Theory Cpo

(*  Title:      HOL/HOLCF/Cpo.thy
    Author:     Franz Regensburger
    Author:     Tobias Nipkow
    Author:     Brian Huffman

Foundations of HOLCF: complete partial orders etc.
*)

theory Cpo
  imports Main
begin

section ‹Partial orders›

declare [[typedef_overloaded]]


subsection ‹Type class for partial orders›

class below =
  fixes below :: "'a  'a  bool"
begin

notation (ASCII)
  below (infix << 50)

notation
  below (infix  50)

abbreviation not_below :: "'a  'a  bool"  (infix \<notsqsubseteq> 50)
  where "not_below x y  ¬ below x y"

notation (ASCII)
  not_below  (infix ~<< 50)

lemma below_eq_trans: "a  b  b = c  a  c"
  by (rule subst)

lemma eq_below_trans: "a = b  b  c  a  c"
  by (rule ssubst)

end

class po = below +
  assumes below_refl [iff]: "x  x"
  assumes below_trans: "x  y  y  z  x  z"
  assumes below_antisym: "x  y  y  x  x = y"
begin

lemma eq_imp_below: "x = y  x  y"
  by simp

lemma box_below: "a  b  c  a  b  d  c  d"
  by (rule below_trans [OF below_trans])

lemma po_eq_conv: "x = y  x  y  y  x"
  by (fast intro!: below_antisym)

lemma rev_below_trans: "y  z  x  y  x  z"
  by (rule below_trans)

lemma not_below2not_eq: "x \<notsqsubseteq> y  x  y"
  by auto

end

lemmas HOLCF_trans_rules [trans] =
  below_trans
  below_antisym
  below_eq_trans
  eq_below_trans

context po
begin

subsection ‹Upper bounds›

definition is_ub :: "'a set  'a  bool" (infix <| 55)
  where "S <| x  (yS. y  x)"

lemma is_ubI: "(x. x  S  x  u)  S <| u"
  by (simp add: is_ub_def)

lemma is_ubD: "S <| u; x  S  x  u"
  by (simp add: is_ub_def)

lemma ub_imageI: "(x. x  S  f x  u)  (λx. f x) ` S <| u"
  unfolding is_ub_def by fast

lemma ub_imageD: "f ` S <| u; x  S  f x  u"
  unfolding is_ub_def by fast

lemma ub_rangeI: "(i. S i  x)  range S <| x"
  unfolding is_ub_def by fast

lemma ub_rangeD: "range S <| x  S i  x"
  unfolding is_ub_def by fast

lemma is_ub_empty [simp]: "{} <| u"
  unfolding is_ub_def by fast

lemma is_ub_insert [simp]: "(insert x A) <| y = (x  y  A <| y)"
  unfolding is_ub_def by fast

lemma is_ub_upward: "S <| x; x  y  S <| y"
  unfolding is_ub_def by (fast intro: below_trans)


subsection ‹Least upper bounds›

definition is_lub :: "'a set  'a  bool" (infix <<| 55)
  where "S <<| x  S <| x  (u. S <| u  x  u)"

definition lub :: "'a set  'a"
  where "lub S = (THE x. S <<| x)"

end

syntax (ASCII)
  "_BLub" :: "[pttrn, 'a set, 'b]  'b" ((‹indent=3 notation=‹binder LUB››LUB _:_./ _) [0,0, 10] 10)

syntax
  "_BLub" :: "[pttrn, 'a set, 'b]  'b" ((‹indent=3 notation=‹binder ⨆››__./ _) [0,0, 10] 10)

syntax_consts
  "_BLub"  lub

translations
  "LUB x:A. t"  "CONST lub ((λx. t) ` A)"

context po
begin

abbreviation Lub  (binder  10)
  where "n. t n  lub (range t)"

notation (ASCII)
  Lub  (binder LUB 10)

text ‹access to some definition as inference rule›

lemma is_lubD1: "S <<| x  S <| x"
  unfolding is_lub_def by fast

lemma is_lubD2: "S <<| x; S <| u  x  u"
  unfolding is_lub_def by fast

lemma is_lubI: "S <| x; u. S <| u  x  u  S <<| x"
  unfolding is_lub_def by fast

lemma is_lub_below_iff: "S <<| x  x  u  S <| u"
  unfolding is_lub_def is_ub_def by (metis below_trans)

text ‹lubs are unique›

lemma is_lub_unique: "S <<| x  S <<| y  x = y"
  unfolding is_lub_def is_ub_def by (blast intro: below_antisym)

text ‹technical lemmas about termlub and termis_lub

lemma is_lub_lub: "M <<| x  M <<| lub M"
  unfolding lub_def by (rule theI [OF _ is_lub_unique])

lemma lub_eqI: "M <<| l  lub M = l"
  by (rule is_lub_unique [OF is_lub_lub])

lemma is_lub_singleton [simp]: "{x} <<| x"
  by (simp add: is_lub_def)

lemma lub_singleton [simp]: "lub {x} = x"
  by (rule is_lub_singleton [THEN lub_eqI])

lemma is_lub_bin: "x  y  {x, y} <<| y"
  by (simp add: is_lub_def)

lemma lub_bin: "x  y  lub {x, y} = y"
  by (rule is_lub_bin [THEN lub_eqI])

lemma is_lub_maximal: "S <| x  x  S  S <<| x"
  by (erule is_lubI, erule (1) is_ubD)

lemma lub_maximal: "S <| x  x  S  lub S = x"
  by (rule is_lub_maximal [THEN lub_eqI])


subsection ‹Countable chains›

definition chain :: "(nat  'a)  bool"
  where ― ‹Here we use countable chains and I prefer to code them as functions!›
  "chain Y = (i. Y i  Y (Suc i))"

lemma chainI: "(i. Y i  Y (Suc i))  chain Y"
  unfolding chain_def by fast

lemma chainE: "chain Y  Y i  Y (Suc i)"
  unfolding chain_def by fast

text ‹chains are monotone functions›

lemma chain_mono_less: "chain Y  i < j  Y i  Y j"
  by (erule less_Suc_induct, erule chainE, erule below_trans)

lemma chain_mono: "chain Y  i  j  Y i  Y j"
  by (cases "i = j") (simp_all add: chain_mono_less)

lemma chain_shift: "chain Y  chain (λi. Y (i + j))"
  by (rule chainI, simp, erule chainE)

text ‹technical lemmas about (least) upper bounds of chains›

lemma is_lub_rangeD1: "range S <<| x  S i  x"
  by (rule is_lubD1 [THEN ub_rangeD])

lemma is_ub_range_shift: "chain S  range (λi. S (i + j)) <| x = range S <| x"
  apply (rule iffI)
   apply (rule ub_rangeI)
   apply (rule_tac y="S (i + j)" in below_trans)
    apply (erule chain_mono)
    apply (rule le_add1)
   apply (erule ub_rangeD)
  apply (rule ub_rangeI)
  apply (erule ub_rangeD)
  done

lemma is_lub_range_shift: "chain S  range (λi. S (i + j)) <<| x = range S <<| x"
  by (simp add: is_lub_def is_ub_range_shift)

text ‹the lub of a constant chain is the constant›

lemma chain_const [simp]: "chain (λi. c)"
  by (simp add: chainI)

lemma is_lub_const: "range (λx. c) <<| c"
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)

lemma lub_const [simp]: "(i. c) = c"
  by (rule is_lub_const [THEN lub_eqI])


subsection ‹Finite chains›

definition max_in_chain :: "nat  (nat  'a)  bool"
  where ― ‹finite chains, needed for monotony of continuous functions›
  "max_in_chain i C  (j. i  j  C i = C j)"

definition finite_chain :: "(nat  'a)  bool"
  where "finite_chain C = (chain C  (i. max_in_chain i C))"

text ‹results about finite chains›

lemma max_in_chainI: "(j. i  j  Y i = Y j)  max_in_chain i Y"
  unfolding max_in_chain_def by fast

lemma max_in_chainD: "max_in_chain i Y  i  j  Y i = Y j"
  unfolding max_in_chain_def by fast

lemma finite_chainI: "chain C  max_in_chain i C  finite_chain C"
  unfolding finite_chain_def by fast

lemma finite_chainE: "finite_chain C; i. chain C; max_in_chain i C  R  R"
  unfolding finite_chain_def by fast

lemma lub_finch1: "chain C  max_in_chain i C  range C <<| C i"
  apply (rule is_lubI)
   apply (rule ub_rangeI, rename_tac j)
   apply (rule_tac x=i and y=j in linorder_le_cases)
    apply (drule (1) max_in_chainD, simp)
   apply (erule (1) chain_mono)
  apply (erule ub_rangeD)
  done

lemma lub_finch2: "finite_chain C  range C <<| C (LEAST i. max_in_chain i C)"
  apply (erule finite_chainE)
  apply (erule LeastI2 [where Q="λi. range C <<| C i"])
  apply (erule (1) lub_finch1)
  done

lemma finch_imp_finite_range: "finite_chain Y  finite (range Y)"
  apply (erule finite_chainE)
  apply (rule_tac B="Y ` {..i}" in finite_subset)
   apply (rule subsetI)
   apply (erule rangeE, rename_tac j)
   apply (rule_tac x=i and y=j in linorder_le_cases)
    apply (subgoal_tac "Y j = Y i", simp)
    apply (simp add: max_in_chain_def)
   apply simp
  apply simp
  done

lemma finite_range_has_max:
  fixes f :: "nat  'a"
    and r :: "'a  'a  bool"
  assumes mono: "i j. i  j  r (f i) (f j)"
  assumes finite_range: "finite (range f)"
  shows "k. i. r (f i) (f k)"
proof (intro exI allI)
  fix i :: nat
  let ?j = "LEAST k. f k = f i"
  let ?k = "Max ((λx. LEAST k. f k = x) ` range f)"
  have "?j  ?k"
  proof (rule Max_ge)
    show "finite ((λx. LEAST k. f k = x) ` range f)"
      using finite_range by (rule finite_imageI)
    show "?j  (λx. LEAST k. f k = x) ` range f"
      by (intro imageI rangeI)
  qed
  hence "r (f ?j) (f ?k)"
    by (rule mono)
  also have "f ?j = f i"
    by (rule LeastI, rule refl)
  finally show "r (f i) (f ?k)" .
qed

lemma finite_range_imp_finch: "chain Y  finite (range Y)  finite_chain Y"
  apply (subgoal_tac "k. i. Y i  Y k")
   apply (erule exE)
   apply (rule finite_chainI, assumption)
   apply (rule max_in_chainI)
   apply (rule below_antisym)
    apply (erule (1) chain_mono)
   apply (erule spec)
  apply (rule finite_range_has_max)
   apply (erule (1) chain_mono)
  apply assumption
  done

lemma bin_chain: "x  y  chain (λi. if i=0 then x else y)"
  by (rule chainI) simp

lemma bin_chainmax: "x  y  max_in_chain (Suc 0) (λi. if i=0 then x else y)"
  by (simp add: max_in_chain_def)

lemma is_lub_bin_chain: "x  y  range (λi::nat. if i=0 then x else y) <<| y"
  apply (frule bin_chain)
  apply (drule bin_chainmax)
  apply (drule (1) lub_finch1)
  apply simp
  done

text ‹the maximal element in a chain is its lub›

lemma lub_chain_maxelem: "Y i = c  i. Y i  c  lub (range Y) = c"
  by (blast dest: ub_rangeD intro: lub_eqI is_lubI ub_rangeI)

end


section ‹Classes cpo and pcpo›

subsection ‹Complete partial orders›

text ‹The class cpo of chain complete partial orders›

class cpo = po +
  assumes cpo: "chain S  x. range S <<| x"

default_sort cpo

context cpo
begin

text ‹in cpo's everthing equal to THE lub has lub properties for every chain›

lemma cpo_lubI: "chain S  range S <<| (i. S i)"
  by (fast dest: cpo elim: is_lub_lub)

lemma thelubE: "chain S; (i. S i) = l  range S <<| l"
  by (blast dest: cpo intro: is_lub_lub)

text ‹Properties of the lub›

lemma is_ub_thelub: "chain S  S x  (i. S i)"
  by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1])

lemma is_lub_thelub: "chain S; range S <| x  (i. S i)  x"
  by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2])

lemma lub_below_iff: "chain S  (i. S i)  x  (i. S i  x)"
  by (simp add: is_lub_below_iff [OF cpo_lubI] is_ub_def)

lemma lub_below: "chain S; i. S i  x  (i. S i)  x"
  by (simp add: lub_below_iff)

lemma below_lub: "chain S; x  S i  x  (i. S i)"
  by (erule below_trans, erule is_ub_thelub)

lemma lub_range_mono: "range X  range Y; chain Y; chain X  (i. X i)  (i. Y i)"
  apply (erule lub_below)
  apply (subgoal_tac "j. X i = Y j")
   apply clarsimp
   apply (erule is_ub_thelub)
  apply auto
  done

lemma lub_range_shift: "chain Y  (i. Y (i + j)) = (i. Y i)"
  apply (rule below_antisym)
   apply (rule lub_range_mono)
     apply fast
    apply assumption
   apply (erule chain_shift)
  apply (rule lub_below)
   apply assumption
  apply (rule_tac i="i" in below_lub)
   apply (erule chain_shift)
  apply (erule chain_mono)
  apply (rule le_add1)
  done

lemma maxinch_is_thelub: "chain Y  max_in_chain i Y = ((i. Y i) = Y i)"
  apply (rule iffI)
   apply (fast intro!: lub_eqI lub_finch1)
  apply (unfold max_in_chain_def)
  apply (safe intro!: below_antisym)
   apply (fast elim!: chain_mono)
  apply (drule sym)
  apply (force elim!: is_ub_thelub)
  done

text ‹the ⊑› relation between two chains is preserved by their lubs›

lemma lub_mono: "chain X; chain Y; i. X i  Y i  (i. X i)  (i. Y i)"
  by (fast elim: lub_below below_lub)

text ‹the = relation between two chains is preserved by their lubs›

lemma lub_eq: "(i. X i = Y i)  (i. X i) = (i. Y i)"
  by simp

lemma ch2ch_lub:
  assumes 1: "j. chain (λi. Y i j)"
  assumes 2: "i. chain (λj. Y i j)"
  shows "chain (λi. j. Y i j)"
  apply (rule chainI)
  apply (rule lub_mono [OF 2 2])
  apply (rule chainE [OF 1])
  done

lemma diag_lub:
  assumes 1: "j. chain (λi. Y i j)"
  assumes 2: "i. chain (λj. Y i j)"
  shows "(i. j. Y i j) = (i. Y i i)"
proof (rule below_antisym)
  have 3: "chain (λi. Y i i)"
    apply (rule chainI)
    apply (rule below_trans)
     apply (rule chainE [OF 1])
    apply (rule chainE [OF 2])
    done
  have 4: "chain (λi. j. Y i j)"
    by (rule ch2ch_lub [OF 1 2])
  show "(i. j. Y i j)  (i. Y i i)"
    apply (rule lub_below [OF 4])
    apply (rule lub_below [OF 2])
    apply (rule below_lub [OF 3])
    apply (rule below_trans)
     apply (rule chain_mono [OF 1 max.cobounded1])
    apply (rule chain_mono [OF 2 max.cobounded2])
    done
  show "(i. Y i i)  (i. j. Y i j)"
    apply (rule lub_mono [OF 3 4])
    apply (rule is_ub_thelub [OF 2])
    done
qed

lemma ex_lub:
  assumes 1: "j. chain (λi. Y i j)"
  assumes 2: "i. chain (λj. Y i j)"
  shows "(i. j. Y i j) = (j. i. Y i j)"
  by (simp add: diag_lub 1 2)

end


subsection ‹Pointed cpos›

text ‹The class pcpo of pointed cpos›

class pcpo = cpo +
  assumes least: "x. y. x  y"
begin

definition bottom :: "'a"  ()
  where "bottom = (THE x. y. x  y)"

lemma minimal [iff]: "  x"
  unfolding bottom_def
  apply (rule the1I2)
   apply (rule ex_ex1I)
    apply (rule least)
   apply (blast intro: below_antisym)
  apply simp
  done

end

text ‹Old "UU" syntax:›
abbreviation (input) "UU  bottom"

text ‹Simproc to rewrite term = x to termx = .›
setup Reorient_Proc.add (fn Const_bottom _ => true | _ => false)
simproc_setup reorient_bottom (" = x") = K Reorient_Proc.proc

text ‹useful lemmas about term

lemma below_bottom_iff [simp]: "x    x = "
  by (simp add: po_eq_conv)

lemma eq_bottom_iff: "x =   x  "
  by simp

lemma bottomI: "x    x = "
  by (subst eq_bottom_iff)

lemma lub_eq_bottom_iff: "chain Y  (i. Y i) =   (i. Y i = )"
  by (simp only: eq_bottom_iff lub_below_iff)


subsection ‹Chain-finite and flat cpos›

text ‹further useful classes for HOLCF domains›

class chfin = po +
  assumes chfin: "chain Y  n. max_in_chain n Y"
begin

subclass cpo
  apply standard
  apply (frule chfin)
  apply (blast intro: lub_finch1)
  done

lemma chfin2finch: "chain Y  finite_chain Y"
  by (simp add: chfin finite_chain_def)

end

class flat = pcpo +
  assumes ax_flat: "x  y  x =   x = y"
begin

subclass chfin
proof
  fix Y
  assume *: "chain Y"
  show "n. max_in_chain n Y"
    apply (unfold max_in_chain_def)
    apply (cases "i. Y i = ")
     apply simp
    apply simp
    apply (erule exE)
    apply (rule_tac x="i" in exI)
    apply clarify
    using * apply (blast dest: chain_mono ax_flat)
    done
qed

lemma flat_below_iff: "x  y  x =   x = y"
  by (safe dest!: ax_flat)

lemma flat_eq: "a    a  b = (a = b)"
  by (safe dest!: ax_flat)

end


subsection ‹Discrete cpos›

class discrete_cpo = below +
  assumes discrete_cpo [simp]: "x  y  x = y"
begin

subclass po
  by standard simp_all

text ‹In a discrete cpo, every chain is constant›

lemma discrete_chain_const:
  assumes S: "chain S"
  shows "x. S = (λi. x)"
proof (intro exI ext)
  fix i :: nat
  from S le0 have "S 0  S i" by (rule chain_mono)
  then have "S 0 = S i" by simp
  then show "S i = S 0" by (rule sym)
qed

subclass chfin
proof
  fix S :: "nat  'a"
  assume S: "chain S"
  then have "x. S = (λi. x)"
    by (rule discrete_chain_const)
  then have "max_in_chain 0 S"
    by (auto simp: max_in_chain_def)
  then show "i. max_in_chain i S" ..
qed

end


section ‹Continuity and monotonicity›

subsection ‹Definitions›

definition monofun :: "('a::po  'b::po)  bool"  ― ‹monotonicity›
  where "monofun f  (x y. x  y  f x  f y)"

definition cont :: "('a  'b)  bool"
  where "cont f = (Y. chain Y  range (λi. f (Y i)) <<| f (i. Y i))"

lemma contI: "(Y. chain Y  range (λi. f (Y i)) <<| f (i. Y i))  cont f"
  by (simp add: cont_def)

lemma contE: "cont f  chain Y  range (λi. f (Y i)) <<| f (i. Y i)"
  by (simp add: cont_def)

lemma monofunI: "(x y. x  y  f x  f y)  monofun f"
  by (simp add: monofun_def)

lemma monofunE: "monofun f  x  y  f x  f y"
  by (simp add: monofun_def)


subsection ‹Equivalence of alternate definition›

text ‹monotone functions map chains to chains›

lemma ch2ch_monofun: "monofun f  chain Y  chain (λi. f (Y i))"
  apply (rule chainI)
  apply (erule monofunE)
  apply (erule chainE)
  done

text ‹monotone functions map upper bound to upper bounds›

lemma ub2ub_monofun: "monofun f  range Y <| u  range (λi. f (Y i)) <| f u"
  apply (rule ub_rangeI)
  apply (erule monofunE)
  apply (erule ub_rangeD)
  done

text ‹a lemma about binary chains›

lemma binchain_cont: "cont f  x  y  range (λi::nat. f (if i = 0 then x else y)) <<| f y"
  apply (subgoal_tac "f (i::nat. if i = 0 then x else y) = f y")
   apply (erule subst)
   apply (erule contE)
   apply (erule bin_chain)
  apply (rule_tac f=f in arg_cong)
  apply (erule is_lub_bin_chain [THEN lub_eqI])
  done

text ‹continuity implies monotonicity›

lemma cont2mono: "cont f  monofun f"
  apply (rule monofunI)
  apply (drule (1) binchain_cont)
  apply (drule_tac i=0 in is_lub_rangeD1)
  apply simp
  done

lemmas cont2monofunE = cont2mono [THEN monofunE]

lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun]

text ‹continuity implies preservation of lubs›

lemma cont2contlubE: "cont f  chain Y  f (i. Y i) = (i. f (Y i))"
  apply (rule lub_eqI [symmetric])
  apply (erule (1) contE)
  done

lemma contI2:
  fixes f :: "'a  'b"
  assumes mono: "monofun f"
  assumes below: "Y. chain Y; chain (λi. f (Y i))  f (i. Y i)  (i. f (Y i))"
  shows "cont f"
proof (rule contI)
  fix Y :: "nat  'a"
  assume Y: "chain Y"
  with mono have fY: "chain (λi. f (Y i))"
    by (rule ch2ch_monofun)
  have "(i. f (Y i)) = f (i. Y i)"
    apply (rule below_antisym)
     apply (rule lub_below [OF fY])
     apply (rule monofunE [OF mono])
     apply (rule is_ub_thelub [OF Y])
    apply (rule below [OF Y fY])
    done
  with fY show "range (λi. f (Y i)) <<| f (i. Y i)"
    by (rule thelubE)
qed


subsection ‹Collection of continuity rules›

named_theorems cont2cont "continuity intro rule"


subsection ‹Continuity of basic functions›

text ‹The identity function is continuous›

lemma cont_id [simp, cont2cont]: "cont (λx. x)"
  apply (rule contI)
  apply (erule cpo_lubI)
  done

text ‹constant functions are continuous›

lemma cont_const [simp, cont2cont]: "cont (λx. c)"
  using is_lub_const by (rule contI)

text ‹application of functions is continuous›

lemma cont_apply:
  fixes f :: "'a  'b  'c" and t :: "'a  'b"
  assumes 1: "cont (λx. t x)"
  assumes 2: "x. cont (λy. f x y)"
  assumes 3: "y. cont (λx. f x y)"
  shows "cont (λx. (f x) (t x))"
proof (rule contI2 [OF monofunI])
  fix x y :: "'a"
  assume "x  y"
  then show "f x (t x)  f y (t y)"
    by (auto intro: cont2monofunE [OF 1]
        cont2monofunE [OF 2]
        cont2monofunE [OF 3]
        below_trans)
next
  fix Y :: "nat  'a"
  assume "chain Y"
  then show "f (i. Y i) (t (i. Y i))  (i. f (Y i) (t (Y i)))"
    by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1]
        cont2contlubE [OF 2] ch2ch_cont [OF 2]
        cont2contlubE [OF 3] ch2ch_cont [OF 3]
        diag_lub below_refl)
qed

lemma cont_compose: "cont c  cont (λx. f x)  cont (λx. c (f x))"
  by (rule cont_apply [OF _ _ cont_const])

text ‹Least upper bounds preserve continuity›

lemma cont2cont_lub [simp]:
  assumes chain: "x. chain (λi. F i x)"
    and cont: "i. cont (λx. F i x)"
  shows "cont (λx. i. F i x)"
  apply (rule contI2)
   apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain)
  apply (simp add: cont2contlubE [OF cont])
  apply (simp add: diag_lub ch2ch_cont [OF cont] chain)
  done

text ‹if-then-else is continuous›

lemma cont_if [simp, cont2cont]: "cont f  cont g  cont (λx. if b then f x else g x)"
  by (induct b) simp_all


subsection ‹Finite chains and flat pcpos›

text ‹Monotone functions map finite chains to finite chains.›

lemma monofun_finch2finch: "monofun f  finite_chain Y  finite_chain (λn. f (Y n))"
  by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def)

text ‹The same holds for continuous functions.›

lemma cont_finch2finch: "cont f  finite_chain Y  finite_chain (λn. f (Y n))"
  by (rule cont2mono [THEN monofun_finch2finch])

text ‹All monotone functions with chain-finite domain are continuous.›

lemma chfindom_monofun2cont: "monofun f  cont f"
  for f :: "'a::chfin  'b"
  apply (erule contI2)
  apply (frule chfin2finch)
  apply (clarsimp simp add: finite_chain_def)
  apply (subgoal_tac "max_in_chain i (λi. f (Y i))")
   apply (simp add: maxinch_is_thelub ch2ch_monofun)
  apply (force simp add: max_in_chain_def)
  done

text ‹All strict functions with flat domain are continuous.›

lemma flatdom_strict2mono: "f  =   monofun f"
  for f :: "'a::flat  'b::pcpo"
  apply (rule monofunI)
  apply (drule ax_flat)
  apply auto
  done

lemma flatdom_strict2cont: "f  =   cont f"
  for f :: "'a::flat  'b::pcpo"
  by (rule flatdom_strict2mono [THEN chfindom_monofun2cont])

text ‹All functions with discrete domain are continuous.›

lemma cont_discrete_cpo [simp, cont2cont]: "cont f"
  for f :: "'a::discrete_cpo  'b"
  apply (rule contI)
  apply (drule discrete_chain_const, clarify)
  apply simp
  done


section ‹Admissibility and compactness›

subsection ‹Definitions›

context cpo
begin

definition adm :: "('a  bool)  bool"
  where "adm P  (Y. chain Y  (i. P (Y i))  P (i. Y i))"

lemma admI: "(Y. chain Y; i. P (Y i)  P (i. Y i))  adm P"
  unfolding adm_def by fast

lemma admD: "adm P  chain Y  (i. P (Y i))  P (i. Y i)"
  unfolding adm_def by fast

lemma admD2: "adm (λx. ¬ P x)  chain Y  P (i. Y i)  i. P (Y i)"
  unfolding adm_def by fast

lemma triv_admI: "x. P x  adm P"
  by (rule admI) (erule spec)

end


subsection ‹Admissibility on chain-finite types›

text ‹For chain-finite (easy) types every formula is admissible.›

lemma adm_chfin [simp]: "adm P" for P :: "'a::chfin  bool"
  by (rule admI, frule chfin, auto simp add: maxinch_is_thelub)


subsection ‹Admissibility of special formulae and propagation›

context cpo
begin

lemma adm_const [simp]: "adm (λx. t)"
  by (rule admI, simp)

lemma adm_conj [simp]: "adm (λx. P x)  adm (λx. Q x)  adm (λx. P x  Q x)"
  by (fast intro: admI elim: admD)

lemma adm_all [simp]: "(y. adm (λx. P x y))  adm (λx. y. P x y)"
  by (fast intro: admI elim: admD)

lemma adm_ball [simp]: "(y. y  A  adm (λx. P x y))  adm (λx. yA. P x y)"
  by (fast intro: admI elim: admD)

text ‹Admissibility for disjunction is hard to prove. It requires 2 lemmas.›

lemma adm_disj_lemma1:
  assumes adm: "adm P"
  assumes chain: "chain Y"
  assumes P: "i. ji. P (Y j)"
  shows "P (i. Y i)"
proof -
  define f where "f i = (LEAST j. i  j  P (Y j))" for i
  have chain': "chain (λi. Y (f i))"
    unfolding f_def
    apply (rule chainI)
    apply (rule chain_mono [OF chain])
    apply (rule Least_le)
    apply (rule LeastI2_ex)
     apply (simp_all add: P)
    done
  have f1: "i. i  f i" and f2: "i. P (Y (f i))"
    using LeastI_ex [OF P [rule_format]] by (simp_all add: f_def)
  have lub_eq: "(i. Y i) = (i. Y (f i))"
    apply (rule below_antisym)
     apply (rule lub_mono [OF chain chain'])
     apply (rule chain_mono [OF chain f1])
    apply (rule lub_range_mono [OF _ chain chain'])
    apply clarsimp
    done
  show "P (i. Y i)"
    unfolding lub_eq using adm chain' f2 by (rule admD)
qed

lemma adm_disj_lemma2: "n::nat. P n  Q n  (i. ji. P j)  (i. ji. Q j)"
  apply (erule contrapos_pp)
  apply (clarsimp, rename_tac a b)
  apply (rule_tac x="max a b" in exI)
  apply simp
  done

lemma adm_disj [simp]: "adm (λx. P x)  adm (λx. Q x)  adm (λx. P x  Q x)"
  apply (rule admI)
  apply (erule adm_disj_lemma2 [THEN disjE])
   apply (erule (2) adm_disj_lemma1 [THEN disjI1])
  apply (erule (2) adm_disj_lemma1 [THEN disjI2])
  done

lemma adm_imp [simp]: "adm (λx. ¬ P x)  adm (λx. Q x)  adm (λx. P x  Q x)"
  by (subst imp_conv_disj) (rule adm_disj)

lemma adm_iff [simp]: "adm (λx. P x  Q x)  adm (λx. Q x  P x)  adm (λx. P x  Q x)"
  by (subst iff_conv_conj_imp) (rule adm_conj)

end

text ‹admissibility and continuity›

lemma adm_below [simp]: "cont (λx. u x)  cont (λx. v x)  adm (λx. u x  v x)"
  by (simp add: adm_def cont2contlubE lub_mono ch2ch_cont)

lemma adm_eq [simp]: "cont (λx. u x)  cont (λx. v x)  adm (λx. u x = v x)"
  by (simp add: po_eq_conv)

lemma adm_subst: "cont (λx. t x)  adm P  adm (λx. P (t x))"
  by (simp add: adm_def cont2contlubE ch2ch_cont)

lemma adm_not_below [simp]: "cont (λx. t x)  adm (λx. t x \<notsqsubseteq> u)"
  by (rule admI) (simp add: cont2contlubE ch2ch_cont lub_below_iff)


subsection ‹Compactness›

context cpo
begin

definition compact :: "'a  bool"
  where "compact k = adm (λx. k \<notsqsubseteq> x)"

lemma compactI: "adm (λx. k \<notsqsubseteq> x)  compact k"
  unfolding compact_def .

lemma compactD: "compact k  adm (λx. k \<notsqsubseteq> x)"
  unfolding compact_def .

lemma compactI2: "(Y. chain Y; x  (i. Y i)  i. x  Y i)  compact x"
  unfolding compact_def adm_def by fast

lemma compactD2: "compact x  chain Y  x  (i. Y i)  i. x  Y i"
  unfolding compact_def adm_def by fast

lemma compact_below_lub_iff: "compact x  chain Y  x  (i. Y i)  (i. x  Y i)"
  by (fast intro: compactD2 elim: below_lub)

end

lemma compact_chfin [simp]: "compact x" for x :: "'a::chfin"
  by (rule compactI [OF adm_chfin])

lemma compact_imp_max_in_chain: "chain Y  compact (i. Y i)  i. max_in_chain i Y"
  apply (drule (1) compactD2, simp)
  apply (erule exE, rule_tac x=i in exI)
  apply (rule max_in_chainI)
  apply (rule below_antisym)
   apply (erule (1) chain_mono)
  apply (erule (1) below_trans [OF is_ub_thelub])
  done

text ‹admissibility and compactness›

lemma adm_compact_not_below [simp]:
  "compact k  cont (λx. t x)  adm (λx. k \<notsqsubseteq> t x)"
  unfolding compact_def by (rule adm_subst)

lemma adm_neq_compact [simp]: "compact k  cont (λx. t x)  adm (λx. t x  k)"
  by (simp add: po_eq_conv)

lemma adm_compact_neq [simp]: "compact k  cont (λx. t x)  adm (λx. k  t x)"
  by (simp add: po_eq_conv)

lemma compact_bottom [simp, intro]: "compact "
  by (rule compactI) simp

text ‹Any upward-closed predicate is admissible.›

lemma adm_upward:
  assumes P: "x y. P x; x  y  P y"
  shows "adm P"
  by (rule admI, drule spec, erule P, erule is_ub_thelub)

lemmas adm_lemmas =
  adm_const adm_conj adm_all adm_ball adm_disj adm_imp adm_iff
  adm_below adm_eq adm_not_below
  adm_compact_not_below adm_compact_neq adm_neq_compact


section ‹Class instances for the full function space›

subsection ‹Full function space is a partial order›

instantiation "fun"  :: (type, below) below
begin

definition below_fun_def: "(⊑)  (λf g. x. f x  g x)"

instance ..
end

instance "fun" :: (type, po) po
proof
  fix f g h :: "'a  'b"
  show "f  f"
    by (simp add: below_fun_def)
  show "f  g  g  f  f = g"
    by (simp add: below_fun_def fun_eq_iff below_antisym)
  show "f  g  g  h  f  h"
    unfolding below_fun_def by (fast elim: below_trans)
qed

lemma fun_below_iff: "f  g  (x. f x  g x)"
  by (simp add: below_fun_def)

lemma fun_belowI: "(x. f x  g x)  f  g"
  by (simp add: below_fun_def)

lemma fun_belowD: "f  g  f x  g x"
  by (simp add: below_fun_def)


subsection ‹Full function space is chain complete›

text ‹Properties of chains of functions.›

lemma fun_chain_iff: "chain S  (x. chain (λi. S i x))"
  by (auto simp: chain_def fun_below_iff)

lemma ch2ch_fun: "chain S  chain (λi. S i x)"
  by (simp add: chain_def below_fun_def)

lemma ch2ch_lambda: "(x. chain (λi. S i x))  chain S"
  by (simp add: chain_def below_fun_def)

text ‹Type typ'a::type  'b::cpo is chain complete›

lemma is_lub_lambda: "(x. range (λi. Y i x) <<| f x)  range Y <<| f"
  by (simp add: is_lub_def is_ub_def below_fun_def)

lemma is_lub_fun: "chain S  range S <<| (λx. i. S i x)"
  for S :: "nat  'a::type  'b"
  apply (rule is_lub_lambda)
  apply (rule cpo_lubI)
  apply (erule ch2ch_fun)
  done

lemma lub_fun: "chain S  (i. S i) = (λx. i. S i x)"
  for S :: "nat  'a::type  'b"
  by (rule is_lub_fun [THEN lub_eqI])

instance "fun"  :: (type, cpo) cpo
  by intro_classes (rule exI, erule is_lub_fun)

instance "fun" :: (type, discrete_cpo) discrete_cpo
proof
  fix f g :: "'a  'b"
  show "f  g  f = g"
    by (simp add: fun_below_iff fun_eq_iff)
qed


subsection ‹Full function space is pointed›

lemma minimal_fun: "(λx. )  f"
  by (simp add: below_fun_def)

instance "fun"  :: (type, pcpo) pcpo
  by standard (fast intro: minimal_fun)

lemma inst_fun_pcpo: " = (λx. )"
  by (rule minimal_fun [THEN bottomI, symmetric])

lemma app_strict [simp]: " x = "
  by (simp add: inst_fun_pcpo)

lemma lambda_strict: "(λx. ) = "
  by (rule bottomI, rule minimal_fun)


subsection ‹Propagation of monotonicity and continuity›

text ‹The lub of a chain of monotone functions is monotone.›

lemma adm_monofun: "adm monofun"
  by (rule admI) (simp add: lub_fun fun_chain_iff monofun_def lub_mono)

text ‹The lub of a chain of continuous functions is continuous.›

lemma adm_cont: "adm cont"
  by (rule admI) (simp add: lub_fun fun_chain_iff)

text ‹Function application preserves monotonicity and continuity.›

lemma mono2mono_fun: "monofun f  monofun (λx. f x y)"
  by (simp add: monofun_def fun_below_iff)

lemma cont2cont_fun: "cont f  cont (λx. f x y)"
  apply (rule contI2)
   apply (erule cont2mono [THEN mono2mono_fun])
  apply (simp add: cont2contlubE lub_fun ch2ch_cont)
  done

lemma cont_fun: "cont (λf. f x)"
  using cont_id by (rule cont2cont_fun)

text ‹
  Lambda abstraction preserves monotonicity and continuity.
  (Note (λx. λy. f x y) = f›.)
›

lemma mono2mono_lambda: "(y. monofun (λx. f x y))  monofun f"
  by (simp add: monofun_def fun_below_iff)

lemma cont2cont_lambda [simp]:
  assumes f: "y. cont (λx. f x y)"
  shows "cont f"
  by (rule contI, rule is_lub_lambda, rule contE [OF f])

text ‹What D.A.Schmidt calls continuity of abstraction; never used here›

lemma contlub_lambda: "(x. chain (λi. S i x))  (λx. i. S i x) = (i. (λx. S i x))"
  for S :: "nat  'a::type  'b"
  by (simp add: lub_fun ch2ch_lambda)


section ‹The cpo of cartesian products›

subsection ‹Unit type is a pcpo›

instantiation unit :: discrete_cpo
begin

definition below_unit_def [simp]: "x  (y::unit)  True"

instance
  by standard simp

end

instance unit :: pcpo
  by standard simp


subsection ‹Product type is a partial order›

instantiation prod :: (below, below) below
begin

definition below_prod_def: "(⊑)  λp1 p2. (fst p1  fst p2  snd p1  snd p2)"

instance ..

end

instance prod :: (po, po) po
proof
  fix x y z :: "'a × 'b"
  show "x  x"
    by (simp add: below_prod_def)
  show "x  y  y  x  x = y"
    unfolding below_prod_def prod_eq_iff
    by (fast intro: below_antisym)
  show "x  y  y  z  x  z"
    unfolding below_prod_def
    by (fast intro: below_trans)
qed


subsection ‹Monotonicity of \emph{Pair}, \emph{fst}, \emph{snd}›

lemma prod_belowI: "fst p  fst q  snd p  snd q  p  q"
  by (simp add: below_prod_def)

lemma Pair_below_iff [simp]: "(a, b)  (c, d)  a  c  b  d"
  by (simp add: below_prod_def)

text ‹Pair (_,_)›  is monotone in both arguments›

lemma monofun_pair1: "monofun (λx. (x, y))"
  by (simp add: monofun_def)

lemma monofun_pair2: "monofun (λy. (x, y))"
  by (simp add: monofun_def)

lemma monofun_pair: "x1  x2  y1  y2  (x1, y1)  (x2, y2)"
  by simp

lemma ch2ch_Pair [simp]: "chain X  chain Y  chain (λi. (X i, Y i))"
  by (rule chainI, simp add: chainE)

text termfst and termsnd are monotone›

lemma fst_monofun: "x  y  fst x  fst y"
  by (simp add: below_prod_def)

lemma snd_monofun: "x  y  snd x  snd y"
  by (simp add: below_prod_def)

lemma monofun_fst: "monofun fst"
  by (simp add: monofun_def below_prod_def)

lemma monofun_snd: "monofun snd"
  by (simp add: monofun_def below_prod_def)

lemmas ch2ch_fst [simp] = ch2ch_monofun [OF monofun_fst]

lemmas ch2ch_snd [simp] = ch2ch_monofun [OF monofun_snd]

lemma prod_chain_cases:
  assumes chain: "chain Y"
  obtains A B
  where "chain A" and "chain B" and "Y = (λi. (A i, B i))"
proof
  from chain show "chain (λi. fst (Y i))"
    by (rule ch2ch_fst)
  from chain show "chain (λi. snd (Y i))"
    by (rule ch2ch_snd)
  show "Y = (λi. (fst (Y i), snd (Y i)))"
    by simp
qed


subsection ‹Product type is a cpo›

lemma is_lub_Pair: "range A <<| x  range B <<| y  range (λi. (A i, B i)) <<| (x, y)"
  by (simp add: is_lub_def is_ub_def below_prod_def)

lemma lub_Pair: "chain A  chain B  (i. (A i, B i)) = (i. A i, i. B i)"
  for A :: "nat  'a" and B :: "nat  'b"
  by (fast intro: lub_eqI is_lub_Pair elim: thelubE)

lemma is_lub_prod:
  fixes S :: "nat  ('a × 'b)"
  assumes "chain S"
  shows "range S <<| (i. fst (S i), i. snd (S i))"
  using assms by (auto elim: prod_chain_cases simp: is_lub_Pair cpo_lubI)

lemma lub_prod: "chain S  (i. S i) = (i. fst (S i), i. snd (S i))"
  for S :: "nat  'a × 'b"
  by (rule is_lub_prod [THEN lub_eqI])

instance prod :: (cpo, cpo) cpo
proof
  fix S :: "nat  ('a × 'b)"
  assume "chain S"
  then have "range S <<| (i. fst (S i), i. snd (S i))"
    by (rule is_lub_prod)
  then show "x. range S <<| x" ..
qed

instance prod :: (discrete_cpo, discrete_cpo) discrete_cpo
proof
  show "x  y  x = y" for x y :: "'a × 'b"
    by (simp add: below_prod_def prod_eq_iff)
qed


subsection ‹Product type is pointed›

lemma minimal_prod: "(, )  p"
  by (simp add: below_prod_def)

instance prod :: (pcpo, pcpo) pcpo
  by intro_classes (fast intro: minimal_prod)

lemma inst_prod_pcpo: " = (, )"
  by (rule minimal_prod [THEN bottomI, symmetric])

lemma Pair_bottom_iff [simp]: "(x, y) =   x =   y = "
  by (simp add: inst_prod_pcpo)

lemma fst_strict [simp]: "fst  = "
  unfolding inst_prod_pcpo by (rule fst_conv)

lemma snd_strict [simp]: "snd  = "
  unfolding inst_prod_pcpo by (rule snd_conv)

lemma Pair_strict [simp]: "(, ) = "
  by simp

lemma split_strict [simp]: "case_prod f  = f  "
  by (simp add: split_def)


subsection ‹Continuity of \emph{Pair}, \emph{fst}, \emph{snd}›

lemma cont_pair1: "cont (λx. (x, y))"
  apply (rule contI)
  apply (rule is_lub_Pair)
   apply (erule cpo_lubI)
  apply (rule is_lub_const)
  done

lemma cont_pair2: "cont (λy. (x, y))"
  apply (rule contI)
  apply (rule is_lub_Pair)
   apply (rule is_lub_const)
  apply (erule cpo_lubI)
  done

lemma cont_fst: "cont fst"
  apply (rule contI)
  apply (simp add: lub_prod)
  apply (erule cpo_lubI [OF ch2ch_fst])
  done

lemma cont_snd: "cont snd"
  apply (rule contI)
  apply (simp add: lub_prod)
  apply (erule cpo_lubI [OF ch2ch_snd])
  done

lemma cont2cont_Pair [simp, cont2cont]:
  assumes f: "cont (λx. f x)"
  assumes g: "cont (λx. g x)"
  shows "cont (λx. (f x, g x))"
  apply (rule cont_apply [OF f cont_pair1])
  apply (rule cont_apply [OF g cont_pair2])
  apply (rule cont_const)
  done

lemmas cont2cont_fst [simp, cont2cont] = cont_compose [OF cont_fst]

lemmas cont2cont_snd [simp, cont2cont] = cont_compose [OF cont_snd]

lemma cont2cont_case_prod:
  assumes f1: "a b. cont (λx. f x a b)"
  assumes f2: "x b. cont (λa. f x a b)"
  assumes f3: "x a. cont (λb. f x a b)"
  assumes g: "cont (λx. g x)"
  shows "cont (λx. case g x of (a, b)  f x a b)"
  unfolding split_def
  apply (rule cont_apply [OF g])
   apply (rule cont_apply [OF cont_fst f2])
   apply (rule cont_apply [OF cont_snd f3])
   apply (rule cont_const)
  apply (rule f1)
  done

lemma prod_contI:
  assumes f1: "y. cont (λx. f (x, y))"
  assumes f2: "x. cont (λy. f (x, y))"
  shows "cont f"
proof -
  have "cont (λ(x, y). f (x, y))"
    by (intro cont2cont_case_prod f1 f2 cont2cont)
  then show "cont f"
    by (simp only: case_prod_eta)
qed

lemma prod_cont_iff: "cont f  (y. cont (λx. f (x, y)))  (x. cont (λy. f (x, y)))"
  apply safe
    apply (erule cont_compose [OF _ cont_pair1])
   apply (erule cont_compose [OF _ cont_pair2])
  apply (simp only: prod_contI)
  done

lemma cont2cont_case_prod' [simp, cont2cont]:
  assumes f: "cont (λp. f (fst p) (fst (snd p)) (snd (snd p)))"
  assumes g: "cont (λx. g x)"
  shows "cont (λx. case_prod (f x) (g x))"
  using assms by (simp add: cont2cont_case_prod prod_cont_iff)

text ‹The simple version (due to Joachim Breitner) is needed if
  either element type of the pair is not a cpo.›

lemma cont2cont_split_simple [simp, cont2cont]:
  assumes "a b. cont (λx. f x a b)"
  shows "cont (λx. case p of (a, b)  f x a b)"
  using assms by (cases p) auto

text ‹Admissibility of predicates on product types.›

lemma adm_case_prod [simp]:
  assumes "adm (λx. P x (fst (f x)) (snd (f x)))"
  shows "adm (λx. case f x of (a, b)  P x a b)"
  unfolding case_prod_beta using assms .


subsection ‹Compactness and chain-finiteness›

lemma fst_below_iff: "fst x  y  x  (y, snd x)" for x :: "'a × 'b"
  by (simp add: below_prod_def)

lemma snd_below_iff: "snd x  y  x  (fst x, y)" for x :: "'a × 'b"
  by (simp add: below_prod_def)

lemma compact_fst: "compact x  compact (fst x)"
  by (rule compactI) (simp add: fst_below_iff)

lemma compact_snd: "compact x  compact (snd x)"
  by (rule compactI) (simp add: snd_below_iff)

lemma compact_Pair: "compact x  compact y  compact (x, y)"
  by (rule compactI) (simp add: below_prod_def)

lemma compact_Pair_iff [simp]: "compact (x, y)  compact x  compact y"
  apply (safe intro!: compact_Pair)
   apply (drule compact_fst, simp)
  apply (drule compact_snd, simp)
  done

instance prod :: (chfin, chfin) chfin
  apply intro_classes
  apply (erule compact_imp_max_in_chain)
  apply (case_tac "i. Y i", simp)
  done


section ‹Discrete cpo types›

datatype 'a discr = Discr "'a::type"

subsection ‹Discrete cpo class instance›

instantiation discr :: (type) discrete_cpo
begin

definition "((⊑) :: 'a discr  'a discr  bool) = (=)"

instance
  by standard (simp add: below_discr_def)

end


subsection ‹\emph{undiscr}›

definition undiscr :: "'a::type discr  'a"
  where "undiscr x = (case x of Discr y  y)"

lemma undiscr_Discr [simp]: "undiscr (Discr x) = x"
  by (simp add: undiscr_def)

lemma Discr_undiscr [simp]: "Discr (undiscr y) = y"
  by (induct y) simp

end