Theory Rank
section ‹Absoluteness for Order Types, Rank Functions and Well-Founded
Relations›
theory Rank imports WF_absolute begin
subsection ‹Order Types: A Direct Construction by Replacement›
locale M_ordertype = M_basic +
assumes well_ord_iso_separation:
"⟦M(A); M(f); M(r)⟧
⟹ separation (M, λx. x∈A ⟶ (∃y[M]. (∃p[M].
fun_apply(M,f,x,y) ∧ pair(M,y,x,p) ∧ p ∈ r)))"
and obase_separation:
"⟦M(A); M(r)⟧
⟹ separation(M, λa. ∃x[M]. ∃g[M]. ∃mx[M]. ∃par[M].
ordinal(M,x) ∧ membership(M,x,mx) ∧ pred_set(M,A,a,r,par) ∧
order_isomorphism(M,par,r,x,mx,g))"
and obase_equals_separation:
"⟦M(A); M(r)⟧
⟹ separation (M, λx. x∈A ⟶ ¬(∃y[M]. ∃g[M].
ordinal(M,y) ∧ (∃my[M]. ∃pxr[M].
membership(M,y,my) ∧ pred_set(M,A,x,r,pxr) ∧
order_isomorphism(M,pxr,r,y,my,g))))"
and omap_replacement:
"⟦M(A); M(r)⟧
⟹ strong_replacement(M,
λa z. ∃x[M]. ∃g[M]. ∃mx[M]. ∃par[M].
ordinal(M,x) ∧ pair(M,a,x,z) ∧ membership(M,x,mx) ∧
pred_set(M,A,a,r,par) ∧ order_isomorphism(M,par,r,x,mx,g))"
text‹Inductive argument for Kunen's Lemma I 6.1, etc.
Simple proof from Halmos, page 72›
lemma (in M_ordertype) wellordered_iso_subset_lemma:
"⟦wellordered(M,A,r); f ∈ ord_iso(A,r, A',r); A'<= A; y ∈ A;
M(A); M(f); M(r)⟧ ⟹ ¬ <f`y, y> ∈ r"
unfolding wellordered_def ord_iso_def
apply (elim conjE CollectE)
apply (erule wellfounded_on_induct, assumption+)
apply (insert well_ord_iso_separation [of A f r])
apply (simp, clarify)
apply (drule_tac a = x in bij_is_fun [THEN apply_type], assumption, blast)
done
text‹Kunen's Lemma I 6.1, page 14:
there's no order-isomorphism to an initial segment of a well-ordering›
lemma (in M_ordertype) wellordered_iso_predD:
"⟦wellordered(M,A,r); f ∈ ord_iso(A, r, Order.pred(A,x,r), r);
M(A); M(f); M(r)⟧ ⟹ x ∉ A"
apply (rule notI)
apply (frule wellordered_iso_subset_lemma, assumption)
apply (auto elim: predE)
apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption)
apply (simp add: Order.pred_def)
done
lemma (in M_ordertype) wellordered_iso_pred_eq_lemma:
"⟦f ∈ ⟨Order.pred(A,y,r), r⟩ ≅ ⟨Order.pred(A,x,r), r⟩;
wellordered(M,A,r); x∈A; y∈A; M(A); M(f); M(r)⟧ ⟹ ⟨x,y⟩ ∉ r"
apply (frule wellordered_is_trans_on, assumption)
apply (rule notI)
apply (drule_tac x2=y and x=x and r2=r in
wellordered_subset [OF _ pred_subset, THEN wellordered_iso_predD])
apply (simp add: trans_pred_pred_eq)
apply (blast intro: predI dest: transM)+
done
text‹Simple consequence of Lemma 6.1›
lemma (in M_ordertype) wellordered_iso_pred_eq:
"⟦wellordered(M,A,r);
f ∈ ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r);
M(A); M(f); M(r); a∈A; c∈A⟧ ⟹ a=c"
apply (frule wellordered_is_trans_on, assumption)
apply (frule wellordered_is_linear, assumption)
apply (erule_tac x=a and y=c in linearE, auto)
apply (drule ord_iso_sym)
apply (blast dest: wellordered_iso_pred_eq_lemma)+
done
text‹Following Kunen's Theorem I 7.6, page 17. Note that this material is
not required elsewhere.›
text‹Can't use ‹well_ord_iso_preserving› because it needs the
strong premise \<^term>‹well_ord(A,r)››
lemma (in M_ordertype) ord_iso_pred_imp_lt:
"⟦f ∈ ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
g ∈ ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
wellordered(M,A,r); x ∈ A; y ∈ A; M(A); M(r); M(f); M(g); M(j);
Ord(i); Ord(j); ⟨x,y⟩ ∈ r⟧
⟹ i < j"
apply (frule wellordered_is_trans_on, assumption)
apply (frule_tac y=y in transM, assumption)
apply (rule_tac i=i and j=j in Ord_linear_lt, auto)
txt‹case \<^term>‹i=j› yields a contradiction›
apply (rule_tac x1=x and A1="Order.pred(A,y,r)" in
wellordered_iso_predD [THEN notE])
apply (blast intro: wellordered_subset [OF _ pred_subset])
apply (simp add: trans_pred_pred_eq)
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
apply (simp_all add: pred_iff)
txt‹case \<^term>‹j<i› also yields a contradiction›
apply (frule restrict_ord_iso2, assumption+)
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun])
apply (frule apply_type, blast intro: ltD)
apply (simp add: pred_iff)
apply (subgoal_tac
"∃h[M]. h ∈ ord_iso(Order.pred(A,y,r), r,
Order.pred(A, converse(f)`j, r), r)")
apply (clarify, frule wellordered_iso_pred_eq, assumption+)
apply (blast dest: wellordered_asym)
apply (intro rexI)
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)+
done
lemma ord_iso_converse1:
"⟦f: ord_iso(A,r,B,s); <b, f`a>: s; a:A; b:B⟧
⟹ <converse(f) ` b, a> ∈ r"
apply (frule ord_iso_converse, assumption+)
apply (blast intro: ord_iso_is_bij [THEN bij_is_fun, THEN apply_funtype])
apply (simp add: left_inverse_bij [OF ord_iso_is_bij])
done
definition
obase :: "[i⇒o,i,i] ⇒ i" where
"obase(M,A,r) ≡ {a∈A. ∃x[M]. ∃g[M]. Ord(x) ∧
g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
definition
omap :: "[i⇒o,i,i,i] ⇒ o" where
"omap(M,A,r,f) ≡
∀z[M].
z ∈ f ⟷ (∃a∈A. ∃x[M]. ∃g[M]. z = ⟨a,x⟩ ∧ Ord(x) ∧
g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
definition
otype :: "[i⇒o,i,i,i] ⇒ o" where
"otype(M,A,r,i) ≡ ∃f[M]. omap(M,A,r,f) ∧ is_range(M,f,i)"
text‹Can also be proved with the premise \<^term>‹M(z)› instead of
\<^term>‹M(f)›, but that version is less useful. This lemma
is also more useful than the definition, ‹omap_def›.›
lemma (in M_ordertype) omap_iff:
"⟦omap(M,A,r,f); M(A); M(f)⟧
⟹ z ∈ f ⟷
(∃a∈A. ∃x[M]. ∃g[M]. z = ⟨a,x⟩ ∧ Ord(x) ∧
g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
apply (simp add: omap_def)
apply (rule iffI)
apply (drule_tac [2] x=z in rspec)
apply (drule_tac x=z in rspec)
apply (blast dest: transM)+
done
lemma (in M_ordertype) omap_unique:
"⟦omap(M,A,r,f); omap(M,A,r,f'); M(A); M(r); M(f); M(f')⟧ ⟹ f' = f"
apply (rule equality_iffI)
apply (simp add: omap_iff)
done
lemma (in M_ordertype) omap_yields_Ord:
"⟦omap(M,A,r,f); ⟨a,x⟩ ∈ f; M(a); M(x)⟧ ⟹ Ord(x)"
by (simp add: omap_def)
lemma (in M_ordertype) otype_iff:
"⟦otype(M,A,r,i); M(A); M(r); M(i)⟧
⟹ x ∈ i ⟷
(M(x) ∧ Ord(x) ∧
(∃a∈A. ∃g[M]. g ∈ ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))"
apply (auto simp add: omap_iff otype_def)
apply (blast intro: transM)
apply (rule rangeI)
apply (frule transM, assumption)
apply (simp add: omap_iff, blast)
done
lemma (in M_ordertype) otype_eq_range:
"⟦omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i)⟧
⟹ i = range(f)"
apply (auto simp add: otype_def omap_iff)
apply (blast dest: omap_unique)
done
lemma (in M_ordertype) Ord_otype:
"⟦otype(M,A,r,i); trans[A](r); M(A); M(r); M(i)⟧ ⟹ Ord(i)"
apply (rule OrdI)
prefer 2
apply (simp add: Ord_def otype_def omap_def)
apply clarify
apply (frule pair_components_in_M, assumption)
apply blast
apply (auto simp add: Transset_def otype_iff)
apply (blast intro: transM)
apply (blast intro: Ord_in_Ord)
apply (rename_tac y a g)
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun,
THEN apply_funtype], assumption)
apply (rule_tac x="converse(g)`y" in bexI)
apply (frule_tac a="converse(g) ` y" in ord_iso_restrict_pred, assumption)
apply (safe elim!: predE)
apply (blast intro: restrict_ord_iso ord_iso_sym ltI dest: transM)
done
lemma (in M_ordertype) domain_omap:
"⟦omap(M,A,r,f); M(A); M(r); M(B); M(f)⟧
⟹ domain(f) = obase(M,A,r)"
apply (simp add: obase_def)
apply (rule equality_iffI)
apply (simp add: domain_iff omap_iff, blast)
done
lemma (in M_ordertype) omap_subset:
"⟦omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(B); M(i)⟧ ⟹ f ⊆ obase(M,A,r) * i"
apply clarify
apply (simp add: omap_iff obase_def)
apply (force simp add: otype_iff)
done
lemma (in M_ordertype) omap_funtype:
"⟦omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(i)⟧ ⟹ f ∈ obase(M,A,r) -> i"
apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff)
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
done
lemma (in M_ordertype) wellordered_omap_bij:
"⟦wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(i)⟧ ⟹ f ∈ bij(obase(M,A,r),i)"
apply (insert omap_funtype [of A r f i])
apply (auto simp add: bij_def inj_def)
prefer 2 apply (blast intro: fun_is_surj dest: otype_eq_range)
apply (frule_tac a=w in apply_Pair, assumption)
apply (frule_tac a=x in apply_Pair, assumption)
apply (simp add: omap_iff)
apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans)
done
text‹This is not the final result: we must show \<^term>‹oB(A,r) = A››
lemma (in M_ordertype) omap_ord_iso:
"⟦wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(i)⟧ ⟹ f ∈ ord_iso(obase(M,A,r),r,i,Memrel(i))"
apply (rule ord_isoI)
apply (erule wellordered_omap_bij, assumption+)
apply (insert omap_funtype [of A r f i], simp)
apply (frule_tac a=x in apply_Pair, assumption)
apply (frule_tac a=y in apply_Pair, assumption)
apply (auto simp add: omap_iff)
txt‹direction 1: assuming \<^term>‹⟨x,y⟩ ∈ r››
apply (blast intro: ltD ord_iso_pred_imp_lt)
txt‹direction 2: proving \<^term>‹⟨x,y⟩ ∈ r› using linearity of \<^term>‹r››
apply (rename_tac x y g ga)
apply (frule wellordered_is_linear, assumption,
erule_tac x=x and y=y in linearE, assumption+)
txt‹the case \<^term>‹x=y› leads to immediate contradiction›
apply (blast elim: mem_irrefl)
txt‹the case \<^term>‹⟨y,x⟩ ∈ r›: handle like the opposite direction›
apply (blast dest: ord_iso_pred_imp_lt ltD elim: mem_asym)
done
lemma (in M_ordertype) Ord_omap_image_pred:
"⟦wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(i); b ∈ A⟧ ⟹ Ord(f `` Order.pred(A,b,r))"
apply (frule wellordered_is_trans_on, assumption)
apply (rule OrdI)
prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast)
txt‹Hard part is to show that the image is a transitive set.›
apply (simp add: Transset_def, clarify)
apply (simp add: image_iff pred_iff apply_iff [OF omap_funtype [of A r f i]])
apply (rename_tac c j, clarify)
apply (frule omap_funtype [of A r f, THEN apply_funtype], assumption+)
apply (subgoal_tac "j ∈ i")
prefer 2 apply (blast intro: Ord_trans Ord_otype)
apply (subgoal_tac "converse(f) ` j ∈ obase(M,A,r)")
prefer 2
apply (blast dest: wellordered_omap_bij [THEN bij_converse_bij,
THEN bij_is_fun, THEN apply_funtype])
apply (rule_tac x="converse(f) ` j" in bexI)
apply (simp add: right_inverse_bij [OF wellordered_omap_bij])
apply (intro predI conjI)
apply (erule_tac b=c in trans_onD)
apply (rule ord_iso_converse1 [OF omap_ord_iso [of A r f i]])
apply (auto simp add: obase_def)
done
lemma (in M_ordertype) restrict_omap_ord_iso:
"⟦wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
D ⊆ obase(M,A,r); M(A); M(r); M(f); M(i)⟧
⟹ restrict(f,D) ∈ (⟨D,r⟩ ≅ ⟨f``D, Memrel(f``D)⟩)"
apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f i]],
assumption+)
apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel])
apply (blast dest: subsetD [OF omap_subset])
apply (drule ord_iso_sym, simp)
done
lemma (in M_ordertype) obase_equals:
"⟦wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(i)⟧ ⟹ obase(M,A,r) = A"
apply (rule equalityI, force simp add: obase_def, clarify)
apply (unfold obase_def, simp)
apply (frule wellordered_is_wellfounded_on, assumption)
apply (erule wellfounded_on_induct, assumption+)
apply (frule obase_equals_separation [of A r], assumption)
apply (simp, clarify)
apply (rename_tac b)
apply (subgoal_tac "Order.pred(A,b,r) ⊆ obase(M,A,r)")
apply (blast intro!: restrict_omap_ord_iso Ord_omap_image_pred)
apply (force simp add: pred_iff obase_def)
done
text‹Main result: \<^term>‹om› gives the order-isomorphism
\<^term>‹⟨A,r⟩ ≅ ⟨i, Memrel(i)⟩››
theorem (in M_ordertype) omap_ord_iso_otype:
"⟦wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i);
M(A); M(r); M(f); M(i)⟧ ⟹ f ∈ ord_iso(A, r, i, Memrel(i))"
apply (frule omap_ord_iso, assumption+)
apply (simp add: obase_equals)
done
lemma (in M_ordertype) obase_exists:
"⟦M(A); M(r)⟧ ⟹ M(obase(M,A,r))"
apply (simp add: obase_def)
apply (insert obase_separation [of A r])
apply (simp add: separation_def)
done
lemma (in M_ordertype) omap_exists:
"⟦M(A); M(r)⟧ ⟹ ∃z[M]. omap(M,A,r,z)"
apply (simp add: omap_def)
apply (insert omap_replacement [of A r])
apply (simp add: strong_replacement_def)
apply (drule_tac x="obase(M,A,r)" in rspec)
apply (simp add: obase_exists)
apply (simp add: obase_def)
apply (erule impE)
apply (clarsimp simp add: univalent_def)
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans, clarify)
apply (rule_tac x=Y in rexI)
apply (simp add: obase_def, blast, assumption)
done
lemma (in M_ordertype) otype_exists:
"⟦wellordered(M,A,r); M(A); M(r)⟧ ⟹ ∃i[M]. otype(M,A,r,i)"
apply (insert omap_exists [of A r])
apply (simp add: otype_def, safe)
apply (rule_tac x="range(x)" in rexI)
apply blast+
done
lemma (in M_ordertype) ordertype_exists:
"⟦wellordered(M,A,r); M(A); M(r)⟧
⟹ ∃f[M]. (∃i[M]. Ord(i) ∧ f ∈ ord_iso(A, r, i, Memrel(i)))"
apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
apply (rename_tac i)
apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype)
apply (rule Ord_otype)
apply (force simp add: otype_def)
apply (simp_all add: wellordered_is_trans_on)
done
lemma (in M_ordertype) relativized_imp_well_ord:
"⟦wellordered(M,A,r); M(A); M(r)⟧ ⟹ well_ord(A,r)"
apply (insert ordertype_exists [of A r], simp)
apply (blast intro: well_ord_ord_iso well_ord_Memrel)
done
subsection ‹Kunen's theorem 5.4, page 127›
text‹(a) The notion of Wellordering is absolute›
theorem (in M_ordertype) well_ord_abs [simp]:
"⟦M(A); M(r)⟧ ⟹ wellordered(M,A,r) ⟷ well_ord(A,r)"
by (blast intro: well_ord_imp_relativized relativized_imp_well_ord)
text‹(b) Order types are absolute›
theorem (in M_ordertype) ordertypes_are_absolute:
"⟦wellordered(M,A,r); f ∈ ord_iso(A, r, i, Memrel(i));
M(A); M(r); M(f); M(i); Ord(i)⟧ ⟹ i = ordertype(A,r)"
by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso
Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
subsection‹Ordinal Arithmetic: Two Examples of Recursion›
text‹Note: the remainder of this theory is not needed elsewhere.›
subsubsection‹Ordinal Addition›
definition
is_oadd_fun :: "[i⇒o,i,i,i,i] ⇒ o" where
"is_oadd_fun(M,i,j,x,f) ≡
(∀sj msj. M(sj) ⟶ M(msj) ⟶
successor(M,j,sj) ⟶ membership(M,sj,msj) ⟶
M_is_recfun(M,
λx g y. ∃gx[M]. image(M,g,x,gx) ∧ union(M,i,gx,y),
msj, x, f))"
definition
is_oadd :: "[i⇒o,i,i,i] ⇒ o" where
"is_oadd(M,i,j,k) ≡
(¬ ordinal(M,i) ∧ ¬ ordinal(M,j) ∧ k=0) |
(¬ ordinal(M,i) ∧ ordinal(M,j) ∧ k=j) |
(ordinal(M,i) ∧ ¬ ordinal(M,j) ∧ k=i) |
(ordinal(M,i) ∧ ordinal(M,j) ∧
(∃f fj sj. M(f) ∧ M(fj) ∧ M(sj) ∧
successor(M,j,sj) ∧ is_oadd_fun(M,i,sj,sj,f) ∧
fun_apply(M,f,j,fj) ∧ fj = k))"
definition
omult_eqns :: "[i,i,i,i] ⇒ o" where
"omult_eqns(i,x,g,z) ≡
Ord(x) ∧
(x=0 ⟶ z=0) ∧
(∀j. x = succ(j) ⟶ z = g`j ++ i) ∧
(Limit(x) ⟶ z = ⋃(g``x))"
definition
is_omult_fun :: "[i⇒o,i,i,i] ⇒ o" where
"is_omult_fun(M,i,j,f) ≡
(∃df. M(df) ∧ is_function(M,f) ∧
is_domain(M,f,df) ∧ subset(M, j, df)) ∧
(∀x∈j. omult_eqns(i,x,f,f`x))"
definition
is_omult :: "[i⇒o,i,i,i] ⇒ o" where
"is_omult(M,i,j,k) ≡
∃f fj sj. M(f) ∧ M(fj) ∧ M(sj) ∧
successor(M,j,sj) ∧ is_omult_fun(M,i,sj,f) ∧
fun_apply(M,f,j,fj) ∧ fj = k"
locale M_ord_arith = M_ordertype +
assumes oadd_strong_replacement:
"⟦M(i); M(j)⟧ ⟹
strong_replacement(M,
λx z. ∃y[M]. pair(M,x,y,z) ∧
(∃f[M]. ∃fx[M]. is_oadd_fun(M,i,j,x,f) ∧
image(M,f,x,fx) ∧ y = i ∪ fx))"
and omult_strong_replacement':
"⟦M(i); M(j)⟧ ⟹
strong_replacement(M,
λx z. ∃y[M]. z = ⟨x,y⟩ ∧
(∃g[M]. is_recfun(Memrel(succ(j)),x,λx g. THE z. omult_eqns(i,x,g,z),g) ∧
y = (THE z. omult_eqns(i, x, g, z))))"
text‹‹is_oadd_fun›: Relating the pure "language of set theory" to Isabelle/ZF›
lemma (in M_ord_arith) is_oadd_fun_iff:
"⟦a≤j; M(i); M(j); M(a); M(f)⟧
⟹ is_oadd_fun(M,i,j,a,f) ⟷
f ∈ a → range(f) ∧ (∀x. M(x) ⟶ x < a ⟶ f`x = i ∪ f``x)"
apply (frule lt_Ord)
apply (simp add: is_oadd_fun_def
relation2_def is_recfun_abs [of "λx g. i ∪ g``x"]
is_recfun_iff_equation
Ball_def lt_trans [OF ltI, of _ a] lt_Memrel)
apply (simp add: lt_def)
apply (blast dest: transM)
done
lemma (in M_ord_arith) oadd_strong_replacement':
"⟦M(i); M(j)⟧ ⟹
strong_replacement(M,
λx z. ∃y[M]. z = ⟨x,y⟩ ∧
(∃g[M]. is_recfun(Memrel(succ(j)),x,λx g. i ∪ g``x,g) ∧
y = i ∪ g``x))"
apply (insert oadd_strong_replacement [of i j])
apply (simp add: is_oadd_fun_def relation2_def
is_recfun_abs [of "λx g. i ∪ g``x"])
done
lemma (in M_ord_arith) exists_oadd:
"⟦Ord(j); M(i); M(j)⟧
⟹ ∃f[M]. is_recfun(Memrel(succ(j)), j, λx g. i ∪ g``x, f)"
apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel])
apply (simp_all add: Memrel_type oadd_strong_replacement')
done
lemma (in M_ord_arith) exists_oadd_fun:
"⟦Ord(j); M(i); M(j)⟧ ⟹ ∃f[M]. is_oadd_fun(M,i,succ(j),succ(j),f)"
apply (rule exists_oadd [THEN rexE])
apply (erule Ord_succ, assumption, simp)
apply (rename_tac f)
apply (frule is_recfun_type)
apply (rule_tac x=f in rexI)
apply (simp add: fun_is_function domain_of_fun lt_Memrel apply_recfun lt_def
is_oadd_fun_iff Ord_trans [OF _ succI1], assumption)
done
lemma (in M_ord_arith) is_oadd_fun_apply:
"⟦x < j; M(i); M(j); M(f); is_oadd_fun(M,i,j,j,f)⟧
⟹ f`x = i ∪ (⋃k∈x. {f ` k})"
apply (simp add: is_oadd_fun_iff lt_Ord2, clarify)
apply (frule lt_closed, simp)
apply (frule leI [THEN le_imp_subset])
apply (simp add: image_fun, blast)
done
lemma (in M_ord_arith) is_oadd_fun_iff_oadd [rule_format]:
"⟦is_oadd_fun(M,i,J,J,f); M(i); M(J); M(f); Ord(i); Ord(j)⟧
⟹ j<J ⟶ f`j = i++j"
apply (erule_tac i=j in trans_induct, clarify)
apply (subgoal_tac "∀k∈x. k<J")
apply (simp (no_asm_simp) add: is_oadd_def oadd_unfold is_oadd_fun_apply)
apply (blast intro: lt_trans ltI lt_Ord)
done
lemma (in M_ord_arith) Ord_oadd_abs:
"⟦M(i); M(j); M(k); Ord(i); Ord(j)⟧ ⟹ is_oadd(M,i,j,k) ⟷ k = i++j"
apply (simp add: is_oadd_def is_oadd_fun_iff_oadd)
apply (frule exists_oadd_fun [of j i], blast+)
done
lemma (in M_ord_arith) oadd_abs:
"⟦M(i); M(j); M(k)⟧ ⟹ is_oadd(M,i,j,k) ⟷ k = i++j"
apply (case_tac "Ord(i) ∧ Ord(j)")
apply (simp add: Ord_oadd_abs)
apply (auto simp add: is_oadd_def oadd_eq_if_raw_oadd)
done
lemma (in M_ord_arith) oadd_closed [intro,simp]:
"⟦M(i); M(j)⟧ ⟹ M(i++j)"
apply (simp add: oadd_eq_if_raw_oadd, clarify)
apply (simp add: raw_oadd_eq_oadd)
apply (frule exists_oadd_fun [of j i], auto)
apply (simp add: is_oadd_fun_iff_oadd [symmetric])
done
subsubsection‹Ordinal Multiplication›
lemma omult_eqns_unique:
"⟦omult_eqns(i,x,g,z); omult_eqns(i,x,g,z')⟧ ⟹ z=z'"
apply (simp add: omult_eqns_def, clarify)
apply (erule Ord_cases, simp_all)
done
lemma omult_eqns_0: "omult_eqns(i,0,g,z) ⟷ z=0"
by (simp add: omult_eqns_def)
lemma the_omult_eqns_0: "(THE z. omult_eqns(i,0,g,z)) = 0"
by (simp add: omult_eqns_0)
lemma omult_eqns_succ: "omult_eqns(i,succ(j),g,z) ⟷ Ord(j) ∧ z = g`j ++ i"
by (simp add: omult_eqns_def)
lemma the_omult_eqns_succ:
"Ord(j) ⟹ (THE z. omult_eqns(i,succ(j),g,z)) = g`j ++ i"
by (simp add: omult_eqns_succ)
lemma omult_eqns_Limit:
"Limit(x) ⟹ omult_eqns(i,x,g,z) ⟷ z = ⋃(g``x)"
apply (simp add: omult_eqns_def)
apply (blast intro: Limit_is_Ord)
done
lemma the_omult_eqns_Limit:
"Limit(x) ⟹ (THE z. omult_eqns(i,x,g,z)) = ⋃(g``x)"
by (simp add: omult_eqns_Limit)
lemma omult_eqns_Not: "¬ Ord(x) ⟹ ¬ omult_eqns(i,x,g,z)"
by (simp add: omult_eqns_def)
lemma (in M_ord_arith) the_omult_eqns_closed:
"⟦M(i); M(x); M(g); function(g)⟧
⟹ M(THE z. omult_eqns(i, x, g, z))"
apply (case_tac "Ord(x)")
prefer 2 apply (simp add: omult_eqns_Not)
apply (erule Ord_cases)
apply (simp add: omult_eqns_0)
apply (simp add: omult_eqns_succ)
apply (simp add: omult_eqns_Limit)
done
lemma (in M_ord_arith) exists_omult:
"⟦Ord(j); M(i); M(j)⟧
⟹ ∃f[M]. is_recfun(Memrel(succ(j)), j, λx g. THE z. omult_eqns(i,x,g,z), f)"
apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel])
apply (simp_all add: Memrel_type omult_strong_replacement')
apply (blast intro: the_omult_eqns_closed)
done
lemma (in M_ord_arith) exists_omult_fun:
"⟦Ord(j); M(i); M(j)⟧ ⟹ ∃f[M]. is_omult_fun(M,i,succ(j),f)"
apply (rule exists_omult [THEN rexE])
apply (erule Ord_succ, assumption, simp)
apply (rename_tac f)
apply (frule is_recfun_type)
apply (rule_tac x=f in rexI)
apply (simp add: fun_is_function domain_of_fun lt_Memrel apply_recfun lt_def
is_omult_fun_def Ord_trans [OF _ succI1])
apply (force dest: Ord_in_Ord'
simp add: omult_eqns_def the_omult_eqns_0 the_omult_eqns_succ
the_omult_eqns_Limit, assumption)
done
lemma (in M_ord_arith) is_omult_fun_apply_0:
"⟦0 < j; is_omult_fun(M,i,j,f)⟧ ⟹ f`0 = 0"
by (simp add: is_omult_fun_def omult_eqns_def lt_def ball_conj_distrib)
lemma (in M_ord_arith) is_omult_fun_apply_succ:
"⟦succ(x) < j; is_omult_fun(M,i,j,f)⟧ ⟹ f`succ(x) = f`x ++ i"
by (simp add: is_omult_fun_def omult_eqns_def lt_def, blast)
lemma (in M_ord_arith) is_omult_fun_apply_Limit:
"⟦x < j; Limit(x); M(j); M(f); is_omult_fun(M,i,j,f)⟧
⟹ f ` x = (⋃y∈x. f`y)"
apply (simp add: is_omult_fun_def omult_eqns_def lt_def, clarify)
apply (drule subset_trans [OF OrdmemD], assumption+)
apply (simp add: ball_conj_distrib omult_Limit image_function)
done
lemma (in M_ord_arith) is_omult_fun_eq_omult:
"⟦is_omult_fun(M,i,J,f); M(J); M(f); Ord(i); Ord(j)⟧
⟹ j<J ⟶ f`j = i**j"
apply (erule_tac i=j in trans_induct3)
apply (safe del: impCE)
apply (simp add: is_omult_fun_apply_0)
apply (subgoal_tac "x<J")
apply (simp add: is_omult_fun_apply_succ omult_succ)
apply (blast intro: lt_trans)
apply (subgoal_tac "∀k∈x. k<J")
apply (simp add: is_omult_fun_apply_Limit omult_Limit)
apply (blast intro: lt_trans ltI lt_Ord)
done
lemma (in M_ord_arith) omult_abs:
"⟦M(i); M(j); M(k); Ord(i); Ord(j)⟧ ⟹ is_omult(M,i,j,k) ⟷ k = i**j"
apply (simp add: is_omult_def is_omult_fun_eq_omult)
apply (frule exists_omult_fun [of j i], blast+)
done
subsection ‹Absoluteness of Well-Founded Relations›
text‹Relativized to \<^term>‹M›: Every well-founded relation is a subset of some
inverse image of an ordinal. Key step is the construction (in \<^term>‹M›) of a
rank function.›
locale M_wfrank = M_trancl +
assumes wfrank_separation:
"M(r) ⟹
separation (M, λx.
∀rplus[M]. tran_closure(M,r,rplus) ⟶
¬ (∃f[M]. M_is_recfun(M, λx f y. is_range(M,f,y), rplus, x, f)))"
and wfrank_strong_replacement:
"M(r) ⟹
strong_replacement(M, λx z.
∀rplus[M]. tran_closure(M,r,rplus) ⟶
(∃y[M]. ∃f[M]. pair(M,x,y,z) ∧
M_is_recfun(M, λx f y. is_range(M,f,y), rplus, x, f) ∧
is_range(M,f,y)))"
and Ord_wfrank_separation:
"M(r) ⟹
separation (M, λx.
∀rplus[M]. tran_closure(M,r,rplus) ⟶
¬ (∀f[M]. ∀rangef[M].
is_range(M,f,rangef) ⟶
M_is_recfun(M, λx f y. is_range(M,f,y), rplus, x, f) ⟶
ordinal(M,rangef)))"
text‹Proving that the relativized instances of Separation or Replacement
agree with the "real" ones.›
lemma (in M_wfrank) wfrank_separation':
"M(r) ⟹
separation
(M, λx. ¬ (∃f[M]. is_recfun(r^+, x, λx f. range(f), f)))"
apply (insert wfrank_separation [of r])
apply (simp add: relation2_def is_recfun_abs [of "λx. range"])
done
lemma (in M_wfrank) wfrank_strong_replacement':
"M(r) ⟹
strong_replacement(M, λx z. ∃y[M]. ∃f[M].
pair(M,x,y,z) ∧ is_recfun(r^+, x, λx f. range(f), f) ∧
y = range(f))"
apply (insert wfrank_strong_replacement [of r])
apply (simp add: relation2_def is_recfun_abs [of "λx. range"])
done
lemma (in M_wfrank) Ord_wfrank_separation':
"M(r) ⟹
separation (M, λx.
¬ (∀f[M]. is_recfun(r^+, x, λx. range, f) ⟶ Ord(range(f))))"
apply (insert Ord_wfrank_separation [of r])
apply (simp add: relation2_def is_recfun_abs [of "λx. range"])
done
text‹This function, defined using replacement, is a rank function for
well-founded relations within the class M.›
definition
wellfoundedrank :: "[i⇒o,i,i] ⇒ i" where
"wellfoundedrank(M,r,A) ≡
{p. x∈A, ∃y[M]. ∃f[M].
p = ⟨x,y⟩ ∧ is_recfun(r^+, x, λx f. range(f), f) ∧
y = range(f)}"
lemma (in M_wfrank) exists_wfrank:
"⟦wellfounded(M,r); M(a); M(r)⟧
⟹ ∃f[M]. is_recfun(r^+, a, λx f. range(f), f)"
apply (rule wellfounded_exists_is_recfun)
apply (blast intro: wellfounded_trancl)
apply (rule trans_trancl)
apply (erule wfrank_separation')
apply (erule wfrank_strong_replacement')
apply (simp_all add: trancl_subset_times)
done
lemma (in M_wfrank) M_wellfoundedrank:
"⟦wellfounded(M,r); M(r); M(A)⟧ ⟹ M(wellfoundedrank(M,r,A))"
apply (insert wfrank_strong_replacement' [of r])
apply (simp add: wellfoundedrank_def)
apply (rule strong_replacement_closed)
apply assumption+
apply (rule univalent_is_recfun)
apply (blast intro: wellfounded_trancl)
apply (rule trans_trancl)
apply (simp add: trancl_subset_times)
apply (blast dest: transM)
done
lemma (in M_wfrank) Ord_wfrank_range [rule_format]:
"⟦wellfounded(M,r); a∈A; M(r); M(A)⟧
⟹ ∀f[M]. is_recfun(r^+, a, λx f. range(f), f) ⟶ Ord(range(f))"
apply (drule wellfounded_trancl, assumption)
apply (rule wellfounded_induct, assumption, erule (1) transM)
apply simp
apply (blast intro: Ord_wfrank_separation', clarify)
txt‹The reasoning in both cases is that we get \<^term>‹y› such that
\<^term>‹⟨y, x⟩ ∈ r^+›. We find that
\<^term>‹f`y = restrict(f, r^+ -`` {y})›.›
apply (rule OrdI [OF _ Ord_is_Transset])
txt‹An ordinal is a transitive set...›
apply (simp add: Transset_def)
apply clarify
apply (frule apply_recfun2, assumption)
apply (force simp add: restrict_iff)
txt‹...of ordinals. This second case requires the induction hyp.›
apply clarify
apply (rename_tac i y)
apply (frule apply_recfun2, assumption)
apply (frule is_recfun_imp_in_r, assumption)
apply (frule is_recfun_restrict)
apply (simp add: trans_trancl trancl_subset_times)+
apply (drule spec [THEN mp], assumption)
apply (subgoal_tac "M(restrict(f, r^+ -`` {y}))")
apply (drule_tac x="restrict(f, r^+ -`` {y})" in rspec)
apply assumption
apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])
apply (blast dest: pair_components_in_M)
done
lemma (in M_wfrank) Ord_range_wellfoundedrank:
"⟦wellfounded(M,r); r ⊆ A*A; M(r); M(A)⟧
⟹ Ord (range(wellfoundedrank(M,r,A)))"
apply (frule wellfounded_trancl, assumption)
apply (frule trancl_subset_times)
apply (simp add: wellfoundedrank_def)
apply (rule OrdI [OF _ Ord_is_Transset])
prefer 2
txt‹by our previous result the range consists of ordinals.›
apply (blast intro: Ord_wfrank_range)
txt‹We still must show that the range is a transitive set.›
apply (simp add: Transset_def, clarify, simp)
apply (rename_tac x i f u)
apply (frule is_recfun_imp_in_r, assumption)
apply (subgoal_tac "M(u) ∧ M(i) ∧ M(x)")
prefer 2 apply (blast dest: transM, clarify)
apply (rule_tac a=u in rangeI)
apply (rule_tac x=u in ReplaceI)
apply simp
apply (rule_tac x="restrict(f, r^+ -`` {u})" in rexI)
apply (blast intro: is_recfun_restrict trans_trancl dest: apply_recfun2)
apply simp
apply blast
txt‹Unicity requirement of Replacement›
apply clarify
apply (frule apply_recfun2, assumption)
apply (simp add: trans_trancl is_recfun_cut)
done
lemma (in M_wfrank) function_wellfoundedrank:
"⟦wellfounded(M,r); M(r); M(A)⟧
⟹ function(wellfoundedrank(M,r,A))"
apply (simp add: wellfoundedrank_def function_def, clarify)
txt‹Uniqueness: repeated below!›
apply (drule is_recfun_functional, assumption)
apply (blast intro: wellfounded_trancl)
apply (simp_all add: trancl_subset_times trans_trancl)
done
lemma (in M_wfrank) domain_wellfoundedrank:
"⟦wellfounded(M,r); M(r); M(A)⟧
⟹ domain(wellfoundedrank(M,r,A)) = A"
apply (simp add: wellfoundedrank_def function_def)
apply (rule equalityI, auto)
apply (frule transM, assumption)
apply (frule_tac a=x in exists_wfrank, assumption+, clarify)
apply (rule_tac b="range(f)" in domainI)
apply (rule_tac x=x in ReplaceI)
apply simp
apply (rule_tac x=f in rexI, blast, simp_all)
txt‹Uniqueness (for Replacement): repeated above!›
apply clarify
apply (drule is_recfun_functional, assumption)
apply (blast intro: wellfounded_trancl)
apply (simp_all add: trancl_subset_times trans_trancl)
done
lemma (in M_wfrank) wellfoundedrank_type:
"⟦wellfounded(M,r); M(r); M(A)⟧
⟹ wellfoundedrank(M,r,A) ∈ A -> range(wellfoundedrank(M,r,A))"
apply (frule function_wellfoundedrank [of r A], assumption+)
apply (frule function_imp_Pi)
apply (simp add: wellfoundedrank_def relation_def)
apply blast
apply (simp add: domain_wellfoundedrank)
done
lemma (in M_wfrank) Ord_wellfoundedrank:
"⟦wellfounded(M,r); a ∈ A; r ⊆ A*A; M(r); M(A)⟧
⟹ Ord(wellfoundedrank(M,r,A) ` a)"
by (blast intro: apply_funtype [OF wellfoundedrank_type]
Ord_in_Ord [OF Ord_range_wellfoundedrank])
lemma (in M_wfrank) wellfoundedrank_eq:
"⟦is_recfun(r^+, a, λx. range, f);
wellfounded(M,r); a ∈ A; M(f); M(r); M(A)⟧
⟹ wellfoundedrank(M,r,A) ` a = range(f)"
apply (rule apply_equality)
prefer 2 apply (blast intro: wellfoundedrank_type)
apply (simp add: wellfoundedrank_def)
apply (rule ReplaceI)
apply (rule_tac x="range(f)" in rexI)
apply blast
apply simp_all
txt‹Unicity requirement of Replacement›
apply clarify
apply (drule is_recfun_functional, assumption)
apply (blast intro: wellfounded_trancl)
apply (simp_all add: trancl_subset_times trans_trancl)
done
lemma (in M_wfrank) wellfoundedrank_lt:
"⟦⟨a,b⟩ ∈ r;
wellfounded(M,r); r ⊆ A*A; M(r); M(A)⟧
⟹ wellfoundedrank(M,r,A) ` a < wellfoundedrank(M,r,A) ` b"
apply (frule wellfounded_trancl, assumption)
apply (subgoal_tac "a∈A ∧ b∈A")
prefer 2 apply blast
apply (simp add: lt_def Ord_wellfoundedrank, clarify)
apply (frule exists_wfrank [of concl: _ b], erule (1) transM, assumption)
apply clarify
apply (rename_tac fb)
apply (frule is_recfun_restrict [of concl: "r^+" a])
apply (rule trans_trancl, assumption)
apply (simp_all add: r_into_trancl trancl_subset_times)
txt‹Still the same goal, but with new ‹is_recfun› assumptions.›
apply (simp add: wellfoundedrank_eq)
apply (frule_tac a=a in wellfoundedrank_eq, assumption+)
apply (simp_all add: transM [of a])
txt‹We have used equations for wellfoundedrank and now must use some
for ‹is_recfun›.›
apply (rule_tac a=a in rangeI)
apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff
r_into_trancl apply_recfun)
done
lemma (in M_wfrank) wellfounded_imp_subset_rvimage:
"⟦wellfounded(M,r); r ⊆ A*A; M(r); M(A)⟧
⟹ ∃i f. Ord(i) ∧ r ⊆ rvimage(A, f, Memrel(i))"
apply (rule_tac x="range(wellfoundedrank(M,r,A))" in exI)
apply (rule_tac x="wellfoundedrank(M,r,A)" in exI)
apply (simp add: Ord_range_wellfoundedrank, clarify)
apply (frule subsetD, assumption, clarify)
apply (simp add: rvimage_iff wellfoundedrank_lt [THEN ltD])
apply (blast intro: apply_rangeI wellfoundedrank_type)
done
lemma (in M_wfrank) wellfounded_imp_wf:
"⟦wellfounded(M,r); relation(r); M(r)⟧ ⟹ wf(r)"
by (blast dest!: relation_field_times_field wellfounded_imp_subset_rvimage
intro: wf_rvimage_Ord [THEN wf_subset])
lemma (in M_wfrank) wellfounded_on_imp_wf_on:
"⟦wellfounded_on(M,A,r); relation(r); M(r); M(A)⟧ ⟹ wf[A](r)"
apply (simp add: wellfounded_on_iff_wellfounded wf_on_def)
apply (rule wellfounded_imp_wf)
apply (simp_all add: relation_def)
done
theorem (in M_wfrank) wf_abs:
"⟦relation(r); M(r)⟧ ⟹ wellfounded(M,r) ⟷ wf(r)"
by (blast intro: wellfounded_imp_wf wf_imp_relativized)
theorem (in M_wfrank) wf_on_abs:
"⟦relation(r); M(r); M(A)⟧ ⟹ wellfounded_on(M,A,r) ⟷ wf[A](r)"
by (blast intro: wellfounded_on_imp_wf_on wf_on_imp_relativized)
end