Theory Domain
section ‹Domain package›
theory Domain
imports Representable Map_Functions Fixrec
keywords
"lazy" "unsafe" and
"domaindef" "domain" :: thy_defn and
"domain_isomorphism" :: thy_decl
begin
subsection ‹Continuous isomorphisms›
text ‹A locale for continuous isomorphisms›
locale iso =
fixes abs :: "'a::pcpo → 'b::pcpo"
fixes rep :: "'b → 'a"
assumes abs_iso [simp]: "rep⋅(abs⋅x) = x"
assumes rep_iso [simp]: "abs⋅(rep⋅y) = y"
begin
lemma swap: "iso rep abs"
by (rule iso.intro [OF rep_iso abs_iso])
lemma abs_below: "(abs⋅x ⊑ abs⋅y) = (x ⊑ y)"
proof
assume "abs⋅x ⊑ abs⋅y"
then have "rep⋅(abs⋅x) ⊑ rep⋅(abs⋅y)" by (rule monofun_cfun_arg)
then show "x ⊑ y" by simp
next
assume "x ⊑ y"
then show "abs⋅x ⊑ abs⋅y" by (rule monofun_cfun_arg)
qed
lemma rep_below: "(rep⋅x ⊑ rep⋅y) = (x ⊑ y)"
by (rule iso.abs_below [OF swap])
lemma abs_eq: "(abs⋅x = abs⋅y) = (x = y)"
by (simp add: po_eq_conv abs_below)
lemma rep_eq: "(rep⋅x = rep⋅y) = (x = y)"
by (rule iso.abs_eq [OF swap])
lemma abs_strict: "abs⋅⊥ = ⊥"
proof -
have "⊥ ⊑ rep⋅⊥" ..
then have "abs⋅⊥ ⊑ abs⋅(rep⋅⊥)" by (rule monofun_cfun_arg)
then have "abs⋅⊥ ⊑ ⊥" by simp
then show ?thesis by (rule bottomI)
qed
lemma rep_strict: "rep⋅⊥ = ⊥"
by (rule iso.abs_strict [OF swap])
lemma abs_defin': "abs⋅x = ⊥ ⟹ x = ⊥"
proof -
have "x = rep⋅(abs⋅x)" by simp
also assume "abs⋅x = ⊥"
also note rep_strict
finally show "x = ⊥" .
qed
lemma rep_defin': "rep⋅z = ⊥ ⟹ z = ⊥"
by (rule iso.abs_defin' [OF swap])
lemma abs_defined: "z ≠ ⊥ ⟹ abs⋅z ≠ ⊥"
by (erule contrapos_nn, erule abs_defin')
lemma rep_defined: "z ≠ ⊥ ⟹ rep⋅z ≠ ⊥"
by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms)
lemma abs_bottom_iff: "(abs⋅x = ⊥) = (x = ⊥)"
by (auto elim: abs_defin' intro: abs_strict)
lemma rep_bottom_iff: "(rep⋅x = ⊥) = (x = ⊥)"
by (rule iso.abs_bottom_iff [OF iso.swap]) (rule iso_axioms)
lemma casedist_rule: "rep⋅x = ⊥ ∨ P ⟹ x = ⊥ ∨ P"
by (simp add: rep_bottom_iff)
lemma compact_abs_rev: "compact (abs⋅x) ⟹ compact x"
proof (unfold compact_def)
assume "adm (λy. abs⋅x \<notsqsubseteq> y)"
with cont_Rep_cfun2
have "adm (λy. abs⋅x \<notsqsubseteq> abs⋅y)" by (rule adm_subst)
then show "adm (λy. x \<notsqsubseteq> y)" using abs_below by simp
qed
lemma compact_rep_rev: "compact (rep⋅x) ⟹ compact x"
by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms)
lemma compact_abs: "compact x ⟹ compact (abs⋅x)"
by (rule compact_rep_rev) simp
lemma compact_rep: "compact x ⟹ compact (rep⋅x)"
by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms)
lemma iso_swap: "(x = abs⋅y) = (rep⋅x = y)"
proof
assume "x = abs⋅y"
then have "rep⋅x = rep⋅(abs⋅y)" by simp
then show "rep⋅x = y" by simp
next
assume "rep⋅x = y"
then have "abs⋅(rep⋅x) = abs⋅y" by simp
then show "x = abs⋅y" by simp
qed
end
subsection ‹Proofs about take functions›
text ‹
This section contains lemmas that are used in a module that supports
the domain isomorphism package; the module contains proofs related
to take functions and the finiteness predicate.
›
lemma deflation_abs_rep:
fixes abs and rep and d
assumes abs_iso: "⋀x. rep⋅(abs⋅x) = x"
assumes rep_iso: "⋀y. abs⋅(rep⋅y) = y"
shows "deflation d ⟹ deflation (abs oo d oo rep)"
by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)
lemma deflation_chain_min:
assumes chain: "chain d"
assumes defl: "⋀n. deflation (d n)"
shows "d m⋅(d n⋅x) = d (min m n)⋅x"
proof (rule linorder_le_cases)
assume "m ≤ n"
with chain have "d m ⊑ d n" by (rule chain_mono)
then have "d m⋅(d n⋅x) = d m⋅x"
by (rule deflation_below_comp1 [OF defl defl])
moreover from ‹m ≤ n› have "min m n = m" by simp
ultimately show ?thesis by simp
next
assume "n ≤ m"
with chain have "d n ⊑ d m" by (rule chain_mono)
then have "d m⋅(d n⋅x) = d n⋅x"
by (rule deflation_below_comp2 [OF defl defl])
moreover from ‹n ≤ m› have "min m n = n" by simp
ultimately show ?thesis by simp
qed
lemma lub_ID_take_lemma:
assumes "chain t" and "(⨆n. t n) = ID"
assumes "⋀n. t n⋅x = t n⋅y" shows "x = y"
proof -
have "(⨆n. t n⋅x) = (⨆n. t n⋅y)"
using assms(3) by simp
then have "(⨆n. t n)⋅x = (⨆n. t n)⋅y"
using assms(1) by (simp add: lub_distribs)
then show "x = y"
using assms(2) by simp
qed
lemma lub_ID_reach:
assumes "chain t" and "(⨆n. t n) = ID"
shows "(⨆n. t n⋅x) = x"
using assms by (simp add: lub_distribs)
lemma lub_ID_take_induct:
assumes "chain t" and "(⨆n. t n) = ID"
assumes "adm P" and "⋀n. P (t n⋅x)" shows "P x"
proof -
from ‹chain t› have "chain (λn. t n⋅x)" by simp
from ‹adm P› this ‹⋀n. P (t n⋅x)› have "P (⨆n. t n⋅x)" by (rule admD)
with ‹chain t› ‹(⨆n. t n) = ID› show "P x" by (simp add: lub_distribs)
qed
subsection ‹Finiteness›
text ‹
Let a ``decisive'' function be a deflation that maps every input to
either itself or bottom. Then if a domain's take functions are all
decisive, then all values in the domain are finite.
›
definition
decisive :: "('a::pcpo → 'a) ⇒ bool"
where
"decisive d ⟷ (∀x. d⋅x = x ∨ d⋅x = ⊥)"
lemma decisiveI: "(⋀x. d⋅x = x ∨ d⋅x = ⊥) ⟹ decisive d"
unfolding decisive_def by simp
lemma decisive_cases:
assumes "decisive d" obtains "d⋅x = x" | "d⋅x = ⊥"
using assms unfolding decisive_def by auto
lemma decisive_bottom: "decisive ⊥"
unfolding decisive_def by simp
lemma decisive_ID: "decisive ID"
unfolding decisive_def by simp
lemma decisive_ssum_map:
assumes f: "decisive f"
assumes g: "decisive g"
shows "decisive (ssum_map⋅f⋅g)"
apply (rule decisiveI)
subgoal for s
apply (cases s, simp_all)
apply (rule_tac x=x in decisive_cases [OF f], simp_all)
apply (rule_tac x=y in decisive_cases [OF g], simp_all)
done
done
lemma decisive_sprod_map:
assumes f: "decisive f"
assumes g: "decisive g"
shows "decisive (sprod_map⋅f⋅g)"
apply (rule decisiveI)
subgoal for s
apply (cases s, simp)
subgoal for x y
apply (rule decisive_cases [OF f, where x = x], simp_all)
apply (rule decisive_cases [OF g, where x = y], simp_all)
done
done
done
lemma decisive_abs_rep:
fixes abs rep
assumes iso: "iso abs rep"
assumes d: "decisive d"
shows "decisive (abs oo d oo rep)"
apply (rule decisiveI)
subgoal for s
apply (rule decisive_cases [OF d, where x="rep⋅s"])
apply (simp add: iso.rep_iso [OF iso])
apply (simp add: iso.abs_strict [OF iso])
done
done
lemma lub_ID_finite:
assumes chain: "chain d"
assumes lub: "(⨆n. d n) = ID"
assumes decisive: "⋀n. decisive (d n)"
shows "∃n. d n⋅x = x"
proof -
have 1: "chain (λn. d n⋅x)" using chain by simp
have 2: "(⨆n. d n⋅x) = x" using chain lub by (rule lub_ID_reach)
have "∀n. d n⋅x = x ∨ d n⋅x = ⊥"
using decisive unfolding decisive_def by simp
hence "range (λn. d n⋅x) ⊆ {x, ⊥}"
by auto
hence "finite (range (λn. d n⋅x))"
by (rule finite_subset, simp)
with 1 have "finite_chain (λn. d n⋅x)"
by (rule finite_range_imp_finch)
then have "∃n. (⨆n. d n⋅x) = d n⋅x"
unfolding finite_chain_def by (auto simp add: maxinch_is_thelub)
with 2 show "∃n. d n⋅x = x" by (auto elim: sym)
qed
lemma lub_ID_finite_take_induct:
assumes "chain d" and "(⨆n. d n) = ID" and "⋀n. decisive (d n)"
shows "(⋀n. P (d n⋅x)) ⟹ P x"
using lub_ID_finite [OF assms] by metis
subsection ‹Proofs about constructor functions›
text ‹Lemmas for proving nchotomy rule:›
lemma ex_one_bottom_iff:
"(∃x. P x ∧ x ≠ ⊥) = P ONE"
by simp
lemma ex_up_bottom_iff:
"(∃x. P x ∧ x ≠ ⊥) = (∃x. P (up⋅x))"
by (safe, case_tac x, auto)
lemma ex_sprod_bottom_iff:
"(∃y. P y ∧ y ≠ ⊥) =
(∃x y. (P (:x, y:) ∧ x ≠ ⊥) ∧ y ≠ ⊥)"
by (safe, case_tac y, auto)
lemma ex_sprod_up_bottom_iff:
"(∃y. P y ∧ y ≠ ⊥) =
(∃x y. P (:up⋅x, y:) ∧ y ≠ ⊥)"
by (safe, case_tac y, simp, case_tac x, auto)
lemma ex_ssum_bottom_iff:
"(∃x. P x ∧ x ≠ ⊥) =
((∃x. P (sinl⋅x) ∧ x ≠ ⊥) ∨
(∃x. P (sinr⋅x) ∧ x ≠ ⊥))"
by (safe, case_tac x, auto)
lemma exh_start: "p = ⊥ ∨ (∃x. p = x ∧ x ≠ ⊥)"
by auto
lemmas ex_bottom_iffs =
ex_ssum_bottom_iff
ex_sprod_up_bottom_iff
ex_sprod_bottom_iff
ex_up_bottom_iff
ex_one_bottom_iff
text ‹Rules for turning nchotomy into exhaust:›
lemma exh_casedist0: "⟦R; R ⟹ P⟧ ⟹ P"
by auto
lemma exh_casedist1: "((P ∨ Q ⟹ R) ⟹ S) ≡ (⟦P ⟹ R; Q ⟹ R⟧ ⟹ S)"
by rule auto
lemma exh_casedist2: "(∃x. P x ⟹ Q) ≡ (⋀x. P x ⟹ Q)"
by rule auto
lemma exh_casedist3: "(P ∧ Q ⟹ R) ≡ (P ⟹ Q ⟹ R)"
by rule auto
lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3
text ‹Rules for proving constructor properties›
lemmas con_strict_rules =
sinl_strict sinr_strict spair_strict1 spair_strict2
lemmas con_bottom_iff_rules =
sinl_bottom_iff sinr_bottom_iff spair_bottom_iff up_defined ONE_defined
lemmas con_below_iff_rules =
sinl_below sinr_below sinl_below_sinr sinr_below_sinl con_bottom_iff_rules
lemmas con_eq_iff_rules =
sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_bottom_iff_rules
lemmas sel_strict_rules =
cfcomp2 sscase1 sfst_strict ssnd_strict fup1
lemma sel_app_extra_rules:
"sscase⋅ID⋅⊥⋅(sinr⋅x) = ⊥"
"sscase⋅ID⋅⊥⋅(sinl⋅x) = x"
"sscase⋅⊥⋅ID⋅(sinl⋅x) = ⊥"
"sscase⋅⊥⋅ID⋅(sinr⋅x) = x"
"fup⋅ID⋅(up⋅x) = x"
by (cases "x = ⊥", simp, simp)+
lemmas sel_app_rules =
sel_strict_rules sel_app_extra_rules
ssnd_spair sfst_spair up_defined spair_defined
lemmas sel_bottom_iff_rules =
cfcomp2 sfst_bottom_iff ssnd_bottom_iff
lemmas take_con_rules =
ssum_map_sinl' ssum_map_sinr' sprod_map_spair' u_map_up
deflation_strict deflation_ID ID1 cfcomp2
subsection ‹ML setup›
named_theorems domain_deflation "theorems like deflation a ==> deflation (foo_map$a)"
and domain_map_ID "theorems like foo_map$ID = ID"
ML_file ‹Tools/Domain/domain_take_proofs.ML›
ML_file ‹Tools/cont_consts.ML›
ML_file ‹Tools/cont_proc.ML›
simproc_setup cont ("cont f") = ‹K ContProc.cont_proc›
ML_file ‹Tools/Domain/domain_constructors.ML›
ML_file ‹Tools/Domain/domain_induction.ML›
subsection ‹Representations of types›
lemma emb_prj: "emb⋅((prj⋅x)::'a::domain) = cast⋅DEFL('a)⋅x"
by (simp add: cast_DEFL)
lemma emb_prj_emb:
fixes x :: "'a::domain"
assumes "DEFL('a) ⊑ DEFL('b)"
shows "emb⋅(prj⋅(emb⋅x) :: 'b::domain) = emb⋅x"
unfolding emb_prj
apply (rule cast.belowD)
apply (rule monofun_cfun_arg [OF assms])
apply (simp add: cast_DEFL)
done
lemma prj_emb_prj:
assumes "DEFL('a::domain) ⊑ DEFL('b::domain)"
shows "prj⋅(emb⋅(prj⋅x :: 'b)) = (prj⋅x :: 'a)"
apply (rule emb_eq_iff [THEN iffD1])
apply (simp only: emb_prj)
apply (rule deflation_below_comp1)
apply (rule deflation_cast)
apply (rule deflation_cast)
apply (rule monofun_cfun_arg [OF assms])
done
text ‹Isomorphism lemmas used internally by the domain package:›
lemma domain_abs_iso:
fixes abs and rep
assumes DEFL: "DEFL('b::domain) = DEFL('a::domain)"
assumes abs_def: "(abs :: 'a → 'b) ≡ prj oo emb"
assumes rep_def: "(rep :: 'b → 'a) ≡ prj oo emb"
shows "rep⋅(abs⋅x) = x"
unfolding abs_def rep_def
by (simp add: emb_prj_emb DEFL)
lemma domain_rep_iso:
fixes abs and rep
assumes DEFL: "DEFL('b::domain) = DEFL('a::domain)"
assumes abs_def: "(abs :: 'a → 'b) ≡ prj oo emb"
assumes rep_def: "(rep :: 'b → 'a) ≡ prj oo emb"
shows "abs⋅(rep⋅x) = x"
unfolding abs_def rep_def
by (simp add: emb_prj_emb DEFL)
subsection ‹Deflations as sets›
definition defl_set :: "'a::bifinite defl ⇒ 'a set"
where "defl_set A = {x. cast⋅A⋅x = x}"
lemma adm_defl_set: "adm (λx. x ∈ defl_set A)"
unfolding defl_set_def by simp
lemma defl_set_bottom: "⊥ ∈ defl_set A"
unfolding defl_set_def by simp
lemma defl_set_cast [simp]: "cast⋅A⋅x ∈ defl_set A"
unfolding defl_set_def by simp
lemma defl_set_subset_iff: "defl_set A ⊆ defl_set B ⟷ A ⊑ B"
apply (simp add: defl_set_def subset_eq cast_below_cast [symmetric])
apply (auto simp add: cast.belowI cast.belowD)
done
subsection ‹Proving a subtype is representable›
text ‹Temporarily relax type constraints.›
setup ‹
fold Sign.add_const_constraint
[ (\<^const_name>‹defl›, SOME \<^typ>‹'a::pcpo itself ⇒ udom defl›)
, (\<^const_name>‹emb›, SOME \<^typ>‹'a::pcpo → udom›)
, (\<^const_name>‹prj›, SOME \<^typ>‹udom → 'a::pcpo›)
, (\<^const_name>‹liftdefl›, SOME \<^typ>‹'a::pcpo itself ⇒ udom u defl›)
, (\<^const_name>‹liftemb›, SOME \<^typ>‹'a::pcpo u → udom u›)
, (\<^const_name>‹liftprj›, SOME \<^typ>‹udom u → 'a::pcpo u›) ]
›
lemma typedef_domain_class:
fixes Rep :: "'a::pcpo ⇒ udom"
fixes Abs :: "udom ⇒ 'a::pcpo"
fixes t :: "udom defl"
assumes type: "type_definition Rep Abs (defl_set t)"
assumes below: "(⊑) ≡ λx y. Rep x ⊑ Rep y"
assumes emb: "emb ≡ (Λ x. Rep x)"
assumes prj: "prj ≡ (Λ x. Abs (cast⋅t⋅x))"
assumes defl: "defl ≡ (λ a::'a itself. t)"
assumes liftemb: "(liftemb :: 'a u → udom u) ≡ u_map⋅emb"
assumes liftprj: "(liftprj :: udom u → 'a u) ≡ u_map⋅prj"
assumes liftdefl: "(liftdefl :: 'a itself ⇒ _) ≡ (λt. liftdefl_of⋅DEFL('a))"
shows "OFCLASS('a, domain_class)"
proof
have emb_beta: "⋀x. emb⋅x = Rep x"
unfolding emb
apply (rule beta_cfun)
apply (rule typedef_cont_Rep [OF type below adm_defl_set cont_id])
done
have prj_beta: "⋀y. prj⋅y = Abs (cast⋅t⋅y)"
unfolding prj
apply (rule beta_cfun)
apply (rule typedef_cont_Abs [OF type below adm_defl_set])
apply simp_all
done
have prj_emb: "⋀x::'a. prj⋅(emb⋅x) = x"
using type_definition.Rep [OF type]
unfolding prj_beta emb_beta defl_set_def
by (simp add: type_definition.Rep_inverse [OF type])
have emb_prj: "⋀y. emb⋅(prj⋅y :: 'a) = cast⋅t⋅y"
unfolding prj_beta emb_beta
by (simp add: type_definition.Abs_inverse [OF type])
show "ep_pair (emb :: 'a → udom) prj"
apply standard
apply (simp add: prj_emb)
apply (simp add: emb_prj cast.below)
done
show "cast⋅DEFL('a) = emb oo (prj :: udom → 'a)"
by (rule cfun_eqI, simp add: defl emb_prj)
qed (simp_all only: liftemb liftprj liftdefl)
lemma typedef_DEFL:
assumes "defl ≡ (λa::'a::pcpo itself. t)"
shows "DEFL('a::pcpo) = t"
unfolding assms ..
text ‹Restore original typing constraints.›
setup ‹
fold Sign.add_const_constraint
[(\<^const_name>‹defl›, SOME \<^typ>‹'a::domain itself ⇒ udom defl›),
(\<^const_name>‹emb›, SOME \<^typ>‹'a::domain → udom›),
(\<^const_name>‹prj›, SOME \<^typ>‹udom → 'a::domain›),
(\<^const_name>‹liftdefl›, SOME \<^typ>‹'a::predomain itself ⇒ udom u defl›),
(\<^const_name>‹liftemb›, SOME \<^typ>‹'a::predomain u → udom u›),
(\<^const_name>‹liftprj›, SOME \<^typ>‹udom u → 'a::predomain u›)]
›
ML_file ‹Tools/domaindef.ML›
subsection ‹Isomorphic deflations›
definition isodefl :: "('a::domain → 'a) ⇒ udom defl ⇒ bool"
where "isodefl d t ⟷ cast⋅t = emb oo d oo prj"
definition isodefl' :: "('a::predomain → 'a) ⇒ udom u defl ⇒ bool"
where "isodefl' d t ⟷ cast⋅t = liftemb oo u_map⋅d oo liftprj"
lemma isodeflI: "(⋀x. cast⋅t⋅x = emb⋅(d⋅(prj⋅x))) ⟹ isodefl d t"
unfolding isodefl_def by (simp add: cfun_eqI)
lemma cast_isodefl: "isodefl d t ⟹ cast⋅t = (Λ x. emb⋅(d⋅(prj⋅x)))"
unfolding isodefl_def by (simp add: cfun_eqI)
lemma isodefl_strict: "isodefl d t ⟹ d⋅⊥ = ⊥"
unfolding isodefl_def
by (drule cfun_fun_cong [where x="⊥"], simp)
lemma isodefl_imp_deflation:
fixes d :: "'a::domain → 'a"
assumes "isodefl d t" shows "deflation d"
proof
note assms [unfolded isodefl_def, simp]
fix x :: 'a
show "d⋅(d⋅x) = d⋅x"
using cast.idem [of t "emb⋅x"] by simp
show "d⋅x ⊑ x"
using cast.below [of t "emb⋅x"] by simp
qed
lemma isodefl_ID_DEFL: "isodefl (ID :: 'a → 'a) DEFL('a::domain)"
unfolding isodefl_def by (simp add: cast_DEFL)
lemma isodefl_LIFTDEFL:
"isodefl' (ID :: 'a → 'a) LIFTDEFL('a::predomain)"
unfolding isodefl'_def by (simp add: cast_liftdefl u_map_ID)
lemma isodefl_DEFL_imp_ID: "isodefl (d :: 'a → 'a) DEFL('a::domain) ⟹ d = ID"
unfolding isodefl_def
apply (simp add: cast_DEFL)
apply (simp add: cfun_eq_iff)
apply (rule allI)
apply (drule_tac x="emb⋅x" in spec)
apply simp
done
lemma isodefl_bottom: "isodefl ⊥ ⊥"
unfolding isodefl_def by (simp add: cfun_eq_iff)
lemma adm_isodefl:
"cont f ⟹ cont g ⟹ adm (λx. isodefl (f x) (g x))"
unfolding isodefl_def by simp
lemma isodefl_lub:
assumes "chain d" and "chain t"
assumes "⋀i. isodefl (d i) (t i)"
shows "isodefl (⨆i. d i) (⨆i. t i)"
using assms unfolding isodefl_def
by (simp add: contlub_cfun_arg contlub_cfun_fun)
lemma isodefl_fix:
assumes "⋀d t. isodefl d t ⟹ isodefl (f⋅d) (g⋅t)"
shows "isodefl (fix⋅f) (fix⋅g)"
unfolding fix_def2
apply (rule isodefl_lub, simp, simp)
apply (induct_tac i)
apply (simp add: isodefl_bottom)
apply (simp add: assms)
done
lemma isodefl_abs_rep:
fixes abs and rep and d
assumes DEFL: "DEFL('b::domain) = DEFL('a::domain)"
assumes abs_def: "(abs :: 'a → 'b) ≡ prj oo emb"
assumes rep_def: "(rep :: 'b → 'a) ≡ prj oo emb"
shows "isodefl d t ⟹ isodefl (abs oo d oo rep) t"
unfolding isodefl_def
by (simp add: cfun_eq_iff assms prj_emb_prj emb_prj_emb)
lemma isodefl'_liftdefl_of: "isodefl d t ⟹ isodefl' d (liftdefl_of⋅t)"
unfolding isodefl_def isodefl'_def
by (simp add: cast_liftdefl_of u_map_oo liftemb_eq liftprj_eq)
lemma isodefl_sfun:
"isodefl d1 t1 ⟹ isodefl d2 t2 ⟹
isodefl (sfun_map⋅d1⋅d2) (sfun_defl⋅t1⋅t2)"
apply (rule isodeflI)
apply (simp add: cast_sfun_defl cast_isodefl)
apply (simp add: emb_sfun_def prj_sfun_def)
apply (simp add: sfun_map_map isodefl_strict)
done
lemma isodefl_ssum:
"isodefl d1 t1 ⟹ isodefl d2 t2 ⟹
isodefl (ssum_map⋅d1⋅d2) (ssum_defl⋅t1⋅t2)"
apply (rule isodeflI)
apply (simp add: cast_ssum_defl cast_isodefl)
apply (simp add: emb_ssum_def prj_ssum_def)
apply (simp add: ssum_map_map isodefl_strict)
done
lemma isodefl_sprod:
"isodefl d1 t1 ⟹ isodefl d2 t2 ⟹
isodefl (sprod_map⋅d1⋅d2) (sprod_defl⋅t1⋅t2)"
apply (rule isodeflI)
apply (simp add: cast_sprod_defl cast_isodefl)
apply (simp add: emb_sprod_def prj_sprod_def)
apply (simp add: sprod_map_map isodefl_strict)
done
lemma isodefl_prod:
"isodefl d1 t1 ⟹ isodefl d2 t2 ⟹
isodefl (prod_map⋅d1⋅d2) (prod_defl⋅t1⋅t2)"
apply (rule isodeflI)
apply (simp add: cast_prod_defl cast_isodefl)
apply (simp add: emb_prod_def prj_prod_def)
apply (simp add: prod_map_map cfcomp1)
done
lemma isodefl_u:
"isodefl d t ⟹ isodefl (u_map⋅d) (u_defl⋅t)"
apply (rule isodeflI)
apply (simp add: cast_u_defl cast_isodefl)
apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq u_map_map)
done
lemma isodefl_u_liftdefl:
"isodefl' d t ⟹ isodefl (u_map⋅d) (u_liftdefl⋅t)"
apply (rule isodeflI)
apply (simp add: cast_u_liftdefl isodefl'_def)
apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq)
done
lemma encode_prod_u_map:
"encode_prod_u⋅(u_map⋅(prod_map⋅f⋅g)⋅(decode_prod_u⋅x))
= sprod_map⋅(u_map⋅f)⋅(u_map⋅g)⋅x"
unfolding encode_prod_u_def decode_prod_u_def
apply (case_tac x, simp, rename_tac a b)
apply (case_tac a, simp, case_tac b, simp, simp)
done
lemma isodefl_prod_u:
assumes "isodefl' d1 t1" and "isodefl' d2 t2"
shows "isodefl' (prod_map⋅d1⋅d2) (prod_liftdefl⋅t1⋅t2)"
using assms unfolding isodefl'_def
unfolding liftemb_prod_def liftprj_prod_def
by (simp add: cast_prod_liftdefl cfcomp1 encode_prod_u_map sprod_map_map)
lemma encode_cfun_map:
"encode_cfun⋅(cfun_map⋅f⋅g⋅(decode_cfun⋅x))
= sfun_map⋅(u_map⋅f)⋅g⋅x"
unfolding encode_cfun_def decode_cfun_def
apply (simp add: sfun_eq_iff cfun_map_def sfun_map_def)
apply (rule cfun_eqI, rename_tac y, case_tac y, simp_all)
done
lemma isodefl_cfun:
assumes "isodefl (u_map⋅d1) t1" and "isodefl d2 t2"
shows "isodefl (cfun_map⋅d1⋅d2) (sfun_defl⋅t1⋅t2)"
using isodefl_sfun [OF assms] unfolding isodefl_def
by (simp add: emb_cfun_def prj_cfun_def cfcomp1 encode_cfun_map)
subsection ‹Setting up the domain package›
named_theorems domain_defl_simps "theorems like DEFL('a t) = t_defl$DEFL('a)"
and domain_isodefl "theorems like isodefl d t ==> isodefl (foo_map$d) (foo_defl$t)"
ML_file ‹Tools/Domain/domain_isomorphism.ML›
ML_file ‹Tools/Domain/domain_axioms.ML›
ML_file ‹Tools/Domain/domain.ML›
lemmas [domain_defl_simps] =
DEFL_cfun DEFL_sfun DEFL_ssum DEFL_sprod DEFL_prod DEFL_u
liftdefl_eq LIFTDEFL_prod u_liftdefl_liftdefl_of
lemmas [domain_map_ID] =
cfun_map_ID sfun_map_ID ssum_map_ID sprod_map_ID prod_map_ID u_map_ID
lemmas [domain_isodefl] =
isodefl_u isodefl_sfun isodefl_ssum isodefl_sprod
isodefl_cfun isodefl_prod isodefl_prod_u isodefl'_liftdefl_of
isodefl_u_liftdefl
lemmas [domain_deflation] =
deflation_cfun_map deflation_sfun_map deflation_ssum_map
deflation_sprod_map deflation_prod_map deflation_u_map
setup ‹
fold Domain_Take_Proofs.add_rec_type
[(\<^type_name>‹cfun›, [true, true]),
(\<^type_name>‹sfun›, [true, true]),
(\<^type_name>‹ssum›, [true, true]),
(\<^type_name>‹sprod›, [true, true]),
(\<^type_name>‹prod›, [true, true]),
(\<^type_name>‹u›, [true])]
›
end