Theory Formula
section ‹First-Order Formulas and the Definition of the Class L›
theory Formula imports ZF begin
subsection‹Internalized formulas of FOL›
text‹De Bruijn representation.
Unbound variables get their denotations from an environment.›
consts formula :: i
datatype
"formula" = Member ("x ∈ nat", "y ∈ nat")
| Equal ("x ∈ nat", "y ∈ nat")
| Nand ("p ∈ formula", "q ∈ formula")
| Forall ("p ∈ formula")
declare formula.intros [TC]
definition
Neg :: "i⇒i" where
"Neg(p) ≡ Nand(p,p)"
definition
And :: "[i,i]⇒i" where
"And(p,q) ≡ Neg(Nand(p,q))"
definition
Or :: "[i,i]⇒i" where
"Or(p,q) ≡ Nand(Neg(p),Neg(q))"
definition
Implies :: "[i,i]⇒i" where
"Implies(p,q) ≡ Nand(p,Neg(q))"
definition
Iff :: "[i,i]⇒i" where
"Iff(p,q) ≡ And(Implies(p,q), Implies(q,p))"
definition
Exists :: "i⇒i" where
"Exists(p) ≡ Neg(Forall(Neg(p)))"
lemma Neg_type [TC]: "p ∈ formula ⟹ Neg(p) ∈ formula"
by (simp add: Neg_def)
lemma And_type [TC]: "⟦p ∈ formula; q ∈ formula⟧ ⟹ And(p,q) ∈ formula"
by (simp add: And_def)
lemma Or_type [TC]: "⟦p ∈ formula; q ∈ formula⟧ ⟹ Or(p,q) ∈ formula"
by (simp add: Or_def)
lemma Implies_type [TC]:
"⟦p ∈ formula; q ∈ formula⟧ ⟹ Implies(p,q) ∈ formula"
by (simp add: Implies_def)
lemma Iff_type [TC]:
"⟦p ∈ formula; q ∈ formula⟧ ⟹ Iff(p,q) ∈ formula"
by (simp add: Iff_def)
lemma Exists_type [TC]: "p ∈ formula ⟹ Exists(p) ∈ formula"
by (simp add: Exists_def)
consts satisfies :: "[i,i]⇒i"
primrec
"satisfies(A,Member(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) ∈ nth(y,env)))"
"satisfies(A,Equal(x,y)) =
(λenv ∈ list(A). bool_of_o (nth(x,env) = nth(y,env)))"
"satisfies(A,Nand(p,q)) =
(λenv ∈ list(A). not ((satisfies(A,p)`env) and (satisfies(A,q)`env)))"
"satisfies(A,Forall(p)) =
(λenv ∈ list(A). bool_of_o (∀x∈A. satisfies(A,p) ` (Cons(x,env)) = 1))"
lemma satisfies_type: "p ∈ formula ⟹ satisfies(A,p) ∈ list(A) -> bool"
by (induct set: formula) simp_all
abbreviation
sats :: "[i,i,i] ⇒ o" where
"sats(A,p,env) ≡ satisfies(A,p)`env = 1"
lemma sats_Member_iff [simp]:
"env ∈ list(A) ⟹ sats(A, Member(x,y), env) ⟷ nth(x,env) ∈ nth(y,env)"
by simp
lemma sats_Equal_iff [simp]:
"env ∈ list(A) ⟹ sats(A, Equal(x,y), env) ⟷ nth(x,env) = nth(y,env)"
by simp
lemma sats_Nand_iff [simp]:
"env ∈ list(A)
⟹ (sats(A, Nand(p,q), env)) ⟷ ¬ (sats(A,p,env) ∧ sats(A,q,env))"
by (simp add: Bool.and_def Bool.not_def cond_def)
lemma sats_Forall_iff [simp]:
"env ∈ list(A)
⟹ sats(A, Forall(p), env) ⟷ (∀x∈A. sats(A, p, Cons(x,env)))"
by simp
declare satisfies.simps [simp del]
subsection‹Dividing line between primitive and derived connectives›
lemma sats_Neg_iff [simp]:
"env ∈ list(A)
⟹ sats(A, Neg(p), env) ⟷ ¬ sats(A,p,env)"
by (simp add: Neg_def)
lemma sats_And_iff [simp]:
"env ∈ list(A)
⟹ (sats(A, And(p,q), env)) ⟷ sats(A,p,env) ∧ sats(A,q,env)"
by (simp add: And_def)
lemma sats_Or_iff [simp]:
"env ∈ list(A)
⟹ (sats(A, Or(p,q), env)) ⟷ sats(A,p,env) | sats(A,q,env)"
by (simp add: Or_def)
lemma sats_Implies_iff [simp]:
"env ∈ list(A)
⟹ (sats(A, Implies(p,q), env)) ⟷ (sats(A,p,env) ⟶ sats(A,q,env))"
by (simp add: Implies_def, blast)
lemma sats_Iff_iff [simp]:
"env ∈ list(A)
⟹ (sats(A, Iff(p,q), env)) ⟷ (sats(A,p,env) ⟷ sats(A,q,env))"
by (simp add: Iff_def, blast)
lemma sats_Exists_iff [simp]:
"env ∈ list(A)
⟹ sats(A, Exists(p), env) ⟷ (∃x∈A. sats(A, p, Cons(x,env)))"
by (simp add: Exists_def)
subsubsection‹Derived rules to help build up formulas›
lemma mem_iff_sats:
"⟦nth(i,env) = x; nth(j,env) = y; env ∈ list(A)⟧
⟹ (x∈y) ⟷ sats(A, Member(i,j), env)"
by (simp add: satisfies.simps)
lemma equal_iff_sats:
"⟦nth(i,env) = x; nth(j,env) = y; env ∈ list(A)⟧
⟹ (x=y) ⟷ sats(A, Equal(i,j), env)"
by (simp add: satisfies.simps)
lemma not_iff_sats:
"⟦P ⟷ sats(A,p,env); env ∈ list(A)⟧
⟹ (¬P) ⟷ sats(A, Neg(p), env)"
by simp
lemma conj_iff_sats:
"⟦P ⟷ sats(A,p,env); Q ⟷ sats(A,q,env); env ∈ list(A)⟧
⟹ (P ∧ Q) ⟷ sats(A, And(p,q), env)"
by (simp)
lemma disj_iff_sats:
"⟦P ⟷ sats(A,p,env); Q ⟷ sats(A,q,env); env ∈ list(A)⟧
⟹ (P | Q) ⟷ sats(A, Or(p,q), env)"
by (simp)
lemma iff_iff_sats:
"⟦P ⟷ sats(A,p,env); Q ⟷ sats(A,q,env); env ∈ list(A)⟧
⟹ (P ⟷ Q) ⟷ sats(A, Iff(p,q), env)"
by (simp)
lemma imp_iff_sats:
"⟦P ⟷ sats(A,p,env); Q ⟷ sats(A,q,env); env ∈ list(A)⟧
⟹ (P ⟶ Q) ⟷ sats(A, Implies(p,q), env)"
by (simp)
lemma ball_iff_sats:
"⟦⋀x. x∈A ⟹ P(x) ⟷ sats(A, p, Cons(x, env)); env ∈ list(A)⟧
⟹ (∀x∈A. P(x)) ⟷ sats(A, Forall(p), env)"
by (simp)
lemma bex_iff_sats:
"⟦⋀x. x∈A ⟹ P(x) ⟷ sats(A, p, Cons(x, env)); env ∈ list(A)⟧
⟹ (∃x∈A. P(x)) ⟷ sats(A, Exists(p), env)"
by (simp)
lemmas FOL_iff_sats =
mem_iff_sats equal_iff_sats not_iff_sats conj_iff_sats
disj_iff_sats imp_iff_sats iff_iff_sats imp_iff_sats ball_iff_sats
bex_iff_sats
subsection‹Arity of a Formula: Maximum Free de Bruijn Index›
consts arity :: "i⇒i"
primrec
"arity(Member(x,y)) = succ(x) ∪ succ(y)"
"arity(Equal(x,y)) = succ(x) ∪ succ(y)"
"arity(Nand(p,q)) = arity(p) ∪ arity(q)"
"arity(Forall(p)) = Arith.pred(arity(p))"
lemma arity_type [TC]: "p ∈ formula ⟹ arity(p) ∈ nat"
by (induct_tac p, simp_all)
lemma arity_Neg [simp]: "arity(Neg(p)) = arity(p)"
by (simp add: Neg_def)
lemma arity_And [simp]: "arity(And(p,q)) = arity(p) ∪ arity(q)"
by (simp add: And_def)
lemma arity_Or [simp]: "arity(Or(p,q)) = arity(p) ∪ arity(q)"
by (simp add: Or_def)
lemma arity_Implies [simp]: "arity(Implies(p,q)) = arity(p) ∪ arity(q)"
by (simp add: Implies_def)
lemma arity_Iff [simp]: "arity(Iff(p,q)) = arity(p) ∪ arity(q)"
by (simp add: Iff_def, blast)
lemma arity_Exists [simp]: "arity(Exists(p)) = Arith.pred(arity(p))"
by (simp add: Exists_def)
lemma arity_sats_iff [rule_format]:
"⟦p ∈ formula; extra ∈ list(A)⟧
⟹ ∀env ∈ list(A).
arity(p) ≤ length(env) ⟶
sats(A, p, env @ extra) ⟷ sats(A, p, env)"
apply (induct_tac p)
apply (simp_all add: Arith.pred_def nth_append Un_least_lt_iff nat_imp_quasinat
split: split_nat_case, auto)
done
lemma arity_sats1_iff:
"⟦arity(p) ≤ succ(length(env)); p ∈ formula; x ∈ A; env ∈ list(A);
extra ∈ list(A)⟧
⟹ sats(A, p, Cons(x, env @ extra)) ⟷ sats(A, p, Cons(x, env))"
apply (insert arity_sats_iff [of p extra A "Cons(x,env)"])
apply simp
done
subsection‹Renaming Some de Bruijn Variables›
definition
incr_var :: "[i,i]⇒i" where
"incr_var(x,nq) ≡ if x<nq then x else succ(x)"
lemma incr_var_lt: "x<nq ⟹ incr_var(x,nq) = x"
by (simp add: incr_var_def)
lemma incr_var_le: "nq≤x ⟹ incr_var(x,nq) = succ(x)"
apply (simp add: incr_var_def)
apply (blast dest: lt_trans1)
done
consts incr_bv :: "i⇒i"
primrec
"incr_bv(Member(x,y)) =
(λnq ∈ nat. Member (incr_var(x,nq), incr_var(y,nq)))"
"incr_bv(Equal(x,y)) =
(λnq ∈ nat. Equal (incr_var(x,nq), incr_var(y,nq)))"
"incr_bv(Nand(p,q)) =
(λnq ∈ nat. Nand (incr_bv(p)`nq, incr_bv(q)`nq))"
"incr_bv(Forall(p)) =
(λnq ∈ nat. Forall (incr_bv(p) ` succ(nq)))"
lemma [TC]: "x ∈ nat ⟹ incr_var(x,nq) ∈ nat"
by (simp add: incr_var_def)
lemma incr_bv_type [TC]: "p ∈ formula ⟹ incr_bv(p) ∈ nat -> formula"
by (induct_tac p, simp_all)
text‹Obviously, \<^term>‹DPow› is closed under complements and finite
intersections and unions. Needs an inductive lemma to allow two lists of
parameters to be combined.›
lemma sats_incr_bv_iff [rule_format]:
"⟦p ∈ formula; env ∈ list(A); x ∈ A⟧
⟹ ∀bvs ∈ list(A).
sats(A, incr_bv(p) ` length(bvs), bvs @ Cons(x,env)) ⟷
sats(A, p, bvs@env)"
apply (induct_tac p)
apply (simp_all add: incr_var_def nth_append succ_lt_iff length_type)
apply (auto simp add: diff_succ not_lt_iff_le)
done
lemma incr_var_lemma:
"⟦x ∈ nat; y ∈ nat; nq ≤ x⟧
⟹ succ(x) ∪ incr_var(y,nq) = succ(x ∪ y)"
apply (simp add: incr_var_def Ord_Un_if, auto)
apply (blast intro: leI)
apply (simp add: not_lt_iff_le)
apply (blast intro: le_anti_sym)
apply (blast dest: lt_trans2)
done
lemma incr_And_lemma:
"y < x ⟹ y ∪ succ(x) = succ(x ∪ y)"
apply (simp add: Ord_Un_if lt_Ord lt_Ord2 succ_lt_iff)
apply (blast dest: lt_asym)
done
lemma arity_incr_bv_lemma [rule_format]:
"p ∈ formula
⟹ ∀n ∈ nat. arity (incr_bv(p) ` n) =
(if n < arity(p) then succ(arity(p)) else arity(p))"
apply (induct_tac p)
apply (simp_all add: imp_disj not_lt_iff_le Un_least_lt_iff lt_Un_iff le_Un_iff
succ_Un_distrib [symmetric] incr_var_lt incr_var_le
Un_commute incr_var_lemma Arith.pred_def nat_imp_quasinat
split: split_nat_case)
txt‹the Forall case reduces to linear arithmetic›
prefer 2
apply clarify
apply (blast dest: lt_trans1)
txt‹left with the And case›
apply safe
apply (blast intro: incr_And_lemma lt_trans1)
apply (subst incr_And_lemma)
apply (blast intro: lt_trans1)
apply (simp add: Un_commute)
done
subsection‹Renaming all but the First de Bruijn Variable›
definition
incr_bv1 :: "i ⇒ i" where
"incr_bv1(p) ≡ incr_bv(p)`1"
lemma incr_bv1_type [TC]: "p ∈ formula ⟹ incr_bv1(p) ∈ formula"
by (simp add: incr_bv1_def)
lemma sats_incr_bv1_iff:
"⟦p ∈ formula; env ∈ list(A); x ∈ A; y ∈ A⟧
⟹ sats(A, incr_bv1(p), Cons(x, Cons(y, env))) ⟷
sats(A, p, Cons(x,env))"
apply (insert sats_incr_bv_iff [of p env A y "Cons(x,Nil)"])
apply (simp add: incr_bv1_def)
done
lemma formula_add_params1 [rule_format]:
"⟦p ∈ formula; n ∈ nat; x ∈ A⟧
⟹ ∀bvs ∈ list(A). ∀env ∈ list(A).
length(bvs) = n ⟶
sats(A, iterates(incr_bv1, n, p), Cons(x, bvs@env)) ⟷
sats(A, p, Cons(x,env))"
apply (induct_tac n, simp, clarify)
apply (erule list.cases)
apply (simp_all add: sats_incr_bv1_iff)
done
lemma arity_incr_bv1_eq:
"p ∈ formula
⟹ arity(incr_bv1(p)) =
(if 1 < arity(p) then succ(arity(p)) else arity(p))"
apply (insert arity_incr_bv_lemma [of p 1])
apply (simp add: incr_bv1_def)
done
lemma arity_iterates_incr_bv1_eq:
"⟦p ∈ formula; n ∈ nat⟧
⟹ arity(incr_bv1^n(p)) =
(if 1 < arity(p) then n #+ arity(p) else arity(p))"
apply (induct_tac n)
apply (simp_all add: arity_incr_bv1_eq)
apply (simp add: not_lt_iff_le)
apply (blast intro: le_trans add_le_self2 arity_type)
done
subsection‹Definable Powerset›
text‹The definable powerset operation: Kunen's definition VI 1.1, page 165.›
definition
DPow :: "i ⇒ i" where
"DPow(A) ≡ {X ∈ Pow(A).
∃env ∈ list(A). ∃p ∈ formula.
arity(p) ≤ succ(length(env)) ∧
X = {x∈A. sats(A, p, Cons(x,env))}}"
lemma DPowI:
"⟦env ∈ list(A); p ∈ formula; arity(p) ≤ succ(length(env))⟧
⟹ {x∈A. sats(A, p, Cons(x,env))} ∈ DPow(A)"
by (simp add: DPow_def, blast)
text‹With this rule we can specify \<^term>‹p› later.›
lemma DPowI2 [rule_format]:
"⟦∀x∈A. P(x) ⟷ sats(A, p, Cons(x,env));
env ∈ list(A); p ∈ formula; arity(p) ≤ succ(length(env))⟧
⟹ {x∈A. P(x)} ∈ DPow(A)"
by (simp add: DPow_def, blast)
lemma DPowD:
"X ∈ DPow(A)
⟹ X ⊆ A ∧
(∃env ∈ list(A).
∃p ∈ formula. arity(p) ≤ succ(length(env)) ∧
X = {x∈A. sats(A, p, Cons(x,env))})"
by (simp add: DPow_def)
lemmas DPow_imp_subset = DPowD [THEN conjunct1]
lemma "⟦p ∈ formula; env ∈ list(A); arity(p) ≤ succ(length(env))⟧
⟹ {x∈A. sats(A, p, Cons(x,env))} ∈ DPow(A)"
by (blast intro: DPowI)
lemma DPow_subset_Pow: "DPow(A) ⊆ Pow(A)"
by (simp add: DPow_def, blast)
lemma empty_in_DPow: "0 ∈ DPow(A)"
apply (simp add: DPow_def)
apply (rule_tac x=Nil in bexI)
apply (rule_tac x="Neg(Equal(0,0))" in bexI)
apply (auto simp add: Un_least_lt_iff)
done
lemma Compl_in_DPow: "X ∈ DPow(A) ⟹ (A-X) ∈ DPow(A)"
apply (simp add: DPow_def, clarify, auto)
apply (rule bexI)
apply (rule_tac x="Neg(p)" in bexI)
apply auto
done
lemma Int_in_DPow: "⟦X ∈ DPow(A); Y ∈ DPow(A)⟧ ⟹ X ∩ Y ∈ DPow(A)"
apply (simp add: DPow_def, auto)
apply (rename_tac envp p envq q)
apply (rule_tac x="envp@envq" in bexI)
apply (rule_tac x="And(p, iterates(incr_bv1,length(envp),q))" in bexI)
apply typecheck
apply (rule conjI)
apply (simp add: arity_iterates_incr_bv1_eq Un_least_lt_iff)
apply (force intro: add_le_self le_trans)
apply (simp add: arity_sats1_iff formula_add_params1, blast)
done
lemma Un_in_DPow: "⟦X ∈ DPow(A); Y ∈ DPow(A)⟧ ⟹ X ∪ Y ∈ DPow(A)"
apply (subgoal_tac "X ∪ Y = A - ((A-X) ∩ (A-Y))")
apply (simp add: Int_in_DPow Compl_in_DPow)
apply (simp add: DPow_def, blast)
done
lemma singleton_in_DPow: "a ∈ A ⟹ {a} ∈ DPow(A)"
apply (simp add: DPow_def)
apply (rule_tac x="Cons(a,Nil)" in bexI)
apply (rule_tac x="Equal(0,1)" in bexI)
apply typecheck
apply (force simp add: succ_Un_distrib [symmetric])
done
lemma cons_in_DPow: "⟦a ∈ A; X ∈ DPow(A)⟧ ⟹ cons(a,X) ∈ DPow(A)"
apply (rule cons_eq [THEN subst])
apply (blast intro: singleton_in_DPow Un_in_DPow)
done
lemma Fin_into_DPow: "X ∈ Fin(A) ⟹ X ∈ DPow(A)"
apply (erule Fin.induct)
apply (rule empty_in_DPow)
apply (blast intro: cons_in_DPow)
done
text‹\<^term>‹DPow› is not monotonic. For example, let \<^term>‹A› be some
non-constructible set of natural numbers, and let \<^term>‹B› be \<^term>‹nat›.
Then \<^term>‹A<=B› and obviously \<^term>‹A ∈ DPow(A)› but \<^term>‹A ∉
DPow(B)›.›
lemma Finite_Pow_subset_Pow: "Finite(A) ⟹ Pow(A) ⊆ DPow(A)"
by (blast intro: Fin_into_DPow Finite_into_Fin Fin_subset)
lemma Finite_DPow_eq_Pow: "Finite(A) ⟹ DPow(A) = Pow(A)"
apply (rule equalityI)
apply (rule DPow_subset_Pow)
apply (erule Finite_Pow_subset_Pow)
done
subsection‹Internalized Formulas for the Ordinals›
text‹The ‹sats› theorems below differ from the usual form in that they
include an element of absoluteness. That is, they relate internalized
formulas to real concepts such as the subset relation, rather than to the
relativized concepts defined in theory ‹Relative›. This lets us prove
the theorem as ‹Ords_in_DPow› without first having to instantiate the
locale ‹M_trivial›. Note that the present theory does not even take
‹Relative› as a parent.›
subsubsection‹The subset relation›
definition
subset_fm :: "[i,i]⇒i" where
"subset_fm(x,y) ≡ Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"
lemma subset_type [TC]: "⟦x ∈ nat; y ∈ nat⟧ ⟹ subset_fm(x,y) ∈ formula"
by (simp add: subset_fm_def)
lemma arity_subset_fm [simp]:
"⟦x ∈ nat; y ∈ nat⟧ ⟹ arity(subset_fm(x,y)) = succ(x) ∪ succ(y)"
by (simp add: subset_fm_def succ_Un_distrib [symmetric])
lemma sats_subset_fm [simp]:
"⟦x < length(env); y ∈ nat; env ∈ list(A); Transset(A)⟧
⟹ sats(A, subset_fm(x,y), env) ⟷ nth(x,env) ⊆ nth(y,env)"
apply (frule lt_length_in_nat, assumption)
apply (simp add: subset_fm_def Transset_def)
apply (blast intro: nth_type)
done
subsubsection‹Transitive sets›
definition
transset_fm :: "i⇒i" where
"transset_fm(x) ≡ Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"
lemma transset_type [TC]: "x ∈ nat ⟹ transset_fm(x) ∈ formula"
by (simp add: transset_fm_def)
lemma arity_transset_fm [simp]:
"x ∈ nat ⟹ arity(transset_fm(x)) = succ(x)"
by (simp add: transset_fm_def succ_Un_distrib [symmetric])
lemma sats_transset_fm [simp]:
"⟦x < length(env); env ∈ list(A); Transset(A)⟧
⟹ sats(A, transset_fm(x), env) ⟷ Transset(nth(x,env))"
apply (frule lt_nat_in_nat, erule length_type)
apply (simp add: transset_fm_def Transset_def)
apply (blast intro: nth_type)
done
subsubsection‹Ordinals›
definition
ordinal_fm :: "i⇒i" where
"ordinal_fm(x) ≡
And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"
lemma ordinal_type [TC]: "x ∈ nat ⟹ ordinal_fm(x) ∈ formula"
by (simp add: ordinal_fm_def)
lemma arity_ordinal_fm [simp]:
"x ∈ nat ⟹ arity(ordinal_fm(x)) = succ(x)"
by (simp add: ordinal_fm_def succ_Un_distrib [symmetric])
lemma sats_ordinal_fm:
"⟦x < length(env); env ∈ list(A); Transset(A)⟧
⟹ sats(A, ordinal_fm(x), env) ⟷ Ord(nth(x,env))"
apply (frule lt_nat_in_nat, erule length_type)
apply (simp add: ordinal_fm_def Ord_def Transset_def)
apply (blast intro: nth_type)
done
text‹The subset consisting of the ordinals is definable. Essential lemma for
‹Ord_in_Lset›. This result is the objective of the present subsection.›
theorem Ords_in_DPow: "Transset(A) ⟹ {x ∈ A. Ord(x)} ∈ DPow(A)"
apply (simp add: DPow_def Collect_subset)
apply (rule_tac x=Nil in bexI)
apply (rule_tac x="ordinal_fm(0)" in bexI)
apply (simp_all add: sats_ordinal_fm)
done
subsection‹Constant Lset: Levels of the Constructible Universe›
definition
Lset :: "i⇒i" where
"Lset(i) ≡ transrec(i, λx f. ⋃y∈x. DPow(f`y))"
definition
L :: "i⇒o" where
"L(x) ≡ ∃i. Ord(i) ∧ x ∈ Lset(i)"
text‹NOT SUITABLE FOR REWRITING -- RECURSIVE!›
lemma Lset: "Lset(i) = (⋃j∈i. DPow(Lset(j)))"
by (subst Lset_def [THEN def_transrec], simp)
lemma LsetI: "⟦y∈x; A ∈ DPow(Lset(y))⟧ ⟹ A ∈ Lset(x)"
by (subst Lset, blast)
lemma LsetD: "A ∈ Lset(x) ⟹ ∃y∈x. A ∈ DPow(Lset(y))"
apply (insert Lset [of x])
apply (blast intro: elim: equalityE)
done
subsubsection‹Transitivity›
lemma elem_subset_in_DPow: "⟦X ∈ A; X ⊆ A⟧ ⟹ X ∈ DPow(A)"
apply (simp add: Transset_def DPow_def)
apply (rule_tac x="[X]" in bexI)
apply (rule_tac x="Member(0,1)" in bexI)
apply (auto simp add: Un_least_lt_iff)
done
lemma Transset_subset_DPow: "Transset(A) ⟹ A ⊆ DPow(A)"
apply clarify
apply (simp add: Transset_def)
apply (blast intro: elem_subset_in_DPow)
done
lemma Transset_DPow: "Transset(A) ⟹ Transset(DPow(A))"
apply (simp add: Transset_def)
apply (blast intro: elem_subset_in_DPow dest: DPowD)
done
text‹Kunen's VI 1.6 (a)›
lemma Transset_Lset: "Transset(Lset(i))"
apply (rule_tac a=i in eps_induct)
apply (subst Lset)
apply (blast intro!: Transset_Union_family Transset_Un Transset_DPow)
done
lemma mem_Lset_imp_subset_Lset: "a ∈ Lset(i) ⟹ a ⊆ Lset(i)"
apply (insert Transset_Lset)
apply (simp add: Transset_def)
done
subsubsection‹Monotonicity›
text‹Kunen's VI 1.6 (b)›
lemma Lset_mono [rule_format]:
"∀j. i<=j ⟶ Lset(i) ⊆ Lset(j)"
proof (induct i rule: eps_induct, intro allI impI)
fix x j
assume "∀y∈x. ∀j. y ⊆ j ⟶ Lset(y) ⊆ Lset(j)"
and "x ⊆ j"
thus "Lset(x) ⊆ Lset(j)"
by (force simp add: Lset [of x] Lset [of j])
qed
text‹This version lets us remove the premise \<^term>‹Ord(i)› sometimes.›
lemma Lset_mono_mem [rule_format]:
"∀j. i ∈ j ⟶ Lset(i) ⊆ Lset(j)"
proof (induct i rule: eps_induct, intro allI impI)
fix x j
assume "∀y∈x. ∀j. y ∈ j ⟶ Lset(y) ⊆ Lset(j)"
and "x ∈ j"
thus "Lset(x) ⊆ Lset(j)"
by (force simp add: Lset [of j]
intro!: bexI intro: elem_subset_in_DPow dest: LsetD DPowD)
qed
text‹Useful with Reflection to bump up the ordinal›
lemma subset_Lset_ltD: "⟦A ⊆ Lset(i); i < j⟧ ⟹ A ⊆ Lset(j)"
by (blast dest: ltD [THEN Lset_mono_mem])
subsubsection‹0, successor and limit equations for Lset›
lemma Lset_0 [simp]: "Lset(0) = 0"
by (subst Lset, blast)
lemma Lset_succ_subset1: "DPow(Lset(i)) ⊆ Lset(succ(i))"
by (subst Lset, rule succI1 [THEN RepFunI, THEN Union_upper])
lemma Lset_succ_subset2: "Lset(succ(i)) ⊆ DPow(Lset(i))"
apply (subst Lset, rule UN_least)
apply (erule succE)
apply blast
apply clarify
apply (rule elem_subset_in_DPow)
apply (subst Lset)
apply blast
apply (blast intro: dest: DPowD Lset_mono_mem)
done
lemma Lset_succ: "Lset(succ(i)) = DPow(Lset(i))"
by (intro equalityI Lset_succ_subset1 Lset_succ_subset2)
lemma Lset_Union [simp]: "Lset(⋃(X)) = (⋃y∈X. Lset(y))"
apply (subst Lset)
apply (rule equalityI)
txt‹first inclusion›
apply (rule UN_least)
apply (erule UnionE)
apply (rule subset_trans)
apply (erule_tac [2] UN_upper, subst Lset, erule UN_upper)
txt‹opposite inclusion›
apply (rule UN_least)
apply (subst Lset, blast)
done
subsubsection‹Lset applied to Limit ordinals›
lemma Limit_Lset_eq:
"Limit(i) ⟹ Lset(i) = (⋃y∈i. Lset(y))"
by (simp add: Lset_Union [symmetric] Limit_Union_eq)
lemma lt_LsetI: "⟦a ∈ Lset(j); j<i⟧ ⟹ a ∈ Lset(i)"
by (blast dest: Lset_mono [OF le_imp_subset [OF leI]])
lemma Limit_LsetE:
"⟦a ∈ Lset(i); ¬R ⟹ Limit(i);
⋀x. ⟦x<i; a ∈ Lset(x)⟧ ⟹ R
⟧ ⟹ R"
apply (rule classical)
apply (rule Limit_Lset_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
prefer 2 apply assumption
apply blast
apply (blast intro: ltI Limit_is_Ord)
done
subsubsection‹Basic closure properties›
lemma zero_in_Lset: "y ∈ x ⟹ 0 ∈ Lset(x)"
by (subst Lset, blast intro: empty_in_DPow)
lemma notin_Lset: "x ∉ Lset(x)"
apply (rule_tac a=x in eps_induct)
apply (subst Lset)
apply (blast dest: DPowD)
done
subsection‹Constructible Ordinals: Kunen's VI 1.9 (b)›
lemma Ords_of_Lset_eq: "Ord(i) ⟹ {x∈Lset(i). Ord(x)} = i"
apply (erule trans_induct3)
apply (simp_all add: Lset_succ Limit_Lset_eq Limit_Union_eq)
txt‹The successor case remains.›
apply (rule equalityI)
txt‹First inclusion›
apply clarify
apply (erule Ord_linear_lt, assumption)
apply (blast dest: DPow_imp_subset ltD notE [OF notin_Lset])
apply blast
apply (blast dest: ltD)
txt‹Opposite inclusion, \<^term>‹succ(x) ⊆ DPow(Lset(x)) ∩ ON››
apply auto
txt‹Key case:›
apply (erule subst, rule Ords_in_DPow [OF Transset_Lset])
apply (blast intro: elem_subset_in_DPow dest: OrdmemD elim: equalityE)
apply (blast intro: Ord_in_Ord)
done
lemma Ord_subset_Lset: "Ord(i) ⟹ i ⊆ Lset(i)"
by (subst Ords_of_Lset_eq [symmetric], assumption, fast)
lemma Ord_in_Lset: "Ord(i) ⟹ i ∈ Lset(succ(i))"
apply (simp add: Lset_succ)
apply (subst Ords_of_Lset_eq [symmetric], assumption,
rule Ords_in_DPow [OF Transset_Lset])
done
lemma Ord_in_L: "Ord(i) ⟹ L(i)"
by (simp add: L_def, blast intro: Ord_in_Lset)
subsubsection‹Unions›
lemma Union_in_Lset:
"X ∈ Lset(i) ⟹ ⋃(X) ∈ Lset(succ(i))"
apply (insert Transset_Lset)
apply (rule LsetI [OF succI1])
apply (simp add: Transset_def DPow_def)
apply (intro conjI, blast)
txt‹Now to create the formula \<^term>‹∃y. y ∈ X ∧ x ∈ y››
apply (rule_tac x="Cons(X,Nil)" in bexI)
apply (rule_tac x="Exists(And(Member(0,2), Member(1,0)))" in bexI)
apply typecheck
apply (simp add: succ_Un_distrib [symmetric], blast)
done
theorem Union_in_L: "L(X) ⟹ L(⋃(X))"
by (simp add: L_def, blast dest: Union_in_Lset)
subsubsection‹Finite sets and ordered pairs›
lemma singleton_in_Lset: "a ∈ Lset(i) ⟹ {a} ∈ Lset(succ(i))"
by (simp add: Lset_succ singleton_in_DPow)
lemma doubleton_in_Lset:
"⟦a ∈ Lset(i); b ∈ Lset(i)⟧ ⟹ {a,b} ∈ Lset(succ(i))"
by (simp add: Lset_succ empty_in_DPow cons_in_DPow)
lemma Pair_in_Lset:
"⟦a ∈ Lset(i); b ∈ Lset(i); Ord(i)⟧ ⟹ ⟨a,b⟩ ∈ Lset(succ(succ(i)))"
unfolding Pair_def
apply (blast intro: doubleton_in_Lset)
done
lemmas Lset_UnI1 = Un_upper1 [THEN Lset_mono [THEN subsetD]]
lemmas Lset_UnI2 = Un_upper2 [THEN Lset_mono [THEN subsetD]]
text‹Hard work is finding a single \<^term>‹j ∈ i› such that \<^term>‹{a,b} ⊆ Lset(j)››
lemma doubleton_in_LLimit:
"⟦a ∈ Lset(i); b ∈ Lset(i); Limit(i)⟧ ⟹ {a,b} ∈ Lset(i)"
apply (erule Limit_LsetE, assumption)
apply (erule Limit_LsetE, assumption)
apply (blast intro: lt_LsetI [OF doubleton_in_Lset]
Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
done
theorem doubleton_in_L: "⟦L(a); L(b)⟧ ⟹ L({a, b})"
apply (simp add: L_def, clarify)
apply (drule Ord2_imp_greater_Limit, assumption)
apply (blast intro: lt_LsetI doubleton_in_LLimit Limit_is_Ord)
done
lemma Pair_in_LLimit:
"⟦a ∈ Lset(i); b ∈ Lset(i); Limit(i)⟧ ⟹ ⟨a,b⟩ ∈ Lset(i)"
txt‹Infer that a, b occur at ordinals x,xa < i.›
apply (erule Limit_LsetE, assumption)
apply (erule Limit_LsetE, assumption)
txt‹Infer that \<^term>‹succ(succ(x ∪ xa)) < i››
apply (blast intro: lt_Ord lt_LsetI [OF Pair_in_Lset]
Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
done
text‹The rank function for the constructible universe›
definition
lrank :: "i⇒i" where
"lrank(x) ≡ μ i. x ∈ Lset(succ(i))"
lemma L_I: "⟦x ∈ Lset(i); Ord(i)⟧ ⟹ L(x)"
by (simp add: L_def, blast)
lemma L_D: "L(x) ⟹ ∃i. Ord(i) ∧ x ∈ Lset(i)"
by (simp add: L_def)
lemma Ord_lrank [simp]: "Ord(lrank(a))"
by (simp add: lrank_def)
lemma Lset_lrank_lt [rule_format]: "Ord(i) ⟹ x ∈ Lset(i) ⟶ lrank(x) < i"
apply (erule trans_induct3)
apply simp
apply (simp only: lrank_def)
apply (blast intro: Least_le)
apply (simp_all add: Limit_Lset_eq)
apply (blast intro: ltI Limit_is_Ord lt_trans)
done
text‹Kunen's VI 1.8. The proof is much harder than the text would
suggest. For a start, it needs the previous lemma, which is proved by
induction.›
lemma Lset_iff_lrank_lt: "Ord(i) ⟹ x ∈ Lset(i) ⟷ L(x) ∧ lrank(x) < i"
apply (simp add: L_def, auto)
apply (blast intro: Lset_lrank_lt)
unfolding lrank_def
apply (drule succI1 [THEN Lset_mono_mem, THEN subsetD])
apply (drule_tac P="λi. x ∈ Lset(succ(i))" in LeastI, assumption)
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD])
done
lemma Lset_succ_lrank_iff [simp]: "x ∈ Lset(succ(lrank(x))) ⟷ L(x)"
by (simp add: Lset_iff_lrank_lt)
text‹Kunen's VI 1.9 (a)›
lemma lrank_of_Ord: "Ord(i) ⟹ lrank(i) = i"
unfolding lrank_def
apply (rule Least_equality)
apply (erule Ord_in_Lset)
apply assumption
apply (insert notin_Lset [of i])
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD])
done
text‹This is lrank(lrank(a)) = lrank(a)›
declare Ord_lrank [THEN lrank_of_Ord, simp]
text‹Kunen's VI 1.10›
lemma Lset_in_Lset_succ: "Lset(i) ∈ Lset(succ(i))"
apply (simp add: Lset_succ DPow_def)
apply (rule_tac x=Nil in bexI)
apply (rule_tac x="Equal(0,0)" in bexI)
apply auto
done
lemma lrank_Lset: "Ord(i) ⟹ lrank(Lset(i)) = i"
unfolding lrank_def
apply (rule Least_equality)
apply (rule Lset_in_Lset_succ)
apply assumption
apply clarify
apply (subgoal_tac "Lset(succ(ia)) ⊆ Lset(i)")
apply (blast dest: mem_irrefl)
apply (blast intro!: le_imp_subset Lset_mono)
done
text‹Kunen's VI 1.11›
lemma Lset_subset_Vset: "Ord(i) ⟹ Lset(i) ⊆ Vset(i)"
apply (erule trans_induct)
apply (subst Lset)
apply (subst Vset)
apply (rule UN_mono [OF subset_refl])
apply (rule subset_trans [OF DPow_subset_Pow])
apply (rule Pow_mono, blast)
done
text‹Kunen's VI 1.12›
lemma Lset_subset_Vset': "i ∈ nat ⟹ Lset(i) = Vset(i)"
apply (erule nat_induct)
apply (simp add: Vfrom_0)
apply (simp add: Lset_succ Vset_succ Finite_Vset Finite_DPow_eq_Pow)
done
text‹Every set of constructible sets is included in some \<^term>‹Lset››
lemma subset_Lset:
"(∀x∈A. L(x)) ⟹ ∃i. Ord(i) ∧ A ⊆ Lset(i)"
by (rule_tac x = "⋃x∈A. succ(lrank(x))" in exI, force)
lemma subset_LsetE:
"⟦∀x∈A. L(x);
⋀i. ⟦Ord(i); A ⊆ Lset(i)⟧ ⟹ P⟧
⟹ P"
by (blast dest: subset_Lset)
subsubsection‹For L to satisfy the Powerset axiom›
lemma LPow_env_typing:
"⟦y ∈ Lset(i); Ord(i); y ⊆ X⟧
⟹ ∃z ∈ Pow(X). y ∈ Lset(succ(lrank(z)))"
by (auto intro: L_I iff: Lset_succ_lrank_iff)
lemma LPow_in_Lset:
"⟦X ∈ Lset(i); Ord(i)⟧ ⟹ ∃j. Ord(j) ∧ {y ∈ Pow(X). L(y)} ∈ Lset(j)"
apply (rule_tac x="succ(⋃y ∈ Pow(X). succ(lrank(y)))" in exI)
apply simp
apply (rule LsetI [OF succI1])
apply (simp add: DPow_def)
apply (intro conjI, clarify)
apply (rule_tac a=x in UN_I, simp+)
txt‹Now to create the formula \<^term>‹y ⊆ X››
apply (rule_tac x="Cons(X,Nil)" in bexI)
apply (rule_tac x="subset_fm(0,1)" in bexI)
apply typecheck
apply (rule conjI)
apply (simp add: succ_Un_distrib [symmetric])
apply (rule equality_iffI)
apply (simp add: Transset_UN [OF Transset_Lset] LPow_env_typing)
apply (auto intro: L_I iff: Lset_succ_lrank_iff)
done
theorem LPow_in_L: "L(X) ⟹ L({y ∈ Pow(X). L(y)})"
by (blast intro: L_I dest: L_D LPow_in_Lset)
subsection‹Eliminating \<^term>‹arity› from the Definition of \<^term>‹Lset››
lemma nth_zero_eq_0: "n ∈ nat ⟹ nth(n,[0]) = 0"
by (induct_tac n, auto)
lemma sats_app_0_iff [rule_format]:
"⟦p ∈ formula; 0 ∈ A⟧
⟹ ∀env ∈ list(A). sats(A,p, env@[0]) ⟷ sats(A,p,env)"
apply (induct_tac p)
apply (simp_all del: app_Cons add: app_Cons [symmetric]
add: nth_zero_eq_0 nth_append not_lt_iff_le nth_eq_0)
done
lemma sats_app_zeroes_iff:
"⟦p ∈ formula; 0 ∈ A; env ∈ list(A); n ∈ nat⟧
⟹ sats(A,p,env @ repeat(0,n)) ⟷ sats(A,p,env)"
apply (induct_tac n, simp)
apply (simp del: repeat.simps
add: repeat_succ_app sats_app_0_iff app_assoc [symmetric])
done
lemma exists_bigger_env:
"⟦p ∈ formula; 0 ∈ A; env ∈ list(A)⟧
⟹ ∃env' ∈ list(A). arity(p) ≤ succ(length(env')) ∧
(∀a∈A. sats(A,p,Cons(a,env')) ⟷ sats(A,p,Cons(a,env)))"
apply (rule_tac x="env @ repeat(0,arity(p))" in bexI)
apply (simp del: app_Cons add: app_Cons [symmetric]
add: length_repeat sats_app_zeroes_iff, typecheck)
done
text‹A simpler version of \<^term>‹DPow›: no arity check!›
definition
DPow' :: "i ⇒ i" where
"DPow'(A) ≡ {X ∈ Pow(A).
∃env ∈ list(A). ∃p ∈ formula.
X = {x∈A. sats(A, p, Cons(x,env))}}"
lemma DPow_subset_DPow': "DPow(A) ⊆ DPow'(A)"
by (simp add: DPow_def DPow'_def, blast)
lemma DPow'_0: "DPow'(0) = {0}"
by (auto simp add: DPow'_def)
lemma DPow'_subset_DPow: "0 ∈ A ⟹ DPow'(A) ⊆ DPow(A)"
apply (auto simp add: DPow'_def DPow_def)
apply (frule exists_bigger_env, assumption+, force)
done
lemma DPow_eq_DPow': "Transset(A) ⟹ DPow(A) = DPow'(A)"
apply (drule Transset_0_disj)
apply (erule disjE)
apply (simp add: DPow'_0 Finite_DPow_eq_Pow)
apply (rule equalityI)
apply (rule DPow_subset_DPow')
apply (erule DPow'_subset_DPow)
done
text‹And thus we can relativize \<^term>‹Lset› without bothering with
\<^term>‹arity› and \<^term>‹length››
lemma Lset_eq_transrec_DPow': "Lset(i) = transrec(i, λx f. ⋃y∈x. DPow'(f`y))"
apply (rule_tac a=i in eps_induct)
apply (subst Lset)
apply (subst transrec)
apply (simp only: DPow_eq_DPow' [OF Transset_Lset], simp)
done
text‹With this rule we can specify \<^term>‹p› later and don't worry about
arities at all!›
lemma DPow_LsetI [rule_format]:
"⟦∀x∈Lset(i). P(x) ⟷ sats(Lset(i), p, Cons(x,env));
env ∈ list(Lset(i)); p ∈ formula⟧
⟹ {x∈Lset(i). P(x)} ∈ DPow(Lset(i))"
by (simp add: DPow_eq_DPow' [OF Transset_Lset] DPow'_def, blast)
end