Theory FOL

(*  Title:      FOL/FOL.thy
    Author:     Lawrence C Paulson and Markus Wenzel
*)

section ‹Classical first-order logic›

theory FOL
  imports IFOL
  keywords "print_claset" "print_induct_rules" :: diag
begin

ML_file ‹~~/src/Provers/classical.ML›
ML_file ‹~~/src/Provers/blast.ML›
ML_file ‹~~/src/Provers/clasimp.ML›


subsection ‹The classical axiom›

axiomatization where
  classical: (¬ P  P)  P


subsection ‹Lemmas and proof tools›

lemma ccontr: (¬ P  False)  P
  by (erule FalseE [THEN classical])


subsubsection ‹Classical introduction rules for ∨› and ∃›

lemma disjCI: (¬ Q  P)  P  Q
  apply (rule classical)
  apply (assumption | erule meta_mp | rule disjI1 notI)+
  apply (erule notE disjI2)+
  done

text ‹Introduction rule involving only ∃›
lemma ex_classical:
  assumes r: ¬ (x. P(x))  P(a)
  shows x. P(x)
  apply (rule classical)
  apply (rule exI, erule r)
  done

text ‹Version of above, simplifying ¬∃› to ∀¬›.›
lemma exCI:
  assumes r: x. ¬ P(x)  P(a)
  shows x. P(x)
  apply (rule ex_classical)
  apply (rule notI [THEN allI, THEN r])
  apply (erule notE)
  apply (erule exI)
  done

lemma excluded_middle: ¬ P  P
  apply (rule disjCI)
  apply assumption
  done

lemma case_split [case_names True False]:
  assumes r1: P  Q
    and r2: ¬ P  Q
  shows Q
  apply (rule excluded_middle [THEN disjE])
  apply (erule r2)
  apply (erule r1)
  done

ML fun case_tac ctxt a fixes =
    Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), a)] fixes @{thm case_split};

method_setup case_tac = Args.goal_spec -- Scan.lift (Parse.embedded_inner_syntax -- Parse.for_fixes) >>
    (fn (quant, (s, fixes)) => fn ctxt => SIMPLE_METHOD'' quant (case_tac ctxt s fixes)) "case_tac emulation (dynamic instantiation!)"


subsection ‹Special elimination rules›

text ‹Classical implies (⟶›) elimination.›
lemma impCE:
  assumes major: P  Q
    and r1: ¬ P  R
    and r2: Q  R
  shows R
  apply (rule excluded_middle [THEN disjE])
   apply (erule r1)
  apply (rule r2)
  apply (erule major [THEN mp])
  done

text ‹
  This version of ⟶› elimination works on Q› before P›. It works best for those cases in which P holds ``almost everywhere''.
  Can't install as default: would break old proofs.
›
lemma impCE':
  assumes major: P  Q
    and r1: Q  R
    and r2: ¬ P  R
  shows R
  apply (rule excluded_middle [THEN disjE])
   apply (erule r2)
  apply (rule r1)
  apply (erule major [THEN mp])
  done

text ‹Double negation law.›
lemma notnotD: ¬ ¬ P  P
  apply (rule classical)
  apply (erule notE)
  apply assumption
  done

lemma contrapos2:  Q; ¬ P  ¬ Q  P
  apply (rule classical)
  apply (drule (1) meta_mp)
  apply (erule (1) notE)
  done


subsubsection ‹Tactics for implication and contradiction›

text ‹
  Classical ⟷› elimination. Proof substitutes P = Q› in
  ¬ P ⟹ ¬ Q› and P ⟹ Q›.
›
lemma iffCE:
  assumes major: P  Q
    and r1: P; Q  R
    and r2: ¬ P; ¬ Q  R
  shows R
  apply (rule major [unfolded iff_def, THEN conjE])
  apply (elim impCE)
     apply (erule (1) r2)
    apply (erule (1) notE)+
  apply (erule (1) r1)
  done


(*Better for fast_tac: needs no quantifier duplication!*)
lemma alt_ex1E:
  assumes major: ∃! x. P(x)
    and r: x. P(x);  y y'. P(y)  P(y')  y = y'  R
  shows R
  using major
proof (rule ex1E)
  fix x
  assume * : y. P(y)  y = x
  assume P(x)
  then show R
  proof (rule r)
    {
      fix y y'
      assume P(y) and P(y')
      with * have x = y and x = y'
        by - (tactic "IntPr.fast_tac context 1")+
      then have y = y' by (rule subst)
    } note r' = this
    show y y'. P(y)  P(y')  y = y'
      by (intro strip, elim conjE) (rule r')
  qed
qed

lemma imp_elim: P  Q  (¬ R  P)  (Q  R)  R
  by (rule classical) iprover

lemma swap: ¬ P  (¬ R  P)  R
  by (rule classical) iprover


section ‹Classical Reasoner›

ML structure Cla = Classical
(
  val imp_elim = @{thm imp_elim}
  val not_elim = @{thm notE}
  val swap = @{thm swap}
  val classical = @{thm classical}
  val sizef = size_of_thm
  val hyp_subst_tacs = [hyp_subst_tac]
);

structure Basic_Classical: BASIC_CLASSICAL = Cla;
open Basic_Classical;

(*Propositional rules*)
lemmas [intro!] = refl TrueI conjI disjCI impI notI iffI
  and [elim!] = conjE disjE impCE FalseE iffCE
ML val prop_cs = claset_of context

(*Quantifier rules*)
lemmas [intro!] = allI ex_ex1I
  and [intro] = exI
  and [elim!] = exE alt_ex1E
  and [elim] = allE
ML val FOL_cs = claset_of context

ML structure Blast = Blast
  (
    structure Classical = Cla
    val Trueprop_const = dest_Const ConstTrueprop
    val equality_name = const_nameeq
    val not_name = const_nameNot
    val notE = @{thm notE}
    val ccontr = @{thm ccontr}
    val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
  );
  val blast_tac = Blast.blast_tac;


lemma ex1_functional: ∃! z. P(a,z); P(a,b); P(a,c)  b = c
  by blast

text ‹Elimination of True› from assumptions:›
lemma True_implies_equals: (True  PROP P)  PROP P
proof
  assume True  PROP P
  from this and TrueI show PROP P .
next
  assume PROP P
  then show PROP P .
qed

lemma uncurry: P  Q  R  P  Q  R
  by blast

lemma iff_allI: (x. P(x)  Q(x))  (x. P(x))  (x. Q(x))
  by blast

lemma iff_exI: (x. P(x)  Q(x))  (x. P(x))  (x. Q(x))
  by blast

lemma all_comm: (x y. P(x,y))  (y x. P(x,y))
  by blast

lemma ex_comm: (x y. P(x,y))  (y x. P(x,y))
  by blast



subsection ‹Classical simplification rules›

text ‹
  Avoids duplication of subgoals after expand_if›, when the true and
  false cases boil down to the same thing.
›

lemma cases_simp: (P  Q)  (¬ P  Q)  Q
  by blast


subsubsection ‹Miniscoping: pushing quantifiers in›

text ‹
  We do NOT distribute of ∀› over ∧›, or dually that of
  ∃› over ∨›.

  Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that
  this step can increase proof length!
›

text ‹Existential miniscoping.›
lemma int_ex_simps:
  P Q. (x. P(x)  Q)  (x. P(x))  Q
  P Q. (x. P  Q(x))  P  (x. Q(x))
  P Q. (x. P(x)  Q)  (x. P(x))  Q
  P Q. (x. P  Q(x))  P  (x. Q(x))
  by iprover+

text ‹Classical rules.›
lemma cla_ex_simps:
  P Q. (x. P(x)  Q)  (x. P(x))  Q
  P Q. (x. P  Q(x))  P  (x. Q(x))
  by blast+

lemmas ex_simps = int_ex_simps cla_ex_simps

text ‹Universal miniscoping.›
lemma int_all_simps:
  P Q. (x. P(x)  Q)  (x. P(x))  Q
  P Q. (x. P  Q(x))  P  (x. Q(x))
  P Q. (x. P(x)  Q)  ( x. P(x))  Q
  P Q. (x. P  Q(x))  P  (x. Q(x))
  by iprover+

text ‹Classical rules.›
lemma cla_all_simps:
  P Q. (x. P(x)  Q)  (x. P(x))  Q
  P Q. (x. P  Q(x))  P  (x. Q(x))
  by blast+

lemmas all_simps = int_all_simps cla_all_simps


subsubsection ‹Named rewrite rules proved for IFOL›

lemma imp_disj1: (P  Q)  R  (P  Q  R) by blast
lemma imp_disj2: Q  (P  R)  (P  Q  R) by blast

lemma de_Morgan_conj: (¬ (P  Q))  (¬ P  ¬ Q) by blast

lemma not_imp: ¬ (P  Q)  (P  ¬ Q) by blast
lemma not_iff: ¬ (P  Q)  (P  ¬ Q) by blast

lemma not_all: (¬ (x. P(x)))  (x. ¬ P(x)) by blast
lemma imp_all: ((x. P(x))  Q)  (x. P(x)  Q) by blast


lemmas meta_simps =
  triv_forall_equality  ― ‹prunes params›
  True_implies_equals  ― ‹prune asms True›

lemmas IFOL_simps =
  refl [THEN P_iff_T] conj_simps disj_simps not_simps
  imp_simps iff_simps quant_simps

lemma notFalseI: ¬ False by iprover

lemma cla_simps_misc:
  ¬ (P  Q)  ¬ P  ¬ Q
  P  ¬ P
  ¬ P  P
  ¬ ¬ P  P
  (¬ P  P)  P
  (¬ P  ¬ Q)  (P  Q) by blast+

lemmas cla_simps =
  de_Morgan_conj de_Morgan_disj imp_disj1 imp_disj2
  not_imp not_all not_ex cases_simp cla_simps_misc


ML_file ‹simpdata.ML›

simproc_setup defined_Ex (x. P(x)) = K Quantifier1.rearrange_Ex
simproc_setup defined_All (x. P(x)) = K Quantifier1.rearrange_All
simproc_setup defined_all("x. PROP P(x)") = K Quantifier1.rearrange_all

ML (*intuitionistic simprules only*)
val IFOL_ss =
  put_simpset FOL_basic_ss context
  addsimps @{thms meta_simps IFOL_simps int_ex_simps int_all_simps subst_all}
  |> Simplifier.add_proc simprocdefined_All
  |> Simplifier.add_proc simprocdefined_Ex
  |> Simplifier.add_cong @{thm imp_cong}
  |> simpset_of;

(*classical simprules too*)
val FOL_ss =
  put_simpset IFOL_ss context
  addsimps @{thms cla_simps cla_ex_simps cla_all_simps}
  |> simpset_of;

setup map_theory_simpset (put_simpset FOL_ss) #>
  Simplifier.method_setup Splitter.split_modifiers

ML_file ‹~~/src/Tools/eqsubst.ML›


subsection ‹Other simple lemmas›

lemma [simp]: ((P  R)  (Q  R))  ((P  Q)  R)
  by blast

lemma [simp]: ((P  Q)  (P  R))  (P  (Q  R))
  by blast

lemma not_disj_iff_imp: ¬ P  Q  (P  Q)
  by blast


subsubsection ‹Monotonicity of implications›

lemma conj_mono: P1  Q1; P2  Q2  (P1  P2)  (Q1  Q2)
  by fast (*or (IntPr.fast_tac 1)*)

lemma disj_mono: P1  Q1; P2  Q2  (P1  P2)  (Q1  Q2)
  by fast (*or (IntPr.fast_tac 1)*)

lemma imp_mono: Q1  P1; P2  Q2  (P1  P2)  (Q1  Q2)
  by fast (*or (IntPr.fast_tac 1)*)

lemma imp_refl: P  P
  by (rule impI)

text ‹The quantifier monotonicity rules are also intuitionistically valid.›
lemma ex_mono: (x. P(x)  Q(x))  (x. P(x))  (x. Q(x))
  by blast

lemma all_mono: (x. P(x)  Q(x))  (x. P(x))  (x. Q(x))
  by blast


subsection ‹Proof by cases and induction›

text ‹Proper handling of non-atomic rule statements.›

context
begin

qualified definition induct_forall(P)  x. P(x)
qualified definition induct_implies(A, B)  A  B
qualified definition induct_equal(x, y)  x = y
qualified definition induct_conj(A, B)  A  B

lemma induct_forall_eq: (x. P(x))  Trueprop(induct_forall(λx. P(x)))
  unfolding atomize_all induct_forall_def .

lemma induct_implies_eq: (A  B)  Trueprop(induct_implies(A, B))
  unfolding atomize_imp induct_implies_def .

lemma induct_equal_eq: (x  y)  Trueprop(induct_equal(x, y))
  unfolding atomize_eq induct_equal_def .

lemma induct_conj_eq: (A &&& B)  Trueprop(induct_conj(A, B))
  unfolding atomize_conj induct_conj_def .

lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
lemmas induct_rulify [symmetric] = induct_atomize
lemmas induct_rulify_fallback =
  induct_forall_def induct_implies_def induct_equal_def induct_conj_def

text ‹Method setup.›

ML_file ‹~~/src/Tools/induct.ML›
ML structure Induct = Induct
  (
    val cases_default = @{thm case_split}
    val atomize = @{thms induct_atomize}
    val rulify = @{thms induct_rulify}
    val rulify_fallback = @{thms induct_rulify_fallback}
    val equal_def = @{thm induct_equal_def}
    fun dest_def _ = NONE
    fun trivial_tac _ _ = no_tac
  );

declare case_split [cases type: o]

end

ML_file ‹~~/src/Tools/case_product.ML›


hide_const (open) eq

end