Theory Dirichlet_Series.Euler_Products
section ‹Euler product expansions›
theory Euler_Products
imports
"HOL-Analysis.Analysis"
Multiplicative_Function
begin
text ‹Conflicting notation from \<^theory>‹HOL-Analysis.Infinite_Sum››
no_notation Infinite_Sum.abs_summable_on (infixr ‹abs'_summable'_on› 46)
lemma prime_factors_power_subset:
"prime_factors (x ^ n) ⊆ prime_factors x"
by (cases "n = 0") (auto simp: prime_factors_power)
lemma prime_power_product_in_Pi:
"(λg. ∏p∈{p. p ≤ (n::nat) ∧ prime p}. p ^ g p)
∈ ({p. p ≤ n ∧ prime p} →⇩E UNIV) →
{m. 0 < m ∧ prime_factors m ⊆ {..n}}"
proof (safe, goal_cases)
case (2 f p)
have "prime_factors (∏p∈{p. p ≤ n ∧ prime p}. p ^ f p) =
(⋃p∈{p. p ≤ n ∧ prime p}. prime_factors (p ^ f p))"
by (subst prime_factors_prod) auto
also have "… ⊆ (⋃p∈{p. p ≤ n ∧ prime p}. prime_factors p)"
using prime_factors_power_subset by blast
also have "… ⊆ (⋃p∈{p. p ≤ n ∧ prime p}. {p})"
by (auto simp: prime_factors_dvd prime_gt_0_nat dest!: dvd_imp_le)
also have "… ⊆ {..n}" by auto
finally show ?case using 2 by auto
qed (auto simp: prime_gt_0_nat)
lemma inj_prime_power: "inj_on (λx. fst x ^ snd x :: nat) ({a. prime a} × {0<..})"
proof (intro inj_onI, clarify, goal_cases)
case (1 p m q n)
with prime_power_eq_imp_eq[of p q m n] and 1
have "p = q" by auto
moreover from this have "m = n"
using prime_gt_1_nat 1 by auto
ultimately show ?case by simp
qed
lemma bij_betw_prime_powers:
"bij_betw (λg. ∏p∈{p. p ≤ n ∧ prime p}. p ^ g p) ({p. p ≤ n ∧ prime p} →⇩E UNIV)
{m. 0 < m ∧ prime_factors m ⊆ {..(n::nat)}}"
proof (rule bij_betwI[of _ _ _ "(λm p. if p ≤ n ∧ prime p then multiplicity p m else undefined)"],
goal_cases)
case 1
show ?case by (rule prime_power_product_in_Pi)
next
case 2
show ?case
by (auto split: if_splits)
next
case (3 f)
show ?case
proof (rule ext, goal_cases)
case (1 q)
show ?case
proof (cases "q ≤ n ∧ prime q")
case True
hence "multiplicity q (∏p∈{p. p ≤ n ∧ prime p}. p ^ f p) =
(∑x∈{p. p ≤ n ∧ prime p}. multiplicity q (x ^ f x))"
by (subst prime_elem_multiplicity_prod_distrib) auto
also have "… = (∑x∈{p. p ≤ n ∧ prime p}. if x = q then f q else 0)"
using True by (intro sum.cong refl) (auto simp: multiplicity_distinct_prime_power)
also have "… = f q" using True by auto
finally show ?thesis using True by simp
qed (insert 3, force+)
qed
next
case (4 m)
have "(∏p | p ≤ n ∧ prime p. p ^ (if p ≤ n ∧ prime p then multiplicity p m else undefined)) =
(∏p∈prime_factors m. p ^ multiplicity p m)"
proof (rule prod.mono_neutral_cong)
show "finite (prime_factors m)" by simp
qed (insert 4, auto simp: prime_factors_multiplicity)
also from 4 have "… = m"
by (intro prime_factorization_nat [symmetric]) auto
finally show ?case .
qed
lemma
fixes f :: "nat ⇒ 'a :: {real_normed_field,banach,second_countable_topology}"
assumes summable: "summable (λn. norm (f n))"
assumes "multiplicative_function f"
shows abs_convergent_euler_product:
"abs_convergent_prod (λp. if prime p then ∑n. f (p ^ n) else 1)"
and euler_product_LIMSEQ:
"(λn. (∏p≤n. if prime p then ∑n. f (p ^ n) else 1)) ⇢ (∑n. f n)"
proof -
interpret f: multiplicative_function f by fact
define N where "N = (∑n. norm (f n))"
have summable': "f abs_summable_on A" for A
by (rule abs_summable_on_subset[of _ UNIV])
(insert summable, auto simp: abs_summable_on_nat_iff')
have summable'': "(λx. f (p ^ x)) abs_summable_on A" if "prime p" for A p
proof (subst abs_summable_on_reindex_iff[of _ _ f])
from ‹prime p› have "p > 1"
by (rule prime_gt_1_nat)
thus "inj_on (λi. p ^ i) A"
by (auto simp: inj_on_def)
qed (intro summable')
have "(λn. norm ((∑m. f m) - (∏p∈{p. p ≤ n ∧ prime p}. ∑i. f (p ^ i)))) ⇢ 0"
(is "filterlim ?h _ _")
proof (rule tendsto_sandwich)
show "eventually (λn. ?h n ≤ N - (∑m≤n. norm (f m))) at_top"
proof (intro always_eventually allI)
fix n :: nat
interpret product_sigma_finite "λ_::nat. count_space (UNIV :: nat set)"
by (intro product_sigma_finite.intro sigma_finite_measure_count_space)
have "(∏p | p ≤ n ∧ prime p. ∑i. f (p ^ i)) =
(∏p | p ≤ n ∧ prime p. ∑⇩a i∈UNIV. f (p ^ i))"
by (intro prod.cong refl infsetsum_nat' [symmetric] summable'') auto
also have "… = (∑⇩ag∈{p. p ≤ n ∧ prime p} →⇩E UNIV.
∏x∈{p. p ≤ n ∧ prime p}. f (x ^ g x))"
by (subst infsetsum_prod_PiE [symmetric])
(auto simp: prime_gt_Suc_0_nat summable'')
also have "… = (∑⇩ag∈{p. p ≤ n ∧ prime p} →⇩E UNIV.
f (∏x∈{p. p ≤ n ∧ prime p}. x ^ g x))"
by (subst f.prod_coprime) (auto simp add: primes_coprime)
also have "… = (∑⇩am | m > 0 ∧ prime_factors m ⊆ {..n}. f m)"
by (intro infsetsum_reindex_bij_betw bij_betw_prime_powers)
also have "(∑⇩am∈UNIV. f m) - … = (∑⇩am∈UNIV - {m. m > 0 ∧ prime_factors m ⊆ {..n}}. f m)"
by (intro infsetsum_Diff [symmetric] summable') auto
also have "(∑⇩am∈UNIV. f m) = (∑m. f m)"
by (intro infsetsum_nat' summable')
also have "UNIV - {m. m > 0 ∧ prime_factors m ⊆ {..n}} =
insert 0 {m. ¬prime_factors m ⊆ {..n}}"
by auto
also have "(∑⇩am∈…. f m) = (∑⇩am | ¬prime_factors m ⊆ {..n}. f m)"
by (intro infsetsum_cong_neutral) auto
also have "norm … ≤ (∑⇩am | ¬prime_factors m ⊆ {..n}. norm (f m))"
by (rule norm_infsetsum_bound)
also have "… ≤ (∑⇩am∈{n<..}. norm (f m))"
proof (intro infsetsum_mono_neutral_left summable' abs_summable_on_normI)
show "{m. ¬ prime_factors m ⊆ {..n}} ⊆ {n<..}"
proof safe
fix m k assume "¬m > n" and "k ∈ prime_factors m"
thus "k ≤ n" by (cases "m = 0") (auto simp: prime_factors_dvd dest: dvd_imp_le)
qed
qed auto
also have "{n<..} = UNIV - {..n}"
by auto
also have "(∑⇩am∈…. norm (f m)) = (∑⇩am∈UNIV. norm (f m)) - (∑⇩am∈{..n}. norm (f m))"
using summable by (intro infsetsum_Diff) (auto simp: abs_summable_on_nat_iff')
also have "(∑⇩am∈UNIV. norm (f m)) = N"
unfolding N_def using summable
by (intro infsetsum_nat') (auto simp: abs_summable_on_nat_iff')
also have "(∑⇩am∈{..n}. norm (f m)) = (∑m≤n. norm (f m))"
by (simp add: suminf_finite)
finally show "?h n ≤ N - (∑m≤n. norm (f m))" .
qed
next
show "eventually (λn. ?h n ≥ 0) at_top" by simp
next
show "(λn. N - (∑m≤n. norm (f m))) ⇢ 0" unfolding N_def
by (rule tendsto_eq_intros refl summable_LIMSEQ' summable)+ simp_all
qed simp_all
hence "(λn. (∑m. f m) - (∏p∈{p. p ≤ n ∧ prime p}. ∑i. f (p ^ i))) ⇢ 0"
by (simp add: tendsto_norm_zero_iff)
from tendsto_diff[OF tendsto_const[of "∑m. f m"] this]
have "(λn. ∏p | p ≤ n ∧ prime p. ∑i. f (p ^ i)) ⇢ (∑m. f m)" by simp
also have "(λn. ∏p | p ≤ n ∧ prime p. ∑i. f (p ^ i)) =
(λn. ∏p≤n. if prime p then (∑i. f (p ^ i)) else 1)"
by (intro ext prod.mono_neutral_cong_left) auto
finally show "… ⇢ (∑m. f m)" .
show "abs_convergent_prod (λp. if prime p then (∑i. f (p ^ i)) else 1)"
proof (rule summable_imp_abs_convergent_prod)
have "(λ(p,i). f (p ^ i)) abs_summable_on {p. prime p} × {0<..}"
unfolding case_prod_unfold
by (subst abs_summable_on_reindex_iff[OF inj_prime_power]) fact
hence "(λp. ∑⇩ai∈{0<..}. f (p ^ i)) abs_summable_on {p. prime p}"
by (rule abs_summable_on_Sigma_project1') simp_all
also have "?this ⟷ (λp. (∑i. f (p ^ i)) - 1) abs_summable_on {p. prime p}"
proof (intro abs_summable_on_cong refl)
fix p :: nat assume p: "p ∈ {p. prime p}"
have "{0<..} = UNIV - {0::nat}" by auto
also have "(∑⇩ai∈…. f (p ^ i)) = (∑i. f (p ^ i)) - 1"
using p by (subst infsetsum_Diff) (simp_all add: infsetsum_nat' summable'')
finally show "(∑⇩ai∈{0<..}. f (p ^ i)) = (∑i. f (p ^ i)) - 1" .
qed
finally have "summable (λp. if prime p then norm ((∑i. f (p ^ i)) - 1) else 0)"
(is "summable ?T") by (simp add: abs_summable_on_nat_iff)
also have "?T = (λp. norm ((if prime p then ∑i. f (p ^ i) else 1) - 1))"
by (rule ext) (simp add: if_splits)
finally show "summable …" .
qed
qed
lemma
fixes f :: "nat ⇒ 'a :: {real_normed_field,banach,second_countable_topology}"
assumes summable: "summable (λn. norm (f n))"
assumes "completely_multiplicative_function f"
shows abs_convergent_euler_product':
"abs_convergent_prod (λp. if prime p then inverse (1 - f p) else 1)"
and completely_multiplicative_summable_norm:
"⋀p. prime p ⟹ norm (f p) < 1"
and euler_product_LIMSEQ':
"(λn. (∏p≤n. if prime p then inverse (1 - f p) else 1)) ⇢ (∑n. f n)"
proof -
interpret f: completely_multiplicative_function f by fact
{
fix p :: nat assume "prime p"
hence "inj (λi. p ^ i)"
by (auto simp: inj_on_def dest: prime_gt_1_nat)
from summable_reindex[OF summable this]
have *: "summable (λi. norm (f (p ^ i)))" by (auto simp: o_def)
also have "(λi. norm (f (p ^ i))) = (λi. norm (f p) ^ i)"
by (simp add: f.power norm_power)
finally show "norm (f p) < 1"
by (subst (asm) summable_geometric_iff) simp_all
note * and this
} note summable' = this
have eq: "(λp. if prime p then (∑i. f (p ^ i)) else 1) =
(λp. if prime p then inverse (1 - f p) else 1)"
proof (rule ext, goal_cases)
case (1 p)
show ?case
proof (cases "prime p")
case True
hence "norm (f p) < 1" by (rule summable')
from suminf_geometric[OF this] and True show ?thesis
by (simp add: field_simps f.power)
qed simp_all
qed
hence eq': "(λn. ∏p≤n. if prime p then ∑n. f (p ^ n) else 1) =
(λn. ∏p≤n. if prime p then inverse (1 - f p) else 1)"
by (auto simp: fun_eq_iff)
have f: "multiplicative_function f" ..
from abs_convergent_euler_product[OF assms(1) f] and euler_product_LIMSEQ[OF assms(1) f]
show "abs_convergent_prod (λp. if prime p then inverse (1 - f p) else 1)"
and "(λn. ∏p≤n. if prime p then inverse (1 - f p) else 1) ⇢ (∑n. f n)"
by (simp_all only: eq eq')
qed
end