Theory Monad_Syntax
section ‹Monad notation for arbitrary types›
theory Monad_Syntax
imports Adhoc_Overloading
begin
text ‹
We provide a convenient do-notation for monadic expressions well-known from Haskell.
\<^const>‹Let› is printed specially in do-expressions.
›
consts
bind :: "'a ⇒ ('b ⇒ 'c) ⇒ 'd" (infixl ‹⤜› 54)
notation (ASCII)
bind (infixl ‹>>=› 54)
abbreviation (do_notation)
bind_do :: "'a ⇒ ('b ⇒ 'c) ⇒ 'd"
where "bind_do ≡ bind"
notation (output)
bind_do (infixl ‹⤜› 54)
notation (ASCII output)
bind_do (infixl ‹>>=› 54)
nonterminal do_binds and do_bind
syntax
"_do_block" :: "do_binds ⇒ 'a"
(‹(‹open_block notation=‹mixfix do block››do {//(2 _)//})› [12] 62)
"_do_bind" :: "[pttrn, 'a] ⇒ do_bind"
(‹(‹indent=2 notation=‹infix do bind››_ ←/ _)› 13)
"_do_let" :: "[pttrn, 'a] ⇒ do_bind"
(‹(‹indent=2 notation=‹infix do let››let _ =/ _)› [1000, 13] 13)
"_do_then" :: "'a ⇒ do_bind" (‹_› [14] 13)
"_do_final" :: "'a ⇒ do_binds" (‹_›)
"_do_cons" :: "[do_bind, do_binds] ⇒ do_binds"
(‹(‹open_block notation=‹infix do next››_;//_)› [13, 12] 12)
"_thenM" :: "['a, 'b] ⇒ 'c" (infixl ‹⪢› 54)
syntax (ASCII)
"_do_bind" :: "[pttrn, 'a] ⇒ do_bind"
(‹(‹indent=2 notation=‹infix do bind››_ <-/ _)› 13)
"_thenM" :: "['a, 'b] ⇒ 'c" (infixl ‹>>› 54)
syntax_consts
"_do_block" "_do_cons" "_do_bind" "_do_then" ⇌ bind and
"_do_let" ⇌ Let
translations
"_do_block (_do_cons (_do_then t) (_do_final e))"
⇌ "CONST bind_do t (λ_. e)"
"_do_block (_do_cons (_do_bind p t) (_do_final e))"
⇌ "CONST bind_do t (λp. e)"
"_do_block (_do_cons (_do_let p t) bs)"
⇌ "let p = t in _do_block bs"
"_do_block (_do_cons b (_do_cons c cs))"
⇌ "_do_block (_do_cons b (_do_final (_do_block (_do_cons c cs))))"
"_do_cons (_do_let p t) (_do_final s)"
⇌ "_do_final (let p = t in s)"
"_do_block (_do_final e)" ⇀ "e"
"(m ⪢ n)" ⇀ "(m ⤜ (λ_. n))"
adhoc_overloading
bind Set.bind Predicate.bind Option.bind List.bind
end