Theory Choice_Functions
theory Choice_Functions
imports
Basis
begin
section‹ Choice Functions \label{sec:cf} ›
text‹
We now develop a few somewhat general results about choice functions,
following \<^citet>‹"Moulin:1985" and "Sen:1970" and "Border:2012"›.
\<^citet>‹"sep-preferences"› provide some philosophical background on this
topic. While this material is foundational to the story we tell about
stable matching, it is perhaps best skipped over on a first reading.
The game here is to study conditions on functions that yield
acceptable choices from a given set of alternatives drawn from some
universe (a set, often a type in HOL). We adopt the Isabelle
convention of attaching the suffix @{emph ‹on›} to
predicates that are defined on subsets of their types.
›
type_synonym 'a cfun = "'a set ⇒ 'a set"
text‹
Most results require that the choice function yield a subset of its
argument:
›
definition f_range_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"f_range_on A f ⟷ (∀B⊆A. f B ⊆ B)"
abbreviation f_range :: "'a cfun ⇒ bool" where
"f_range ≡ f_range_on UNIV"
lemma f_range_onI:
"(⋀B. B ⊆ A ⟹ f B ⊆ B) ⟹ f_range_on A f"
unfolding f_range_on_def by blast
lemmas f_range_onD = iffD1[OF f_range_on_def, rule_format]
lemmas f_range_onD' = subsetD[OF f_range_onD, rotated -1]
lemma f_range_on_antimono:
assumes "f_range_on B f"
assumes "A ⊆ B"
shows "f_range_on A f"
using assms unfolding f_range_on_def by blast
text‹
Economists typically assume that the universe is finite, and @{term
"f"} is @{emph ‹decisive›}, i.e., yields non-empty sets when given
non-empty sets.
›
definition decisive_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"decisive_on A f ⟷ (∀B⊆A. B ≠ {} ⟶ f B ≠ {})"
abbreviation decisive :: "'a cfun ⇒ bool" where
"decisive ≡ decisive_on UNIV"
lemmas decisive_onD = iffD1[OF decisive_on_def, rule_format]
lemmas decisive_onI = iffD2[OF decisive_on_def, rule_format]
lemma decisive_on_empty:
shows "decisive_on {} f"
unfolding decisive_on_def by simp
lemma decisive_on_mono:
assumes "decisive_on A f"
assumes "B ⊆ A"
shows "decisive_on B f"
using assms order_trans unfolding decisive_on_def by auto
text‹
Often we can mildly generalise existing results by not requiring that
@{term "f"} be @{const "decisive"}, and by dropping the finiteness
hypothesis. We make essential use of the former generalization in
\S\ref{sec:contracts}.
Some choice functions, such as those arising from linear orders
(\S\ref{sec:cf-linear}), are @{emph ‹resolute›}: these always yield a
single choice.
›
definition resolute_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"resolute_on A f ⟷ (∀B⊆A. B ≠ {} ⟶ (∃a. f B = {a}))"
abbreviation resolute :: "'a cfun ⇒ bool" where
"resolute ≡ resolute_on UNIV"
lemma resolute_on_decisive_on:
assumes "resolute_on A f"
shows "decisive_on A f"
using %invisible assms unfolding resolute_on_def by - (rule decisive_onI; auto)
text‹
Often we talk about the choices that are rejected by ‹f›:
\label{sec:cf-rf}
›
abbreviation Rf :: "'a cfun ⇒ 'a cfun" where
"Rf f X ≡ X - f X"
text‹
Typically there are many (almost-)equivalent formulations of each
property in the literature. We try to formulate our rules in terms of
the most general of these.
›
subsection‹ The @{emph ‹substitutes›} condition, AKA @{emph ‹independence of irrelevant alternatives›} \label{sec:cf-substitutes} AKA @{emph ‹Chernoff›} ›
text‹
Loosely speaking, the @{emph ‹substitutes›} condition asserts that an
alternative that is rejected from @{term "A"} shall remain rejected
when there is ``increased competition,'' i.e., from all sets that
contain @{term "A"}.
\<^citet>‹"HatfieldMilgrom:2005"› define this property as simply the
monotonicity of @{const "Rf"}. \<^citet>‹"AygunSonmez:2012-WP2"› instead
use the complicated condition shown here. Condition
‹α›, due to \<^citet>‹‹p17, see below› in "Sen:1970"›, is
the most general and arguably the most perspicuous.
›
definition substitutes_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"substitutes_on A f ⟷ ¬(∃B⊆A. ∃a b. {a, b} ⊆ A - B ∧ b ∉ f (B ∪ {b}) ∧ b ∈ f (B ∪ {a, b}))"
abbreviation substitutes :: "'a cfun ⇒ bool" where
"substitutes ≡ substitutes_on UNIV"
lemma substitutes_on_def2[simplified]:
"substitutes_on A f ⟷ (∀B⊆A. ∀a∈A. ∀b∈A. b ∉ f (B ∪ {b}) ⟶ b ∉ f (B ∪ {a, b}))"
(is "?lhs ⟷ ?rhs")
proof (rule iffI, clarsimp)
fix B a b
assume lhs: ?lhs and XXX: "B ⊆ A" "a ∈ A" "b ∈ A" "b ∉ f (insert b B)" "b ∈ f (insert a (insert b B))"
show False
proof(cases "a ∈ B")
case True with XXX show ?thesis by (simp add: insert_absorb)
next
case False with lhs XXX show ?thesis
unfolding substitutes_on_def
by (cases "b ∈ B") (fastforce dest: spec[where x="B - {a, b}"] simp: insert_commute insert_absorb)+
qed
qed (fastforce simp: substitutes_on_def)
lemmas substitutes_onI = iffD2[OF substitutes_on_def2, rule_format, simplified]
lemmas substitutes_onD = iffD1[OF substitutes_on_def2, rule_format, simplified]
lemmas substitutesD = substitutes_onD[where A=UNIV, simplified]
text‹›
lemma substitutes_on_union:
assumes "a ∉ f (B ∪ {a})"
assumes "substitutes_on (A ∪ B ∪ {a}) f"
assumes "finite A"
shows "a ∉ f (A ∪ B ∪ {a})"
using %invisible assms(3,1-2) by induct (simp_all add: insert_commute substitutes_on_def2 le_iff_sup)
lemma substitutes_on_antimono:
assumes "substitutes_on B f"
assumes "A ⊆ B"
shows "substitutes_on A f"
using %invisible assms unfolding substitutes_on_def2 by auto
text‹
The equivalence with the monotonicity of alternative-rejection
requires a finiteness constraint.
›
lemma substitutes_on_Rf_mono_on:
assumes "substitutes_on A f"
assumes "finite A"
shows "mono_on (Pow A) (Rf f)"
proof %invisible (rule mono_onI, rule subsetI)
fix B C x assume "B ∈ Pow A" "C ∈ Pow A" "B ⊆ C" "x ∈ Rf f B"
with assms substitutes_on_union[where a=x and A=C and B=B and f=f] show "x ∈ Rf f C"
by (clarsimp simp: insert_absorb) (metis rev_finite_subset subsetCE substitutes_on_antimono sup.orderE)
qed
lemma Rf_mono_on_substitutes:
assumes "mono_on (Pow A) (Rf f)"
shows "substitutes_on A f"
proof %invisible (rule substitutes_onI)
fix B a b assume "B ⊆ A" "a ∈ A" "b ∈ A" "b ∉ f (insert b B)"
with assms show "b ∉ f (insert a (insert b B))"
by (auto elim: mono_onE[where x="insert b B" and y="insert a (insert b B)"])
qed
text‹
The above substitutes condition is equivalent to the
@{emph ‹independence of irrelevant alternatives›}, AKA condition
‹α› due to \<^citet>‹"Sen:1970"›. Intuitively if
‹a› is chosen from a set ‹A›, then it must
be chosen from every subset of ‹A› that it belongs
to. Note the lack of finiteness assumptions here.
›
definition iia_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"iia_on A f ⟷ (∀B⊆A. ∀C⊆B. ∀a∈C. a ∈ f B ⟶ a ∈ f C)"
abbreviation iia :: "'a cfun ⇒ bool" where
"iia ≡ iia_on UNIV"
lemmas %invisible iia_onI = iffD2[OF iia_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas %invisible iia_onD = iffD1[OF iia_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemma Rf_mono_on_iia_on:
shows "mono_on (Pow A) (Rf f) ⟷ iia_on A f"
unfolding %invisible iia_on_def by (rule iffI) (blast elim: mono_onE intro!: mono_onI)+
lemma Rf_mono_iia:
shows "mono (Rf f) ⟷ iia f"
using %invisible Rf_mono_on_iia_on[of UNIV f] mono_on_mono by (simp add: fun_eq_iff) blast
lemma substitutes_iia:
assumes "finite A"
shows "substitutes_on A f ⟷ iia_on A f"
using %invisible Rf_mono_on_iia_on Rf_mono_on_substitutes substitutes_on_Rf_mono_on[OF _ assms] by blast
text‹
One key result is that the choice function must be idempotent if it
satisfies @{const "iia"} or any of the equivalent conditions.
›
lemma iia_f_idem:
assumes "f_range_on A f"
assumes "iia_on A f"
assumes "B ⊆ A"
shows "f (f B) = f B"
using %invisible assms unfolding iia_on_def
by (meson f_range_onD f_range_on_antimono subset_antisym subset_eq)
text‹
\<^citet>‹‹p914, bottom right› in "HatfieldMilgrom:2005"› claim that the
@{const "substitutes"} condition coincides with the
@{emph ‹substitutable preferences›} condition for the college admissions
problem of \<^citet>‹‹Definition~6.2› in "RothSotomayor:1990"›, which is
similar to @{const "iia"}:
›
definition substitutable_preferences_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"substitutable_preferences_on A f ⟷ (∀B⊆A. ∀a∈B. ∀b∈B. a ≠ b ∧ a ∈ f B ⟶ a ∈ f (B - {b}))"
lemmas %invisible substitutable_preferences_onI = iffD2[OF substitutable_preferences_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemma substitutable_preferences_on_substitutes_on:
shows "substitutable_preferences_on A f ⟷ substitutes_on A f" (is "?lhs ⟷ ?rhs")
proof %invisible (rule iffI)
assume ?lhs then show ?rhs
unfolding substitutable_preferences_on_def
by - (rule substitutes_onI; metis Diff_insert_absorb insertCI insert_absorb insert_subset)
next
assume ?rhs show ?lhs
proof(rule substitutable_preferences_onI)
fix B a b
assume XXX: "B ⊆ A" "a ∈ B" "b ∈ B" "a ≠ b" "a ∈ f B"
then have "a ∈ A" "b ∈ A" "B - {b} - {a} ⊆ A" by blast+
with ‹?rhs› XXX show "a ∈ f (B - {b})"
unfolding substitutes_on_def2 by (metis insertE insert_Diff)
qed
qed
text‹
\<^citet>‹‹p152› in "Moulin:1985"› defines an equivalent @{emph ‹Chernoff›}
condition. Intuitively this captures the idea that ``a best choice in
some issue [set of alternatives] is still best if the issue shrinks.''
›
definition Chernoff_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"Chernoff_on A f ⟷ (∀B⊆A. ∀C⊆B. f B ∩ C ⊆ f C)"
abbreviation Chernoff :: "'a cfun ⇒ bool" where
"Chernoff ≡ Chernoff_on UNIV"
lemmas Chernoff_onI = iffD2[OF Chernoff_on_def, rule_format]
lemmas Chernoff_def = Chernoff_on_def[where A=UNIV, simplified]
lemma Chernoff_on_iia_on:
shows "Chernoff_on A f ⟷ iia_on A f"
unfolding %invisible Chernoff_on_def iia_on_def by blast
lemma Chernoff_on_union:
assumes "Chernoff_on A f"
assumes "f_range_on A f"
assumes "B ⊆ A" "C ⊆ A"
shows "f (B ∪ C) ⊆ f B ∪ f C"
using %invisible assms unfolding Chernoff_on_def f_range_on_def
by clarsimp (metis (mono_tags, lifting) Int_iff Un_iff Un_subset_iff contra_subsetD inf_sup_ord(3,4))
text‹
\<^citet>‹‹p159› in "Moulin:1985"› states a series of equivalent formulations
of the @{const "Chernoff"} condition. He also claims that these hold
if the two sets are disjoint.
›
lemma Chernoff_a:
assumes "f_range_on A f"
shows "Chernoff_on A f ⟷ (∀B C. B ⊆ A ∧ C ⊆ A ⟶ f (B ∪ C) ⊆ f B ∪ C)" (is "?lhs ⟷ ?rhs")
proof %invisible (rule iffI)
assume ?lhs with ‹f_range_on A f› show ?rhs by (auto dest: f_range_onD' Chernoff_on_union)
next
assume ?rhs show ?lhs
proof(rule Chernoff_onI)
fix B C assume "B ⊆ A" "C ⊆ B"
with spec[OF spec[OF ‹?rhs›, where x="C"], where x="B - C"] show "f B ∩ C ⊆ f C"
by (fastforce simp add: Un_absorb1)
qed
qed
lemma Chernoff_b:
assumes "f_range_on A f"
shows "Chernoff_on A f ⟷ (∀B C. B ⊆ A ∧ C ⊆ A ⟶ f (B ∪ C) ⊆ f B ∪ f C)" (is "?lhs ⟷ ?rhs")
proof %invisible (rule iffI)
assume ?lhs with ‹f_range_on A f› show ?rhs using Chernoff_on_union by blast
next
assume ?rhs show ?lhs
proof(rule Chernoff_onI)
fix B C assume "B ⊆ A" "C ⊆ B"
with ‹f_range_on A f› spec[OF spec[OF ‹?rhs›, where x="C"], where x="B - C"]
show "f B ∩ C ⊆ f C" by (clarsimp simp: Un_absorb1) (blast dest: f_range_onD')
qed
qed
lemma Chernoff_c:
assumes "f_range_on A f"
shows "Chernoff_on A f ⟷ (∀B C. B ⊆ A ∧ C ⊆ A ⟶ f (B ∪ C) ⊆ f (f B ∪ C))" (is "?lhs ⟷ ?rhs")
proof %invisible (rule iffI)
assume ?lhs show ?rhs
proof(safe)
fix B C x
assume B: "B ⊆ A" and C: "C ⊆ A" and x: "x ∈ f (B ∪ C)"
from B C have "f (B ∪ C) ⊆ f B ∪ f C" by (rule Chernoff_on_union[OF ‹?lhs› ‹f_range_on A f›])
with ‹f_range_on A f› C x have "x ∈ f B ∪ C" by (blast dest: f_range_onD)
moreover from ‹f_range_on A f› B have "f B ∪ C ⊆ B ∪ C" by (blast dest: f_range_onD)
moreover note B C x
ultimately show "x ∈ f (f B ∪ C)"
using iia_onD[OF iffD1[OF Chernoff_on_iia_on ‹?lhs›]] by (metis Un_subset_iff)
qed
next
assume ?rhs with ‹f_range_on A f› show ?lhs
unfolding f_range_on_def
by (clarsimp simp: Chernoff_a[OF ‹f_range_on A f›])
(metis (no_types, lifting) Un_iff Un_subset_iff rev_subsetD subset_trans)
qed
lemma Chernoff_d:
assumes "f_range_on A f"
shows "Chernoff_on A f ⟷ (∀B C. B ⊆ A ∧ C ⊆ A ⟶ f (B ∪ C) ⊆ f (f B ∪ f C))" (is "?lhs ⟷ ?rhs")
proof %invisible (rule iffI)
assume ?lhs show ?rhs
proof(intro allI impI)
fix B C x
assume BC: "B ⊆ A ∧ C ⊆ A"
with ‹f_range_on A f› ‹?lhs› have "f (B ∪ C) ⊆ f (f B ∪ C)" by (metis Chernoff_c Un_commute)
with ‹f_range_on A f› BC show "f (B ∪ C) ⊆ f (f B ∪ f C)"
using iffD1[OF Chernoff_c[OF ‹f_range_on A f›] ‹?lhs›]
unfolding f_range_on_def by (metis Un_commute inf.absorb_iff2 le_infI1)
qed
next
assume ?rhs with ‹f_range_on A f› show ?lhs
unfolding f_range_on_def
by (clarsimp simp: Chernoff_a[OF assms])
(metis (no_types, lifting) Un_iff Un_subset_iff rev_subsetD subset_trans)
qed
subsection‹ The @{emph ‹irrelevance of rejected contracts›} condition AKA @{emph ‹consistency›} AKA @{emph ‹Aizerman›} \label{sec:cf-irc} ›
text‹
\<^citet>‹‹\S4› in "AygunSonmez:2012-WP2"› propose to repair the results of
\<^citet>‹"HatfieldMilgrom:2005"› by imposing the @{emph ‹irrelevance of
rejected contracts›} (IRC) condition. Intuitively this requires the
choice function @{term "f"} to ignore unchosen alternatives.
›
definition irc_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"irc_on A f ⟷ (∀B⊆A. ∀a∈A. a ∉ f (B ∪ {a}) ⟶ f (B ∪ {a}) = f B)"
abbreviation irc :: "'a cfun ⇒ bool" where
"irc ≡ irc_on UNIV"
lemmas %invisible irc_onI = iffD2[OF irc_on_def, rule_format, simplified]
lemmas %invisible irc_onD = iffD1[OF irc_on_def, rule_format, simplified]
lemmas %invisible irc_def = irc_on_def[where A=UNIV, simplified]
lemmas %invisible ircI = iffD2[OF irc_def, rule_format, simplified]
lemmas %invisible ircD = iffD1[OF irc_def, rule_format, simplified]
lemma irc_on_discard:
assumes "irc_on A f"
assumes "finite C"
assumes "B ∪ C ⊆ A"
assumes "f (B ∪ C) ∩ C = {}"
shows "f (B ∪ C) = f B"
using %invisible assms(2,3,4)
proof induct
case (insert c C) with assms(1) show ?case
unfolding irc_on_def by simp (metis Un_subset_iff)
qed simp
text‹
An equivalent condition is called @{emph ‹consistency›} by some
(\<^citet>‹‹Definition~2› in "ChambersYenmez:2013"›,
\<^citet>‹‹Equation~(14)› in "Fleiner:2002"›). Like @{const "iia"}, this
formulation generalizes to infinite universes.
›
definition consistency_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"consistency_on A f ⟷ (∀B⊆A. ∀C⊆B. f B ⊆ C ⟶ f B = f C)"
abbreviation consistency :: "'a cfun ⇒ bool" where
"consistency ≡ consistency_on UNIV"
lemmas %invisible consistency_onI = iffD2[OF consistency_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas %invisible consistency_onD = iffD1[OF consistency_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas %invisible consistency_def = consistency_on_def[where A=UNIV, simplified]
lemmas %invisible consistencyD = iffD1[OF consistency_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemma irc_on_consistency_on:
assumes "irc_on A f"
assumes "finite A"
shows "consistency_on A f"
proof %invisible (rule consistency_onI)
fix B C assume "B ⊆A" "f B ⊆ C" "C ⊆ B"
then have "C ∪ (B - f B) = B" by blast
with ‹B ⊆A› ‹finite A› show "f B = f C"
using irc_on_discard[OF assms(1), where B=C and C="B - f B"] by (simp add: finite_subset)
qed
lemma consistency_on_irc_on:
assumes "f_range_on A f"
assumes "consistency_on A f"
shows "irc_on A f"
proof %invisible (rule irc_onI)
fix B b assume "B ⊆ A" "b ∈ A" "b ∉ f (insert b B)"
with assms show "f (insert b B) = f B"
by - (erule consistency_onD; blast dest: f_range_onD')
qed
text‹
These conditions imply that @{term "f"} is idempotent:
›
lemma consistency_on_f_idem:
assumes "f_range_on A f"
assumes "consistency_on A f"
assumes "B ⊆ A"
shows "f (f B) = f B"
using %invisible assms by (metis consistency_onD f_range_onD order_refl)
text‹
\<^citet>‹‹p154› in "Moulin:1985"› defines a similar but weaker property he
calls @{emph ‹Aizerman›}:
›
definition Aizerman_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"Aizerman_on A f ⟷ (∀B⊆A. ∀C⊆B. f B ⊆ C ⟶ f C ⊆ f B)"
abbreviation Aizerman :: "'a cfun ⇒ bool" where
"Aizerman ≡ Aizerman_on UNIV"
lemmas %invisible Aizerman_onI = iffD2[OF Aizerman_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas %invisible Aizerman_onD = iffD1[OF Aizerman_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas %invisible Aizerman_def = Aizerman_on_def[where A=UNIV, simplified]
lemma consistency_on_Aizerman_on:
assumes "consistency_on A f"
shows "Aizerman_on A f"
using %invisible assms by (metis Aizerman_onI consistency_onD order_refl)
text‹
The converse requires @{term "f"} to be idempotent
\<^citep>‹‹p157› in "Moulin:1985"›:
›
lemma Aizerman_on_idem_on_consistency_on:
assumes "Aizerman_on A f"
assumes "∀B⊆A. f (f B) = f B"
shows "consistency_on A f"
by %invisible (rule consistency_onI) (metis inf.coboundedI2 le_iff_inf set_eq_subset Aizerman_onD[OF assms(1)] assms(2))
subsection‹ The @{emph ‹law of aggregate demand›} condition aka @{emph ‹size monotonicity›} \label{sec:cf-lad} ›
text‹
\<^citet>‹‹{\S}III› in "HatfieldMilgrom:2005"› impose the @{emph ‹law of
aggregate demand›} (aka @{emph ‹size monotonicity›}) to obtain the rural
hospitals theorem (\S\ref{sec:contracts-rh}). It captures the
following intuition:
\begin{quote}
[...] Roughly, this law states that as the price falls, agents should
demand more of a good. Here, price falls correspond to more contracts
being available, and more demand corresponds to taking on (weakly)
more contracts.
\end{quote}
The @{const "card"} function takes a finite set into its cardinality
(as a natural number).
›
definition lad_on :: "'a set ⇒ 'a::finite cfun ⇒ bool" where
"lad_on A f ⟷ (∀B⊆A. ∀C⊆B. card (f C) ≤ card (f B))"
abbreviation lad :: "'a::finite cfun ⇒ bool" where
"lad ≡ lad_on UNIV"
text‹
This definition is identical amongst
\<^citet>‹‹{\S}III› in "HatfieldMilgrom:2005"›, \<^citet>‹‹(20)› in "Fleiner:2002"›, and
\<^citet>‹‹Definition~4› in "AygunSonmez:2012-WP2"›.
›
lemma lad_onD:
assumes "lad_on A f"
assumes "C ⊆ B"
assumes "B ⊆ A"
shows "card (f C) ≤ card (f B)"
using assms unfolding lad_on_def by blast
lemma ladD:
assumes "lad f"
assumes "⋀x. x ∈ C ⟹ x ∈ B"
shows "card (f C) ≤ card (f B)"
using assms unfolding lad_on_def by (simp add: subsetI)
text‹
\<^citet>‹‹\S5, Proposition~1› in "AygunSonmez:2012-WP2"› show that @{const
"substitutes"} and @{const "lad"} imply @{const "irc"}, which
therefore rescues many results in the matching-with-contracts
literature.
›
lemma lad_on_substitutes_on_irc_on:
assumes "f_range_on A f"
assumes "substitutes_on A f"
assumes "lad_on A f"
shows "irc_on A f"
proof %invisible (rule irc_onI, rule card_seteq)
fix B b assume bB: "B ⊆ A" "b ∈ A" "b ∉ f (insert b B)"
show "finite (f B)" by simp
show "f (insert b B) ⊆ f B"
proof
fix x assume x: "x ∈ f (insert b B)"
with ‹f_range_on A f› bB have "insert x B = B ∨ x = b"
by clarsimp (blast dest: f_range_onD')
with ‹substitutes_on A f› bB x show "x ∈ f B"
by (metis insert_subset substitutes_onD)
qed
from ‹lad_on A f› bB show "card (f B) ≤ card (f (insert b B))"
unfolding lad_on_def by (simp add: subset_insertI)
qed
text‹
The converse does not hold.
›
subsection‹ The @{emph ‹expansion›} condition ›
text‹
According to \<^citet>‹‹p152› in "Moulin:1985"›, a choice function satifies
@{emph ‹expansion›} if an alternative chosen from two sets is also chosen
from their union.
›
definition expansion_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"expansion_on A f ⟷ (∀B⊆A. ∀C⊆A. f B ∩ f C ⊆ f (B ∪ C))"
abbreviation expansion :: "'a cfun ⇒ bool" where
"expansion ≡ expansion_on UNIV"
lemmas %invisible expansion_onI = iffD2[OF expansion_on_def, rule_format]
lemmas %invisible expansion_onD = iffD1[OF expansion_on_def, rule_format, THEN subsetD, simplified, unfolded conj_imp_eq_imp_imp]
text‹
Condition ‹γ› due to \<^citet>‹"Sen:1971"› generalizes
@{const "expansion"} to collections of sets of choices.
›
definition expansion_gamma_on :: "'a set ⇒ 'a set set ⇒ 'a cfun ⇒ bool" where
"expansion_gamma_on A As f ⟷ (⋃As⊆A ∧ As ≠ {} ⟶ (⋂A∈As. f A) ⊆ f (⋃As))"
definition expansion_gamma :: "'a set set ⇒ 'a cfun ⇒ bool" where
"expansion_gamma ≡ expansion_gamma_on UNIV"
lemmas %invisible expansion_gamma_onI = iffD2[OF expansion_gamma_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas %invisible expansion_gamma_onE = iffD1[OF expansion_gamma_on_def, rule_format, THEN subsetD, simplified, unfolded conj_imp_eq_imp_imp]
lemma expansion_gamma_expansion:
assumes "∀As. expansion_gamma_on A As f"
shows "expansion_on A f"
proof %invisible (rule expansion_onI, rule subsetI)
fix B C x
assume "B ⊆ A" "C ⊆ A" "x ∈ f B ∩ f C" then show "x ∈ f (B ∪ C)"
using expansion_gamma_onE[OF spec[OF assms], where As="{B,C}"] by simp
qed
lemma expansion_expansion_gamma:
assumes "expansion_on A f"
assumes "finite As"
shows "expansion_gamma_on A As f"
proof %invisible (rule expansion_gamma_onI[OF subsetI])
fix x assume "⋃As ⊆ A" "As ≠ {}" "x ∈ (⋂A∈As. f A)"
from ‹finite As› this show "x ∈ f (⋃As)"
proof induct
case (insert b B) with assms show ?case by (cases "B = {}") (auto dest: expansion_onD)
qed simp
qed
text‹
The @{const "expansion"} condition plays a major role in the study of
the @{emph ‹rationalizability›} of choice functions, which we explore
next.
›
subsection‹ Axioms of revealed preference \label{sec:cf-revealed_preference} ›
text‹
We digress from our taxonomy of conditions on choice functions to
discuss @{emph ‹rationalizability›}. A choice function is
@{emph ‹rationalizable›} if there exists some binary relation that generates
it, typically by taking the @{emph ‹greatest›} or @{emph ‹maximal›} elements
of the given set of alternatives:
›
definition greatest :: "'a rel ⇒ 'a cfun" where
"greatest r X = {x∈X. ∀y∈X. (y, x) ∈ r}"
definition maximal :: "'a rel ⇒ 'a cfun" where
"maximal r X = {x∈X. ∀y∈X. ¬(x, y) ∈ r}"
lemma (in MaxR) greatest:
shows "set_option (MaxR_opt X) = greatest r (X ∩ Field r)"
using %invisible greatest_is_MaxR_opt MaxR_opt_is_greatest unfolding greatest_def by (blast dest: range_Some)
lemma greatest_r_mono:
assumes "Above r X ⊆ Above r' X"
shows "greatest r X ⊆ greatest r' X"
using assms unfolding greatest_def Above_def by (fast intro: FieldI1)
lemmas greatest_r_mono' = subsetD[OF greatest_r_mono, rotated]
lemma greatest_Above:
shows "greatest r X = Above r X ∩ X"
unfolding greatest_def Above_def by (blast intro: FieldI1)
text‹
Note that @{const "greatest"} requires the relation to be reflexive
and total, and @{const "maximal"} requires it to be irreflexive, for
the choice functions to ever yield non-empty sets.
This game of uncovering the preference relations (if any) underlying a
choice function goes by the name of @{emph ‹revealed preference›}. (In
contrast, later we show how these conditions guarantee the existence
of stable many-to-one matches.) See \<^citet>‹"Moulin:1985"› and
\<^citet>‹"Border:2012"› for background, intuition and critique, and
\<^citet>‹"Sen:1971"› for further classical results and proofs.
We adopt the following notion here:
›
definition rationalizes_on :: "'a set ⇒ 'a cfun ⇒ 'a rel ⇒ bool" where
"rationalizes_on A f r ⟷ (∀B⊆A. f B = greatest r B)"
abbreviation rationalizes :: "'a cfun ⇒ 'a rel ⇒ bool" where
"rationalizes ≡ rationalizes_on UNIV"
lemma %invisible rationalizes_onI:
assumes "f_range_on A f"
assumes "⋀B x y. ⟦B ⊆ A; x ∈ f B; y ∈ B⟧ ⟹ (y, x) ∈ r"
assumes "⋀B x. ⟦B ⊆ A; x ∈ B; ∀y∈B. (y, x) ∈ r⟧ ⟹ x ∈ f B"
shows "rationalizes_on A f r"
using assms unfolding rationalizes_on_def greatest_def by (auto dest: f_range_onD)
text‹
In words, relation @{term "r"} rationalizes the choice function @{term
"f"} over universe @{term "A"} if @{term "f B"} picks out the @{term
"greatest"} elements of @{term "B ⊆ A"} with respect to
@{term "r"}. At this point @{term "r"} can be any relation that does
the job, but soon enough we will ask that it satisfy some familiar
ordering properties.
The analysis begins by determining under what constraints @{term "f"}
can be rationalized, continues by establishing some properties of all
rationalizable choice functions, and concludes by considering what it
takes to establish stronger properties.
Following \<^citet>‹‹\S5, Definition~2› in "Border:2012"› and
\<^citet>‹‹Definition~2› in "Sen:1971"›, we can generate the @{emph ‹revealed
weakly preferred›} relation for the choice function @{term "f"}:
›
definition rwp_on :: "'a set ⇒ 'a cfun ⇒ 'a rel" where
"rwp_on A f = {(x, y). ∃B⊆A. x ∈ B ∧ y ∈ f B}"
abbreviation rwp :: "'a cfun ⇒ 'a rel" where
"rwp ≡ rwp_on UNIV"
lemma %invisible rwp_on_Field:
assumes "f_range_on A f"
shows "Field (rwp_on A f) ⊆ A"
using assms unfolding f_range_on_def rwp_on_def Field_def by auto
lemma rwp_on_refl_on:
assumes "f_range_on A f"
assumes "decisive_on A f"
shows "refl_on A (rwp_on A f)"
proof %invisible (rule refl_onI)
from ‹f_range_on A f› show "rwp_on A f ⊆ A × A"
unfolding rwp_on_def f_range_on_def by blast
fix x assume "x ∈ A"
with assms show "(x, x) ∈ rwp_on A f"
unfolding rwp_on_def decisive_on_def f_range_on_def
by (fast dest: spec[where x="{x}"] intro: exI[where x="{x}"])
qed
text‹
In words, if it is ever possible that @{term "x ∈ B"} is available
and @{term "f B"} chooses @{term "y"}, then @{term "y"} is taken to
always be at least as good as @{term "x"}.
The @{emph ‹V-axiom›} asserts that whatever is revealed to be at least as
good as anything else on offer is chosen:
›
definition V_axiom_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"V_axiom_on A f ⟷ (∀B⊆A. ∀y∈B. (∀x ∈ B. (x, y) ∈ rwp_on A f) ⟶ y ∈ f B)"
abbreviation V_axiom :: "'a cfun ⇒ bool" where
"V_axiom ≡ V_axiom_on UNIV"
text‹
This axiom characterizes rationality; see
\<^citet>‹‹Theorem~7› in "Border:2012"›. \<^citet>‹‹\S3› in "Sen:1971"› calls a decisive
choice function that satisfies @{const "V_axiom"} @{emph ‹normal›}.
›
lemma rationalizes_on_f_range_on_V_axiom_on:
assumes "rationalizes_on A f r"
shows "f_range_on A f"
and "V_axiom_on A f"
using %invisible assms unfolding V_axiom_on_def rationalizes_on_def greatest_def f_range_on_def rwp_on_def by simp_all blast+
lemma f_range_on_V_axiom_on_rationalizes_on:
assumes "f_range_on A f"
assumes "V_axiom_on A f"
shows "rationalizes_on A f (rwp_on A f)"
using %invisible assms rwp_on_Field[OF assms(1)]
unfolding V_axiom_on_def rationalizes_on_def greatest_def f_range_on_def rwp_on_def
by auto
theorem V_axiom_on_rationalizes_on:
shows "(f_range_on A f ∧ V_axiom_on A f) ⟷ (∃r. rationalizes_on A f r)"
using %invisible rationalizes_on_f_range_on_V_axiom_on f_range_on_V_axiom_on_rationalizes_on by blast
text‹
We could also ask that @{term "f"} be determined directly by how it
behaves on pairs (\<^citet>‹"Sen:1971"›, \<^citet>‹‹p151› in "Moulin:1985"›), which
turns out to be equivalent:
›
definition rationalizable_binary_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"rationalizable_binary_on A f ⟷ (∀B⊆A. f B = {y ∈ B. ∀x∈B. y ∈ f {x, y}})"
abbreviation rationalizable_binary :: "'a cfun ⇒ bool" where
"rationalizable_binary ≡ rationalizable_binary_on UNIV"
lemma %invisible rationalizable_binary_onI:
assumes "f_range_on A f"
assumes "⋀B x y. ⟦B ⊆ A; y ∈ f B; x ∈ B; y ∈ B⟧ ⟹ y ∈ f {x, y}"
assumes "⋀B y. ⟦B ⊆ A; y ∈ B; ∀x∈B. y ∈ f {x, y}⟧ ⟹ y ∈ f B"
shows "rationalizable_binary_on A f"
unfolding rationalizable_binary_on_def using assms by (blast dest: f_range_onD' intro: FieldI1)
theorem V_axiom_realizable_binary:
assumes "f_range_on A f"
shows "V_axiom_on A f ⟷ rationalizable_binary_on A f"
(is "?lhs = ?rhs")
proof (rule iffI)
assume lhs: ?lhs show ?rhs
proof(rule rationalizable_binary_onI[OF assms])
fix B x y assume "B ⊆ A" "y ∈ f B" "x ∈ B" "y ∈ B"
with lhs show "y ∈ f {x, y}"
unfolding V_axiom_on_def rwp_on_def by (auto dest: spec[where x="{x, y}"])
next
fix B y assume "B ⊆ A" "y ∈ B" "∀x∈B. y ∈ f {x, y}"
with lhs show "y ∈ f B"
unfolding V_axiom_on_def rwp_on_def
by clarsimp (metis Un_subset_iff insertI1 insert_is_Un mk_disjoint_insert)
qed
next
assume ?rhs then show ?lhs
unfolding V_axiom_on_def rwp_on_def rationalizable_binary_on_def by force
qed
text‹
All rationalizable choice functions satisfy @{const "iia"} and @{const
"expansion"} (\<^citet>‹"Sen:1971"›, \<^citet>‹‹p152› in "Moulin:1985"›).
›
lemma rationalizable_binary_on_iia_on:
assumes "f_range_on A f"
assumes "rationalizable_binary_on A f"
shows "iia_on A f"
using %invisible assms unfolding iia_on_def rationalizable_binary_on_def f_range_on_def
by simp (meson contra_subsetD)
lemma rationalizable_binary_on_expansion_on:
assumes "f_range_on A f"
assumes "rationalizable_binary_on A f"
shows "expansion_on A f"
using %invisible assms unfolding rationalizable_binary_on_def f_range_on_def
by - (rule expansion_onI; auto)
text‹
The converse requires the set of alternatives to be finite, and
moreover fails if the choice function is not @{const "decisive"}.
›
lemma rationalizable_binary_on_converse:
fixes f :: "'a::finite cfun"
assumes "f_range_on A f"
assumes "decisive_on A f"
assumes "iia_on A f"
assumes "expansion_on A f"
shows "rationalizable_binary_on A f"
proof %invisible (rule rationalizable_binary_onI[OF assms(1)])
fix B x y
assume "B ⊆ A" "y ∈ f B" "x ∈ B" "y ∈ B" with ‹iia_on A f› show "y ∈ f {x, y}"
unfolding iia_on_def by fastforce
next
fix B y
assume XXX: "y ∈ B" and YYY: "∀x∈B. y ∈ f {x, y}" "B ⊆ A"
have "y ∈ f (insert y C)" if "C ⊆ B" for C
using finite[of C] that XXX YYY
proof induct
case empty with ‹decisive_on A f› show ?case
unfolding decisive_on_def by force
next
case (insert b C) with ‹expansion_on A f› show ?case
by (force dest!: expansion_onD[where C="{b, y}" and B="insert y C"] simp: insert_commute)
qed
note this[OF subset_refl]
with XXX show "y ∈ f B" by (simp add: insert_absorb)
qed
text‹
That settles the issue of existence, but it is not clear that the
relation is really ``rational'' (for instance, @{term "rwp_on A f"}
need not be transitive). Therefore the analysis continues by further
constraining the choice function so that it is rationalized by
familiar ordering relations.
For instance, the following shows that the @{emph ‹axioms of revealed
preference›} are rationalized by total preorders \<^citep>‹‹Definitions~8
and~13› in "Sen:1971"›\footnote{For \<^citet>‹‹p9› in "Sen:1970"›, an ordering is
complete (total), reflexive, and transitive. Alternative names are:
complete pre-ordering, complete quasi-ordering, and weak
ordering.}. These are alo equivalent to some congruence axioms due to
Samuelson \<^citep>‹"Border:2012"›.
We define @{term "x"} to be @{emph ‹strictly revealed-preferred to›}
@{term "y"} if there is a situation where both are on offer and only
@{term "y"} is chosen:
›
definition rsp_on :: "'a set ⇒ 'a cfun ⇒ 'a rel" where
"rsp_on A f = {(x, y). ∃B⊆A. x ∈ Rf f B ∧ y ∈ f B}"
abbreviation rsp :: "'a cfun ⇒ 'a rel" where
"rsp ≡ rsp_on UNIV"
text‹
This relation is typically denoted by @{term "P"}, for strict
preference. The not-worse-than relation @{term "R"} is recovered by:
›
definition rspR_on :: "'a set ⇒ 'a cfun ⇒ 'a rel" where
"rspR_on A f = {(x, y). {x, y} ⊆ A ∧ (y, x) ∉ rsp_on A f}"
abbreviation rspR :: "'a cfun ⇒ 'a rel" where
"rspR ≡ rspR_on UNIV"
lemma %invisible rsp_on_range:
assumes "f_range_on A f"
shows "rsp_on A f ⊆ A × A"
using assms unfolding rsp_on_def f_range_on_def by blast
text‹
\<^citet>‹‹p309› in "Sen:1971"› defines the @{emph ‹weak axiom of revealed
preference›} (WARP) as follows:
›
definition warp_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"warp_on A f ⟷ (∀(x, y)∈rsp_on A f. (y, x) ∉ rwp_on A f)"
abbreviation warp :: "'a cfun ⇒ bool" where
"warp ≡ warp_on UNIV"
text‹
The @{emph ‹strong axiom of revealed preference›} (SARP) is essentially
the transitive closure of @{const "warp"} \<^citep>‹‹p309› in "Sen:1971"›:
›
definition sarp_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"sarp_on A f ⟷ (∀(x, y)∈(rsp_on A f)⇧+. (y, x) ∉ rwp_on A f)"
abbreviation sarp :: "'a cfun ⇒ bool" where
"sarp ≡ sarp_on UNIV"
lemma %invisible sarp_onI:
assumes "⋀x y. (x, y) ∈ (rsp_on A f)⇧+ ⟹ (y, x) ∉ rwp_on A f"
shows "sarp_on A f"
using assms unfolding sarp_on_def by blast
lemma sarp_on_warp_on:
assumes "sarp_on A f"
shows "warp_on A f"
using %invisible assms unfolding sarp_on_def warp_on_def rwp_on_def rsp_on_def by blast
lemma rsp_on_irrefl:
"A ≠ {} ⟹ irrefl (rsp_on A f)"
unfolding %invisible rsp_on_def irrefl_def by fastforce
text‹
For decisive choice functions, @{const "warp"} implies @{const
"sarp"}. We show this following \<^citet>‹"Sen:1971"›, via the @{emph ‹weak
congruence axiom›} (WCA): if @{term "f"} chooses @{term "x"} from some
set @{term "B"} and @{term "y"} is revealed to be weakly preferred,
then @{term "f"} must choose @{term "y"} from @{term "B"} as well.
›
definition wca_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"wca_on A f ⟷ (∀(x, y)∈rwp_on A f. ∀B⊆A. x ∈ f B ∧ y ∈ B ⟶ y ∈ f B)"
abbreviation wca :: "'a cfun ⇒ bool" where
"wca ≡ wca_on UNIV"
lemma %invisible wca_onI:
assumes "⋀B x y. ⟦ B ⊆ A; (x, y) ∈ rwp_on A f; x ∈ f B; y ∈ B ⟧ ⟹ y ∈ f B"
shows "wca_on A f"
unfolding wca_on_def using assms by blast
text‹
Decisive choice functions that satisfy @{const "wca"} are rationalized
by total preorders, in particular @{const "rwp"}, and the converse
obtains if they are normal.
›
lemma wca_on_V_axiom_on:
assumes "wca_on A f"
assumes "f_range_on A f"
assumes "decisive_on A f"
shows "V_axiom_on A f"
using %invisible assms unfolding V_axiom_on_def wca_on_def rwp_on_def
by clarsimp (metis (mono_tags) ex_in_conv f_range_onD'[where A=A and f=f] decisive_onD[where A=A and f=f])
lemma wca_on_total_on:
assumes "wca_on A f"
assumes "f_range_on A f"
assumes "decisive_on A f"
shows "total_on A (rwp_on A f)"
proof %invisible(rule total_onI)
fix x y
assume "x ∈ A" "y ∈ A" "x ≠ y"
with assms show "(x, y) ∈ rwp_on A f ∨ (y, x) ∈ rwp_on A f"
unfolding wca_on_def decisive_on_def rwp_on_def total_on_def f_range_on_def
by (fast dest: spec[where x="{x,y}"] intro: exI[where x="{x,y}"])
qed
lemma rwp_on_trans:
assumes "wca_on A f"
assumes "f_range_on A f"
assumes "decisive_on A f"
shows "trans (rwp_on A f)"
proof %invisible (rule transI)
fix x y z assume "(x, y) ∈ rwp_on A f" "(y, z) ∈ rwp_on A f"
then obtain B C where "B ∪ C ⊆ A" "x ∈ B" "y ∈ f B" "y ∈ C" "z ∈ f C"
unfolding rwp_on_def by blast
from ‹x ∈ B› have "x ∈ B ∪ C" by blast
moreover
have "z ∈ f (B ∪ C)"
proof(cases "y ∈ f (B ∪ C)")
case True
with ‹wca_on A f› ‹f_range_on A f› ‹y ∈ C› ‹z ∈ f C› ‹B ∪ C ⊆ A›
show ?thesis
unfolding wca_on_def rwp_on_def
by simp (meson ‹B ∪ C ⊆ A› f_range_onD' inf_sup_ord(4) subsetCE)
next
case False
with assms ‹B ∪ C ⊆ A› ‹y ∈ f B› ‹z ∈ f C›
obtain w where "w ∈ f (B ∪ C) ∧ w ∈ C"
unfolding wca_on_def decisive_on_def rwp_on_def
by (clarsimp simp: ex_in_conv[symmetric] dest!: spec[where x="B ∪ C"])
(metis Un_iff ‹B ∪ C ⊆ A› f_range_onD')
with ‹wca_on A f› ‹f_range_on A f› ‹B ∪ C ⊆ A› ‹z ∈ f C› show ?thesis
unfolding wca_on_def rwp_on_def
by simp (meson ‹B ∪ C ⊆ A› f_range_onD' inf_sup_ord(4) subsetCE)
qed
moreover note ‹B ∪ C ⊆ A›
ultimately show "(x, z) ∈ rwp_on A f" unfolding rwp_on_def by blast
qed
lemma wca_on_V_axiom_on_preorder_on:
assumes "f_range_on A f"
assumes "decisive_on A f"
shows "wca_on A f ⟷ V_axiom_on A f ∧ preorder_on A (rwp_on A f) ∧ total_on A (rwp_on A f)"
(is "?lhs ⟷ ?rhs")
proof(rule iffI)
assume ?lhs with rwp_on_refl_on rwp_on_trans wca_on_V_axiom_on wca_on_total_on assms show ?rhs
unfolding preorder_on_def by blast
next
assume rhs: ?rhs
show ?lhs
proof(rule wca_onI)
fix B x y assume "B ⊆ A" "(x, y) ∈ rwp_on A f" "x ∈ f B" "y ∈ B"
from ‹B ⊆ A› ‹x ∈ f B› have "∀z∈B. (z, x) ∈ rwp_on A f"
unfolding rwp_on_def by blast
with rhs ‹(x, y) ∈ rwp_on A f› have "∀z∈B. (z, y) ∈ rwp_on A f"
unfolding preorder_on_def by (blast elim: transE)
with rhs ‹B ⊆ A› ‹y ∈ B› show "y ∈ f B"
unfolding V_axiom_on_def by blast
qed
qed
text‹›
lemma wca_on_rwp_on_rspR_on:
assumes "wca_on A f"
assumes "f_range_on A f"
assumes "decisive_on A f"
shows "rwp_on A f = rspR_on A f"
(is "?lhs = ?rhs")
proof(rule set_elem_equalityI)
fix x assume "x ∈ ?lhs"
with ‹wca_on A f› rwp_on_refl_on[OF assms(2,3)] show "x ∈ ?rhs"
unfolding wca_on_def rsp_on_def rspR_on_def by (force dest: refl_onD1 refl_onD2)
next
fix x assume "x ∈ ?rhs"
with assms show "x ∈ ?lhs"
unfolding wca_on_def rsp_on_def rspR_on_def rwp_on_def decisive_on_def
by (auto 3 0 simp: split_def
intro!: exI[where x="{fst x, snd x}"]
dest!: spec[where x="{fst x, snd x}"]
dest: f_range_onD')
qed
text‹›
lemma rwp_on_rspR_on_wca_on:
assumes "rwp_on A f = rspR_on A f"
shows "wca_on A f"
using %invisible assms unfolding wca_on_def rsp_on_def rspR_on_def by blast
lemma wca_on_warp_on:
shows "wca_on A f ⟷ warp_on A f"
unfolding %invisible warp_on_def wca_on_def rsp_on_def rwp_on_def by blast
lemma warp_on_sarp_on:
assumes "warp_on A f"
assumes "f_range_on A f"
assumes "decisive_on A f"
shows "sarp_on A f"
proof(rule sarp_onI)
from ‹warp_on A f› have "wca_on A f" unfolding wca_on_warp_on .
then have XXX: "rwp_on A f = rspR_on A f"
and YYY: "preorder_on A (rspR_on A f)"
and ZZZ: "total_on A (rspR_on A f)"
using %invisible wca_on_rwp_on_rspR_on[OF _ assms(2,3)] wca_on_V_axiom_on_preorder_on[OF assms(2,3)] wca_on_total_on[OF _ assms(2,3)] by fastforce+
fix a b assume "(a, b) ∈ (rsp_on A f)⇧+"
then have "{a, b} ⊆ A" and "(b, a) ∉ rspR_on A f"
proof(induct a b)
case (r_into_trancl a b)
{ case 1 from r_into_trancl rsp_on_range[OF assms(2)] show ?case by blast }
{ case 2 from r_into_trancl show ?case by (simp add: rspR_on_def) }
next
case (trancl_into_trancl a b c)
{ case 1 from trancl_into_trancl rsp_on_range[OF assms(2)] show ?case by blast }
{ case 2 from trancl_into_trancl rsp_on_range[OF assms(2)] YYY ZZZ show ?case
unfolding total_on_def preorder_on_def
by clarsimp (metis (no_types, lifting) case_prodD mem_Collect_eq rspR_on_def transD) }
qed
with XXX show "(b, a) ∉ rwp_on A f" by simp
qed
text‹
The @{const "decisive"} constraint here is necessary: consider a
Condorcet cycle over @{term "{x, y, z}"}: forcing @{term "f {x, y,
z}"} to be non-empty resolves this.
\<^citet>‹"Sen:1971"› proves that these and other conditions on choice
functions are equivalent (under the @{const "decisive"} hypothesis).
›
subsubsection‹ The @{emph ‹strong axiom of revealed preference›} ala \<^citet>‹"AygunSonmez:2012-WP2"› ›
text‹
\<^citet>‹‹\S6› in "AygunSonmez:2012-WP2"› adopt a different definition for a
@{emph ‹strong axiom of revealed preference›} and show that it holds for
all choice functions that satisfy @{const "iia"} and @{const
"consistency"}.
›
abbreviation nth_mod :: "'a list ⇒ nat ⇒ 'a" (infixl ‹!%› 100) where
"xs !% i ≡ xs ! (i mod length xs)"
definition mwc_sarp :: "'a cfun ⇒ bool" where
"mwc_sarp f ⟷
¬(∃Xs. length Xs > 1 ∧ distinct (map f Xs) ∧ (∀i. f (Xs!%i) ⊂ Xs!%i ∩ Xs!%(i+1)))"
lemma %invisible mwc_sarpI:
assumes "⋀Xs. ⟦length Xs > 1; distinct (map f Xs); ∀i. f (Xs!%i) ⊂ Xs!%i ∩ Xs!%(i+1)⟧ ⟹ False"
shows "mwc_sarp f"
unfolding mwc_sarp_def using assms by blast
lemma iia_consistency_mwc_sarp:
assumes "f_range f"
assumes "iia f"
assumes "consistency f"
shows "mwc_sarp f"
proof(rule mwc_sarpI)
fix Xs
assume LLL: "length Xs > 1"
and EEE: "distinct (map f Xs)"
and AAA: "∀i. f (Xs!%i) ⊂ Xs!%i ∩ Xs!%(i+1)"
have 6: "f (⋃(set Xs)) ⊆ (⋂X∈set Xs. f X)"
proof -
have 4: "x ∉ f (⋃(set Xs))" if "x ∈ ⋃(set Xs) - (⋃X∈set Xs. f X)" for x
using that ‹iia f› unfolding iia_on_def by simp blast
have 5: "x ∉ f (⋃(set Xs))" if "x ∈ (⋃X∈set Xs. f X) - (⋂X∈set Xs. f X)" for x
proof -
from that obtain j k where "x ∈ f (Xs ! j)" "x ∉ f (Xs ! k)" "j < length Xs" "k < length Xs"
by (clarsimp simp: in_set_conv_nth)
with AAA LLL ex_least_nat_le[where n="k + length Xs - j" and P="λi. x ∉ f (Xs !% (i + j))"]
obtain i where "x ∈ f (Xs !% i) - f (Xs !% (i+1))"
by %invisible auto (metis One_nat_def add_eq_if diff_diff_cancel diff_is_0_eq' lessI mod_less nat_le_linear zero_less_diff)
with AAA have "x ∈ Rf f (Xs!%(i+1))" by auto
with LLL show "x ∉ f (⋃(set Xs))"
using ‹iia f› unfolding iia_on_def by clarsimp (meson Suc_lessD Sup_upper mod_less_divisor nth_mem)
qed
from 4 5 have "x ∉ f (⋃(set Xs))" if "x ∈ (⋃(set Xs)) - (⋂X∈set Xs. f X)" for x
using that by blast
with ‹f_range f› show ?thesis by (blast dest: f_range_onD)
qed
moreover have "∀i. (⋂X∈set Xs. f X) ⊂ f (Xs!%i)"
proof -
from ‹f_range f› LLL have "⋂(f ` set Xs) ⊆ Xs ! 1"
using nth_mem f_range_onD by fastforce
with ‹consistency f› LLL 6 have f4: "f (⋃(set Xs)) = f (Xs ! 1)"
by - (rule consistencyD[where f=f], force+)
with ‹f_range f› LLL 6 have "f (Xs ! 1) ⊆ Xs ! 0"
using f_range_onD by (metis INT_lower One_nat_def Suc_lessD subset_trans nth_mem top.extremum)
with ‹consistency f› EEE LLL f4 show ?thesis
by (metis One_nat_def Suc_lessD Sup_upper consistencyD length_map nth_eq_iff_index_eq nth_map nth_mem zero_neq_one)
qed
moreover have "∀i. f (Xs!%i) = f (⋃(set Xs))"
proof -
from AAA have "∀i. f (Xs!%i) ⊆ Xs!%i" by auto
moreover from LLL have "∀i. Xs!%i ⊆ ⋃(set Xs)"
by (metis One_nat_def Suc_lessD Sup_upper mod_less_divisor nth_mem)
moreover note 6 ‹∀i. (⋂X∈set Xs. f X) ⊂ f (Xs !% i)›
ultimately show "∀i. f (Xs!%i) = f (⋃(set Xs))"
by - (clarsimp; rule consistencyD[OF ‹consistency f›, symmetric]; meson dual_order.trans psubsetE)
qed
ultimately show False by force
qed
subsection‹ Choice functions arising from linear orders \label{sec:cf-linear} ›
text‹
An obvious way to construct a choice function is to derive one from a
linear order, i.e., a list of strict preferences. We allow such
rankings to omit some alternatives, which means the resulting function
is not decisive.
We work with a finite universe here.
›
locale linear_cf =
fixes r :: "'a::finite rel"
fixes linear_cf :: "'a cfun"
assumes r_linear: "Linear_order r"
assumes linear_cf_def: "linear_cf X ≡ set_option (MaxR.MaxR_opt r X)"
begin
interpretation MaxR: MaxR r by unfold_locales (rule r_linear)
lemmas maxR_code = MaxR.maxR_def
lemmas MaxR_f_code = MaxR.MaxR_f_def
lemma code:
shows "linear_cf (set X) = set_option (fold MaxR.MaxR_f X None)"
unfolding linear_cf_def using MaxR.MaxR_opt_code by simp
lemma simps [nitpick_simp]:
shows "linear_cf {} = {}"
"linear_cf (insert x X) = (if x ∈ Field r then if linear_cf X = {} then {x} else {MaxR.maxR x y |y. y ∈ linear_cf X} else linear_cf X)"
unfolding linear_cf_def by (simp_all add: MaxR.insert split: option.splits)
lemma range:
shows "linear_cf X ⊆ X ∩ Field r"
unfolding %invisible linear_cf_def using MaxR.range[of X] finite[of X] by fastforce
lemmas range' = rev_subsetD[OF _ range, of x] for x
lemma singleton:
shows "x ∈ linear_cf X ⟷ linear_cf X = {x}"
unfolding %invisible linear_cf_def by fastforce
lemma subset:
assumes "linear_cf Y ⊆ X"
assumes "X ⊆ Y"
shows "linear_cf Y = linear_cf X"
using %invisible assms MaxR.subset unfolding linear_cf_def by simp
lemma union:
shows "linear_cf (X ∪ Y) = (if linear_cf X = {} then linear_cf Y else if linear_cf Y = {} then linear_cf X else {MaxR.maxR x y |x y. x ∈ linear_cf X ∧ y ∈ linear_cf Y})"
unfolding %invisible linear_cf_def by (auto simp: MaxR.union)
lemma mono:
assumes "x ∈ linear_cf X"
shows "∃y ∈ linear_cf (X ∪ Y). (x, y) ∈ r"
using %invisible MaxR.mono assms unfolding linear_cf_def by (metis elem_set)
lemmas greatest = MaxR.greatest[folded linear_cf_def]
lemma preferred:
assumes "(x, y) ∈ r"
assumes "x ∈ linear_cf X"
assumes "y ∈ X"
shows "y = x"
using %invisible assms FieldI2 MaxR.MaxR_opt_is_greatest MaxR.maxR_absorb1 maxR_code unfolding linear_cf_def by fastforce
lemma card_le:
shows "card (linear_cf X) ≤ 1"
unfolding %invisible linear_cf_def by (cases "MaxR.MaxR_opt X") simp_all
lemma card:
shows "card (linear_cf X) = (if X ∩ Field r = {} then 0 else 1)"
unfolding %invisible linear_cf_def by (cases "MaxR.MaxR_opt X") (auto dest: MaxR.range_None MaxR.range_Some)
lemma f_range:
shows "f_range_on X linear_cf"
unfolding %invisible f_range_on_def using range by blast
lemma domain:
shows "linear_cf (X ∩ Field r) = linear_cf X"
by %invisible (metis inf.cobounded1 range subset)
lemma decisive_on:
shows "decisive_on (Field r) linear_cf"
unfolding %invisible decisive_on_def linear_cf_def
by (metis Int_absorb2 empty_subsetI MaxR.range_None MaxR.empty MaxR.subset)
lemma resolute_on:
shows "resolute_on (Field r) linear_cf"
unfolding %invisible resolute_on_def linear_cf_def using mk_disjoint_insert by (force simp: MaxR.insert)
lemma Rf_mono_on:
shows "mono_on X (Rf linear_cf)"
by %invisible (rule mono_onI) (clarsimp; metis contra_subsetD empty_subsetI insert_subset singleton subset)
lemmas iia = iffD1[OF Rf_mono_on_iia_on Rf_mono_on]
lemma Chernoff:
shows "Chernoff_on X linear_cf"
using %invisible Rf_mono_on range Rf_mono_on_iia_on[of X linear_cf, symmetric] Chernoff_on_iia_on by blast
lemma irc:
shows "irc_on X linear_cf"
unfolding %invisible irc_on_def linear_cf_def
by (clarsimp simp: MaxR.insert dest!: MaxR.maxR_rangeD split: option.splits)
lemma consistency:
shows "consistency_on X linear_cf"
using %invisible irc by (rule irc_on_consistency_on) simp
lemma lad:
shows "lad_on X linear_cf"
unfolding %invisible lad_on_def by (cases "X ∩ Field r = {}") (auto simp: card)
end
subsection‹ Plott's @{emph ‹path independence›} condition \label{sec:cf-path-independence}›
text‹
As recognised by \<^citet>‹‹\S4› in "Fleiner:2002"› and
\<^citet>‹"ChambersYenmez:2013"› in the context of matching with contracts,
the @{const "irc"} and @{const "substitutes"} conditions together are
equivalent to @{emph ‹path independence›}, a condition introduced to the
social choice setting by
\<^citet>‹"Plott:1973"›. \<^citet>‹‹Lemma~6› in "Moulin:1985"› ascribes this
equivalence result to \<^citet>‹"AizermanMalishevski:1981"›.
›
definition path_independent_on :: "'a set ⇒ 'a cfun ⇒ bool" where
"path_independent_on A f ⟷ (∀B C. B ⊆ A ∧ C ⊆ A ⟶ f (B ∪ C) = f (B ∪ f C))"
abbreviation path_independent :: "'a cfun ⇒ bool" where
"path_independent ≡ path_independent_on UNIV"
lemmas path_independent_onI = iffD2[OF path_independent_on_def, rule_format]
lemmas path_independent_onD = iffD1[OF path_independent_on_def, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas path_independent_def = path_independent_on_def[where A=UNIV, simplified]
text‹
Intuitively a choice function satisfying this condition ignores the
order in which choices are made in the following sense:
›
lemma path_independent_on_symmetric:
assumes "f_range_on A f"
shows "path_independent_on A f ⟷ (∀B C. B ⊆ A ∧ C ⊆ A ⟶ f (B ∪ C) = f (f B ∪ f C))"
using %invisible assms unfolding path_independent_on_def f_range_on_def
by - (rule iffI, metis subset_trans Un_commute, metis (full_types) Un_subset_iff empty_subsetI sup.orderE Un_commute)
lemmas %invisible path_independent_on_symmetricI = iffD2[OF path_independent_on_symmetric, rule_format, unfolded conj_imp_eq_imp_imp]
lemmas %invisible path_independent_on_symmetricD = iffD1[OF path_independent_on_symmetric, rule_format, unfolded conj_imp_eq_imp_imp]
lemma path_independent_on_Chernoff_on:
assumes "path_independent_on A f"
assumes "f_range_on A f"
shows "Chernoff_on A f"
proof %invisible (rule Chernoff_onI[OF subsetI])
fix B C x assume XXX: "B ⊆ A" "C ⊆ B" "x ∈ f B ∩ C"
from ‹f_range_on A f› XXX have "f C ⊆ B" by - (erule subset_trans[OF f_range_onD], simp_all)
with ‹f_range_on A f› XXX have YYY: "f (B - C ∪ f C) ⊆ B - C ∪ f C" by (fastforce elim!: f_range_onD)
from XXX YYY path_independent_onD[OF ‹path_independent_on A f›, where B="B - C" and C="C"] ‹f_range_on A f›
show "x ∈ f C"
unfolding f_range_on_def by (auto simp: Un_absorb2)
qed
lemma path_independent_on_consistency_on:
assumes "path_independent_on A f"
shows "consistency_on A f"
using %invisible assms unfolding path_independent_on_def
by - (rule consistency_onI; metis Un_subset_iff le_iff_sup sup_commute)
lemma Chernoff_on_consistency_on_path_independent_on:
assumes "f_range_on A f"
shows "Chernoff_on A f ∧ consistency_on A f ⟷ path_independent_on A f"
(is "?lhs ⟷ ?rhs")
proof %invisible (rule iffI)
assume LHS: ?lhs show ?rhs
proof(rule path_independent_on_symmetricI[OF assms])
fix B C assume BC: "B ⊆ A" "C ⊆ A"
with LHS assms show "f (B ∪ C) = f (f B ∪ f C)"
by - (rule consistency_onD[where A=A and f=f, OF _ _ _ Chernoff_on_union[OF _ assms]];
blast dest: f_range_onD)
qed
next
assume ?rhs with assms path_independent_on_Chernoff_on path_independent_on_consistency_on
show ?lhs by blast
qed
lemmas path_independent_onI2 =
iffD1[OF Chernoff_on_consistency_on_path_independent_on, unfolded conj_imp_eq_imp_imp]
text‹›
lemma (in linear_cf) path_independent:
shows "path_independent linear_cf"
using %invisible f_range Chernoff consistency by (blast intro: path_independent_onI2)
subsubsection‹ Path independence and decomposition into orderings \label{sec:cf-path-independence-orderings} ›
text‹
We now show that a choice function over a finite universe satisfying
@{const "path_independent"} is characterized by taking the maximum
elements of some finite set of orderings.
\<^citet>‹‹Definition~12› in "Moulin:1985"› says that a choice function is
@{emph ‹pseudo-rationalized›} by the orderings @{term "Rs"} if @{term
"f"} chooses all of the @{term "greatest r"} elements of @{term "B"}
for each @{term "r ∈ Rs"}:
›
definition pseudo_rationalizable_on :: "'a::finite set ⇒ 'a rel set ⇒ 'a cfun ⇒ bool" where
"pseudo_rationalizable_on A Rs f
⟷ (∀r∈Rs. Linear_order r) ∧ (∀B⊆A. f B = (⋃r∈Rs. greatest r (B ∩ Field r)))"
lemma pseudo_rationalizable_on_def2:
"pseudo_rationalizable_on A Rs f
⟷ (∀r∈Rs. Linear_order r) ∧ (∀B⊆A. f B = (⋃r∈Rs. set_option (MaxR.MaxR_opt r B)))"
unfolding %invisible pseudo_rationalizable_on_def
by (metis (no_types, lifting) MaxR.greatest MaxR.intro SUP_cong)
lemmas %invisible pseudo_rationalizable_onI = iffD2[OF pseudo_rationalizable_on_def2, unfolded conj_imp_eq_imp_imp, rule_format]
text‹
We deviate from \citeauthor{Moulin:1985} in using non-total linear
orders, where his are total, asymmetric, and transitive; in other
words, strict total linear orders. This allows us to treat
non-decisive choice functions, and we later show that the choice
function is decisive iff the orders are total.
\<^citet>‹‹Theorem~5› in "Moulin:1985"› assumes @{const "Aizerman"} and @{const
"Chernoff"}, which are equivalent to @{const "path_independent"}.
›
lemma Aizerman_on_Chernoff_on_path_independent_on:
assumes "f_range_on A f"
shows "Aizerman_on A f ∧ Chernoff_on A f ⟷ path_independent_on A f"
using %invisible Chernoff_on_consistency_on_path_independent_on[OF assms] consistency_on_Aizerman_on Aizerman_on_idem_on_consistency_on iia_f_idem[OF assms] Chernoff_on_iia_on
by blast
text‹
It is straightforward to show that pseudo-rationalizable choice
functions satisfy @{const "path_independent"} using the properties of
@{const "MaxR.MaxR_opt"}:
›
lemma pseudo_rationalizable_on_path_independent_on:
assumes "pseudo_rationalizable_on A Rs f"
shows "path_independent_on A f"
proof %invisible (rule path_independent_onI2)
from assms show "f_range_on A f"
unfolding f_range_on_def pseudo_rationalizable_on_def2
using MaxR.range_Some[unfolded MaxR_def] by fastforce
from assms show "Chernoff_on A f"
unfolding pseudo_rationalizable_on_def2
by - (rule Chernoff_onI; clarsimp; metis MaxR.intro MaxR.subset empty_subsetI insert_subset option.simps(15))
from assms show "consistency_on A f"
unfolding pseudo_rationalizable_on_def2
by - (rule consistency_onI; simp; metis (no_types, lifting) MaxR.intro MaxR.subset SUP_cong SUP_le_iff)
qed
text‹
The converse requires that we construct a suitable set of orderings
that rationalize @{term "f C"} for each @{term "C ⊆ A"}. We
do this by finding a set @{term "B ⊆ A"} where @{term "f B
⊆ C"} by successively removing elements in @{term "f A - f
C"}. (As these elements are chosen by @{term "f"} from supersets of
@{term "B"}, we rank these above all of those in @{term "f B"}.) By
@{const "consistency"} (\S\ref{sec:cf-irc}), @{term "f C = f B"}. We
generate one order for each element of @{term "f C"}. Some extra care
takes care of @{const "decisive"} choice functions.
Termination is guaranteed by the finiteness of @{term "A"} and the
@{const "f_range_on"} hypothesis.
›
context
fixes A :: "'a::finite set"
fixes f :: "'a cfun"
notes conj_cong[fundef_cong]
begin
function (domintros) mk_linear_orders :: "'a set ⇒ 'a set ⇒ 'a list set" where
"mk_linear_orders C B =
(if f B = {} then {[]}
else if f B ⊆ C
then {b # cs |b cs. b ∈ f B ∧ cs ∈ mk_linear_orders {} (B - {b})}
else let b = SOME x. x ∈ f B - C in {b # cs |cs. cs ∈ mk_linear_orders C (B - {b})})"
by %invisible pat_completeness auto
context
assumes "f_range_on A f"
begin
private lemma mk_linear_orders_termination:
assumes "B ⊆ A"
shows "mk_linear_orders_dom (C, B)"
using ‹B ⊆ A›
proof(induct t ≡ "card B" arbitrary: B C)
case (0 B) with ‹f_range_on A f› show ?case
unfolding f_range_on_def by (auto intro: mk_linear_orders.domintros)
next
case (Suc i B)
have "mk_linear_orders_dom ({}, B - {b})" if "b ∈ f B" for b
using ‹f_range_on A f› Suc.hyps(2) Suc.prems Suc.hyps(1)[where B="B - {b}" and C="{}"] finite[of B] that
unfolding f_range_on_def by (metis Diff_subset card_Diff_singleton contra_subsetD diff_Suc_1 subset_trans)
moreover
have "mk_linear_orders_dom (C, B - {SOME x. x ∈ f B - C})" if "b ∈ f B" and "b ∉ C" for b
using ‹f_range_on A f› Suc.hyps(2) Suc.prems Suc.hyps(1)[where B="B - {SOME x. x ∈ f B - C}" and C="C"] that
by (clarsimp simp: card_Diff_singleton_if) (metis (mono_tags, lifting) contra_subsetD diff_Suc_1 f_range_onD someI subset_insertI2 subset_insert_iff)
ultimately show ?case by (auto intro: mk_linear_orders.domintros)
qed
private lemma mk_linear_orders_induct[consumes 2, case_names base step1 step2]:
assumes "r ∈ mk_linear_orders C B"
assumes "B ⊆ A"
assumes base: "⋀C B. ⟦B ⊆ A; f B = {}⟧ ⟹ P C B []"
assumes step1: "⋀C B b cs. ⟦B ⊆ A; cs ∈ mk_linear_orders {} (B - {b}); b ∈ f B; f B ⊆ C; P {} (B - {b}) cs⟧
⟹ P C B (b # cs)"
assumes step2: "⋀C B b cs. ⟦B ⊆ A; cs ∈ mk_linear_orders C (B - {SOME x. x ∈ f B - C}); b ∈ f B; b ∉ C; P C (B - {SOME x. x ∈ f B - C}) cs⟧
⟹ P C B ((SOME x. x ∈ f B - C) # cs)"
shows "P C B r"
using mk_linear_orders_termination[OF ‹B ⊆ A›, where C=C] assms(1,2)
proof(induct arbitrary: r rule: mk_linear_orders.pinduct)
case (1 C B r) then show ?case
by (fastforce simp: mk_linear_orders.psimps Let_def base split: if_splits
intro!: step1 step2[simplified] 1)
qed
lemma mk_linear_orders_non_empty:
assumes "B ⊆ A"
shows "∃r. r ∈ mk_linear_orders C B"
using %invisible assms
proof(induct t ≡ "card B" arbitrary: B C rule: nat_less_induct)
case (1 B C)
{ assume "f B ⊆ C" "f B ≠ {}"
with ‹f_range_on A f› 1 have "∃b. b ∈ f B ∧ (∃cs. cs ∈ local.mk_linear_orders {} (B - {b}))"
by safe (metis Diff_subset card_Diff1_less dual_order.trans finite f_range_onD') }
moreover
{ assume "¬ f B ⊆ C" "f B ≠ {}"
with ‹f_range_on A f› "1.prems" have "(SOME x. x ∈ f B - C) ∈ B ∧ B - {SOME a. a ∈ f B - C} ⊆ A"
using someI[where P="λx. x ∈ f B - C"] by (auto dest: f_range_onD')
with "1.hyps"[rule_format, where x="B - {SOME x. x ∈ f B - C}" and xa=C, OF _ refl]
have "∃cs. cs ∈ local.mk_linear_orders C (B - {SOME x. x ∈ f B ∧ x ∉ C})"
by clarsimp (metis card_gt_0_iff diff_Suc_less equals0D finite) }
ultimately show ?case
by (clarsimp simp: mk_linear_orders.psimps[OF mk_linear_orders_termination[OF ‹B ⊆A›]] Let_def)
qed
lemma mk_linear_orders_range:
assumes "r ∈ mk_linear_orders C B"
assumes "B ⊆ A"
shows "set r ⊆ B"
using %invisible assms
proof(induct rule: mk_linear_orders_induct)
case (base C B) with ‹f_range_on A f› show ?case by (simp add: f_range_on_def)
next
case (step1 C B b cs) with ‹f_range_on A f› show ?case by (auto dest: f_range_onD)
next
case (step2 C B b cs) with ‹f_range_on A f› show ?case
by clarsimp (metis (mono_tags, lifting) Diff_subset someI_ex subset_eq f_range_onD)
qed
lemma mk_linear_orders_nth:
assumes "r ∈ mk_linear_orders C B"
assumes "B ⊆ A"
assumes "i < length r"
shows "r ! i ∈ f (B - set (take i r))"
using %invisible assms
proof(induct arbitrary: i rule: mk_linear_orders_induct)
case (step1 C B b cs i) then show ?case
by (cases i) (simp_all add: Diff_insert2[symmetric])
next
case (step2 C B b cs i) then show ?case
by (cases i) (auto simp: Diff_insert2[symmetric] intro: someI2)
qed simp
lemma mk_linear_orders_distinct:
assumes "r ∈ mk_linear_orders C B"
assumes "B ⊆ A"
shows "distinct r"
using %invisible assms
proof(induct rule: mk_linear_orders_induct)
case (step1 C B b cs) then show ?case
by simp (metis Diff_eq_empty_iff Diff_subset Diff_subset_conv le_iff_sup mk_linear_orders_range subset_Diff_insert)
next
case (step2 C B b cs) then show ?case
by simp (meson Diff_subset order.trans mk_linear_orders_range subset_Diff_insert)
qed simp
lemma mk_linear_orders_Linear_order:
assumes "r ∈ mk_linear_orders C A"
shows "Linear_order (linord_of_list r)"
using %invisible mk_linear_orders_distinct[OF assms(1)] linord_of_list_Linear_order by fastforce
lemma mk_linear_orders_decisive_on_set_r:
assumes "r ∈ mk_linear_orders C B"
assumes "decisive_on A f"
assumes "B ⊆ A"
shows "set r = B"
using %invisible assms(1,3)
proof(induct rule: mk_linear_orders_induct)
case (base C B) with ‹decisive_on A f› show ?case by (auto dest: decisive_onD)
next
case (step1 C B b cs) with ‹f_range_on A f› show ?case by (auto dest: f_range_onD)
next
case (step2 C B b cs) with ‹f_range_on A f› show ?case
unfolding f_range_on_def
by clarsimp (metis (no_types, lifting) Un_iff insert_Diff insert_Diff_single someI subset_Un_eq)
qed
lemma mk_linear_orders_decisive_on_refl_on:
assumes "r ∈ mk_linear_orders C A"
assumes "decisive_on A f"
shows "refl_on A (linord_of_list r)"
using %invisible linord_of_list_refl_on mk_linear_orders_decisive_on_set_r[OF assms] by blast
lemma mk_linear_orders_decisive_on_total_on:
assumes "r ∈ mk_linear_orders C A"
assumes "decisive_on A f"
shows "total_on A (linord_of_list r)"
using %invisible linord_of_list_total_on mk_linear_orders_decisive_on_set_r[OF assms] by blast
lemma mk_linear_orders_set_r_decisive_on:
assumes "r ∈ mk_linear_orders C B"
assumes "B ⊆ A"
assumes "B ⊆ set r"
assumes "iia_on A f"
shows "decisive_on B f"
using %invisible assms(1-3)
proof(induct rule: mk_linear_orders_induct)
case (base C B) with decisive_on_empty[of f] show ?case by simp
next
case (step1 C B b cs)
with mk_linear_orders_range[OF step1.hyps(2)] have "set cs ⊆ B - {b}" "decisive_on (B - {b}) f"
by fastforce+
with step1 ‹iia_on A f› show ?case
by - (rule decisive_onI; metis (no_types, lifting) Diff_empty Diff_insert0 insert_Diff insert_not_empty subset_insert_iff decisive_onD iia_onD)
next
case (step2 C B b cs)
then have XXX: "decisive_on (B - {SOME x. x ∈ f B - C}) f" by force
show ?case
proof(rule decisive_onI)
fix D assume "D ⊆ B" "D ≠ {}"
with ‹iia_on A f› step2 XXX show "f D ≠ {}"
by (cases "(SOME x. x ∈ f B - C) ∈ D")
(simp_all, metis (no_types, lifting) emptyE iia_onD someI_ex, blast dest: decisive_onD)
qed
qed
lemma mk_linear_orders_total_on_decisive_on:
assumes "r ∈ mk_linear_orders C A"
assumes "A ⊆ set r"
assumes "iia_on A f"
shows "decisive_on A f"
using %invisible mk_linear_orders_set_r_decisive_on[OF assms(1) _ _ assms(3)] linord_of_list_Field[of r] ‹A ⊆ set r› by simp
lemma mk_linear_orders_MaxR_opt_f:
assumes "r ∈ mk_linear_orders C A"
assumes "MaxR.MaxR_opt (linord_of_list r) D = Some x"
assumes "iia_on A f"
assumes "D ⊆ A"
shows "x ∈ f D"
proof %invisible -
from linord_of_list_Linear_order[OF mk_linear_orders_distinct[OF assms(1) subset_refl]]
have "MaxR (linord_of_list r)" by (rule MaxR.intro) simp
with assms(2)
have "x ∈ greatest (linord_of_list r) (D ∩ Field (linord_of_list r))"
using MaxR.greatest elem_set by blast
then obtain i where "x = r ! i" and "i < length r" and "∀j<i. r ! j ∉ D"
unfolding greatest_def using mk_linear_orders_distinct[OF assms(1) subset_refl] linord_of_list_nth[where xs=r]
by atomize_elim (clarsimp simp: set_conv_nth; metis IntI less_trans not_le nth_mem set_conv_nth)
with ‹iia_on A f› ‹D ⊆ A› show ?thesis
using mk_linear_orders_nth[OF assms(1), where i=i]
iia_onD[of A f, where B="A - set (take i r)" and C=D and a=x]
MaxR.range_Some[rule_format, OF ‹MaxR (linord_of_list r)› assms(2)]
by (fastforce simp: nth_image[symmetric])
qed
lemma mk_linear_orders_f_MaxR_opt:
assumes "x ∈ f C"
assumes "consistency_on A f"
assumes "B ⊆ A"
assumes "C ⊆ B"
shows "∃r∈mk_linear_orders C B. MaxR.MaxR_opt (linord_of_list r) C = Some x"
using %invisible ‹B ⊆ A› ‹C ⊆ B›
proof(induct t ≡ "card B" arbitrary: B rule: nat_less_induct)
case (1 B) show ?case
proof(cases "f B = {}")
case True
with consistency_onD[OF assms(2), where B=B and C=C] "1.prems" ‹x ∈ f C›
show ?thesis by simp
next
case False show ?thesis
proof(cases "f B ⊆ C")
case True
from ‹B ⊆ A› obtain r where r: "r ∈ mk_linear_orders {} (B - {x})"
using mk_linear_orders_non_empty by (meson Diff_subset_conv le_supI2)
from True consistency_onD[OF assms(2), where B=B and C=C] "1.prems" ‹x ∈ f C›
have x: "x ∈ f B" by blast
from ‹f B ≠ {}› True ‹B ⊆ A› r x have XXX: "x # r ∈ mk_linear_orders C B"
using mk_linear_orders_termination[of B C]
by (simp add: mk_linear_orders.psimps card_eq_0_iff split: if_splits)
show ?thesis
proof(rule bexI[OF _ XXX])
from ‹f_range_on A f› True r x ‹B ⊆ A› ‹C ⊆ B› ‹x ∈ f C›
show "MaxR.MaxR_opt (linord_of_list (x # r)) C = Some x"
using linord_of_list_Linear_order[OF mk_linear_orders_distinct[OF XXX ‹B ⊆ A›]]
unfolding Option.elem_set[symmetric] by (auto simp: MaxR.greatest MaxR_def greatest_def linord_of_list_linord_of_listP dest: f_range_onD)
qed
next
case False
let ?b = "SOME x. x ∈ f B - C"
let ?B' = "B - {?b}"
from False ‹B ⊆ A› obtain a where "a ∈ f B - C" by blast
with ‹f_range_on A f› ‹B ⊆ A› have "card ?B' < card B"
unfolding f_range_on_def
by (clarsimp simp: card_Diff_singleton_if) (metis (no_types, lifting) One_nat_def card_Diff1_less card_Diff_singleton finite someI_ex subsetCE)
from ‹C ⊆ B› ‹a ∈ f B - C›
have "C ⊆ B - {SOME x. x ∈ f B - C}" by (metis Diff_empty Diff_iff someI subset_Diff_insert)
with 1(1)[rule_format, OF ‹card ?B' < card B› refl] ‹B ⊆ A›
obtain r where r: "r ∈ mk_linear_orders C ?B'" "MaxR.MaxR_opt (linord_of_list r) C = Some x" by blast
with ‹f B ≠ {}› False ‹B ⊆ A› have "?b # r ∈ mk_linear_orders C B"
using mk_linear_orders_termination[of B C]
by (simp add: mk_linear_orders.psimps Let_def card_eq_0_iff split: if_splits)
moreover
have "MaxR.MaxR_opt (linord_of_list (?b # r)) C = Some x"
proof(rule MaxR.greatest_is_MaxR_opt)
from linord_of_list_Linear_order[OF mk_linear_orders_distinct[OF ‹?b # r ∈ mk_linear_orders C B› ‹B ⊆ A›]]
show "MaxR (linord_of_list (?b # r))" by (simp add: MaxR.intro)
from ‹f_range_on A f› r ‹B ⊆ A›
show "x ∈ C ∩ Field (linord_of_list (?b # r))"
by clarsimp (metis (no_types, lifting) Choice_Functions.mk_linear_orders_Linear_order Diff_subset IntD2 Int_iff MaxR.intro MaxR.range_Some f_range_on_antimono linord_of_list_Field)
from ‹f_range_on A f› r ‹a ∈ f B - C› ‹B ⊆ A›
show "∀y∈C ∩ Field (linord_of_list (?b # r)). (y, x) ∈ linord_of_list (?b # r)"
using someI[where P="λx. x ∈ f B - C"]
by (auto simp: linord_of_list_linord_of_listP intro: MaxR.intro intro: f_range_on_antimono dest!: MaxR.MaxR_opt_is_greatest[rotated] Choice_Functions.mk_linear_orders_Linear_order[rotated])
qed
ultimately show ?thesis by blast
qed
qed
qed
end
end
lemma path_independent_on_pseudo_rationalizable_on:
fixes f :: "'a::finite cfun"
assumes "path_independent_on A f"
assumes "f_range_on A f"
assumes Rs_def[simp]: "Rs = (⋃C∈Pow A. linord_of_list ` mk_linear_orders f C A)"
shows "pseudo_rationalizable_on A Rs f ∧ (∀r∈Rs. refl_on A r ∧ total_on A r ⟷ decisive_on A f)"
proof %invisible -
have "pseudo_rationalizable_on A Rs f"
proof(rule pseudo_rationalizable_onI)
fix r assume "r ∈ Rs" then show "Linear_order r"
using mk_linear_orders_Linear_order[OF ‹f_range_on A f›] by clarsimp
next
fix B assume "B ⊆ A" show "f B = (⋃r∈Rs. set_option (MaxR.MaxR_opt r B))" (is "?lhs = ?rhs")
proof(rule set_elem_equalityI)
fix x assume "x ∈ ?lhs" with ‹B ⊆ A› show "x ∈ ?rhs"
using path_independent_on_consistency_on[OF assms(1)]
mk_linear_orders_f_MaxR_opt[OF ‹f_range_on A f›] by fastforce
next
fix x assume "x ∈ ?rhs" with ‹B ⊆ A› show "x ∈ ?lhs"
using path_independent_on_Chernoff_on[OF assms(1,2)] Chernoff_on_iia_on
mk_linear_orders_MaxR_opt_f[OF ‹f_range_on A f›] by simp blast
qed
qed
moreover
from path_independent_on_Chernoff_on[OF assms(1,2)] Chernoff_on_iia_on
have "iia_on A f" by blast
then have "∀r∈Rs. refl_on A r ∧ total_on A r ⟷ decisive_on A f"
using mk_linear_orders_total_on_decisive_on[OF assms(2)]
mk_linear_orders_decisive_on_refl_on[OF assms(2)]
mk_linear_orders_decisive_on_total_on[OF assms(2)]
by clarsimp (meson linord_of_list_refl_on refl_onD refl_onD1 subsetI)
ultimately show ?thesis by blast
qed
text‹
Our top-level theorem is essentially \<^citet>‹‹Theorem~5› in "Moulin:1985"›:
›
theorem pseudo_rationalizable:
assumes "f_range_on A f"
shows "path_independent_on A f
⟷ (∃Rs. pseudo_rationalizable_on A Rs f ∧ (∀r∈Rs. refl_on A r ∧ total_on A r ⟷ decisive_on A f))"
using %invisible pseudo_rationalizable_on_path_independent_on path_independent_on_pseudo_rationalizable_on[OF _ assms] by fastforce
end