Theory Coerce

section ‹Coercion Operator›

theory Coerce
imports HOLCF
begin

subsection ‹Coerce›

text ‹The domain› type class, which is the default type class
in HOLCF, fixes two overloaded functions: emb::'a → udom› and
prj::udom → 'a›. By composing the prj› and emb›
functions together, we can coerce values between any two types in
class domain›. \medskip›

definition coerce :: "'a  'b"
  where "coerce  prj oo emb"

text ‹When working with proofs involving emb›, prj›,
and coerce›, it is often difficult to tell at which types those
constants are being used. To alleviate this problem, we define special
input and output syntax to indicate the types. \medskip›

syntax
  "_emb" :: "type  logic" ((1EMB/(1'(_'))))
  "_prj" :: "type  logic" ((1PRJ/(1'(_'))))
  "_coerce" :: "type  type  logic" ((1COERCE/(1'(_,/ _'))))

syntax_consts
  "_emb"  emb and
  "_prj"  prj and
  "_coerce"  coerce

translations
  "EMB('a)"  "CONST emb :: 'a  udom"
  "PRJ('a)"  "CONST prj :: udom  'a"
  "COERCE('a,'b)"  "CONST coerce :: 'a  'b"

typed_print_translation let
  fun emb_tr' (ctxt : Proof.context) (Type(_, [T, _])) [] =
    Syntax.const @{syntax_const "_emb"} $ Syntax_Phases.term_of_typ ctxt T
  fun prj_tr' ctxt (Type(_, [_, T])) [] =
    Syntax.const @{syntax_const "_prj"} $ Syntax_Phases.term_of_typ ctxt T
  fun coerce_tr' ctxt (Type(_, [T, U])) [] =
    Syntax.const @{syntax_const "_coerce"} $
      Syntax_Phases.term_of_typ ctxt T $ Syntax_Phases.term_of_typ ctxt U
in
  [(@{const_syntax emb}, emb_tr'),
   (@{const_syntax prj}, prj_tr'),
   (@{const_syntax coerce}, coerce_tr')]
end

lemma beta_coerce: "coercex = prj(embx)"
by (simp add: coerce_def)

lemma prj_emb: "prj(embx) = coercex"
by (simp add: coerce_def)

lemma coerce_strict [simp]: "coerce = "
by (simp add: coerce_def)

text ‹Certain type instances of coerce› may reduce to the
identity function, emb›, or prj›. \medskip›

lemma coerce_eq_ID [simp]: "COERCE('a, 'a) = ID"
by (rule cfun_eqI, simp add: beta_coerce)

lemma coerce_eq_emb [simp]: "COERCE('a, udom) = EMB('a)"
by (rule cfun_eqI, simp add: beta_coerce)

lemma coerce_eq_prj [simp]: "COERCE(udom, 'a) = PRJ('a)"
by (rule cfun_eqI, simp add: beta_coerce)

text "Cancellation rules"

lemma emb_coerce:
  "DEFL('a)  DEFL('b)
    EMB('b)(COERCE('a,'b)x) = EMB('a)x"
by (simp add: beta_coerce emb_prj_emb)

lemma coerce_prj:
  "DEFL('a)  DEFL('b)
    COERCE('b,'a)(PRJ('b)x) = PRJ('a)x"
by (simp add: beta_coerce prj_emb_prj)

lemma coerce_idem [simp]:
  "DEFL('a)  DEFL('b)
    COERCE('b,'c)(COERCE('a,'b)x) = COERCE('a,'c)x"
by (simp add: beta_coerce emb_prj_emb)

subsection ‹More lemmas about emb and prj›

lemma prj_cast_DEFL [simp]: "PRJ('a)(castDEFL('a)x) = PRJ('a)x"
by (simp add: cast_DEFL)

lemma cast_DEFL_emb [simp]: "castDEFL('a)(EMB('a)x) = EMB('a)x"
by (simp add: cast_DEFL)

text @{term "DEFL(udom)"}

lemma below_DEFL_udom [simp]: "A  DEFL(udom)"
apply (rule cast_below_imp_below)
apply (rule cast.belowI)
apply (simp add: cast_DEFL)
done

subsection ‹Coercing various datatypes›

text ‹Coercing from the strict product type @{typ "'a  'b"} to
another strict product type @{typ "'c  'd"} is equivalent to mapping
the coerce› function separately over each component using
sprod_map :: ('a → 'c) → ('b → 'd) → 'a ⊗ 'b → 'c ⊗ 'd›. Each
of the several type constructors defined in HOLCF satisfies a similar
property, with respect to its own map combinator. \medskip›

lemma coerce_u: "coerce = u_mapcoerce"
apply (rule cfun_eqI, simp add: coerce_def)
apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq)
apply (subst ep_pair.e_inverse [OF ep_pair_u])
apply (simp add: u_map_map cfcomp1)
done

lemma coerce_sfun: "coerce = sfun_mapcoercecoerce"
apply (rule cfun_eqI, simp add: coerce_def)
apply (simp add: emb_sfun_def prj_sfun_def)
apply (subst ep_pair.e_inverse [OF ep_pair_sfun])
apply (simp add: sfun_map_map cfcomp1)
done

lemma coerce_cfun': "coerce = cfun_mapcoercecoerce"
apply (rule cfun_eqI, simp add: prj_emb [symmetric])
apply (simp add: emb_cfun_def prj_cfun_def)
apply (simp add: prj_emb coerce_sfun coerce_u)
apply (simp add: encode_cfun_map [symmetric])
done

lemma coerce_ssum: "coerce = ssum_mapcoercecoerce"
apply (rule cfun_eqI, simp add: coerce_def)
apply (simp add: emb_ssum_def prj_ssum_def)
apply (subst ep_pair.e_inverse [OF ep_pair_ssum])
apply (simp add: ssum_map_map cfcomp1)
done

lemma coerce_sprod: "coerce = sprod_mapcoercecoerce"
apply (rule cfun_eqI, simp add: coerce_def)
apply (simp add: emb_sprod_def prj_sprod_def)
apply (subst ep_pair.e_inverse [OF ep_pair_sprod])
apply (simp add: sprod_map_map cfcomp1)
done

lemma coerce_prod: "coerce = prod_mapcoercecoerce"
apply (rule cfun_eqI, simp add: coerce_def)
apply (simp add: emb_prod_def prj_prod_def)
apply (subst ep_pair.e_inverse [OF ep_pair_prod])
apply (simp add: prod_map_map cfcomp1)
done

subsection ‹Simplifying coercions›

text ‹When simplifying applications of the coerce› function,
rewrite rules are always oriented to replace coerce› at complex
types with other applications of coerce› at simpler types.›

text ‹The safest rewrite rules for coerce› are given the
[simp]› attribute. For other rules that do not belong in the
global simpset, we use dynamic theorem list called coerce_simp›,
which will collect additional rules for simplifying coercions. \medskip›

named_theorems coerce_simp "rule for simplifying coercions"

text ‹The coerce› function commutes with data constructors
for various HOLCF datatypes. \medskip›

lemma coerce_up [simp]: "coerce(upx) = up(coercex)"
by (simp add: coerce_u)

lemma coerce_sinl [simp]: "coerce(sinlx) = sinl(coercex)"
by (simp add: coerce_ssum ssum_map_sinl')

lemma coerce_sinr [simp]: "coerce(sinrx) = sinr(coercex)"
by (simp add: coerce_ssum ssum_map_sinr')

lemma coerce_spair [simp]: "coerce(:x, y:) = (:coercex, coercey:)"
by (simp add: coerce_sprod sprod_map_spair')

lemma coerce_Pair [simp]: "coerce(x, y) = (coercex, coercey)"
by (simp add: coerce_prod)

lemma beta_coerce_cfun [simp]: "coercefx = coerce(f(coercex))"
by (simp add: coerce_cfun')

lemma coerce_cfun: "coercef = coerce oo f oo coerce"
by (simp add: cfun_eqI)

lemma coerce_cfun_app [coerce_simp]:
  "coercef = (Λ x. coerce(f(coercex)))"
by (simp add: cfun_eqI)

end