Theory Map_Extra

(******************************************************************************)
(* Project: Isabelle/UTP Toolkit                                              *)
(* File: Map_Extra.thy                                                        *)
(* Authors: Simon Foster and Frank Zeyda                                      *)
(* Emails: simon.foster@york.ac.uk and frank.zeyda@york.ac.uk                 *)
(******************************************************************************)

section ‹ Map Type: extra functions and properties ›

theory Map_Extra
  imports
  "HOL-Library.Countable_Set"
  "HOL-Library.Monad_Syntax"
begin

subsection ‹ Functional Relations ›

definition functional :: "('a * 'b) set  bool" where
"functional g = inj_on fst g"

definition functional_list :: "('a * 'b) list  bool" where
"functional_list xs = ( x y z. ListMem (x,y) xs  ListMem (x,z) xs  y = z)"

lemma functional_insert [simp]: "functional (insert (x,y) g)  (g``{x}  {y}  functional g)"
  by (auto simp add:functional_def inj_on_def image_def)

lemma functional_list_nil[simp]: "functional_list []"
  by (simp add:functional_list_def ListMem_iff)

lemma functional_list: "functional_list xs  functional (set xs)"
  apply (induct xs)
   apply (simp add:functional_def)
  apply (simp add:functional_def functional_list_def ListMem_iff)
  apply (safe)
         apply (force)
        apply (force)
       apply (force)
      apply (force)
     apply (force)
    apply (force)
   apply (force)
  apply (force)
  done

subsection ‹ Graphing Maps ›

definition map_graph :: "('a  'b)  ('a * 'b) set" where
"map_graph f = {(x,y) | x y. f x = Some y}"

definition graph_map :: "('a * 'b) set  ('a  'b)" where
"graph_map g = (λ x. if (x  fst ` g) then Some (SOME y. (x,y)  g) else None)"

definition graph_map' :: "('a × 'b) set  ('a  'b)" where
"graph_map' R = (if (functional R) then Some (graph_map R) else None)"

lemma map_graph_mem_equiv: "(x, y)  map_graph f  f(x) = Some y"
  by (simp add: map_graph_def)

lemma map_graph_functional[simp]: "functional (map_graph f)"
  by (simp add:functional_def map_graph_def inj_on_def)

lemma map_graph_countable [simp]: "countable (dom f)  countable (map_graph f)"
  apply (auto simp add:map_graph_def countable_def)
  apply (rename_tac f')
  apply (rule_tac x="f'  fst" in exI)
  apply (auto simp add:inj_on_def dom_def)
  apply fastforce
  done

lemma map_graph_inv [simp]: "graph_map (map_graph f) = f"
  by (auto intro!:ext simp add:map_graph_def graph_map_def image_def)

lemma graph_map_empty[simp]: "graph_map {} = Map.empty"
  by (simp add:graph_map_def)

lemma graph_map_insert [simp]: "functional g; g``{x}  {y}  graph_map (insert (x,y) g) = (graph_map g)(x  y)"
  by (rule ext, auto simp add:graph_map_def)

lemma dom_map_graph: "dom f = Domain(map_graph f)"
  by (simp add: map_graph_def dom_def image_def)

lemma ran_map_graph: "ran f = Range(map_graph f)"
  by (simp add: map_graph_def ran_def image_def)

lemma ran_map_add_subset:
  "ran (x ++ y)  (ran x)  (ran y)"
  by (auto simp add:ran_def)

lemma finite_dom_graph: "finite (dom f)  finite (map_graph f)"
  by (metis dom_map_graph finite_imageD fst_eq_Domain functional_def map_graph_functional)

lemma finite_dom_ran [simp]: "finite (dom f)  finite (ran f)"
  by (metis finite_Range finite_dom_graph ran_map_graph)

lemma graph_map_inv [simp]: "functional g  map_graph (graph_map g) = g"
  apply (auto simp add:map_graph_def graph_map_def functional_def)
    apply (metis (lifting, no_types) image_iff option.distinct(1) option.inject someI surjective_pairing)
   apply (simp add:inj_on_def)
   apply (metis fst_conv snd_conv some_equality)
  apply (metis (lifting) fst_conv image_iff)
  done

lemma graph_map_dom: "dom (graph_map R) = fst ` R"
  by (simp add: graph_map_def dom_def)

lemma graph_map_countable_dom: "countable R  countable (dom (graph_map R))"
  by (simp add: graph_map_dom)

lemma countable_ran:
  assumes "countable (dom f)"
  shows "countable (ran f)"
proof -
  have "countable (map_graph f)"
    by (simp add: assms)
  then have "countable (Range(map_graph f))"
    by (simp add: Range_snd)
  thus ?thesis
    by (simp add: ran_map_graph)
qed

lemma map_graph_inv' [simp]:
  "graph_map' (map_graph f) = Some f"
  by (simp add: graph_map'_def)

lemma map_graph_inj:
  "inj map_graph"
  by (metis injI map_graph_inv)

lemma map_eq_graph: "f = g  map_graph f = map_graph g"
  by (auto simp add: inj_eq map_graph_inj)

lemma map_le_graph: "f m g  map_graph f  map_graph g"
  by (force simp add: map_le_def map_graph_def)

lemma map_graph_comp: "map_graph (g m f) = (map_graph f) O (map_graph g)"
  apply (auto simp add: map_comp_def map_graph_def relcomp_unfold)
  apply (rename_tac a b)
  apply (case_tac "f a", auto)
  done

subsection ‹ Map Application ›

definition map_apply :: "('a  'b)  'a  'b" ("_'(_')m" [999,0] 999) where
"map_apply = (λ f x. the (f x))"

subsection ‹ Map Membership ›

fun map_member :: "'a × 'b  ('a  'b)  bool" (infix "m" 50) where
"(k, v) m m  m(k) = Some(v)"

lemma map_ext:
  "  x y. (x, y) m A  (x, y) m B   A = B"
  by (rule ext, auto, metis not_Some_eq)

lemma map_member_alt_def:
  "(x, y) m A  (x  dom A  A(x)m = y)"
  by (auto simp add: map_apply_def)

lemma map_le_member:
  "f m g  ( x y. (x,y) m f  (x,y) m g)"
  by (force simp add: map_le_def)

subsection ‹ Preimage ›

definition preimage :: "('a  'b)  'b set  'a set" where
"preimage f B = {x  dom(f). the(f(x))  B}"

lemma preimage_range: "preimage f (ran f) = dom f"
  by (auto simp add: preimage_def ran_def)

lemma dom_preimage: "dom (m m f) = preimage f (dom m)"
  apply (auto simp add: dom_def preimage_def)
   apply (meson map_comp_Some_iff)
  apply (metis map_comp_def option.case_eq_if option.distinct(1))
  done

lemma countable_preimage:
  " countable A; inj_on f (preimage f A)   countable (preimage f A)"
  apply (auto simp add: countable_def)
  apply (rename_tac g)
  apply (rule_tac x="g  the  f" in exI)
  apply (rule inj_onI)
  apply (drule inj_onD)
     apply (auto simp add: preimage_def inj_onD)
  done

subsection ‹ Minus operation for maps ›

definition map_minus :: "('a  'b)  ('a  'b)  ('a  'b)" (infixl "--" 100)
where "map_minus f g = (λ x. if (f x = g x) then None else f x)"

lemma map_minus_apply [simp]: "y  dom(f -- g)  (f -- g)(y)m = f(y)m"
  by (auto simp add: map_minus_def dom_def map_apply_def)

lemma map_member_plus:
  "(x, y) m f ++ g  ((x  dom(g)  (x, y) m f)  (x, y) m g)"
  by (auto simp add: map_add_Some_iff)

lemma map_member_minus:
  "(x, y) m f -- g  (x, y) m f  (¬ (x, y) m g)"
  by (auto simp add: map_minus_def)

lemma map_minus_plus_commute:
  "dom(g)  dom(h) = {}  (f -- g) ++ h = (f ++ h) -- g"
  apply (rule map_ext)
  apply (auto simp add: map_member_plus map_member_minus simp del: map_member.simps)
  apply (auto simp add: map_member_alt_def)
  done

lemma map_graph_minus: "map_graph (f -- g) = map_graph f - map_graph g"
  by (auto simp add: map_minus_def map_graph_def, (meson option.distinct(1))+)

lemma map_minus_common_subset:
  " h m f; h m g   (f -- h = g -- h) = (f = g)"
  by (auto simp add: map_eq_graph map_graph_minus map_le_graph)

subsection ‹ Map Bind ›

text ‹ Create some extra intro/elim rules to help dealing with proof about option bind. ›

lemma option_bindSomeE [elim!]:
  " X >>= F = Some(v);  x.  X = Some(x); F(x) = Some(v)   P   P"
  by (case_tac X, auto)

lemma option_bindSomeI [intro]:
  " X = Some(x); F(x) = Some(y)   X >>= F = Some(y)"
  by (simp)

lemma ifSomeE [elim]: " (if c then Some(x) else None) = Some(y);  c; x = y   P   P"
  by (case_tac c, auto)

subsection ‹ Range Restriction ›

text ‹A range restriction operator; only domain restriction is provided in HOL.›

definition ran_restrict_map :: "('a  'b)  'b set  'a  'b" ("_↿⇘_" [111,110] 110) where
"ran_restrict_map f B = (λx. do { v <- f(x); if (v  B) then Some(v) else None })"

lemma ran_restrict_empty [simp]: "f↿⇘{}= Map.empty"
  by (simp add:ran_restrict_map_def)

lemma ran_restrict_ran [simp]: "f↿⇘ran(f)= f"
  apply (auto simp add:ran_restrict_map_def ran_def)
  apply (rule ext)
  apply (case_tac "f(x)", auto)
  done

lemma ran_ran_restrict [simp]: "ran(f↿⇘B) = ran(f)  B"
  by (auto intro!:option_bindSomeI simp add:ran_restrict_map_def ran_def)

lemma dom_ran_restrict: "dom(f↿⇘B)  dom(f)"
  by (auto simp add:ran_restrict_map_def dom_def)

lemma ran_restrict_finite_dom [intro]:
  "finite(dom(f))  finite(dom(f↿⇘B))"
  by (metis finite_subset dom_ran_restrict)

lemma dom_Some [simp]: "dom (Some  f) = UNIV"
  by (auto)

lemma dom_left_map_add [simp]: "x  dom g  (f ++ g) x = g x"
  by (auto simp add:map_add_def dom_def)

lemma dom_right_map_add [simp]: " x  dom g; x  dom f   (f ++ g) x = f x"
  by (auto simp add:map_add_def dom_def)

lemma map_add_restrict:
  "f ++ g = (f |` (- dom g)) ++ g"
  by (rule ext, auto simp add: map_add_def restrict_map_def)

subsection ‹ Map Inverse and Identity ›

definition map_inv :: "('a  'b)  ('b  'a)" where
"map_inv f  λ y. if (y  ran f) then Some (SOME x. f x = Some y) else None"

definition map_id_on :: "'a set  ('a  'a)" where
"map_id_on xs  λ x. if (x  xs) then Some x else None"

lemma map_id_on_in [simp]:
  "x  xs  map_id_on xs x = Some x"
  by (simp add:map_id_on_def)

lemma map_id_on_out [simp]:
  "x  xs  map_id_on xs x = None"
  by (simp add:map_id_on_def)

lemma map_id_dom [simp]: "dom (map_id_on xs) = xs"
  by (simp add:dom_def map_id_on_def)

lemma map_id_ran [simp]: "ran (map_id_on xs) = xs"
  by (force simp add:ran_def map_id_on_def)

lemma map_id_on_UNIV[simp]: "map_id_on UNIV = Some"
  by (simp add:map_id_on_def)

lemma map_id_on_inj [simp]:
  "inj_on (map_id_on xs) xs"
  by (simp add:inj_on_def)

lemma map_inv_empty [simp]: "map_inv Map.empty = Map.empty"
  by (simp add:map_inv_def)

lemma map_inv_id [simp]:
  "map_inv (map_id_on xs) = map_id_on xs"
  by (force simp add:map_inv_def map_id_on_def ran_def)

lemma map_inv_Some [simp]: "map_inv Some = Some"
  by (simp add:map_inv_def ran_def)

lemma map_inv_f_f [simp]:
  " inj_on f (dom f); f x = Some y   map_inv f y = Some x"
  apply (auto simp add: map_inv_def)
   apply (rule some_equality)
    apply (auto simp add:inj_on_def dom_def ran_def)
  done

lemma dom_map_inv [simp]:
  "dom (map_inv f) = ran f"
  by (auto simp add:map_inv_def)

lemma ran_map_inv [simp]:
  "inj_on f (dom f)  ran (map_inv f) = dom f"
  apply (auto simp add:map_inv_def ran_def)
   apply (rename_tac a b)
   apply (rule_tac x="a" in exI)
   apply (force intro:someI)
  apply (rename_tac x y)
  apply (rule_tac x="y" in exI)
  apply (auto)
  apply (rule some_equality, simp_all)
  apply (auto simp add:inj_on_def dom_def)
  done

lemma dom_image_ran: "f ` dom f = Some ` ran f"
  by (auto simp add:dom_def ran_def image_def)

lemma inj_map_inv [intro]:
  "inj_on f (dom f)  inj_on (map_inv f) (ran f)"
  apply (auto simp add:map_inv_def inj_on_def dom_def ran_def)
  apply (rename_tac x y u v)
  apply (frule_tac P="λ xa. f xa = Some x" in some_equality)
   apply (auto)
  apply (metis (mono_tags) option.sel someI)
  done

lemma inj_map_bij: "inj_on f (dom f)  bij_betw f (dom f) (Some ` ran f)"
  by (auto simp add:inj_on_def dom_def ran_def image_def bij_betw_def)

lemma map_inv_map_inv [simp]:
  assumes "inj_on f (dom f)"
  shows "map_inv (map_inv f) = f"
proof -

  from assms have "inj_on (map_inv f) (ran f)"
    by auto

  thus ?thesis
    apply (rule_tac ext)
    apply (rename_tac x)
    apply (case_tac " y. map_inv f y = Some x")
     apply (auto)[1]
     apply (simp add:map_inv_def)
     apply (rename_tac x y)
     apply (case_tac "y  ran f", simp_all)
     apply (auto)
     apply (rule someI2_ex)
      apply (simp add:ran_def)
     apply (simp)
    apply (metis assms dom_image_ran dom_map_inv image_iff map_add_dom_app_simps(2) map_add_dom_app_simps(3) ran_map_inv)
    done
qed

lemma map_self_adjoin_complete [intro]:
  assumes "dom f  ran f = {}" "inj_on f (dom f)"
  shows "inj_on (map_inv f ++ f) (dom f  ran f)"
  apply (rule inj_onI)
  apply (insert assms)
  apply (rename_tac x y)
  apply (case_tac "x  dom f")
   apply (simp)
   apply (case_tac "y  dom f")
    apply (simp add:inj_on_def)
   apply (case_tac "y  ran f")
    apply (subgoal_tac "y  dom (map_inv f)")
     apply (simp)
     apply (metis Int_iff domD empty_iff ranI ran_map_inv)
    apply (simp)
   apply (simp)
  apply (simp)
  apply (case_tac "y  dom f")
   apply (simp)
   apply (case_tac "y  ran f")
    apply (subgoal_tac "y  dom (map_inv f)")
     apply (simp)
     apply (metis Int_iff empty_iff)
    apply (simp)
   apply (metis Int_iff domD empty_iff ranI ran_map_inv)
  apply (simp)
  apply (metis (lifting) inj_map_inv inj_on_contraD)
  done

lemma inj_completed_map [intro]:
  " dom f = ran f; inj_on f (dom f)   inj (Some ++ f)"
  apply (drule inj_map_bij)
  apply (auto simp add:bij_betw_def)
  apply (auto simp add:inj_on_def)[1]
  apply (rename_tac x y)
  apply (case_tac "x  dom f")
   apply (simp)
   apply (case_tac "y  dom f")
    apply (simp)
   apply (simp add:ran_def)
  apply (case_tac "y  dom f")
   apply (auto intro:ranI)
  done

lemma bij_completed_map [intro]:
  " dom f = ran f; inj_on f (dom f)  
   bij_betw (Some ++ f) UNIV (range Some)"
  apply (auto simp add:bij_betw_def)
   apply (rename_tac x)
   apply (case_tac "x  dom f")
    apply (simp)
    apply (metis domD rangeI)
   apply (simp)
  apply (simp add:image_def)
  apply (metis (full_types) dom_image_ran dom_left_map_add image_iff map_add_dom_app_simps(3))
  done

lemma bij_map_Some:
  "bij_betw f a (Some ` b)  bij_betw (the  f) a b"
  apply (simp add:bij_betw_def)
  apply (safe)
    apply (metis (opaque_lifting, no_types) comp_inj_on_iff f_the_inv_into_f inj_on_inverseI option.sel)
   apply (metis (opaque_lifting, no_types) image_iff option.sel)
  apply (metis Option.these_def Some_image_these_eq image_image these_image_Some_eq)
  done

lemma ran_map_add [simp]:
  "m`(dom m  dom n) = n`(dom m  dom n) 
   ran(m++n) = ran n  ran m"
  apply (auto simp add:ran_def)
   apply (metis map_add_find_right)
  apply (rename_tac x a)
  apply (case_tac "a  dom n")
   apply (subgoal_tac " b. n b = Some x")
    apply (auto)
    apply (rename_tac x a b y)
    apply (rule_tac x="b" in exI)
    apply (simp)
   apply (metis (opaque_lifting, no_types) IntI domI image_iff)
  apply (metis (full_types) map_add_None map_add_dom_app_simps(1) map_add_dom_app_simps(3) not_None_eq)
  done

lemma ran_maplets [simp]:
  " length xs = length ys; distinct xs   ran [xs [↦] ys] = set ys"
    by (induct rule:list_induct2, simp_all)

lemma inj_map_add:
  " inj_on f (dom f); inj_on g (dom g); ran f  ran g = {}  
   inj_on (f ++ g) (dom f  dom g)"
  apply (auto simp add:inj_on_def)
      apply (metis (full_types) disjoint_iff_not_equal domI dom_left_map_add map_add_dom_app_simps(3) ranI)
     apply (metis domI)
    apply (metis disjoint_iff_not_equal ranI)
   apply (metis disjoint_iff_not_equal domIff map_add_Some_iff ranI)
  apply (metis domI)
  done

lemma map_inv_add [simp]:
  assumes "inj_on f (dom f)" "inj_on g (dom g)"
          "dom f  dom g = {}" "ran f  ran g = {}"
  shows "map_inv (f ++ g) = map_inv f ++ map_inv g"
proof (rule ext)

  from assms have minj: "inj_on (f ++ g) (dom (f ++ g))"
    by (simp, metis inj_map_add sup_commute)

  fix x
  have "x  ran g  map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
  proof -
    assume ran:"x  ran g"
    then obtain y where dom:"g y = Some x" "y  dom g"
      by (auto simp add:ran_def)

    hence "(f ++ g) y = Some x"
      by simp

    with assms minj ran dom show "map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
      by simp
  qed

  moreover have " x  ran g; x  ran f   map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
  proof -
    assume ran:"x  ran g" "x  ran f"
    with assms obtain y where dom:"f y = Some x" "y  dom f" "y  dom g"
      by (auto simp add:ran_def)

    with ran have "(f ++ g) y = Some x"
      by (simp)

    with assms minj ran dom show "map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
      by simp
  qed

  moreover from assms minj have " x  ran g; x  ran f   map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
    apply (auto simp add:map_inv_def ran_def map_add_def)
    apply (metis dom_left_map_add map_add_def map_add_dom_app_simps(3))
    done

  ultimately show "map_inv (f ++ g) x = (map_inv f ++ map_inv g) x"
    apply (case_tac "x  ran g")
     apply (simp)
    apply (case_tac "x  ran f")
     apply (simp_all)
    done
qed

lemma map_add_lookup [simp]:
  "x  dom f  ([x  y] ++ f) x = Some y"
  by (simp add:map_add_def dom_def)

lemma map_add_Some: "Some ++ f = map_id_on (- dom f) ++ f"
  apply (rule ext)
  apply (rename_tac x)
  apply (case_tac "x  dom f")
   apply (simp_all)
  done

lemma distinct_map_dom:
  "x  set xs  x  dom [xs [↦] ys]"
  by (simp add:dom_def)

lemma distinct_map_ran:
  " distinct xs; y  set ys; length xs = length ys  
   y  ran ([xs [↦] ys])"
  apply (simp add:map_upds_def)
  apply (subgoal_tac "distinct (map fst (rev (zip xs ys)))")
  apply (simp add:ran_distinct)
  apply (metis (opaque_lifting, no_types) image_iff set_zip_rightD surjective_pairing)
  apply (simp add:zip_rev[THEN sym])
done

lemma maplets_lookup[rule_format,dest]:
  " length xs = length ys; distinct xs  
      y. [xs [↦] ys] x = Some y  y  set ys"
  by (induct rule:list_induct2, auto)

lemma maplets_distinct_inj [intro]:
  " length xs = length ys; distinct xs; distinct ys; set xs  set ys = {}  
   inj_on [xs [↦] ys] (set xs)"
  apply (induct rule:list_induct2)
   apply (simp_all)
  apply (rule conjI)
   apply (rule inj_onI)
   apply (rename_tac x xs y ys xa ya)
   apply (case_tac "xa = x")
    apply (simp)
   apply (case_tac "xa = y")
    apply (simp)
   apply (simp)
   apply (case_tac "ya = x")
    apply (simp)
   apply (simp add:inj_on_def)
  apply (auto)
  apply (rename_tac x xs y ys xa)
  apply (case_tac "xa = y")
   apply (simp)
  apply (metis maplets_lookup)
  done

lemma map_inv_maplet[simp]: "map_inv [x  y] = [y  x]"
  by (auto simp add:map_inv_def)

lemma map_inv_maplets [simp]:
  " length xs = length ys; distinct xs; distinct ys; set xs  set ys = {}  
  map_inv [xs [↦] ys] = [ys [↦] xs]"
  apply (induct rule:list_induct2)
   apply (simp_all)
  apply (rename_tac x xs y ys)
  apply (subgoal_tac "map_inv ([xs [↦] ys] ++ [x  y]) = map_inv [xs [↦] ys] ++ map_inv [x  y]")
   apply (simp)
  apply (rule map_inv_add)
     apply (auto)
  done

lemma maplets_lookup_nth [rule_format,simp]:
  " length xs = length ys; distinct xs  
    i < length ys. [xs [↦] ys] (xs ! i) = Some (ys ! i)"
  apply (induct rule:list_induct2)
   apply (auto)
   apply (rename_tac x xs y ys i)
   apply (case_tac i)
    apply (simp_all)
   apply (metis nth_mem)
  apply (rename_tac x xs y ys i)
  apply (case_tac i)
   apply (auto)
  done

theorem inv_map_inv:
  " inj_on f (dom f); ran f = dom f 
   inv (the  (Some ++ f)) = the  map_inv (Some ++ f)"
  apply (rule ext)
  apply (simp add:map_add_Some)
  apply (simp add:inv_def)
  apply (rename_tac x)
  apply (case_tac " y. f y = Some x")
   apply (erule exE)
   apply (rename_tac x y)
   apply (subgoal_tac "x  ran f")
    apply (subgoal_tac "y  dom f")
     apply (simp)
     apply (rule some_equality)
      apply (simp)
     apply (metis (opaque_lifting, mono_tags) domD domI dom_left_map_add inj_on_contraD map_add_Some map_add_dom_app_simps(3) option.sel)
    apply (simp add:dom_def)
   apply (metis ranI)
  apply (simp)
  apply (rename_tac x)
  apply (subgoal_tac "x  ran f")
   apply (simp)
   apply (rule some_equality)
    apply (simp)
   apply (metis domD dom_left_map_add map_add_Some map_add_dom_app_simps(3) option.sel)
  apply (metis dom_image_ran image_iff)
  done

lemma map_comp_dom: "dom (g m f)  dom f"
  by (metis (lifting, full_types) Collect_mono dom_def map_comp_simps(1))

lemma map_comp_assoc: "f m (g m h) = f m g m h"
proof
  fix x
  show "(f m (g m h)) x = (f m g m h) x"
  proof (cases "h x")
    case None thus ?thesis
      by (auto simp add: map_comp_def)
  next
    case (Some y) thus ?thesis
      by (auto simp add: map_comp_def)
  qed
qed

lemma map_comp_runit [simp]: "f m Some = f"
  by (simp add: map_comp_def)

lemma map_comp_lunit [simp]: "Some m f = f"
proof
  fix x
  show "(Some m f) x = f x"
  proof (cases "f x")
    case None thus ?thesis
      by (simp add: map_comp_def)
  next
    case (Some y) thus ?thesis
      by (simp add: map_comp_def)
  qed
qed

lemma map_comp_apply [simp]: "(f m g) x = g(x) >>= f"
  by (auto simp add: map_comp_def option.case_eq_if)

subsection ‹ Merging of compatible maps ›

definition comp_map :: "('a  'b)  ('a  'b)  bool" (infixl "m" 60) where
"comp_map f g = ( x  dom(f)  dom(g). the(f(x)) = the(g(x)))"

lemma comp_map_unit: "Map.empty m f"
  by (simp add: comp_map_def)

lemma comp_map_refl: "f m f"
  by (simp add: comp_map_def)

lemma comp_map_sym: "f m g  g m f"
  by (simp add: comp_map_def)

definition merge :: "('a  'b) set  'a  'b" where
"merge fs =
  (λ x. if ( f  fs. x  dom(f)) then (THE y.  f  fs. x  dom(f)  f(x) = y) else None)"

lemma merge_empty: "merge {} = Map.empty"
  by (simp add: merge_def)

lemma merge_singleton: "merge {f} = f"
  apply (auto intro!: ext simp add: merge_def)
  using option.collapse apply fastforce
  done

subsection ‹ Conversion between lists and maps ›

definition map_of_list :: "'a list  (nat  'a)" where
"map_of_list xs = (λ i. if (i < length xs) then Some (xs!i) else None)"

lemma map_of_list_nil [simp]: "map_of_list [] = Map.empty"
  by (simp add: map_of_list_def)

lemma dom_map_of_list [simp]: "dom (map_of_list xs) = {0..<length xs}"
  by (auto simp add: map_of_list_def dom_def)

lemma ran_map_of_list [simp]: "ran (map_of_list xs) = set xs"
  apply (simp add: ran_def map_of_list_def)
  apply (safe)
   apply (force)
  apply (meson in_set_conv_nth)
  done

definition list_of_map :: "(nat  'a)  'a list" where
"list_of_map f = (if (f = Map.empty) then [] else map (the  f) [0 ..< Suc(GREATEST x. x  dom f)])"

lemma list_of_map_empty [simp]: "list_of_map Map.empty = []"
  by (simp add: list_of_map_def)

definition list_of_map' :: "(nat  'a)  'a list" where
"list_of_map' f = (if ( n. dom f = {0..<n}) then Some (list_of_map f) else None)"

lemma map_of_list_inv [simp]: "list_of_map (map_of_list xs) = xs"
proof (cases "xs = []")
  case True thus ?thesis by (simp)
next
  case False
  moreover hence "(GREATEST x. x  dom (map_of_list xs)) = length xs - 1"
    by (auto intro: Greatest_equality)
  moreover from False have "map_of_list xs  Map.empty"
    by (metis ran_empty ran_map_of_list set_empty)
  ultimately show ?thesis
    by (auto simp add: list_of_map_def map_of_list_def intro: nth_equalityI)
qed

subsection ‹ Map Comprehension ›

text ‹ Map comprehension simply converts a relation built through set comprehension into a map. ›

syntax
  "_Mapcompr" :: "'a  'b  idts  bool  'a  'b"    ("(1[_  _ |/_./ _])")

translations
  "_Mapcompr F G xs P" == "CONST graph_map {(F, G) | xs. P}"

lemma map_compr_eta:
  "[x  y | x y. (x, y) m f] = f"
  apply (rule ext)
  apply (auto simp add: graph_map_def)
  apply (metis (mono_tags, lifting) Domain.DomainI fst_eq_Domain mem_Collect_eq old.prod.case option.distinct(1) option.expand option.sel)
  done

lemma map_compr_simple:
  "[x  F x y | x y. (x, y) m f] = (λ x. do { y  f(x); Some(F x y) })"
  apply (rule ext)
  apply (auto simp add: graph_map_def image_Collect)
  done

lemma map_compr_dom_simple [simp]:
  "dom [x  f x | x. P x] = {x. P x}"
  by (force simp add: graph_map_dom image_Collect)

lemma map_compr_ran_simple [simp]:
  "ran [x  f x | x. P x] = {f x | x. P x}"
  apply (auto simp add: graph_map_def ran_def)
  apply (metis (mono_tags, lifting) fst_eqD image_eqI mem_Collect_eq someI)
  done

lemma map_compr_eval_simple [simp]:
  "[x  f x | x. P x] x = (if (P x) then Some (f x) else None)"
  by (auto simp add: graph_map_def image_Collect)

subsection ‹ Sorted lists from maps ›

definition sorted_list_of_map :: "('a::linorder  'b)  ('a × 'b) list" where
"sorted_list_of_map f = map (λ k. (k, the (f k))) (sorted_list_of_set(dom(f)))"

lemma sorted_list_of_map_empty [simp]:
  "sorted_list_of_map Map.empty = []"
  by (simp add: sorted_list_of_map_def)

lemma sorted_list_of_map_inv:
  assumes "finite(dom(f))"
  shows "map_of (sorted_list_of_map f) = f"
proof -
  obtain A where "finite A" "A = dom(f)"
    by (simp add: assms)
  thus ?thesis
  proof (induct A rule: finite_induct)
    case empty thus ?thesis
      by (simp add: sorted_list_of_map_def, metis dom_empty empty_iff map_le_antisym map_le_def)
  next
    case (insert x A) thus ?thesis
      by (simp add: assms sorted_list_of_map_def map_of_map_keys)
  qed
qed

declare map_member.simps [simp del]

subsection ‹ Extra map lemmas ›

lemma map_eqI:
  " dom f = dom g;  xdom(f). the(f x) = the(g x)   f = g"
  by (metis domIff map_le_antisym map_le_def option.expand)

lemma map_restrict_dom [simp]: "f |` dom f = f"
  by (simp add: map_eqI)

lemma map_restrict_dom_compl: "f |` (- dom f) = Map.empty"
  by (metis dom_eq_empty_conv dom_restrict inf_compl_bot)

lemma restrict_map_neg_disj:
  "dom(f)  A = {}  f |` (- A) = f"
  by (auto simp add: restrict_map_def, rule ext, auto, metis disjoint_iff_not_equal domIff)

lemma map_plus_restrict_dist: "(f ++ g) |` A = (f |` A) ++ (g |` A)"
  by (auto simp add: restrict_map_def map_add_def)

lemma map_plus_eq_left:
  assumes "f ++ h = g ++ h"
  shows "(f |` (- dom h)) = (g |` (- dom h))"
proof -
  have "h |` (- dom h) = Map.empty"
    by (metis Compl_disjoint dom_eq_empty_conv dom_restrict)
  then have f2: "f |` (- dom h) = (f ++ h) |` (- dom h)"
    by (simp add: map_plus_restrict_dist)
  have "h |` (- dom h) = Map.empty"
    by (metis (no_types) Compl_disjoint dom_eq_empty_conv dom_restrict)
  then show ?thesis
    using f2 assms by (simp add: map_plus_restrict_dist)
qed

lemma map_add_split:
  "dom(f) = A  B  (f |` A) ++ (f |` B) = f"
  by (rule ext, auto simp add: map_add_def restrict_map_def option.case_eq_if)

lemma map_le_via_restrict:
  "f m g  g |` dom(f) = f"
  by (auto simp add: map_le_def restrict_map_def dom_def fun_eq_iff)

lemma map_add_cancel:
  "f m g  f ++ (g -- f) = g"
  by (auto simp add: map_le_def map_add_def map_minus_def fun_eq_iff option.case_eq_if)
     (metis domIff)

lemma map_le_iff_add: "f m g  ( h. dom(f)  dom(h) = {}  f ++ h = g)"
  apply (auto)
  apply (rule_tac x="g -- f" in exI)
  apply (metis (no_types, lifting) Int_emptyI domIff map_add_cancel map_le_def map_minus_def)
  apply (simp add: map_add_comm)
  done

lemma map_add_comm_weak: "( k  dom m1  dom m2. m1(k) = m2(k))  m1 ++ m2 = m2 ++ m1"
  by (auto simp add: map_add_def option.case_eq_if fun_eq_iff)
     (metis IntI domI option.inject)

end