Theory Algebraic_Closure
theory Algebraic_Closure
imports Indexed_Polynomials Polynomial_Divisibility Finite_Extensions
begin
section ‹Algebraic Closure›
subsection ‹Definitions›
inductive iso_incl :: "'a ring ⇒ 'a ring ⇒ bool" (infixl ‹≲› 65) for A B
where iso_inclI [intro]: "id ∈ ring_hom A B ⟹ iso_incl A B"
definition law_restrict :: "('a, 'b) ring_scheme ⇒ 'a ring"
where "law_restrict R ≡ (ring.truncate R)
⦇ mult := (λa ∈ carrier R. λb ∈ carrier R. a ⊗⇘R⇙ b),
add := (λa ∈ carrier R. λb ∈ carrier R. a ⊕⇘R⇙ b) ⦈"
definition (in ring) σ :: "'a list ⇒ ((('a list × nat) multiset) ⇒ 'a) list"
where "σ P = map indexed_const P"
definition (in ring) extensions :: "((('a list × nat) multiset) ⇒ 'a) ring set"
where "extensions ≡ { L .
(field L) ∧
(indexed_const ∈ ring_hom R L) ∧
(∀𝒫 ∈ carrier L. carrier_coeff 𝒫) ∧
(∀𝒫 ∈ carrier L. ∀P ∈ carrier (poly_ring R). ∀i.
¬ index_free 𝒫 (P, i) ⟶
𝒳⇘(P, i)⇙ ∈ carrier L ∧ (ring.eval L) (σ P) 𝒳⇘(P, i)⇙ = 𝟬⇘L⇙) }"
abbreviation (in ring) restrict_extensions :: "((('a list × nat) multiset) ⇒ 'a) ring set" (‹𝒮›)
where "𝒮 ≡ law_restrict ` extensions"
subsection ‹Basic Properties›
lemma law_restrict_carrier: "carrier (law_restrict R) = carrier R"
by (simp add: law_restrict_def ring.defs)
lemma law_restrict_one: "one (law_restrict R) = one R"
by (simp add: law_restrict_def ring.defs)
lemma law_restrict_zero: "zero (law_restrict R) = zero R"
by (simp add: law_restrict_def ring.defs)
lemma law_restrict_mult: "monoid.mult (law_restrict R) = (λa ∈ carrier R. λb ∈ carrier R. a ⊗⇘R⇙ b)"
by (simp add: law_restrict_def ring.defs)
lemma law_restrict_add: "add (law_restrict R) = (λa ∈ carrier R. λb ∈ carrier R. a ⊕⇘R⇙ b)"
by (simp add: law_restrict_def ring.defs)
lemma (in ring) law_restrict_is_ring: "ring (law_restrict R)"
by (unfold_locales) (auto simp add: law_restrict_def Units_def ring.defs,
simp_all add: a_assoc a_comm m_assoc l_distr r_distr a_lcomm)
lemma (in field) law_restrict_is_field: "field (law_restrict R)"
proof -
have "comm_monoid_axioms (law_restrict R)"
using m_comm unfolding comm_monoid_axioms_def law_restrict_carrier law_restrict_mult by auto
then interpret L: cring "law_restrict R"
using cring.intro law_restrict_is_ring comm_monoid.intro ring.is_monoid by auto
have "Units R = Units (law_restrict R)"
unfolding Units_def law_restrict_carrier law_restrict_mult law_restrict_one by auto
thus ?thesis
using L.cring_fieldI unfolding field_Units law_restrict_carrier law_restrict_zero by simp
qed
lemma law_restrict_iso_imp_eq:
assumes "id ∈ ring_iso (law_restrict A) (law_restrict B)" and "ring A" and "ring B"
shows "law_restrict A = law_restrict B"
proof -
have "carrier A = carrier B"
using ring_iso_memE(5)[OF assms(1)] unfolding bij_betw_def law_restrict_def by (simp add: ring.defs)
hence mult: "a ⊗⇘law_restrict A⇙ b = a ⊗⇘law_restrict B⇙ b"
and add: "a ⊕⇘law_restrict A⇙ b = a ⊕⇘law_restrict B⇙ b" for a b
using ring_iso_memE(2-3)[OF assms(1)] unfolding law_restrict_def by (auto simp add: ring.defs)
have "monoid.mult (law_restrict A) = monoid.mult (law_restrict B)"
using mult by auto
moreover have "add (law_restrict A) = add (law_restrict B)"
using add by auto
moreover from ‹carrier A = carrier B› have "carrier (law_restrict A) = carrier (law_restrict B)"
unfolding law_restrict_def by (simp add: ring.defs)
moreover have "𝟬⇘law_restrict A⇙ = 𝟬⇘law_restrict B⇙"
using ring_hom_zero[OF _ assms(2-3)[THEN ring.law_restrict_is_ring]] assms(1)
unfolding ring_iso_def by auto
moreover have "𝟭⇘law_restrict A⇙ = 𝟭⇘law_restrict B⇙"
using ring_iso_memE(4)[OF assms(1)] by simp
ultimately show ?thesis by simp
qed
lemma law_restrict_hom: "h ∈ ring_hom A B ⟷ h ∈ ring_hom (law_restrict A) (law_restrict B)"
proof
assume "h ∈ ring_hom A B" thus "h ∈ ring_hom (law_restrict A) (law_restrict B)"
by (auto intro!: ring_hom_memI dest: ring_hom_memE simp: law_restrict_def ring.defs)
next
assume h: "h ∈ ring_hom (law_restrict A) (law_restrict B)" show "h ∈ ring_hom A B"
using ring_hom_memE[OF h] by (auto intro!: ring_hom_memI simp: law_restrict_def ring.defs)
qed
lemma iso_incl_hom: "A ≲ B ⟷ (law_restrict A) ≲ (law_restrict B)"
using law_restrict_hom iso_incl.simps by blast
subsection ‹Partial Order›
lemma iso_incl_backwards:
assumes "A ≲ B" shows "id ∈ ring_hom A B"
using assms by cases
lemma iso_incl_antisym_aux:
assumes "A ≲ B" and "B ≲ A" shows "id ∈ ring_iso A B"
proof -
have hom: "id ∈ ring_hom A B" "id ∈ ring_hom B A"
using assms(1-2)[THEN iso_incl_backwards] by auto
thus ?thesis
using hom[THEN ring_hom_memE(1)] by (auto simp add: ring_iso_def bij_betw_def inj_on_def)
qed
lemma iso_incl_refl: "A ≲ A"
by (rule iso_inclI[OF ring_hom_memI], auto)
lemma iso_incl_trans:
assumes "A ≲ B" and "B ≲ C" shows "A ≲ C"
using ring_hom_trans[OF assms[THEN iso_incl_backwards]] by auto
lemma (in ring) iso_incl_antisym:
assumes "A ∈ 𝒮" "B ∈ 𝒮" and "A ≲ B" "B ≲ A" shows "A = B"
proof -
obtain A' B' :: "(('a list × nat) multiset ⇒ 'a) ring"
where A: "A = law_restrict A'" "ring A'" and B: "B = law_restrict B'" "ring B'"
using assms(1-2) field.is_ring by (auto simp add: extensions_def)
thus ?thesis
using law_restrict_iso_imp_eq iso_incl_antisym_aux[OF assms(3-4)] by simp
qed
lemma (in ring) iso_incl_partial_order: "partial_order_on 𝒮 (relation_of (≲) 𝒮)"
using iso_incl_refl iso_incl_trans iso_incl_antisym by (rule partial_order_on_relation_ofI)
lemma iso_inclE:
assumes "ring A" and "ring B" and "A ≲ B" shows "ring_hom_ring A B id"
using iso_incl_backwards[OF assms(3)] ring_hom_ring.intro[OF assms(1-2)]
unfolding symmetric[OF ring_hom_ring_axioms_def] by simp
lemma iso_incl_imp_same_eval:
assumes "ring A" and "ring B" and "A ≲ B" and "a ∈ carrier A" and "set p ⊆ carrier A"
shows "(ring.eval A) p a = (ring.eval B) p a"
using ring_hom_ring.eval_hom'[OF iso_inclE[OF assms(1-3)] assms(4-5)] by simp
subsection ‹Extensions Non Empty›
lemma (in ring) indexed_const_is_inj: "inj indexed_const"
unfolding indexed_const_def by (rule inj_onI, metis)
lemma (in ring) indexed_const_inj_on: "inj_on indexed_const (carrier R)"
unfolding indexed_const_def by (rule inj_onI, metis)
lemma (in field) extensions_non_empty: "𝒮 ≠ {}"
proof -
have "image_ring indexed_const R ∈ extensions"
proof (auto simp add: extensions_def)
show "field (image_ring indexed_const R)"
using inj_imp_image_ring_is_field[OF indexed_const_inj_on] .
next
show "indexed_const ∈ ring_hom R (image_ring indexed_const R)"
using inj_imp_image_ring_iso[OF indexed_const_inj_on] unfolding ring_iso_def by auto
next
fix 𝒫 :: "(('a list × nat) multiset) ⇒ 'a" and P and i
assume "𝒫 ∈ carrier (image_ring indexed_const R)"
then obtain k where "k ∈ carrier R" and "𝒫 = indexed_const k"
unfolding image_ring_carrier by blast
hence "index_free 𝒫 (P, i)" for P i
unfolding index_free_def indexed_const_def by auto
thus "¬ index_free 𝒫 (P, i) ⟹ 𝒳⇘(P, i)⇙ ∈ carrier (image_ring indexed_const R)"
and "¬ index_free 𝒫 (P, i) ⟹ ring.eval (image_ring indexed_const R) (σ P) 𝒳⇘(P, i)⇙ = 𝟬⇘image_ring indexed_const R⇙"
by auto
from ‹k ∈ carrier R› and ‹𝒫 = indexed_const k› show "carrier_coeff 𝒫"
unfolding indexed_const_def carrier_coeff_def by auto
qed
thus ?thesis
by blast
qed
subsection ‹Chains›
definition union_ring :: "(('a, 'c) ring_scheme) set ⇒ 'a ring"
where "union_ring C =
⦇ carrier = (⋃(carrier ` C)),
monoid.mult = (λa b. (monoid.mult (SOME R. R ∈ C ∧ a ∈ carrier R ∧ b ∈ carrier R) a b)),
one = one (SOME R. R ∈ C),
zero = zero (SOME R. R ∈ C),
add = (λa b. (add (SOME R. R ∈ C ∧ a ∈ carrier R ∧ b ∈ carrier R) a b)) ⦈"
lemma union_ring_carrier: "carrier (union_ring C) = (⋃(carrier ` C))"
unfolding union_ring_def by simp
context
fixes C :: "'a ring set"
assumes field_chain: "⋀R. R ∈ C ⟹ field R" and chain: "⋀R S. ⟦ R ∈ C; S ∈ C ⟧ ⟹ R ≲ S ∨ S ≲ R"
begin
lemma ring_chain: "R ∈ C ⟹ ring R"
using field.is_ring[OF field_chain] by blast
lemma same_one_same_zero:
assumes "R ∈ C" shows "𝟭⇘union_ring C⇙ = 𝟭⇘R⇙" and "𝟬⇘union_ring C⇙ = 𝟬⇘R⇙"
proof -
have "𝟭⇘R⇙ = 𝟭⇘S⇙" if "R ∈ C" and "S ∈ C" for R S
using ring_hom_one[of id] chain[OF that] unfolding iso_incl.simps by auto
moreover have "𝟬⇘R⇙ = 𝟬⇘S⇙" if "R ∈ C" and "S ∈ C" for R S
using chain[OF that] ring_hom_zero[OF _ ring_chain ring_chain] that unfolding iso_incl.simps by auto
ultimately have "one (SOME R. R ∈ C) = 𝟭⇘R⇙" and "zero (SOME R. R ∈ C) = 𝟬⇘R⇙"
using assms by (metis (mono_tags) someI)+
thus "𝟭⇘union_ring C⇙ = 𝟭⇘R⇙" and "𝟬⇘union_ring C⇙ = 𝟬⇘R⇙"
unfolding union_ring_def by auto
qed
lemma same_laws:
assumes "R ∈ C" and "a ∈ carrier R" and "b ∈ carrier R"
shows "a ⊗⇘union_ring C⇙ b = a ⊗⇘R⇙ b" and "a ⊕⇘union_ring C⇙ b = a ⊕⇘R⇙ b"
proof -
have "a ⊗⇘R⇙ b = a ⊗⇘S⇙ b"
if "R ∈ C" "a ∈ carrier R" "b ∈ carrier R" and "S ∈ C" "a ∈ carrier S" "b ∈ carrier S" for R S
using ring_hom_memE(2)[of id R S] ring_hom_memE(2)[of id S R] that chain[OF that(1,4)]
unfolding iso_incl.simps by auto
moreover have "a ⊕⇘R⇙ b = a ⊕⇘S⇙ b"
if "R ∈ C" "a ∈ carrier R" "b ∈ carrier R" and "S ∈ C" "a ∈ carrier S" "b ∈ carrier S" for R S
using ring_hom_memE(3)[of id R S] ring_hom_memE(3)[of id S R] that chain[OF that(1,4)]
unfolding iso_incl.simps by auto
ultimately
have "monoid.mult (SOME R. R ∈ C ∧ a ∈ carrier R ∧ b ∈ carrier R) a b = a ⊗⇘R⇙ b"
and "add (SOME R. R ∈ C ∧ a ∈ carrier R ∧ b ∈ carrier R) a b = a ⊕⇘R⇙ b"
using assms by (metis (mono_tags, lifting) someI)+
thus "a ⊗⇘union_ring C⇙ b = a ⊗⇘R⇙ b" and "a ⊕⇘union_ring C⇙ b = a ⊕⇘R⇙ b"
unfolding union_ring_def by auto
qed
lemma exists_superset_carrier:
assumes "finite S" and "S ≠ {}" and "S ⊆ carrier (union_ring C)"
shows "∃R ∈ C. S ⊆ carrier R"
using assms
proof (induction, simp)
case (insert s S)
obtain R where R: "s ∈ carrier R" "R ∈ C"
using insert(5) unfolding union_ring_def by auto
show ?case
proof (cases)
assume "S = {}" thus ?thesis
using R by blast
next
assume "S ≠ {}"
then obtain T where T: "S ⊆ carrier T" "T ∈ C"
using insert(3,5) by blast
have "carrier R ⊆ carrier T ∨ carrier T ⊆ carrier R"
using ring_hom_memE(1)[of id R] ring_hom_memE(1)[of id T] chain[OF R(2) T(2)]
unfolding iso_incl.simps by auto
thus ?thesis
using R T by auto
qed
qed
lemma union_ring_is_monoid:
assumes "C ≠ {}" shows "comm_monoid (union_ring C)"
proof
fix a b c
assume "a ∈ carrier (union_ring C)" "b ∈ carrier (union_ring C)" "c ∈ carrier (union_ring C)"
then obtain R where R: "R ∈ C" "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
using exists_superset_carrier[of "{ a, b, c }"] by auto
then interpret field R
using field_chain by simp
show "a ⊗⇘union_ring C⇙ b ∈ carrier (union_ring C)"
using R(1-3) unfolding same_laws(1)[OF R(1-3)] unfolding union_ring_def by auto
show "(a ⊗⇘union_ring C⇙ b) ⊗⇘union_ring C⇙ c = a ⊗⇘union_ring C⇙ (b ⊗⇘union_ring C⇙ c)"
and "a ⊗⇘union_ring C⇙ b = b ⊗⇘union_ring C⇙ a"
and "𝟭⇘union_ring C⇙ ⊗⇘union_ring C⇙ a = a"
and "a ⊗⇘union_ring C⇙ 𝟭⇘union_ring C⇙ = a"
using same_one_same_zero[OF R(1)] same_laws(1)[OF R(1)] R(2-4) m_assoc m_comm by auto
next
show "𝟭⇘union_ring C⇙ ∈ carrier (union_ring C)"
using ring.ring_simprules(6)[OF ring_chain] assms same_one_same_zero(1)
unfolding union_ring_carrier by auto
qed
lemma union_ring_is_abelian_group:
assumes "C ≠ {}" shows "cring (union_ring C)"
proof (rule cringI[OF abelian_groupI union_ring_is_monoid[OF assms]])
fix a b c
assume "a ∈ carrier (union_ring C)" "b ∈ carrier (union_ring C)" "c ∈ carrier (union_ring C)"
then obtain R where R: "R ∈ C" "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
using exists_superset_carrier[of "{ a, b, c }"] by auto
then interpret field R
using field_chain by simp
show "a ⊕⇘union_ring C⇙ b ∈ carrier (union_ring C)"
using R(1-3) unfolding same_laws(2)[OF R(1-3)] unfolding union_ring_def by auto
show "(a ⊕⇘union_ring C⇙ b) ⊗⇘union_ring C⇙ c = (a ⊗⇘union_ring C⇙ c) ⊕⇘union_ring C⇙ (b ⊗⇘union_ring C⇙ c)"
and "(a ⊕⇘union_ring C⇙ b) ⊕⇘union_ring C⇙ c = a ⊕⇘union_ring C⇙ (b ⊕⇘union_ring C⇙ c)"
and "a ⊕⇘union_ring C⇙ b = b ⊕⇘union_ring C⇙ a"
and "𝟬⇘union_ring C⇙ ⊕⇘union_ring C⇙ a = a"
using same_one_same_zero[OF R(1)] same_laws[OF R(1)] R(2-4) l_distr a_assoc a_comm by auto
have "∃a' ∈ carrier R. a' ⊕⇘union_ring C⇙ a = 𝟬⇘union_ring C⇙"
using same_laws(2)[OF R(1)] R(2) same_one_same_zero[OF R(1)] by simp
with ‹R ∈ C› show "∃y ∈ carrier (union_ring C). y ⊕⇘union_ring C⇙ a = 𝟬⇘union_ring C⇙"
unfolding union_ring_carrier by auto
next
show "𝟬⇘union_ring C⇙ ∈ carrier (union_ring C)"
using ring.ring_simprules(2)[OF ring_chain] assms same_one_same_zero(2)
unfolding union_ring_carrier by auto
qed
lemma union_ring_is_field :
assumes "C ≠ {}" shows "field (union_ring C)"
proof (rule cring.cring_fieldI[OF union_ring_is_abelian_group[OF assms]])
have "carrier (union_ring C) - { 𝟬⇘union_ring C⇙ } ⊆ Units (union_ring C)"
proof
fix a assume "a ∈ carrier (union_ring C) - { 𝟬⇘union_ring C⇙ }"
hence "a ∈ carrier (union_ring C)" and "a ≠ 𝟬⇘union_ring C⇙"
by auto
then obtain R where R: "R ∈ C" "a ∈ carrier R"
using exists_superset_carrier[of "{ a }"] by auto
then interpret field R
using field_chain by simp
from ‹a ∈ carrier R› and ‹a ≠ 𝟬⇘union_ring C⇙› have "a ∈ Units R"
unfolding same_one_same_zero[OF R(1)] field_Units by auto
hence "∃a' ∈ carrier R. a' ⊗⇘union_ring C⇙ a = 𝟭⇘union_ring C⇙ ∧ a ⊗⇘union_ring C⇙ a' = 𝟭⇘union_ring C⇙"
using same_laws[OF R(1)] same_one_same_zero[OF R(1)] R(2) unfolding Units_def by auto
with ‹R ∈ C› and ‹a ∈ carrier (union_ring C)› show "a ∈ Units (union_ring C)"
unfolding Units_def union_ring_carrier by auto
qed
moreover have "𝟬⇘union_ring C⇙ ∉ Units (union_ring C)"
proof (rule ccontr)
assume "¬ 𝟬⇘union_ring C⇙ ∉ Units (union_ring C)"
then obtain a where a: "a ∈ carrier (union_ring C)" "a ⊗⇘union_ring C⇙ 𝟬⇘union_ring C⇙ = 𝟭⇘union_ring C⇙"
unfolding Units_def by auto
then obtain R where R: "R ∈ C" "a ∈ carrier R"
using exists_superset_carrier[of "{ a }"] by auto
then interpret field R
using field_chain by simp
have "𝟭⇘R⇙ = 𝟬⇘R⇙"
using a R same_laws(1)[OF R(1)] same_one_same_zero[OF R(1)] by auto
thus False
using one_not_zero by simp
qed
hence "Units (union_ring C) ⊆ carrier (union_ring C) - { 𝟬⇘union_ring C⇙ }"
unfolding Units_def by auto
ultimately show "Units (union_ring C) = carrier (union_ring C) - { 𝟬⇘union_ring C⇙ }"
by simp
qed
lemma union_ring_is_upper_bound:
assumes "R ∈ C" shows "R ≲ union_ring C"
using ring_hom_memI[of R id "union_ring C"] same_laws[of R] same_one_same_zero[of R] assms
unfolding union_ring_carrier by auto
end
subsection ‹Zorn›
lemma (in ring) exists_core_chain:
assumes "C ∈ Chains (relation_of (≲) 𝒮)" obtains C' where "C' ⊆ extensions" and "C = law_restrict ` C'"
using Chains_relation_of[OF assms] by (meson subset_image_iff)
lemma (in ring) core_chain_is_chain:
assumes "law_restrict ` C ∈ Chains (relation_of (≲) 𝒮)" shows "⋀R S. ⟦ R ∈ C; S ∈ C ⟧ ⟹ R ≲ S ∨ S ≲ R"
proof -
fix R S assume "R ∈ C" and "S ∈ C" thus "R ≲ S ∨ S ≲ R"
using assms(1) unfolding iso_incl_hom[of R] iso_incl_hom[of S] Chains_def relation_of_def
by auto
qed
lemma (in field) exists_maximal_extension:
shows "∃M ∈ 𝒮. ∀L ∈ 𝒮. M ≲ L ⟶ L = M"
proof (rule predicate_Zorn[OF iso_incl_partial_order])
fix C assume C: "C ∈ Chains (relation_of (≲) 𝒮)"
show "∃L ∈ 𝒮. ∀R ∈ C. R ≲ L"
proof (cases)
assume "C = {}" thus ?thesis
using extensions_non_empty by auto
next
assume "C ≠ {}"
from ‹C ∈ Chains (relation_of (≲) 𝒮)›
obtain C' where C': "C' ⊆ extensions" "C = law_restrict ` C'"
using exists_core_chain by auto
with ‹C ≠ {}› obtain S where S: "S ∈ C'" and "C' ≠ {}"
by auto
have core_chain: "⋀R. R ∈ C' ⟹ field R" "⋀R S. ⟦ R ∈ C'; S ∈ C' ⟧ ⟹ R ≲ S ∨ S ≲ R"
using core_chain_is_chain[of C'] C' C unfolding extensions_def by auto
from ‹C' ≠ {}› interpret Union: field "union_ring C'"
using union_ring_is_field[OF core_chain] C'(1) by blast
have "union_ring C' ∈ extensions"
proof (auto simp add: extensions_def)
show "field (union_ring C')"
using Union.field_axioms .
next
from ‹S ∈ C'› have "indexed_const ∈ ring_hom R S"
using C'(1) unfolding extensions_def by auto
thus "indexed_const ∈ ring_hom R (union_ring C')"
using ring_hom_trans[of _ R S id] union_ring_is_upper_bound[OF core_chain S]
unfolding iso_incl.simps by auto
next
show "a ∈ carrier (union_ring C') ⟹ carrier_coeff a" for a
using C'(1) unfolding union_ring_carrier extensions_def by auto
next
fix 𝒫 P i
assume "𝒫 ∈ carrier (union_ring C')"
and P: "P ∈ carrier (poly_ring R)"
and not_index_free: "¬ index_free 𝒫 (P, i)"
from ‹𝒫 ∈ carrier (union_ring C')› obtain T where T: "T ∈ C'" "𝒫 ∈ carrier T"
using exists_superset_carrier[of C' "{ 𝒫 }"] core_chain by auto
hence "𝒳⇘(P, i)⇙ ∈ carrier T" and "(ring.eval T) (σ P) 𝒳⇘(P, i)⇙ = 𝟬⇘T⇙"
and field: "field T" and hom: "indexed_const ∈ ring_hom R T"
using P not_index_free C'(1) unfolding extensions_def by auto
with ‹T ∈ C'› show "𝒳⇘(P, i)⇙ ∈ carrier (union_ring C')"
unfolding union_ring_carrier by auto
have "set P ⊆ carrier R"
using P unfolding sym[OF univ_poly_carrier] polynomial_def by auto
hence "set (σ P) ⊆ carrier T"
using ring_hom_memE(1)[OF hom] unfolding σ_def by (induct P) (auto)
with ‹𝒳⇘(P, i)⇙ ∈ carrier T› and ‹(ring.eval T) (σ P) 𝒳⇘(P, i)⇙ = 𝟬⇘T⇙›
show "(ring.eval (union_ring C')) (σ P) 𝒳⇘(P, i)⇙ = 𝟬⇘union_ring C'⇙"
using iso_incl_imp_same_eval[OF field.is_ring[OF field] Union.is_ring
union_ring_is_upper_bound[OF core_chain T(1)]] same_one_same_zero(2)[OF core_chain T(1)]
by auto
qed
moreover have "R ≲ law_restrict (union_ring C')" if "R ∈ C" for R
using that union_ring_is_upper_bound[OF core_chain] iso_incl_hom unfolding C' by auto
ultimately show ?thesis
by blast
qed
qed
subsection ‹Existence of roots›
lemma polynomial_hom:
assumes "h ∈ ring_hom R S" and "field R" and "field S"
shows "p ∈ carrier (poly_ring R) ⟹ (map h p) ∈ carrier (poly_ring S)"
proof -
assume "p ∈ carrier (poly_ring R)"
interpret ring_hom_ring R S h
using ring_hom_ringI2[OF assms(2-3)[THEN field.is_ring] assms(1)] .
from ‹p ∈ carrier (poly_ring R)› have "set p ⊆ carrier R" and lc: "p ≠ [] ⟹ lead_coeff p ≠ 𝟬⇘R⇙"
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
hence "set (map h p) ⊆ carrier S"
by (induct p) (auto)
moreover have "h a = 𝟬⇘S⇙ ⟹ a = 𝟬⇘R⇙" if "a ∈ carrier R" for a
using non_trivial_field_hom_is_inj[OF assms(1-3)] that unfolding inj_on_def by simp
with ‹set p ⊆ carrier R› have "lead_coeff (map h p) ≠ 𝟬⇘S⇙" if "p ≠ []"
using lc[OF that] that by (cases p) (auto)
ultimately show ?thesis
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
qed
lemma (in ring_hom_ring) subfield_polynomial_hom:
assumes "subfield K R" and "𝟭⇘S⇙ ≠ 𝟬⇘S⇙"
shows "p ∈ carrier (K[X]⇘R⇙) ⟹ (map h p) ∈ carrier ((h ` K)[X]⇘S⇙)"
proof -
assume "p ∈ carrier (K[X]⇘R⇙)"
hence "p ∈ carrier (poly_ring (R ⦇ carrier := K ⦈))"
using R.univ_poly_consistent[OF subfieldE(1)[OF assms(1)]] by simp
moreover have "h ∈ ring_hom (R ⦇ carrier := K ⦈) (S ⦇ carrier := h ` K ⦈)"
using hom_mult subfieldE(3)[OF assms(1)] unfolding ring_hom_def subset_iff by auto
moreover have "field (R ⦇ carrier := K ⦈)" and "field (S ⦇ carrier := (h ` K) ⦈)"
using R.subfield_iff(2)[OF assms(1)] S.subfield_iff(2)[OF img_is_subfield(2)[OF assms]] by simp+
ultimately have "(map h p) ∈ carrier (poly_ring (S ⦇ carrier := h ` K ⦈))"
using polynomial_hom[of h "R ⦇ carrier := K ⦈" "S ⦇ carrier := h ` K ⦈"] by auto
thus ?thesis
using S.univ_poly_consistent[OF subfieldE(1)[OF img_is_subfield(2)[OF assms]]] by simp
qed
lemma (in field) exists_root:
assumes "M ∈ extensions" and "⋀L. ⟦ L ∈ extensions; M ≲ L ⟧ ⟹ law_restrict L = law_restrict M"
and "P ∈ carrier (poly_ring R)"
shows "(ring.splitted M) (σ P)"
proof (rule ccontr)
from ‹M ∈ extensions› interpret M: field M + Hom: ring_hom_ring R M "indexed_const"
using ring_hom_ringI2[OF ring_axioms field.is_ring] unfolding extensions_def by auto
interpret UP: principal_domain "poly_ring M"
using M.univ_poly_is_principal[OF M.carrier_is_subfield] .
assume not_splitted: "¬ (ring.splitted M) (σ P)"
have "(σ P) ∈ carrier (poly_ring M)"
using polynomial_hom[OF Hom.homh field_axioms M.field_axioms assms(3)] unfolding σ_def by simp
then obtain Q
where Q: "Q ∈ carrier (poly_ring M)" "pirreducible⇘M⇙ (carrier M) Q" "Q pdivides⇘M⇙ (σ P)"
and degree_gt: "degree Q > 1"
using M.trivial_factors_imp_splitted[of "σ P"] not_splitted by force
from ‹(σ P) ∈ carrier (poly_ring M)› have "(σ P) ≠ []"
using M.degree_zero_imp_splitted[of "σ P"] not_splitted unfolding σ_def by auto
have "∃i. ∀𝒫 ∈ carrier M. index_free 𝒫 (P, i)"
proof (rule ccontr)
assume "∄i. ∀𝒫 ∈ carrier M. index_free 𝒫 (P, i)"
then have "𝒳⇘(P, i)⇙ ∈ carrier M" and "(ring.eval M) (σ P) 𝒳⇘(P, i)⇙ = 𝟬⇘M⇙" for i
using assms(1,3) unfolding extensions_def by blast+
with ‹(σ P) ≠ []› have "((λi :: nat. 𝒳⇘(P, i)⇙) ` UNIV) ⊆ { a. (ring.is_root M) (σ P) a }"
unfolding M.is_root_def by auto
moreover have "inj (λi :: nat. 𝒳⇘(P, i)⇙)"
unfolding indexed_var_def indexed_const_def indexed_pmult_def inj_def
by (metis (no_types, lifting) add_mset_eq_singleton_iff diff_single_eq_union
multi_member_last prod.inject zero_not_one)
hence "infinite ((λi :: nat. 𝒳⇘(P, i)⇙) ` UNIV)"
unfolding infinite_iff_countable_subset by auto
ultimately have "infinite { a. (ring.is_root M) (σ P) a }"
using finite_subset by auto
with ‹(σ P) ∈ carrier (poly_ring M)› show False
using M.finite_number_of_roots by simp
qed
then obtain i :: nat where "∀𝒫 ∈ carrier M. index_free 𝒫 (P, i)"
by blast
then have hyps:
"field M"
"⋀𝒫. 𝒫 ∈ carrier M ⟹ carrier_coeff 𝒫"
"⋀𝒫. 𝒫 ∈ carrier M ⟹ index_free 𝒫 (P, i)"
"𝟬⇘M⇙ = indexed_const 𝟬"
using assms(1,3) unfolding extensions_def by auto
define image_poly where "image_poly = image_ring (eval_pmod M (P, i) Q) (poly_ring M)"
with ‹degree Q > 1› have "M ≲ image_poly"
using image_poly_iso_incl[OF hyps Q(1)] by auto
moreover have is_field: "field image_poly"
using image_poly_is_field[OF hyps Q(1-2)] unfolding image_poly_def by simp
moreover have "image_poly ∈ extensions"
proof (auto simp add: extensions_def is_field)
fix 𝒫 assume "𝒫 ∈ carrier image_poly"
then obtain R where 𝒫: "𝒫 = eval_pmod M (P, i) Q R" and "R ∈ carrier (poly_ring M)"
unfolding image_poly_def image_ring_carrier by auto
hence "M.pmod R Q ∈ carrier (poly_ring M)"
using M.long_division_closed(2)[OF M.carrier_is_subfield _ Q(1)] by simp
hence "list_all carrier_coeff (M.pmod R Q)"
using hyps(2) unfolding sym[OF univ_poly_carrier] list_all_iff polynomial_def by auto
thus "carrier_coeff 𝒫"
using indexed_eval_in_carrier[of "M.pmod R Q"] unfolding 𝒫 by simp
next
from ‹M ≲ image_poly› show "indexed_const ∈ ring_hom R image_poly"
using ring_hom_trans[OF Hom.homh, of id] unfolding iso_incl.simps by simp
next
from ‹M ≲ image_poly› interpret Id: ring_hom_ring M image_poly id
using iso_inclE[OF M.ring_axioms field.is_ring[OF is_field]] by simp
fix 𝒫 S j
assume A: "𝒫 ∈ carrier image_poly" "¬ index_free 𝒫 (S, j)" "S ∈ carrier (poly_ring R)"
have "𝒳⇘(S, j)⇙ ∈ carrier image_poly ∧ Id.eval (σ S) 𝒳⇘(S, j)⇙ = 𝟬⇘image_poly⇙"
proof (cases)
assume "(P, i) ≠ (S, j)"
then obtain Q' where "Q' ∈ carrier M" and "¬ index_free Q' (S, j)"
using A(1) image_poly_index_free[OF hyps Q(1) _ A(2)] unfolding image_poly_def by auto
hence "𝒳⇘(S, j)⇙ ∈ carrier M" and "M.eval (σ S) 𝒳⇘(S, j)⇙ = 𝟬⇘M⇙"
using assms(1) A(3) unfolding extensions_def by auto
moreover have "σ S ∈ carrier (poly_ring M)"
using polynomial_hom[OF Hom.homh field_axioms M.field_axioms A(3)] unfolding σ_def .
ultimately show ?thesis
using Id.eval_hom[OF M.carrier_is_subring] Id.hom_closed Id.hom_zero by auto
next
assume "¬ (P, i) ≠ (S, j)" hence S: "(P, i) = (S, j)"
by simp
have poly_hom: "R ∈ carrier (poly_ring image_poly)" if "R ∈ carrier (poly_ring M)" for R
using polynomial_hom[OF Id.homh M.field_axioms is_field that] by simp
have "𝒳⇘(S, j)⇙ ∈ carrier image_poly"
using eval_pmod_var(2)[OF hyps Hom.homh Q(1) degree_gt] unfolding image_poly_def S by simp
moreover have "Id.eval Q 𝒳⇘(S, j)⇙ = 𝟬⇘image_poly⇙"
using image_poly_eval_indexed_var[OF hyps Hom.homh Q(1) degree_gt Q(2)] unfolding image_poly_def S by simp
moreover have "Q pdivides⇘image_poly⇙ (σ S)"
proof -
obtain R where R: "R ∈ carrier (poly_ring M)" "σ S = Q ⊗⇘poly_ring M⇙ R"
using Q(3) S unfolding pdivides_def by auto
moreover have "set Q ⊆ carrier M" and "set R ⊆ carrier M"
using Q(1) R(1) unfolding sym[OF univ_poly_carrier] polynomial_def by auto
ultimately have "Id.normalize (σ S) = Q ⊗⇘poly_ring image_poly⇙ R"
using Id.poly_mult_hom'[of Q R] unfolding univ_poly_mult by simp
moreover have "σ S ∈ carrier (poly_ring M)"
using polynomial_hom[OF Hom.homh field_axioms M.field_axioms A(3)] unfolding σ_def .
hence "σ S ∈ carrier (poly_ring image_poly)"
using polynomial_hom[OF Id.homh M.field_axioms is_field] by simp
hence "Id.normalize (σ S) = σ S"
using Id.normalize_polynomial unfolding sym[OF univ_poly_carrier] by simp
ultimately show ?thesis
using poly_hom[OF Q(1)] poly_hom[OF R(1)]
unfolding pdivides_def factor_def univ_poly_mult by auto
qed
moreover have "Q ∈ carrier (poly_ring (image_poly))"
using poly_hom[OF Q(1)] by simp
ultimately show ?thesis
using domain.pdivides_imp_root_sharing[OF field.axioms(1)[OF is_field], of Q] by auto
qed
thus "𝒳⇘(S, j)⇙ ∈ carrier image_poly" and "Id.eval (σ S) 𝒳⇘(S, j)⇙ = 𝟬⇘image_poly⇙"
by auto
qed
ultimately have "law_restrict M = law_restrict image_poly"
using assms(2) by simp
hence "carrier M = carrier image_poly"
unfolding law_restrict_def by (simp add:ring.defs)
moreover have "𝒳⇘(P, i)⇙ ∈ carrier image_poly"
using eval_pmod_var(2)[OF hyps Hom.homh Q(1) degree_gt] unfolding image_poly_def by simp
moreover have "𝒳⇘(P, i)⇙ ∉ carrier M"
using indexed_var_not_index_free[of "(P, i)"] hyps(3) by blast
ultimately show False by simp
qed
lemma (in field) exists_extension_with_roots:
shows "∃L ∈ extensions. ∀P ∈ carrier (poly_ring R). (ring.splitted L) (σ P)"
proof -
obtain M where "M ∈ extensions" and "∀L ∈ extensions. M ≲ L ⟶ law_restrict L = law_restrict M"
using exists_maximal_extension iso_incl_hom by blast
thus ?thesis
using exists_root[of M] by auto
qed
subsection ‹Existence of Algebraic Closure›
locale algebraic_closure = field L + subfield K L for L (structure) and K +
assumes algebraic_extension: "x ∈ carrier L ⟹ (algebraic over K) x"
and roots_over_subfield: "P ∈ carrier (K[X]) ⟹ splitted P"
locale algebraically_closed = field L for L (structure) +
assumes roots_over_carrier: "P ∈ carrier (poly_ring L) ⟹ splitted P"
definition (in field) alg_closure :: "(('a list × nat) multiset ⇒ 'a) ring"
where "alg_closure = (SOME L .
algebraic_closure L (indexed_const ` (carrier R)) ∧
indexed_const ∈ ring_hom R L)"
lemma algebraic_hom:
assumes "h ∈ ring_hom R S" and "field R" and "field S" and "subfield K R" and "x ∈ carrier R"
shows "((ring.algebraic R) over K) x ⟹ ((ring.algebraic S) over (h ` K)) (h x)"
proof -
interpret Hom: ring_hom_ring R S h
using ring_hom_ringI2[OF assms(2-3)[THEN field.is_ring] assms(1)] .
assume "(Hom.R.algebraic over K) x"
then obtain p where p: "p ∈ carrier (K[X]⇘R⇙)" and "p ≠ []" and eval: "Hom.R.eval p x = 𝟬⇘R⇙"
using domain.algebraicE[OF field.axioms(1) subfieldE(1), of R K x] assms(2,4-5) by auto
hence "(map h p) ∈ carrier ((h ` K)[X]⇘S⇙)" and "(map h p) ≠ []"
using Hom.subfield_polynomial_hom[OF assms(4) one_not_zero[OF assms(3)]] by auto
moreover have "Hom.S.eval (map h p) (h x) = 𝟬⇘S⇙"
using Hom.eval_hom[OF subfieldE(1)[OF assms(4)] assms(5) p] unfolding eval by simp
ultimately show ?thesis
using Hom.S.non_trivial_ker_imp_algebraic[of "h ` K" "h x"] unfolding a_kernel_def' by auto
qed
lemma (in field) exists_closure:
obtains L :: "((('a list × nat) multiset) ⇒ 'a) ring"
where "algebraic_closure L (indexed_const ` (carrier R))" and "indexed_const ∈ ring_hom R L"
proof -
obtain L where "L ∈ extensions"
and roots: "⋀P. P ∈ carrier (poly_ring R) ⟹ (ring.splitted L) (σ P)"
using exists_extension_with_roots by auto
let ?K = "indexed_const ` (carrier R)"
let ?set_of_algs = "{ x ∈ carrier L. ((ring.algebraic L) over ?K) x }"
let ?M = "L ⦇ carrier := ?set_of_algs ⦈"
from ‹L ∈ extensions›
have L: "field L" and hom: "ring_hom_ring R L indexed_const"
using ring_hom_ringI2[OF ring_axioms field.is_ring] unfolding extensions_def by auto
have "subfield ?K L"
using ring_hom_ring.img_is_subfield(2)[OF hom carrier_is_subfield
domain.one_not_zero[OF field.axioms(1)[OF L]]] by auto
hence set_of_algs: "subfield ?set_of_algs L"
using field.subfield_of_algebraics[OF L, of ?K] by simp
have M: "field ?M"
using ring.subfield_iff(2)[OF field.is_ring[OF L] set_of_algs] by simp
interpret Id: ring_hom_ring ?M L id
using ring_hom_ringI[OF field.is_ring[OF M] field.is_ring[OF L]] by auto
have is_subfield: "subfield ?K ?M"
proof (intro ring.subfield_iff(1)[OF field.is_ring[OF M]])
have "L ⦇ carrier := ?K ⦈ = ?M ⦇ carrier := ?K ⦈"
by simp
moreover from ‹subfield ?K L› have "field (L ⦇ carrier := ?K ⦈)"
using ring.subfield_iff(2)[OF field.is_ring[OF L]] by simp
ultimately show "field (?M ⦇ carrier := ?K ⦈)"
by simp
next
show "?K ⊆ carrier ?M"
proof
fix x :: "(('a list × nat) multiset) ⇒ 'a"
assume "x ∈ ?K"
hence "x ∈ carrier L"
using ring_hom_memE(1)[OF ring_hom_ring.homh[OF hom]] by auto
moreover from ‹subfield ?K L› and ‹x ∈ ?K› have "(Id.S.algebraic over ?K) x"
using domain.algebraic_self[OF field.axioms(1)[OF L] subfieldE(1)] by auto
ultimately show "x ∈ carrier ?M"
by auto
qed
qed
have "algebraic_closure ?M ?K"
proof (intro algebraic_closure.intro[OF M is_subfield])
have "(Id.R.algebraic over ?K) x" if "x ∈ carrier ?M" for x
using that Id.S.algebraic_consistent[OF subfieldE(1)[OF set_of_algs]] by simp
moreover have "Id.R.splitted P" if "P ∈ carrier (?K[X]⇘?M⇙)" for P
proof -
from ‹P ∈ carrier (?K[X]⇘?M⇙)› have "P ∈ carrier (poly_ring ?M)"
using Id.R.carrier_polynomial_shell[OF subfieldE(1)[OF is_subfield]] by simp
show ?thesis
proof (cases "degree P = 0")
case True with ‹P ∈ carrier (poly_ring ?M)› show ?thesis
using domain.degree_zero_imp_splitted[OF field.axioms(1)[OF M]]
by fastforce
next
case False then have "degree P > 0"
by simp
from ‹P ∈ carrier (?K[X]⇘?M⇙)› have "P ∈ carrier (?K[X]⇘L⇙)"
unfolding Id.S.univ_poly_consistent[OF subfieldE(1)[OF set_of_algs]] .
hence "set P ⊆ ?K"
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
hence "∃Q. set Q ⊆ carrier R ∧ P = σ Q"
proof (induct P, simp add: σ_def)
case (Cons p P)
then obtain q Q where "q ∈ carrier R" "set Q ⊆ carrier R"
and "σ Q = P" "indexed_const q = p"
unfolding σ_def by auto
hence "set (q # Q) ⊆ carrier R" and "σ (q # Q) = (p # P)"
unfolding σ_def by auto
thus ?case
by metis
qed
then obtain Q where "set Q ⊆ carrier R" and "σ Q = P"
by auto
moreover have "lead_coeff Q ≠ 𝟬"
proof (rule ccontr)
assume "¬ lead_coeff Q ≠ 𝟬" then have "lead_coeff Q = 𝟬"
by simp
with ‹σ Q = P› and ‹degree P > 0› have "lead_coeff P = indexed_const 𝟬"
unfolding σ_def by (metis diff_0_eq_0 length_map less_irrefl_nat list.map_sel(1) list.size(3))
hence "lead_coeff P = 𝟬⇘L⇙"
using ring_hom_zero[OF ring_hom_ring.homh ring_hom_ring.axioms(1-2)] hom by auto
with ‹degree P > 0› have "¬ P ∈ carrier (?K[X]⇘?M⇙)"
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
with ‹P ∈ carrier (?K[X]⇘?M⇙)› show False
by simp
qed
ultimately have "Q ∈ carrier (poly_ring R)"
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
with ‹σ Q = P› have "Id.S.splitted P"
using roots[of Q] by simp
from ‹P ∈ carrier (poly_ring ?M)› show ?thesis
proof (rule field.trivial_factors_imp_splitted[OF M])
fix R
assume R: "R ∈ carrier (poly_ring ?M)" "pirreducible⇘?M⇙ (carrier ?M) R" and "R pdivides⇘?M⇙ P"
from ‹P ∈ carrier (poly_ring ?M)› and ‹R ∈ carrier (poly_ring ?M)›
have "P ∈ carrier ((?set_of_algs)[X]⇘L⇙)" and "R ∈ carrier ((?set_of_algs)[X]⇘L⇙)"
unfolding Id.S.univ_poly_consistent[OF subfieldE(1)[OF set_of_algs]] by auto
hence in_carrier: "P ∈ carrier (poly_ring L)" "R ∈ carrier (poly_ring L)"
using Id.S.carrier_polynomial_shell[OF subfieldE(1)[OF set_of_algs]] by auto
from ‹R pdivides⇘?M⇙ P› have "R divides⇘((?set_of_algs)[X]⇘L⇙)⇙ P"
unfolding pdivides_def Id.S.univ_poly_consistent[OF subfieldE(1)[OF set_of_algs]]
by simp
with ‹P ∈ carrier ((?set_of_algs)[X]⇘L⇙)› and ‹R ∈ carrier ((?set_of_algs)[X]⇘L⇙)›
have "R pdivides⇘L⇙ P"
using domain.pdivides_iff_shell[OF field.axioms(1)[OF L] set_of_algs, of R P] by simp
with ‹Id.S.splitted P› and ‹degree P ≠ 0› have "Id.S.splitted R"
using field.pdivides_imp_splitted[OF L in_carrier(2,1)] by fastforce
show "degree R ≤ 1"
proof (cases "Id.S.roots R = {#}")
case True with ‹Id.S.splitted R› show ?thesis
unfolding Id.S.splitted_def by simp
next
case False with ‹R ∈ carrier (poly_ring L)›
obtain a where "a ∈ carrier L" and "a ∈# Id.S.roots R"
and "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∈ carrier (poly_ring L)" and pdiv: "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] pdivides⇘L⇙ R"
using domain.not_empty_rootsE[OF field.axioms(1)[OF L], of R] by blast
from ‹P ∈ carrier (?K[X]⇘L⇙)›
have "(Id.S.algebraic over ?K) a"
proof (rule Id.S.algebraicI)
from ‹degree P ≠ 0› show "P ≠ []"
by auto
next
from ‹a ∈# Id.S.roots R› and ‹R ∈ carrier (poly_ring L)›
have "Id.S.eval R a = 𝟬⇘L⇙"
using domain.roots_mem_iff_is_root[OF field.axioms(1)[OF L]]
unfolding Id.S.is_root_def by auto
with ‹R pdivides⇘L⇙ P› and ‹a ∈ carrier L› show "Id.S.eval P a = 𝟬⇘L⇙"
using domain.pdivides_imp_root_sharing[OF field.axioms(1)[OF L] in_carrier(2)] by simp
qed
with ‹a ∈ carrier L› have "a ∈ ?set_of_algs"
by simp
hence "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∈ carrier ((?set_of_algs)[X]⇘L⇙)"
using subringE(3,5)[of ?set_of_algs L] subfieldE(1,6)[OF set_of_algs]
unfolding sym[OF univ_poly_carrier] polynomial_def by simp
hence "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∈ carrier (poly_ring ?M)"
unfolding Id.S.univ_poly_consistent[OF subfieldE(1)[OF set_of_algs]] by simp
from ‹[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∈ carrier ((?set_of_algs)[X]⇘L⇙)›
and ‹R ∈ carrier ((?set_of_algs)[X]⇘L⇙)›
have "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] divides⇘(?set_of_algs)[X]⇘L⇙⇙ R"
using pdiv domain.pdivides_iff_shell[OF field.axioms(1)[OF L] set_of_algs] by simp
hence "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] divides⇘poly_ring ?M⇙ R"
unfolding pdivides_def Id.S.univ_poly_consistent[OF subfieldE(1)[OF set_of_algs]]
by simp
have "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∉ Units (poly_ring ?M)"
using Id.R.univ_poly_units[OF field.carrier_is_subfield[OF M]] by force
with ‹[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∈ carrier (poly_ring ?M)› and ‹R ∈ carrier (poly_ring ?M)›
and ‹[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] divides⇘poly_ring ?M⇙ R›
have "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∼⇘poly_ring ?M⇙ R"
using Id.R.divides_pirreducible_condition[OF R(2)] by auto
with ‹[ 𝟭⇘L⇙, ⊖⇘L⇙ a ] ∈ carrier (poly_ring ?M)› and ‹R ∈ carrier (poly_ring ?M)›
have "degree R = 1"
using domain.associated_polynomials_imp_same_length[OF field.axioms(1)[OF M]
Id.R.carrier_is_subring, of "[ 𝟭⇘L⇙, ⊖⇘L⇙ a ]" R] by force
thus ?thesis
by simp
qed
qed
qed
qed
ultimately show "algebraic_closure_axioms ?M ?K"
unfolding algebraic_closure_axioms_def by auto
qed
moreover have "indexed_const ∈ ring_hom R ?M"
using ring_hom_ring.homh[OF hom] subfieldE(3)[OF is_subfield]
unfolding subset_iff ring_hom_def by auto
ultimately show thesis
using that by auto
qed
lemma (in field) alg_closureE:
shows "algebraic_closure alg_closure (indexed_const ` (carrier R))"
and "indexed_const ∈ ring_hom R alg_closure"
using exists_closure unfolding alg_closure_def
by (metis (mono_tags, lifting) someI2)+
lemma (in field) algebraically_closedI':
assumes "⋀p. ⟦ p ∈ carrier (poly_ring R); degree p > 1 ⟧ ⟹ splitted p"
shows "algebraically_closed R"
proof
fix p assume "p ∈ carrier (poly_ring R)" show "splitted p"
proof (cases "degree p ≤ 1")
case True with ‹p ∈ carrier (poly_ring R)› show ?thesis
using degree_zero_imp_splitted degree_one_imp_splitted by fastforce
next
case False with ‹p ∈ carrier (poly_ring R)› show ?thesis
using assms by fastforce
qed
qed
lemma (in field) algebraically_closedI:
assumes "⋀p. ⟦ p ∈ carrier (poly_ring R); degree p > 1 ⟧ ⟹ ∃x ∈ carrier R. eval p x = 𝟬"
shows "algebraically_closed R"
proof
fix p assume "p ∈ carrier (poly_ring R)" thus "splitted p"
proof (induction "degree p" arbitrary: p rule: less_induct)
case less show ?case
proof (cases "degree p ≤ 1")
case True with ‹p ∈ carrier (poly_ring R)› show ?thesis
using degree_zero_imp_splitted degree_one_imp_splitted by fastforce
next
case False then have "degree p > 1"
by simp
with ‹p ∈ carrier (poly_ring R)› have "roots p ≠ {#}"
using assms[of p] roots_mem_iff_is_root[of p] unfolding is_root_def by force
then obtain a where a: "a ∈ carrier R" "a ∈# roots p"
and pdiv: "[ 𝟭, ⊖ a ] pdivides p" and in_carrier: "[ 𝟭, ⊖ a ] ∈ carrier (poly_ring R)"
using less(2) by blast
then obtain q where q: "q ∈ carrier (poly_ring R)" and p: "p = [ 𝟭, ⊖ a ] ⊗⇘poly_ring R⇙ q"
unfolding pdivides_def by blast
with ‹degree p > 1› have not_zero: "q ≠ []" and "p ≠ []"
using domain.integral_iff[OF univ_poly_is_domain[OF carrier_is_subring] in_carrier, of q]
by (auto simp add: univ_poly_zero[of R "carrier R"])
hence deg: "degree p = Suc (degree q)"
using poly_mult_degree_eq[OF carrier_is_subring] in_carrier q p
unfolding univ_poly_carrier sym[OF univ_poly_mult[of R "carrier R"]] by auto
hence "splitted q"
using less(1)[OF _ q] by simp
moreover have "roots p = add_mset a (roots q)"
using poly_mult_degree_one_monic_imp_same_roots[OF a(1) q not_zero] p by simp
ultimately show ?thesis
unfolding splitted_def deg by simp
qed
qed
qed
sublocale algebraic_closure ⊆ algebraically_closed
proof (rule algebraically_closedI')
fix P assume in_carrier: "P ∈ carrier (poly_ring L)" and gt_one: "degree P > 1"
then have gt_zero: "degree P > 0"
by simp
define A where "A = finite_extension K P"
from ‹P ∈ carrier (poly_ring L)› have "set P ⊆ carrier L"
by (simp add: polynomial_incl univ_poly_carrier)
hence A: "subfield A L" and P: "P ∈ carrier (A[X])"
using finite_extension_mem[OF subfieldE(1)[OF subfield_axioms], of P] in_carrier
algebraic_extension finite_extension_is_subfield[OF subfield_axioms, of P]
unfolding sym[OF A_def] sym[OF univ_poly_carrier] polynomial_def by auto
from ‹set P ⊆ carrier L› have incl: "K ⊆ A"
using finite_extension_incl[OF subfieldE(3)[OF subfield_axioms]] unfolding A_def by simp
interpret UP_K: domain "K[X]"
using univ_poly_is_domain[OF subfieldE(1)[OF subfield_axioms]] .
interpret UP_A: domain "A[X]"
using univ_poly_is_domain[OF subfieldE(1)[OF A]] .
interpret Rupt: ring "Rupt A P"
unfolding rupture_def using ideal.quotient_is_ring[OF UP_A.cgenideal_ideal[OF P]] .
interpret Hom: ring_hom_ring "L ⦇ carrier := A ⦈" "Rupt A P" "rupture_surj A P ∘ poly_of_const"
using ring_hom_ringI2[OF subring_is_ring[OF subfieldE(1)] Rupt.ring_axioms
rupture_surj_norm_is_hom[OF subfieldE(1) P]] A by simp
let ?h = "rupture_surj A P ∘ poly_of_const"
have h_simp: "rupture_surj A P ` poly_of_const ` E = ?h ` E" for E
by auto
hence aux_lemmas:
"subfield (rupture_surj A P ` poly_of_const ` K) (Rupt A P)"
"subfield (rupture_surj A P ` poly_of_const ` A) (Rupt A P)"
using Hom.img_is_subfield(2)[OF _ rupture_one_not_zero[OF A P gt_zero]]
ring.subfield_iff(1)[OF subring_is_ring[OF subfieldE(1)[OF A]]]
subfield_iff(2)[OF subfield_axioms] subfield_iff(2)[OF A] incl
by auto
have "carrier (K[X]) ⊆ carrier (A[X])"
using subsetI[of "carrier (K[X])" "carrier (A[X])"] incl
unfolding sym[OF univ_poly_carrier] polynomial_def by auto
hence "id ∈ ring_hom (K[X]) (A[X])"
unfolding ring_hom_def unfolding univ_poly_mult univ_poly_add univ_poly_one by (simp add: subsetD)
hence "rupture_surj A P ∈ ring_hom (K[X]) (Rupt A P)"
using ring_hom_trans[OF _ rupture_surj_hom(1)[OF subfieldE(1)[OF A] P], of id] by simp
then interpret Hom': ring_hom_ring "K[X]" "Rupt A P" "rupture_surj A P"
using ring_hom_ringI2[OF UP_K.ring_axioms Rupt.ring_axioms] by simp
from ‹id ∈ ring_hom (K[X]) (A[X])› have Id: "ring_hom_ring (K[X]) (A[X]) id"
using ring_hom_ringI2[OF UP_K.ring_axioms UP_A.ring_axioms] by simp
hence "subalgebra (poly_of_const ` K) (carrier (K[X])) (A[X])"
using ring_hom_ring.img_is_subalgebra[OF Id _ UP_K.carrier_is_subalgebra[OF subfieldE(3)]]
univ_poly_subfield_of_consts[OF subfield_axioms] by auto
moreover from ‹carrier (K[X]) ⊆ carrier (A[X])› have "poly_of_const ` K ⊆ carrier (A[X])"
using subfieldE(3)[OF univ_poly_subfield_of_consts[OF subfield_axioms]] by simp
ultimately
have "subalgebra (rupture_surj A P ` poly_of_const ` K) (rupture_surj A P ` carrier (K[X])) (Rupt A P)"
using ring_hom_ring.img_is_subalgebra[OF rupture_surj_hom(2)[OF subfieldE(1)[OF A] P]] by simp
moreover have "Rupt.finite_dimension (rupture_surj A P ` poly_of_const ` K) (carrier (Rupt A P))"
proof (intro Rupt.telescopic_base_dim(1)[where
?K = "rupture_surj A P ` poly_of_const ` K" and
?F = "rupture_surj A P ` poly_of_const ` A" and
?E = "carrier (Rupt A P)", OF aux_lemmas])
show "Rupt.finite_dimension (rupture_surj A P ` poly_of_const ` A) (carrier (Rupt A P))"
using Rupt.finite_dimensionI[OF rupture_dimension[OF A P gt_zero]] .
next
let ?h = "rupture_surj A P ∘ poly_of_const"
from ‹set P ⊆ carrier L› have "finite_dimension K A"
using finite_extension_finite_dimension(1)[OF subfield_axioms, of P] algebraic_extension
unfolding A_def by auto
then obtain Us where Us: "set Us ⊆ carrier L" "A = Span K Us"
using exists_base subfield_axioms by blast
hence "?h ` A = Rupt.Span (?h ` K) (map ?h Us)"
using Hom.Span_hom[of K Us] incl Span_base_incl[OF subfield_axioms, of Us]
unfolding Span_consistent[OF subfieldE(1)[OF A]] by simp
moreover have "set (map ?h Us) ⊆ carrier (Rupt A P)"
using Span_base_incl[OF subfield_axioms Us(1)] ring_hom_memE(1)[OF Hom.homh]
unfolding sym[OF Us(2)] by auto
ultimately
show "Rupt.finite_dimension (rupture_surj A P ` poly_of_const ` K) (rupture_surj A P ` poly_of_const ` A)"
using Rupt.Span_finite_dimension[OF aux_lemmas(1)] unfolding h_simp by simp
qed
moreover have "rupture_surj A P ` carrier (A[X]) = carrier (Rupt A P)"
unfolding rupture_def FactRing_def A_RCOSETS_def' by auto
with ‹carrier (K[X]) ⊆ carrier (A[X])› have "rupture_surj A P ` carrier (K[X]) ⊆ carrier (Rupt A P)"
by auto
ultimately
have "Rupt.finite_dimension (rupture_surj A P ` poly_of_const ` K) (rupture_surj A P ` carrier (K[X]))"
using Rupt.subalbegra_incl_imp_finite_dimension[OF aux_lemmas(1)] by simp
hence "¬ inj_on (rupture_surj A P) (carrier (K[X]))"
using Hom'.infinite_dimension_hom[OF _ rupture_one_not_zero[OF A P gt_zero] _
UP_K.carrier_is_subalgebra[OF subfieldE(3)] univ_poly_infinite_dimension[OF subfield_axioms]]
univ_poly_subfield_of_consts[OF subfield_axioms]
by auto
then obtain Q where Q: "Q ∈ carrier (K[X])" "Q ≠ []" and "rupture_surj A P Q = 𝟬⇘Rupt A P⇙"
using Hom'.trivial_ker_imp_inj Hom'.hom_zero unfolding a_kernel_def' univ_poly_zero by blast
with ‹carrier (K[X]) ⊆ carrier (A[X])› have "Q ∈ PIdl⇘A[X]⇙ P"
using ideal.rcos_const_imp_mem[OF UP_A.cgenideal_ideal[OF P]]
unfolding rupture_def FactRing_def by auto
then obtain R where "R ∈ carrier (A[X])" and "Q = R ⊗⇘A[X]⇙ P"
unfolding cgenideal_def by blast
with ‹P ∈ carrier (A[X])› have "P pdivides Q"
using dividesI[of _ "A[X]"] UP_A.m_comm pdivides_iff_shell[OF A] by simp
thus "splitted P"
using pdivides_imp_splitted[OF in_carrier
carrier_polynomial_shell[OF subfieldE(1)[OF subfield_axioms] Q(1)] Q(2)
roots_over_subfield[OF Q(1)]] Q
by simp
qed
end