefl (fixf) (fixg)"
unfolding fix_def2
apply (rule isodefl_lub, simp, simp)
apply (induct_tac i)
apply (simp add: isodefl_bottom)
apply (simp add: assms)
done

lemma isodefl_abs_rep:
  fixes abs and rep and d
  assumes DEFL: "DEFL('b::domain) = DEFL('a::domain)"
  assumes abs_def: "(abs :: 'a  'b)  prj oo emb"
  assumes rep_def: "(rep :: 'b  'a)  prj oo emb"
  shows "isodefl d t  isodefl (abs oo d oo rep) t"
unfolding isodefl_def
by (simp add: cfun_eq_iff assms prj_emb_prj emb_prj_emb)

lemma isodefl'_liftdefl_of: "isodefl d t  isodefl' d (liftdefl_oft)"
unfolding isodefl_def isodefl'_def
by (simp add: cast_liftdefl_of u_map_oo liftemb_eq liftprj_eq)

lemma isodefl_sfun:
  "isodefl d1 t1  isodefl d2 t2 
    isodefl (sfun_mapd1d2) (sfun_deflt1t2)"
apply (rule isodeflI)
apply (simp add: cast_sfun_defl cast_isodefl)
apply (simp add: emb_sfun_def prj_sfun_def)
apply (simp add: sfun_map_map isodefl_strict)
done

lemma isodefl_ssum:
  "isodefl d1 t1  isodefl d2 t2 
    isodefl (ssum_mapd1d2) (ssum_deflt1t2)"
apply (rule isodeflI)
apply (simp add: cast_ssum_defl cast_isodefl)
apply (simp add: emb_ssum_def prj_ssum_def)
apply (simp add: ssum_map_map isodefl_strict)
done

lemma isodefl_sprod:
  "isodefl d1 t1  isodefl d2 t2 
    isodefl (sprod_mapd1d2) (sprod_deflt1t2)"
apply (rule isodeflI)
apply (simp add: cast_sprod_defl cast_isodefl)
apply (simp add: emb_sprod_def prj_sprod_def)
apply (simp add: sprod_map_map isodefl_strict)
done

lemma isodefl_prod:
  "isodefl d1 t1  isodefl d2 t2 
    isodefl (prod_mapd1d2) (prod_deflt1t2)"
apply (rule isodeflI)
apply (simp add: cast_prod_defl cast_isodefl)
apply (simp add: emb_prod_def prj_prod_def)
apply (simp add: prod_map_map cfcomp1)
done

lemma isodefl_u:
  "isodefl d t  isodefl (u_mapd) (u_deflt)"
apply (rule isodeflI)
apply (simp add: cast_u_defl cast_isodefl)
apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq u_map_map)
done

lemma isodefl_u_liftdefl:
  "isodefl' d t  isodefl (u_mapd) (u_liftdeflt)"
apply (rule isodeflI)
apply (simp add: cast_u_liftdefl isodefl'_def)
apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq)
done

lemma encode_prod_u_map:
  "encode_prod_u(u_map(prod_mapfg)(decode_prod_ux))
    = sprod_map(u_mapf)(u_mapg)x"
unfolding encode_prod_u_def decode_prod_u_def
apply (case_tac x, simp, rename_tac a b)
apply (case_tac a, simp, case_tac b, simp, simp)
done

lemma isodefl_prod_u:
  assumes "isodefl' d1 t1" and "isodefl' d2 t2"
  shows "isodefl' (prod_mapd1d2) (prod_liftdeflt1t2)"
using assms unfolding isodefl'_def
unfolding liftemb_prod_def liftprj_prod_def
by (simp add: cast_prod_liftdefl cfcomp1 encode_prod_u_map sprod_map_map)

lemma encode_cfun_map:
  "encode_cfun(cfun_mapfg(decode_cfunx))
    = sfun_map(u_mapf)gx"
unfolding encode_cfun_def decode_cfun_def
apply (simp add: sfun_eq_iff cfun_map_def sfun_map_def)
apply (rule cfun_eqI, rename_tac y, case_tac y, simp_all)
done

lemma isodefl_cfun:
  assumes "isodefl (u_mapd1) t1" and "isodefl d2 t2"
  shows "isodefl (cfun_mapd1d2) (sfun_deflt1t2)"
using isodefl_sfun [OF assms] unfolding isodefl_def
by (simp add: emb_cfun_def prj_cfun_def cfcomp1 encode_cfun_map)


subsection ‹Setting up the domain package›

named_theorems domain_defl_simps "theorems like DEFL('a t) = t_defl$DEFL('a)"
  and domain_isodefl "theorems like isodefl d t ==> isodefl (foo_map$d) (foo_defl$t)"

ML_file ‹Tools/Domain/domain_isomorphism.ML›
ML_file ‹Tools/Domain/domain_axioms.ML›
ML_file ‹Tools/Domain/domain.ML›

lemmas [domain_defl_simps] =
  DEFL_cfun DEFL_sfun DEFL_ssum DEFL_sprod DEFL_prod DEFL_u
  liftdefl_eq LIFTDEFL_prod u_liftdefl_liftdefl_of

lemmas [domain_map_ID] =
  cfun_map_ID sfun_map_ID ssum_map_ID sprod_map_ID prod_map_ID u_map_ID

lemmas [domain_isodefl] =
  isodefl_u isodefl_sfun isodefl_ssum isodefl_sprod
  isodefl_cfun isodefl_prod isodefl_prod_u isodefl'_liftdefl_of
  isodefl_u_liftdefl

lemmas [domain_deflation] =
  deflation_cfun_map deflation_sfun_map deflation_ssum_map
  deflation_sprod_map deflation_prod_map deflation_u_map

setup fold Domain_Take_Proofs.add_rec_type
    [(type_namecfun, [true, true]),
     (type_namesfun, [true, true]),
     (type_namessum, [true, true]),
     (type_namesprod, [true, true]),
     (type_nameprod, [true, true]),
     (type_nameu, [true])]

end