Theory FOL
section ‹Classical first-order logic›
theory FOL
imports IFOL
keywords "print_claset" "print_induct_rules" :: diag
begin
ML_file ‹~~/src/Provers/classical.ML›
ML_file ‹~~/src/Provers/blast.ML›
ML_file ‹~~/src/Provers/clasimp.ML›
subsection ‹The classical axiom›
axiomatization where
classical: ‹(¬ P ⟹ P) ⟹ P›
subsection ‹Lemmas and proof tools›
lemma ccontr: ‹(¬ P ⟹ False) ⟹ P›
by (erule FalseE [THEN classical])
subsubsection ‹Classical introduction rules for ‹∨› and ‹∃››
lemma disjCI: ‹(¬ Q ⟹ P) ⟹ P ∨ Q›
apply (rule classical)
apply (assumption | erule meta_mp | rule disjI1 notI)+
apply (erule notE disjI2)+
done
text ‹Introduction rule involving only ‹∃››
lemma ex_classical:
assumes r: ‹¬ (∃x. P(x)) ⟹ P(a)›
shows ‹∃x. P(x)›
apply (rule classical)
apply (rule exI, erule r)
done
text ‹Version of above, simplifying ‹¬∃› to ‹∀¬›.›
lemma exCI:
assumes r: ‹∀x. ¬ P(x) ⟹ P(a)›
shows ‹∃x. P(x)›
apply (rule ex_classical)
apply (rule notI [THEN allI, THEN r])
apply (erule notE)
apply (erule exI)
done
lemma excluded_middle: ‹¬ P ∨ P›
apply (rule disjCI)
apply assumption
done
lemma case_split [case_names True False]:
assumes r1: ‹P ⟹ Q›
and r2: ‹¬ P ⟹ Q›
shows ‹Q›
apply (rule excluded_middle [THEN disjE])
apply (erule r2)
apply (erule r1)
done
ML ‹
fun case_tac ctxt a fixes =
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), a)] fixes @{thm case_split};
›
method_setup case_tac = ‹
Args.goal_spec -- Scan.lift (Parse.embedded_inner_syntax -- Parse.for_fixes) >>
(fn (quant, (s, fixes)) => fn ctxt => SIMPLE_METHOD'' quant (case_tac ctxt s fixes))
› "case_tac emulation (dynamic instantiation!)"
subsection ‹Special elimination rules›
text ‹Classical implies (‹⟶›) elimination.›
lemma impCE:
assumes major: ‹P ⟶ Q›
and r1: ‹¬ P ⟹ R›
and r2: ‹Q ⟹ R›
shows ‹R›
apply (rule excluded_middle [THEN disjE])
apply (erule r1)
apply (rule r2)
apply (erule major [THEN mp])
done
text ‹
This version of ‹⟶› elimination works on ‹Q› before ‹P›. It works best for those cases in which P holds ``almost everywhere''.
Can't install as default: would break old proofs.
›
lemma impCE':
assumes major: ‹P ⟶ Q›
and r1: ‹Q ⟹ R›
and r2: ‹¬ P ⟹ R›
shows ‹R›
apply (rule excluded_middle [THEN disjE])
apply (erule r2)
apply (rule r1)
apply (erule major [THEN mp])
done
text ‹Double negation law.›
lemma notnotD: ‹¬ ¬ P ⟹ P›
apply (rule classical)
apply (erule notE)
apply assumption
done
lemma contrapos2: ‹⟦Q; ¬ P ⟹ ¬ Q⟧ ⟹ P›
apply (rule classical)
apply (drule (1) meta_mp)
apply (erule (1) notE)
done
subsubsection ‹Tactics for implication and contradiction›
text ‹
Classical ‹⟷› elimination. Proof substitutes ‹P = Q› in
‹¬ P ⟹ ¬ Q› and ‹P ⟹ Q›.
›
lemma iffCE:
assumes major: ‹P ⟷ Q›
and r1: ‹⟦P; Q⟧ ⟹ R›
and r2: ‹⟦¬ P; ¬ Q⟧ ⟹ R›
shows ‹R›
apply (rule major [unfolded iff_def, THEN conjE])
apply (elim impCE)
apply (erule (1) r2)
apply (erule (1) notE)+
apply (erule (1) r1)
done
lemma alt_ex1E:
assumes major: ‹∃! x. P(x)›
and r: ‹⋀x. ⟦P(x); ∀y y'. P(y) ∧ P(y') ⟶ y = y'⟧ ⟹ R›
shows ‹R›
using major
proof (rule ex1E)
fix x
assume * : ‹∀y. P(y) ⟶ y = x›
assume ‹P(x)›
then show ‹R›
proof (rule r)
{
fix y y'
assume ‹P(y)› and ‹P(y')›
with * have ‹x = y› and ‹x = y'›
by - (tactic "IntPr.fast_tac \<^context> 1")+
then have ‹y = y'› by (rule subst)
} note r' = this
show ‹∀y y'. P(y) ∧ P(y') ⟶ y = y'›
by (intro strip, elim conjE) (rule r')
qed
qed
lemma imp_elim: ‹P ⟶ Q ⟹ (¬ R ⟹ P) ⟹ (Q ⟹ R) ⟹ R›
by (rule classical) iprover
lemma swap: ‹¬ P ⟹ (¬ R ⟹ P) ⟹ R›
by (rule classical) iprover
section ‹Classical Reasoner›
ML ‹
structure Cla = Classical
(
val imp_elim = @{thm imp_elim}
val not_elim = @{thm notE}
val swap = @{thm swap}
val classical = @{thm classical}
val sizef = size_of_thm
val hyp_subst_tacs = [hyp_subst_tac]
);
structure Basic_Classical: BASIC_CLASSICAL = Cla;
open Basic_Classical;
›
lemmas [intro!] = refl TrueI conjI disjCI impI notI iffI
and [elim!] = conjE disjE impCE FalseE iffCE
ML ‹val prop_cs = claset_of \<^context>›
lemmas [intro!] = allI ex_ex1I
and [intro] = exI
and [elim!] = exE alt_ex1E
and [elim] = allE
ML ‹val FOL_cs = claset_of \<^context>›
ML ‹
structure Blast = Blast
(
structure Classical = Cla
val Trueprop_const = dest_Const \<^Const>‹Trueprop›
val equality_name = \<^const_name>‹eq›
val not_name = \<^const_name>‹Not›
val notE = @{thm notE}
val ccontr = @{thm ccontr}
val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
);
val blast_tac = Blast.blast_tac;
›
lemma ex1_functional: ‹⟦∃! z. P(a,z); P(a,b); P(a,c)⟧ ⟹ b = c›
by blast
text ‹Elimination of ‹True› from assumptions:›
lemma True_implies_equals: ‹(True ⟹ PROP P) ≡ PROP P›
proof
assume ‹True ⟹ PROP P›
from this and TrueI show ‹PROP P› .
next
assume ‹PROP P›
then show ‹PROP P› .
qed
lemma uncurry: ‹P ⟶ Q ⟶ R ⟹ P ∧ Q ⟶ R›
by blast
lemma iff_allI: ‹(⋀x. P(x) ⟷ Q(x)) ⟹ (∀x. P(x)) ⟷ (∀x. Q(x))›
by blast
lemma iff_exI: ‹(⋀x. P(x) ⟷ Q(x)) ⟹ (∃x. P(x)) ⟷ (∃x. Q(x))›
by blast
lemma all_comm: ‹(∀x y. P(x,y)) ⟷ (∀y x. P(x,y))›
by blast
lemma ex_comm: ‹(∃x y. P(x,y)) ⟷ (∃y x. P(x,y))›
by blast
subsection ‹Classical simplification rules›
text ‹
Avoids duplication of subgoals after ‹expand_if›, when the true and
false cases boil down to the same thing.
›
lemma cases_simp: ‹(P ⟶ Q) ∧ (¬ P ⟶ Q) ⟷ Q›
by blast
subsubsection ‹Miniscoping: pushing quantifiers in›
text ‹
We do NOT distribute of ‹∀› over ‹∧›, or dually that of
‹∃› over ‹∨›.
Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that
this step can increase proof length!
›
text ‹Existential miniscoping.›
lemma int_ex_simps:
‹⋀P Q. (∃x. P(x) ∧ Q) ⟷ (∃x. P(x)) ∧ Q›
‹⋀P Q. (∃x. P ∧ Q(x)) ⟷ P ∧ (∃x. Q(x))›
‹⋀P Q. (∃x. P(x) ∨ Q) ⟷ (∃x. P(x)) ∨ Q›
‹⋀P Q. (∃x. P ∨ Q(x)) ⟷ P ∨ (∃x. Q(x))›
by iprover+
text ‹Classical rules.›
lemma cla_ex_simps:
‹⋀P Q. (∃x. P(x) ⟶ Q) ⟷ (∀x. P(x)) ⟶ Q›
‹⋀P Q. (∃x. P ⟶ Q(x)) ⟷ P ⟶ (∃x. Q(x))›
by blast+
lemmas ex_simps = int_ex_simps cla_ex_simps
text ‹Universal miniscoping.›
lemma int_all_simps:
‹⋀P Q. (∀x. P(x) ∧ Q) ⟷ (∀x. P(x)) ∧ Q›
‹⋀P Q. (∀x. P ∧ Q(x)) ⟷ P ∧ (∀x. Q(x))›
‹⋀P Q. (∀x. P(x) ⟶ Q) ⟷ (∃ x. P(x)) ⟶ Q›
‹⋀P Q. (∀x. P ⟶ Q(x)) ⟷ P ⟶ (∀x. Q(x))›
by iprover+
text ‹Classical rules.›
lemma cla_all_simps:
‹⋀P Q. (∀x. P(x) ∨ Q) ⟷ (∀x. P(x)) ∨ Q›
‹⋀P Q. (∀x. P ∨ Q(x)) ⟷ P ∨ (∀x. Q(x))›
by blast+
lemmas all_simps = int_all_simps cla_all_simps
subsubsection ‹Named rewrite rules proved for IFOL›
lemma imp_disj1: ‹(P ⟶ Q) ∨ R ⟷ (P ⟶ Q ∨ R)› by blast
lemma imp_disj2: ‹Q ∨ (P ⟶ R) ⟷ (P ⟶ Q ∨ R)› by blast
lemma de_Morgan_conj: ‹(¬ (P ∧ Q)) ⟷ (¬ P ∨ ¬ Q)› by blast
lemma not_imp: ‹¬ (P ⟶ Q) ⟷ (P ∧ ¬ Q)› by blast
lemma not_iff: ‹¬ (P ⟷ Q) ⟷ (P ⟷ ¬ Q)› by blast
lemma not_all: ‹(¬ (∀x. P(x))) ⟷ (∃x. ¬ P(x))› by blast
lemma imp_all: ‹((∀x. P(x)) ⟶ Q) ⟷ (∃x. P(x) ⟶ Q)› by blast
lemmas meta_simps =
triv_forall_equality
True_implies_equals
lemmas IFOL_simps =
refl [THEN P_iff_T] conj_simps disj_simps not_simps
imp_simps iff_simps quant_simps
lemma notFalseI: ‹¬ False› by iprover
lemma cla_simps_misc:
‹¬ (P ∧ Q) ⟷ ¬ P ∨ ¬ Q›
‹P ∨ ¬ P›
‹¬ P ∨ P›
‹¬ ¬ P ⟷ P›
‹(¬ P ⟶ P) ⟷ P›
‹(¬ P ⟷ ¬ Q) ⟷ (P ⟷ Q)› by blast+
lemmas cla_simps =
de_Morgan_conj de_Morgan_disj imp_disj1 imp_disj2
not_imp not_all not_ex cases_simp cla_simps_misc
ML_file ‹simpdata.ML›
simproc_setup defined_Ex (‹∃x. P(x)›) = ‹K Quantifier1.rearrange_Ex›
simproc_setup defined_All (‹∀x. P(x)›) = ‹K Quantifier1.rearrange_All›
simproc_setup defined_all("⋀x. PROP P(x)") = ‹K Quantifier1.rearrange_all›
ML ‹
val IFOL_ss =
put_simpset FOL_basic_ss \<^context>
addsimps @{thms meta_simps IFOL_simps int_ex_simps int_all_simps subst_all}
|> Simplifier.add_proc \<^simproc>‹defined_All›
|> Simplifier.add_proc \<^simproc>‹defined_Ex›
|> Simplifier.add_cong @{thm imp_cong}
|> simpset_of;
val FOL_ss =
put_simpset IFOL_ss \<^context>
addsimps @{thms cla_simps cla_ex_simps cla_all_simps}
|> simpset_of;
›
setup ‹
map_theory_simpset (put_simpset FOL_ss) #>
Simplifier.method_setup Splitter.split_modifiers
›
ML_file ‹~~/src/Tools/eqsubst.ML›
subsection ‹Other simple lemmas›
lemma [simp]: ‹((P ⟶ R) ⟷ (Q ⟶ R)) ⟷ ((P ⟷ Q) ∨ R)›
by blast
lemma [simp]: ‹((P ⟶ Q) ⟷ (P ⟶ R)) ⟷ (P ⟶ (Q ⟷ R))›
by blast
lemma not_disj_iff_imp: ‹¬ P ∨ Q ⟷ (P ⟶ Q)›
by blast
subsubsection ‹Monotonicity of implications›
lemma conj_mono: ‹⟦P1 ⟶ Q1; P2 ⟶ Q2⟧ ⟹ (P1 ∧ P2) ⟶ (Q1 ∧ Q2)›
by fast
lemma disj_mono: ‹⟦P1 ⟶ Q1; P2 ⟶ Q2⟧ ⟹ (P1 ∨ P2) ⟶ (Q1 ∨ Q2)›
by fast
lemma imp_mono: ‹⟦Q1 ⟶ P1; P2 ⟶ Q2⟧ ⟹ (P1 ⟶ P2) ⟶ (Q1 ⟶ Q2)›
by fast
lemma imp_refl: ‹P ⟶ P›
by (rule impI)
text ‹The quantifier monotonicity rules are also intuitionistically valid.›
lemma ex_mono: ‹(⋀x. P(x) ⟶ Q(x)) ⟹ (∃x. P(x)) ⟶ (∃x. Q(x))›
by blast
lemma all_mono: ‹(⋀x. P(x) ⟶ Q(x)) ⟹ (∀x. P(x)) ⟶ (∀x. Q(x))›
by blast
subsection ‹Proof by cases and induction›
text ‹Proper handling of non-atomic rule statements.›
context
begin
qualified definition ‹induct_forall(P) ≡ ∀x. P(x)›
qualified definition ‹induct_implies(A, B) ≡ A ⟶ B›
qualified definition ‹induct_equal(x, y) ≡ x = y›
qualified definition ‹induct_conj(A, B) ≡ A ∧ B›
lemma induct_forall_eq: ‹(⋀x. P(x)) ≡ Trueprop(induct_forall(λx. P(x)))›
unfolding atomize_all induct_forall_def .
lemma induct_implies_eq: ‹(A ⟹ B) ≡ Trueprop(induct_implies(A, B))›
unfolding atomize_imp induct_implies_def .
lemma induct_equal_eq: ‹(x ≡ y) ≡ Trueprop(induct_equal(x, y))›
unfolding atomize_eq induct_equal_def .
lemma induct_conj_eq: ‹(A &&& B) ≡ Trueprop(induct_conj(A, B))›
unfolding atomize_conj induct_conj_def .
lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
lemmas induct_rulify [symmetric] = induct_atomize
lemmas induct_rulify_fallback =
induct_forall_def induct_implies_def induct_equal_def induct_conj_def
text ‹Method setup.›
ML_file ‹~~/src/Tools/induct.ML›
ML ‹
structure Induct = Induct
(
val cases_default = @{thm case_split}
val atomize = @{thms induct_atomize}
val rulify = @{thms induct_rulify}
val rulify_fallback = @{thms induct_rulify_fallback}
val equal_def = @{thm induct_equal_def}
fun dest_def _ = NONE
fun trivial_tac _ _ = no_tac
);
›
declare case_split [cases type: o]
end
ML_file ‹~~/src/Tools/case_product.ML›
hide_const (open) eq
end