Theory Given_Clause_Architectures

(*  Title:       Given Clause Prover Architectures
 *  Author:      Sophie Tourret <stourret at mpi-inf.mpg.de>, 2019-2020 *)

section ‹Given Clause Prover Architectures›

text ‹This section covers all the results presented in the section 4 of the report.
  This is where abstract architectures of provers are defined and proven
  dynamically refutationally complete.›

theory Given_Clause_Architectures
  imports
    Lambda_Free_RPOs.Lambda_Free_Util
    Labeled_Lifting_to_Non_Ground_Calculi
begin


subsection ‹Basis of the Given Clause Prover Architectures›

locale given_clause_basis = std?: labeled_lifting_intersection Bot_F Inf_F Bot_G Q
  entails_q Inf_G_q Red_I_q Red_F_q 𝒢_F_q 𝒢_I_q
  "{ιFL :: ('f × 'l) inference. Infer (map fst (prems_of ιFL)) (fst (concl_of ιFL))  Inf_F}"
  for
    Bot_F :: "'f set"
    and Inf_F :: "'f inference set"
    and Bot_G :: "'g set"
    and Q :: "'q set"
    and entails_q :: "'q  'g set  'g set  bool"
    and Inf_G_q :: 'q  'g inference set
    and Red_I_q :: "'q  'g set  'g inference set"
    and Red_F_q :: "'q  'g set  'g set"
    and 𝒢_F_q :: "'q  'f  'g set"
    and 𝒢_I_q :: "'q  'f inference  'g inference set option"
  + fixes
    Equiv_F :: "'f  'f  bool" (infix "" 50) and
    Prec_F :: "'f  'f  bool" (infix "≺⋅" 50) and
    Prec_L :: "'l  'l  bool" (infix "⊏L" 50) and
    active :: "'l"
  assumes
    equiv_equiv_F: "equivp (≐)" and
    wf_prec_F: "minimal_element (≺⋅) UNIV" and
    wf_prec_L: "minimal_element (⊏L) UNIV" and
    compat_equiv_prec: "C1  D1  C2  D2  C1 ≺⋅ C2  D1 ≺⋅ D2" and
    equiv_F_grounding: "q  Q  C1  C2  𝒢_F_q q C1  𝒢_F_q q C2" and
    prec_F_grounding: "q  Q  C2 ≺⋅ C1  𝒢_F_q q C1  𝒢_F_q q C2" and
    active_minimal: "l2  active  active ⊏L l2" and
    at_least_two_labels: "l2. active ⊏L l2" and
    static_ref_comp: "statically_complete_calculus Bot_F Inf_F (⊨∩𝒢)
      no_labels.Red_I_𝒢 no_labels.Red_F_𝒢_empty"
begin

abbreviation Inf_FL :: "('f × 'l) inference set" where
  "Inf_FL  {ιFL. Infer (map fst (prems_of ιFL)) (fst (concl_of ιFL))  Inf_F}"

abbreviation Prec_eq_F :: "'f  'f  bool" (infix "≼⋅" 50) where
  "C ≼⋅ D  C  D  C ≺⋅ D"

definition Prec_FL :: "('f × 'l)  ('f × 'l)  bool" (infix "" 50) where
  "Cl1  Cl2  fst Cl1 ≺⋅ fst Cl2  (fst Cl1  fst Cl2  snd Cl1 ⊏L snd Cl2)"

lemma irrefl_prec_F: "¬ C ≺⋅ C"
  by (simp add: minimal_element.po[OF wf_prec_F, unfolded po_on_def irreflp_on_def])

lemma trans_prec_F: "C1 ≺⋅ C2  C2 ≺⋅ C3  C1 ≺⋅ C3"
  by (auto intro: minimal_element.po[OF wf_prec_F, unfolded po_on_def transp_on_def, THEN conjunct2,
        simplified, rule_format])

lemma wf_prec_FL: "minimal_element (⊏) UNIV"
proof
  show "po_on (⊏) UNIV" unfolding po_on_def
  proof
    show "irreflp (⊏)" unfolding irreflp_on_def Prec_FL_def
    proof
      fix Cl
      assume a_in: "Cl  (UNIV::('f × 'l) set)"
      have "¬ (fst Cl ≺⋅ fst Cl)" using wf_prec_F minimal_element.min_elt_ex by force
      moreover have "¬ (snd Cl ⊏L snd Cl)" using wf_prec_L minimal_element.min_elt_ex by force
      ultimately show "¬ (fst Cl ≺⋅ fst Cl  fst Cl  fst Cl  snd Cl ⊏L snd Cl)" by blast
    qed
  next
    show "transp (⊏)" unfolding Prec_FL_def
    proof (rule transpI)
      fix Cl1 Cl2 Cl3
      assume trans_hyps:
        "(fst Cl1 ≺⋅ fst Cl2  fst Cl1  fst Cl2  snd Cl1 ⊏L snd Cl2)"
        "(fst Cl2 ≺⋅ fst Cl3  fst Cl2  fst Cl3  snd Cl2 ⊏L snd Cl3)"
      have "fst Cl1 ≺⋅ fst Cl2  fst Cl2  fst Cl3  fst Cl1 ≺⋅ fst Cl3"
        using compat_equiv_prec by (metis equiv_equiv_F equivp_def)
      moreover have "fst Cl1  fst Cl2  fst Cl2 ≺⋅ fst Cl3  fst Cl1 ≺⋅ fst Cl3"
        using compat_equiv_prec by (metis equiv_equiv_F equivp_def)
      moreover have "snd Cl1 ⊏L snd Cl2  snd Cl2 ⊏L snd Cl3  snd Cl1 ⊏L snd Cl3"
        using wf_prec_L unfolding minimal_element_def po_on_def transp_def by (meson UNIV_I)
      moreover have "fst Cl1  fst Cl2  fst Cl2  fst Cl3  fst Cl1  fst Cl3"
        using equiv_equiv_F by (meson equivp_transp)
      ultimately show "fst Cl1 ≺⋅ fst Cl3  fst Cl1  fst Cl3  snd Cl1 ⊏L snd Cl3"
        using trans_hyps trans_prec_F by blast
    qed
  qed
next
  show "wfp_on (⊏) UNIV" unfolding wfp_on_def
  proof
    assume contra: "f. i. f i  UNIV  f (Suc i)  f i"
    then obtain f where
      f_suc: "i. f (Suc i)  f i"
      by blast

    define R :: "(('f × 'l) × ('f × 'l)) set" where
      "R = {(Cl1, Cl2). fst Cl1 ≺⋅ fst Cl2}"
    define S :: "(('f × 'l) × ('f × 'l)) set" where
      "S = {(Cl1, Cl2). fst Cl1  fst Cl2  snd Cl1 ⊏L snd Cl2}"

    obtain k where
      f_chain: "i. (f (Suc (i + k)), f (i + k))  S"
    proof (atomize_elim, rule wf_infinite_down_chain_compatible[of R f S])
      show "wf R"
        unfolding R_def using wf_app[OF wf_prec_F[unfolded minimal_element_def, THEN conjunct2,
              unfolded wfp_on_UNIV wfP_def]]
        by force
    next
      show "i. (f (Suc i), f i)  R  S"
        using f_suc unfolding R_def S_def Prec_FL_def by blast
    next
      show "R O S  R"
        unfolding R_def S_def using compat_equiv_prec equiv_equiv_F equivp_reflp by fastforce
    qed

    define g where
      "i. g i = f (i + k)"

    have g_chain: "i. (g (Suc i), g i)  S"
      unfolding g_def using f_chain by simp
    have wf_s: "wf S"
      unfolding S_def
      by (rule wf_subset[OF wf_app[OF wf_prec_L[unfolded minimal_element_def, THEN conjunct2,
                unfolded wfp_on_UNIV wfP_def], of snd]])
        fast
    show False
      using g_chain[unfolded S_def]
        wf_s[unfolded S_def, folded wfP_def wfp_on_UNIV, unfolded wfp_on_def]
      by auto
  qed
qed

definition active_subset :: "('f × 'l) set  ('f × 'l) set" where
  "active_subset M = {CL  M. snd CL = active}"

definition passive_subset :: "('f × 'l) set  ('f × 'l) set" where
  "passive_subset M = {CL  M. snd CL  active}"

lemma active_subset_insert[simp]:
  "active_subset (insert Cl N) = (if snd Cl = active then {Cl} else {})  active_subset N"
  unfolding active_subset_def by auto

lemma active_subset_union[simp]: "active_subset (M  N) = active_subset M  active_subset N"
  unfolding active_subset_def by auto

lemma passive_subset_insert[simp]:
  "passive_subset (insert Cl N) = (if snd Cl  active then {Cl} else {})  passive_subset N"
  unfolding passive_subset_def by auto

lemma passive_subset_union[simp]: "passive_subset (M  N) = passive_subset M  passive_subset N"
  unfolding passive_subset_def by auto

sublocale std?: statically_complete_calculus Bot_FL Inf_FL "(⊨∩𝒢L)" Red_I Red_F
  using labeled_static_ref[OF static_ref_comp] .

lemma labeled_tiebreaker_lifting:
  assumes q_in: "q  Q"
  shows "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q)
    (Red_I_q q) (Red_F_q q) (𝒢_F_L_q q) (𝒢_I_L_q q) (λg. Prec_FL)"
proof -
  have "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q)
    (Red_I_q q) (Red_F_q q) (𝒢_F_L_q q) (𝒢_I_L_q q) (λg Cl Cl'. False)"
    using ord_fam_lifted_q[OF q_in] .
  then have "standard_lifting Inf_FL Bot_G (Inf_G_q q) (entails_q q) (Red_I_q q)
    (Red_F_q q) Bot_FL (𝒢_F_L_q q) (𝒢_I_L_q q)"
    using lifted_q[OF q_in] by blast
  then show "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q)
    (Red_I_q q) (Red_F_q q) (𝒢_F_L_q q) (𝒢_I_L_q q) (λg. Prec_FL)"
    using wf_prec_FL by (simp add: tiebreaker_lifting.intro tiebreaker_lifting_axioms.intro)
qed

sublocale lifting_intersection Inf_FL Bot_G Q Inf_G_q entails_q Red_I_q Red_F_q
  Bot_FL 𝒢_F_L_q 𝒢_I_L_q "λg. Prec_FL"
  using labeled_tiebreaker_lifting unfolding lifting_intersection_def
  by (simp add: lifting_intersection_axioms.intro
      no_labels.ground.consequence_relation_family_axioms
      no_labels.ground.inference_system_family_axioms)

notation derive (infix "⊳L" 50)

lemma std_Red_I_eq: "std.Red_I = Red_I_𝒢"
  unfolding Red_I_𝒢_q_def Red_I_𝒢_L_q_def by simp

lemma std_Red_F_eq: "std.Red_F = Red_F_𝒢_empty"
  unfolding Red_F_𝒢_empty_q_def Red_F_𝒢_empty_L_q_def by simp

sublocale statically_complete_calculus Bot_FL Inf_FL "(⊨∩𝒢L)" Red_I Red_F
  by unfold_locales (use statically_complete std_Red_I_eq in auto)

(* lem:redundant-labeled-inferences *)
lemma labeled_red_inf_eq_red_inf:
  assumes i_in: "ι  Inf_FL"
  shows "ι  Red_I N  to_F ι  no_labels.Red_I_𝒢 (fst ` N)"
proof
  assume i_in2: "ι  Red_I N"
  then have "X  Red_I_𝒢_q ` Q  ι  X N" for X
    unfolding Red_I_def by blast
  obtain X0 where "X0  Red_I_𝒢_q ` Q"
    using Q_nonempty by blast
  then obtain q0 where x0_is: "X0 N = Red_I_𝒢_q q0 N" by blast
  then obtain Y0 where y0_is: "Y0 (fst ` N) = to_F ` (X0 N)" by auto
  have "Y0 (fst ` N) = no_labels.Red_I_𝒢_q q0 (fst ` N)"
    unfolding  y0_is
  proof
    show "to_F ` X0 N  no_labels.Red_I_𝒢_q q0 (fst ` N)"
    proof
      fix ι0
      assume i0_in: "ι0  to_F ` X0 N"
      then have i0_in2: "ι0  to_F ` Red_I_𝒢_q q0 N"
        using x0_is by argo
      then obtain ι0_FL where i0_FL_in: "ι0_FL  Inf_FL" and i0_to_i0_FL: "ι0 = to_F ι0_FL" and
        subs1: "((𝒢_I_L_q q0 ι0_FL)  None 
            the (𝒢_I_L_q q0 ι0_FL)  Red_I_q q0 (𝒢_Fset_q q0 N))
             ((𝒢_I_L_q q0 ι0_FL = None) 
            𝒢_F_L_q q0 (concl_of ι0_FL)  𝒢_Fset_q q0 N  Red_F_q q0 (𝒢_Fset_q q0 N))"
        unfolding Red_I_𝒢_q_def by blast
      have concl_swap: "fst (concl_of ι0_FL) = concl_of ι0"
        unfolding concl_of_def i0_to_i0_FL to_F_def by simp
      have i0_in3: "ι0  Inf_F"
        using i0_to_i0_FL Inf_FL_to_Inf_F[OF i0_FL_in] unfolding to_F_def by blast
      {
        assume
          not_none: "𝒢_I_q q0 ι0  None" and
          "the (𝒢_I_q q0 ι0)  {}"
        then obtain ι1 where i1_in: "ι1  the (𝒢_I_q q0 ι0)" by blast
        have "the (𝒢_I_q q0 ι0)  Red_I_q q0 (no_labels.𝒢_Fset_q q0 (fst ` N))"
          using subs1 i0_to_i0_FL not_none by auto
      }
      moreover {
        assume
          is_none: "𝒢_I_q q0 ι0 = None"
        then have "𝒢_F_q q0 (concl_of ι0)  no_labels.𝒢_Fset_q q0 (fst ` N)
             Red_F_q q0 (no_labels.𝒢_Fset_q q0 (fst ` N))"
          using subs1 i0_to_i0_FL concl_swap by simp
      }
      ultimately show "ι0  no_labels.Red_I_𝒢_q q0 (fst ` N)"
        unfolding no_labels.Red_I_𝒢_q_def using i0_in3 by auto
    qed
  next
    show "no_labels.Red_I_𝒢_q q0 (fst ` N)  to_F ` X0 N"
    proof
      fix ι0
      assume i0_in: "ι0  no_labels.Red_I_𝒢_q q0 (fst ` N)"
      then have i0_in2: "ι0  Inf_F"
        unfolding no_labels.Red_I_𝒢_q_def by blast
      obtain ι0_FL where i0_FL_in: "ι0_FL  Inf_FL" and i0_to_i0_FL: "ι0 = to_F ι0_FL"
        using Inf_F_to_Inf_FL[OF i0_in2] unfolding to_F_def
        by (smt (verit) Ex_list_of_length fst_conv inference.exhaust_sel inference.sel(1)
            inference.sel(2) map_fst_zip)
      have concl_swap: "fst (concl_of ι0_FL) = concl_of ι0"
        unfolding concl_of_def i0_to_i0_FL to_F_def by simp
      have subs1: "((𝒢_I_L_q q0 ι0_FL)  None 
           the (𝒢_I_L_q q0 ι0_FL)  Red_I_q q0 (𝒢_Fset_q q0 N))
            ((𝒢_I_L_q q0 ι0_FL = None) 
           𝒢_F_L_q q0 (concl_of ι0_FL)  (𝒢_Fset_q q0 N  Red_F_q q0 (𝒢_Fset_q q0 N)))"
        using i0_in i0_to_i0_FL concl_swap unfolding no_labels.Red_I_𝒢_q_def by simp
      then have "ι0_FL  Red_I_𝒢_q q0 N"
        using i0_FL_in unfolding Red_I_𝒢_q_def by simp
      then show "ι0  to_F ` X0 N"
        using x0_is i0_to_i0_FL i0_in2 by blast
    qed
  qed
  then have "Y  no_labels.Red_I_𝒢_q ` Q  to_F ι  Y (fst ` N)" for Y
    using i_in2 no_labels.Red_I_def std_Red_I_eq red_inf_impl by force
  then show "to_F ι  no_labels.Red_I_𝒢 (fst ` N)"
    unfolding Red_I_def no_labels.Red_I_𝒢_def by blast
next
  assume to_F_in: "to_F ι  no_labels.Red_I_𝒢 (fst ` N)"
  have imp_to_F: "X  no_labels.Red_I_𝒢_q ` Q  to_F ι  X (fst ` N)" for X
    using to_F_in unfolding no_labels.Red_I_𝒢_def by blast
  then have to_F_in2: "to_F ι  no_labels.Red_I_𝒢_q q (fst ` N)" if "q  Q" for q
    using that by auto
  have "Red_I_𝒢_q q N = {ι0_FL  Inf_FL. to_F ι0_FL  no_labels.Red_I_𝒢_q q (fst ` N)}" for q
  proof
    show "Red_I_𝒢_q q N  {ι0_FL  Inf_FL. to_F ι0_FL  no_labels.Red_I_𝒢_q q (fst ` N)}"
    proof
      fix q0 ι1
      assume
        i1_in: "ι1  Red_I_𝒢_q q0 N"
      have i1_in2: "ι1  Inf_FL"
        using i1_in unfolding Red_I_𝒢_q_def by blast
      then have to_F_i1_in: "to_F ι1  Inf_F"
        using Inf_FL_to_Inf_F unfolding to_F_def by blast
      have concl_swap: "fst (concl_of ι1) = concl_of (to_F ι1)"
        unfolding concl_of_def to_F_def by simp
      then have i1_to_F_in: "to_F ι1  no_labels.Red_I_𝒢_q q0 (fst ` N)"
        using i1_in to_F_i1_in unfolding Red_I_𝒢_q_def no_labels.Red_I_𝒢_q_def by force
      show "ι1  {ι0_FL  Inf_FL. to_F ι0_FL  no_labels.Red_I_𝒢_q q0 (fst ` N)}"
        using i1_in2 i1_to_F_in by blast
    qed
  next
    show "{ι0_FL  Inf_FL. to_F ι0_FL  no_labels.Red_I_𝒢_q q (fst ` N)}  Red_I_𝒢_q q N"
    proof
      fix q0 ι1
      assume
        i1_in: "ι1  {ι0_FL  Inf_FL. to_F ι0_FL  no_labels.Red_I_𝒢_q q0 (fst ` N)}"
      then have i1_in2: "ι1  Inf_FL" by blast
      then have to_F_i1_in: "to_F ι1  Inf_F"
        using Inf_FL_to_Inf_F unfolding to_F_def by blast
      have concl_swap: "fst (concl_of ι1) = concl_of (to_F ι1)"
        unfolding concl_of_def to_F_def by simp
      then have "((𝒢_I_L_q q0 ι1)  None  the (𝒢_I_L_q q0 ι1)  Red_I_q q0 (𝒢_Fset_q q0 N))
         (𝒢_I_L_q q0 ι1 = None 
          𝒢_F_L_q q0 (concl_of ι1)  𝒢_Fset_q q0 N  Red_F_q q0 (𝒢_Fset_q q0 N))"
        using i1_in unfolding no_labels.Red_I_𝒢_q_def by auto
      then show "ι1  Red_I_𝒢_q q0 N"
        using i1_in2 unfolding Red_I_𝒢_q_def by blast
    qed
  qed
  then have "ι  Red_I_𝒢_q q N" if "q  Q" for q
    using that to_F_in2 i_in unfolding Red_I_𝒢_q_def no_labels.Red_I_𝒢_q_def by auto
  then show "ι  Red_I_𝒢 N"
    unfolding Red_I_𝒢_def by blast
qed

(* lem:redundant-labeled-formulas *)
lemma red_labeled_clauses:
  assumes C  no_labels.Red_F_𝒢_empty (fst ` N) 
    (C'  fst ` N. C' ≺⋅ C)  ((C', L')  N. L' ⊏L L  C' ≼⋅ C)
  shows (C, L)  Red_F N
proof -
  note assms
  moreover have i: C  no_labels.Red_F_𝒢_empty (fst ` N)  (C, L)  Red_F N
  proof -
    assume "C  no_labels.Red_F_𝒢_empty (fst ` N)"
    then have "C  no_labels.Red_F_𝒢_empty_q q (fst ` N)" if "q  Q" for q
      unfolding no_labels.Red_F_𝒢_empty_def using that by fast
    then have g_in_red: "𝒢_F_q q C  Red_F_q q (no_labels.𝒢_Fset_q q (fst ` N))" if "q  Q" for q
      unfolding no_labels.Red_F_𝒢_empty_q_def using that by blast
    have "𝒢_F_L_q q (C, L)  Red_F_q q (𝒢_Fset_q q N)" if "q  Q" for q
      using that g_in_red by simp
    then show ?thesis
      unfolding Red_F_def Red_F_𝒢_q_def by blast
  qed
  moreover have ii: C'  fst ` N. C' ≺⋅ C  (C, L)  Red_F N
  proof -
    assume "C'  fst ` N. C' ≺⋅ C"
    then obtain C' where c'_in: "C'  fst ` N" and c_prec_c': "C' ≺⋅ C" by blast
    obtain L' where c'_l'_in: "(C', L')  N" using c'_in by auto
    have c'_l'_prec: "(C', L')  (C, L)"
      using c_prec_c' unfolding Prec_FL_def by simp
    have c_in_c'_g: "𝒢_F_q q C  𝒢_F_q q C'" if "q  Q" for q
      using prec_F_grounding[OF that c_prec_c'] by presburger
    then have "𝒢_F_L_q q (C, L)  𝒢_F_L_q q (C', L')" if "q  Q" for q
      using that by auto
    then have "(C, L)  Red_F_𝒢_q q N" if "q  Q" for q
      unfolding Red_F_𝒢_q_def using that c'_l'_in c'_l'_prec by blast
    then show ?thesis
      unfolding Red_F_def by blast
  qed
  moreover have iii: (C', L')  N. L' ⊏L L  C' ≼⋅ C  (C, L)  Red_F N
  proof -
    assume "(C', L')  N. L' ⊏L L  C' ≼⋅ C"
    then obtain C' L' where c'_l'_in: "(C', L')  N" and l'_sub_l: "L' ⊏L L" and c'_sub_c: "C' ≼⋅ C"
      by fast
    have "(C, L)  Red_F N" if "C' ≺⋅ C"
      using that c'_l'_in ii by fastforce
    moreover {
      assume equiv_c_c': "C  C'"
      then have equiv_c'_c: "C'  C"
        using equiv_equiv_F by (simp add: equivp_symp)
      then have c'_l'_prec: "(C', L')  (C, L)"
        using l'_sub_l unfolding Prec_FL_def by simp
      have "𝒢_F_q q C = 𝒢_F_q q C'" if "q  Q" for q
        using that equiv_F_grounding equiv_c_c' equiv_c'_c by (simp add: set_eq_subset)
      then have "𝒢_F_L_q q (C, L) = 𝒢_F_L_q q (C', L')" if "q  Q" for q
        using that by auto
      then have "(C, L)  Red_F_𝒢_q q N" if "q  Q" for q
        unfolding Red_F_𝒢_q_def using that c'_l'_in c'_l'_prec by blast
      then have ?thesis
        unfolding Red_F_def by blast
    }
    ultimately show ?thesis
      using c'_sub_c equiv_equiv_F equivp_symp by fastforce
  qed
  ultimately show ?thesis
    by blast
qed

end
  
  
subsection ‹Given Clause Procedure›

locale given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q
  Red_F_q 𝒢_F_q 𝒢_I_q Equiv_F Prec_F Prec_L active
  for
    Bot_F :: "'f set" and
    Inf_F :: "'f inference set" and
    Bot_G :: "'g set" and
    Q :: "'q set" and
    entails_q :: "'q  'g set  'g set  bool" and
    Inf_G_q :: 'q  'g inference set and
    Red_I_q :: "'q  'g set  'g inference set" and
    Red_F_q :: "'q  'g set  'g set" and
    𝒢_F_q :: "'q  'f  'g set"  and
    𝒢_I_q :: "'q  'f inference  'g inference set option" and
    Equiv_F :: "'f  'f  bool" (infix "" 50) and
    Prec_F :: "'f  'f  bool" (infix "≺⋅" 50) and
    Prec_L :: "'l  'l  bool" (infix "⊏L" 50) and
    active :: 'l +
  assumes
    inf_have_prems: "ιF  Inf_F  prems_of ιF  []"
begin

lemma labeled_inf_have_prems: "ι  Inf_FL  prems_of ι  []"
  using inf_have_prems by fastforce

inductive step :: "('f × 'l) set  ('f × 'l) set  bool" (infix "↝GC" 50) where
  process: "N1 = N  M  N2 = N  M'  M  Red_F (N  M') 
    active_subset M' = {}  N1 ↝GC N2"
| infer: "N1 = N  {(C, L)}  N2 = N  {(C, active)}  M  L  active 
    active_subset M = {} 
    no_labels.Inf_between (fst ` active_subset N) {C}
     no_labels.Red_I (fst ` (N  {(C, active)}  M)) 
    N1 ↝GC N2"
  
lemma one_step_equiv: "N1 ↝GC N2  N1 ⊳L N2"
proof (cases N1 N2 rule: step.cases)
  show "N1 ↝GC N2  N1 ↝GC N2" by blast
next
  fix N M M'
  assume
    gc_step: "N1 ↝GC N2" and
    n1_is: "N1 = N  M" and
    n2_is: "N2 = N  M'" and
    m_red: "M  Red_F (N  M')" and
    active_empty: "active_subset M' = {}"
  have "N1 - N2  Red_F N2"
    using n1_is n2_is m_red by auto
  then show "N1 ⊳L N2"
    unfolding derive.simps by blast
next
  fix N C L M
  assume
    gc_step: "N1 ↝GC N2" and
    n1_is: "N1 = N  {(C, L)}" and
    not_active: "L  active" and
    n2_is: "N2 = N  {(C, active)}  M" and
    active_empty: "active_subset M = {}"
  have "(C, active)  N2" using n2_is by auto
  moreover have "C ≼⋅ C" using equiv_equiv_F by (metis equivp_def)
  moreover have "active ⊏L L" using active_minimal[OF not_active] .
  ultimately have "{(C, L)}  Red_F N2"
    using red_labeled_clauses by blast
  moreover have "N1 - N2 = {}  N1 - N2 = {(C, L)}" using n1_is n2_is by blast
  ultimately have "N1 - N2  Red_F N2"
    using std_Red_F_eq by blast
  then show "N1 ⊳L N2"
    unfolding derive.simps by blast
qed

(* lem:gc-derivations-are-red-derivations *)
lemma gc_to_red: "chain (↝GC) Ns  chain (⊳L) Ns"
  using one_step_equiv Lazy_List_Chain.chain_mono by blast

lemma (in-) all_ex_finite_set: "((j::nat){0..<m}. (n::nat). P j n) 
  (n1 n2. j{0..<m}. P j n1  P j n2  n1 = n2)  finite {n. j  {0..<m}. P j n}" for m P
proof -
  fix m::nat and P:: "nat  nat  bool"
  assume
    allj_exn: "j{0..<m}. n. P j n" and
    uniq_n: "n1 n2. j{0..<m}. P j n1  P j n2  n1 = n2"
  have "{n. j  {0..<m}. P j n} = (((λj. {n. P j n}) ` {0..<m}))" by blast
  then have imp_finite: "(j{0..<m}. finite {n. P j n})  finite {n. j  {0..<m}. P j n}"
    using finite_UN[of "{0..<m}" "λj. {n. P j n}"] by simp
  have "j{0..<m}. ∃!n. P j n" using allj_exn uniq_n by blast
  then have "j{0..<m}. finite {n. P j n}" by (metis bounded_nat_set_is_finite lessI mem_Collect_eq)
  then show "finite {n. j  {0..<m}. P j n}" using imp_finite by simp
qed

(* lem:fair-gc-derivations *)
lemma gc_fair:
  assumes
    deriv: "chain (↝GC) Ns" and
    init_state: "active_subset (lhd Ns) = {}" and
    final_state: "passive_subset (Liminf_llist Ns) = {}"
  shows "fair Ns"
  unfolding fair_def
proof
  fix ι
  assume i_in: "ι  Inf_from (Liminf_llist Ns)"
  note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]]
  have i_in_inf_fl: "ι  Inf_FL" using i_in unfolding Inf_from_def by blast
  have "Liminf_llist Ns = active_subset (Liminf_llist Ns)"
    using final_state unfolding passive_subset_def active_subset_def by blast
  then have i_in2: "ι  Inf_from (active_subset (Liminf_llist Ns))" using i_in by simp
  define m where "m = length (prems_of ι)"
  then have m_def_F: "m = length (prems_of (to_F ι))" unfolding to_F_def by simp
  have i_in_F: "to_F ι  Inf_F"
    using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast
  then have m_pos: "m > 0" using m_def_F using inf_have_prems by blast
  have exist_nj: "j  {0..<m}. (nj. enat (Suc nj) < llength Ns 
      prems_of ι ! j  active_subset (lnth Ns nj) 
      (k. k > nj  enat k < llength Ns  prems_of ι ! j  active_subset (lnth Ns k)))"
  proof clarify
    fix j
    assume j_in: "j  {0..<m}"
    then obtain C where c_is: "(C, active) = prems_of ι ! j"
      using i_in2 unfolding m_def Inf_from_def active_subset_def
      by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv)
    then have "(C, active)  Liminf_llist Ns"
      using j_in i_in unfolding m_def Inf_from_def by force
    then obtain nj where nj_is: "enat nj < llength Ns" and
      c_in2: "(C, active)   (lnth Ns ` {k. nj  k  enat k < llength Ns})"
      unfolding Liminf_llist_def using init_state by blast
    then have c_in3: "k. k  nj  enat k < llength Ns  (C, active)  lnth Ns k" by blast
    have nj_pos: "nj > 0" using init_state c_in2 nj_is
      unfolding active_subset_def lhd_is by force
    obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength Ns 
        (C, active)   (lnth Ns ` {k. nj  k  enat k < llength Ns}))" by blast
    then have in_allk: "k. k  nj_min  enat k < llength Ns  (C, active)  (lnth Ns k)"
      using c_in3 nj_is c_in2
      by (metis (mono_tags, lifting) INT_E LeastI_ex mem_Collect_eq)
    have njm_smaller_D: "enat nj_min < llength Ns"
      using nj_min_is
      by (smt LeastI_ex thesis. (nj. enat nj < llength Ns;
          (C, active)   (lnth Ns ` {k. nj  k  enat k < llength Ns})  thesis)  thesis)
    have "nj_min > 0"
      using nj_is c_in2 nj_pos nj_min_is lhd_is
      by (metis (mono_tags, lifting) Collect_empty_eq (C, active)  Liminf_llist Ns
          Liminf_llist Ns = active_subset (Liminf_llist Ns)
          knj_min. enat k < llength Ns  (C, active)  lnth Ns k active_subset_def init_state
          linorder_not_less mem_Collect_eq zero_enat_def chain_length_pos[OF deriv])
    then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto
    then have njm_prec_njm: "njm_prec < nj_min" by blast
    then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp
    have njm_prec_smaller_d: "njm_prec < llength Ns"
      by (rule less_trans[OF njm_prec_njm_enat njm_smaller_D])
    have njm_prec_all_suc: "k>njm_prec. enat k < llength Ns  (C, active)  lnth Ns k"
      using nj_prec_is in_allk by simp
    have notin_njm_prec: "(C, active)  lnth Ns njm_prec"
    proof (rule ccontr)
      assume "¬ (C, active)  lnth Ns njm_prec"
      then have absurd_hyp: "(C, active)  lnth Ns njm_prec" by simp
      have prec_smaller: "enat njm_prec < llength Ns" using nj_min_is nj_prec_is
        by (smt LeastI_ex Suc_leD thesis. (nj. enat nj < llength Ns;
            (C, active)   (lnth Ns ` {k. nj  k  enat k < llength Ns})  thesis)  thesis
            enat_ord_simps(1) le_eq_less_or_eq le_less_trans)
      have "(C, active)   (lnth Ns ` {k. njm_prec  k  enat k < llength Ns})"
      proof -
        {
          fix k
          assume k_in: "njm_prec  k  enat k < llength Ns"
          have "k = njm_prec  (C, active)  lnth Ns k" using absurd_hyp by simp
          moreover have "njm_prec < k  (C, active)  lnth Ns k"
            using nj_prec_is in_allk k_in by simp
          ultimately have "(C, active)  lnth Ns k" using k_in by fastforce
        }
        then show "(C, active)   (lnth Ns ` {k. njm_prec  k  enat k < llength Ns})" by blast
      qed
      then have "enat njm_prec < llength Ns 
          (C, active)   (lnth Ns ` {k. njm_prec  k  enat k < llength Ns})"
        using prec_smaller by blast
      then show False
        using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast
    qed
    then have notin_active_subs_njm_prec: "(C, active)  active_subset (lnth Ns njm_prec)"
      unfolding active_subset_def by blast
    then show "nj. enat (Suc nj) < llength Ns  prems_of ι ! j  active_subset (lnth Ns nj) 
        (k. k > nj  enat k < llength Ns  prems_of ι ! j  active_subset (lnth Ns k))"
      using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting)
          active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv)
  qed
  define nj_set where "nj_set = {nj. (j{0..<m}. enat (Suc nj) < llength Ns 
      prems_of ι ! j  active_subset (lnth Ns nj) 
      (k. k > nj  enat k < llength Ns  prems_of ι ! j  active_subset (lnth Ns k)))}"
  then have nj_not_empty: "nj_set  {}"
  proof -
    have zero_in: "0  {0..<m}" using m_pos by simp
    then obtain n0 where "enat (Suc n0) < llength Ns" and
      "prems_of ι ! 0  active_subset (lnth Ns n0)" and
      "k>n0. enat k < llength Ns  prems_of ι ! 0  active_subset (lnth Ns k)"
      using exist_nj by fast
    then have "n0  nj_set" unfolding nj_set_def using zero_in by blast
    then show "nj_set  {}" by auto
  qed
  have nj_finite: "finite nj_set"
    using all_ex_finite_set[OF exist_nj]
    by (metis (no_types, lifting) Suc_ile_eq dual_order.strict_implies_order
        linorder_neqE_nat nj_set_def)
      (* the n below in the n-1 from the pen-and-paper proof *)
  have "n  nj_set. nj  nj_set. nj  n"
    using nj_not_empty nj_finite using Max_ge Max_in by blast
  then obtain n where n_in: "n  nj_set" and n_bigger: "nj  nj_set. nj  n" by blast
  then obtain j0 where j0_in: "j0  {0..<m}" and suc_n_length: "enat (Suc n) < llength Ns" and
    j0_notin: "prems_of ι ! j0  active_subset (lnth Ns n)" and
    j0_allin: "(k. k > n  enat k < llength Ns  prems_of ι ! j0  active_subset (lnth Ns k))"
    unfolding nj_set_def by blast
  obtain C0 where C0_is: "prems_of ι ! j0 = (C0, active)" using j0_in
    using i_in2 unfolding m_def Inf_from_def active_subset_def
    by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv)
  then have C0_prems_i: "(C0, active)  set (prems_of ι)" using in_set_conv_nth j0_in m_def by force
  have C0_in: "(C0, active)  (lnth Ns (Suc n))"
    using C0_is j0_allin suc_n_length by (simp add: active_subset_def)
  have C0_notin: "(C0, active)  (lnth Ns n)" using C0_is j0_notin unfolding active_subset_def by simp
  have step_n: "lnth Ns n ↝GC lnth Ns (Suc n)"
    using deriv chain_lnth_rel n_in unfolding nj_set_def by blast
  have "N C L M. (lnth Ns n = N  {(C, L)} 
      lnth Ns (Suc n) = N  {(C, active)}  M  L  active  active_subset M = {} 
      no_labels.Inf_between (fst ` active_subset N) {C}
       no_labels.Red_I (fst ` (N  {(C, active)}  M)))"
  proof -
    have proc_or_infer: "(N1 N M N2 M'. lnth Ns n = N1  lnth Ns (Suc n) = N2  N1 = N  M 
         N2 = N  M'  M  Red_F (N  M')  active_subset M' = {}) 
       (N1 N C L N2 M. lnth Ns n = N1  lnth Ns (Suc n) = N2  N1 = N  {(C, L)} 
         N2 = N  {(C, active)}  M  L  active  active_subset M = {} 
         no_labels.Inf_between (fst ` active_subset N) {C} 
           no_labels.Red_I (fst ` (N  {(C, active)}  M)))"
      using step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n by blast
    show ?thesis
      using C0_in C0_notin proc_or_infer j0_in C0_is
      by (smt Un_iff active_subset_def mem_Collect_eq snd_conv sup_bot.right_neutral)
  qed
  then obtain N M L where inf_from_subs:
    "no_labels.Inf_between (fst ` active_subset N) {C0}
      no_labels.Red_I (fst ` (N  {(C0, active)}  M))" and
    nth_d_is: "lnth Ns n = N  {(C0, L)}" and
    suc_nth_d_is: "lnth Ns (Suc n) = N  {(C0, active)}  M" and
    l_not_active: "L  active"
    using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce
  have "j  {0..<m}  prems_of ι ! j  prems_of ι ! j0  prems_of ι ! j  (active_subset N)" for j
  proof -
    fix j
    assume j_in: "j  {0..<m}" and
      j_not_j0: "prems_of ι ! j  prems_of ι ! j0"
    obtain nj where nj_len: "enat (Suc nj) < llength Ns" and
      nj_prems: "prems_of ι ! j  active_subset (lnth Ns nj)" and
      nj_greater: "(k. k > nj  enat k < llength Ns  prems_of ι ! j  active_subset (lnth Ns k))"
      using exist_nj j_in by blast
    then have "nj  nj_set" unfolding nj_set_def using j_in by blast
    moreover have "nj  n"
    proof (rule ccontr)
      assume "¬ nj  n"
      then have "prems_of ι ! j = (C0, active)"
        using C0_in C0_notin step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n
        by (smt Un_iff nth_d_is suc_nth_d_is l_not_active active_subset_def insertCI insertE lessI
            mem_Collect_eq nj_greater nj_prems snd_conv suc_n_length)
      then show False using j_not_j0 C0_is by simp
    qed
    ultimately have "nj < n" using n_bigger by force
    then have "prems_of ι ! j  (active_subset (lnth Ns n))"
      using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order unfolding nj_set_def by blast
    then show "prems_of ι ! j  (active_subset N)"
      using nth_d_is l_not_active unfolding active_subset_def by force
  qed
  then have "set (prems_of ι)  active_subset N  {(C0, active)}"
    using C0_prems_i C0_is m_def
    by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI)
  moreover have "¬ (set (prems_of ι)  active_subset N - {(C0, active)})" using C0_prems_i by blast
  ultimately have "ι  Inf_between (active_subset N) {(C0, active)}"
    using i_in_inf_fl unfolding Inf_between_def Inf_from_def by blast
  then have "to_F ι  no_labels.Inf_between (fst ` active_subset N) {C0}"
    unfolding to_F_def Inf_between_def Inf_from_def
      no_labels.Inf_between_def no_labels.Inf_from_def using Inf_FL_to_Inf_F
    by force
  then have "to_F ι  no_labels.Red_I (fst ` (lnth Ns (Suc n)))"
    using suc_nth_d_is inf_from_subs by fastforce
  then have "q  Q. (𝒢_I_q q (to_F ι)  None 
      the (𝒢_I_q q (to_F ι))  Red_I_q q ( (𝒢_F_q q ` fst ` lnth Ns (Suc n))))
       (𝒢_I_q q (to_F ι) = None 
      𝒢_F_q q (concl_of (to_F ι))   (𝒢_F_q q ` fst ` lnth Ns (Suc n)) 
        Red_F_q q ( (𝒢_F_q q ` fst ` lnth Ns (Suc n))))"
    unfolding to_F_def no_labels.Red_I_def no_labels.Red_I_𝒢_q_def by blast
  then have "ι  Red_I_𝒢 (lnth Ns (Suc n))"
    using i_in_inf_fl unfolding Red_I_𝒢_def Red_I_𝒢_q_def by (simp add: to_F_def)
  then show "ι  Sup_llist (lmap Red_I_𝒢 Ns)"
    unfolding Sup_llist_def using suc_n_length by auto
qed

theorem gc_complete_Liminf:
  assumes
    deriv: "chain (↝GC) Ns" and
    init_state: "active_subset (lhd Ns) = {}" and
    final_state: "passive_subset (Liminf_llist Ns) = {}" and
    b_in: "B  Bot_F" and
    bot_entailed: "no_labels.entails_𝒢 (fst ` lhd Ns) {B}"
  shows "BL  Bot_FL. BL  Liminf_llist Ns"
proof -
  note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]]
  have labeled_b_in: "(B, active)  Bot_FL" using b_in by simp
  have labeled_bot_entailed: "entails_𝒢_L (lhd Ns) {(B, active)}"
    using labeled_entailment_lifting bot_entailed lhd_is by fastforce
  have fair: "fair Ns" using gc_fair[OF deriv init_state final_state] .
  then show ?thesis
    using dynamically_complete_Liminf[OF labeled_b_in gc_to_red[OF deriv] fair
        labeled_bot_entailed]
    by blast
qed

(* thm:gc-completeness *)
theorem gc_complete:
  assumes
    deriv: "chain (↝GC) Ns" and
    init_state: "active_subset (lhd Ns) = {}" and
    final_state: "passive_subset (Liminf_llist Ns) = {}" and
    b_in: "B  Bot_F" and
    bot_entailed: "no_labels.entails_𝒢 (fst ` lhd Ns) {B}"
  shows "i. enat i < llength Ns  (BL  Bot_FL. BL  lnth Ns i)"
proof -
  note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]]
  have "BLBot_FL. BL  Liminf_llist Ns"
    using assms by (rule gc_complete_Liminf)
  then show ?thesis
    unfolding Liminf_llist_def by auto
qed

end


subsection ‹Lazy Given Clause Procedure›

locale lazy_given_clause = given_clause_basis Bot_F Inf_F Bot_G Q entails_q Inf_G_q Red_I_q
  Red_F_q 𝒢_F_q 𝒢_I_q Equiv_F Prec_F Prec_L active
  for
    Bot_F :: "'f set" and
    Inf_F :: "'f inference set" and
    Bot_G :: "'g set" and
    Q :: "'q set" and
    entails_q :: "'q  'g set  'g set  bool" and
    Inf_G_q :: 'q  'g inference set and
    Red_I_q :: "'q  'g set  'g inference set" and
    Red_F_q :: "'q  'g set  'g set" and
    𝒢_F_q :: "'q  'f  'g set"  and
    𝒢_I_q :: "'q  'f inference  'g inference set option" and
    Equiv_F :: "'f  'f  bool" (infix "" 50) and
    Prec_F :: "'f  'f  bool" (infix "≺⋅" 50) and
    Prec_L :: "'l  'l  bool" (infix "⊏L" 50) and
    active :: 'l
begin

inductive step :: "'f inference set × ('f × 'l) set 
  'f inference set × ('f × 'l) set  bool" (infix "↝LGC" 50) where
  process: "N1 = N  M  N2 = N  M'  M  Red_F (N  M') 
    active_subset M' = {}  (T, N1) ↝LGC (T, N2)" |
  schedule_infer: "T2 = T1  T'  N1 = N  {(C, L)}  N2 = N  {(C, active)} 
    L  active  T' = no_labels.Inf_between (fst ` active_subset N) {C} 
    (T1, N1) ↝LGC (T2, N2)" |
  compute_infer: "T1 = T2  {ι}  N2 = N1  M  active_subset M = {} 
    ι  no_labels.Red_I (fst ` (N1  M))  (T1, N1) ↝LGC (T2, N2)" |
  delete_orphan_infers: "T1 = T2  T' 
    T'  no_labels.Inf_from (fst ` active_subset N) = {}  (T1, N) ↝LGC (T2, N)"

lemma premise_free_inf_always_from: "ι  Inf_F  prems_of ι = []  ι  no_labels.Inf_from N"
  unfolding no_labels.Inf_from_def by simp

lemma one_step_equiv: "(T1, N1) ↝LGC (T2, N2)  N1 ⊳L N2"
proof (cases "(T1, N1)" "(T2, N2)" rule: step.cases)
  show "(T1, N1) ↝LGC (T2, N2)  (T1, N1) ↝LGC (T2, N2)" by blast
next
  fix N M M'
  assume
    n1_is: "N1 = N  M" and
    n2_is: "N2 = N  M'" and
    m_red: "M  Red_F (N  M')"
  have "N1 - N2  Red_F N2"
    using n1_is n2_is m_red by auto
  then show "N1 ⊳L N2"
    unfolding derive.simps by blast
next
  fix N C L M
  assume
    n1_is: "N1 = N  {(C, L)}" and
    not_active: "L  active" and
    n2_is: "N2 = N  {(C, active)}"
  have "(C, active)  N2" using n2_is by auto
  moreover have "C ≼⋅ C" by (metis equivp_def equiv_equiv_F)
  moreover have "active ⊏L L" using active_minimal[OF not_active] .
  ultimately have "{(C, L)}  Red_F N2"
    using red_labeled_clauses by blast
  then have "N1 - N2  Red_F N2"
    using std_Red_F_eq using n1_is n2_is by blast
  then show "N1 ⊳L N2"
    unfolding derive.simps by blast
next
  fix M
  assume
    n2_is: "N2 = N1  M"
  have "N1 - N2  Red_F N2"
    using n2_is by blast
  then show "N1 ⊳L N2"
    unfolding derive.simps by blast
next
  assume n2_is: "N2 = N1"
  have "N1 - N2  Red_F N2"
    using n2_is by blast
  then show "N1 ⊳L N2"
    unfolding derive.simps by blast
qed

(* lem:lgc-derivations-are-red-derivations *)
lemma lgc_to_red: "chain (↝LGC) Ns  chain (⊳L) (lmap snd Ns)"
  using one_step_equiv Lazy_List_Chain.chain_mono by (smt chain_lmap prod.collapse)

(* lem:fair-lgc-derivations *)
lemma lgc_fair:
  assumes
    deriv: "chain (↝LGC) Ns" and
    init_state: "active_subset (snd (lhd Ns)) = {}" and
    final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and
    no_prems_init: "ι  Inf_F. prems_of ι = []  ι  fst (lhd Ns)" and
    final_schedule: "Liminf_llist (lmap fst Ns) = {}"
  shows "fair (lmap snd Ns)"
  unfolding fair_def
proof
  fix ι
  assume i_in: "ι  Inf_from (Liminf_llist (lmap snd Ns))"
  note lhd_is = lhd_conv_lnth[OF chain_not_lnull[OF deriv]]
  have i_in_inf_fl: "ι  Inf_FL" using i_in unfolding Inf_from_def by blast
  have "Liminf_llist (lmap snd Ns) = active_subset (Liminf_llist (lmap snd Ns))"
    using final_state unfolding passive_subset_def active_subset_def by blast
  then have i_in2: "ι  Inf_from (active_subset (Liminf_llist (lmap snd Ns)))"
    using i_in by simp
  define m where "m = length (prems_of ι)"
  then have m_def_F: "m = length (prems_of (to_F ι))" unfolding to_F_def by simp
  have i_in_F: "to_F ι  Inf_F"
    using i_in Inf_FL_to_Inf_F unfolding Inf_from_def to_F_def by blast
  have exist_nj: "j  {0..<m}. (nj. enat (Suc nj) < llength Ns 
      prems_of ι ! j  active_subset (snd (lnth Ns nj)) 
      (k. k > nj  enat k < llength Ns  prems_of ι ! j  active_subset (snd (lnth Ns k))))"
  proof clarify
    fix j
    assume j_in: "j  {0..<m}"
    then obtain C where c_is: "(C, active) = prems_of ι ! j"
      using i_in2 unfolding m_def Inf_from_def active_subset_def
      by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv)
    then have "(C, active)  Liminf_llist (lmap snd Ns)"
      using j_in i_in unfolding m_def Inf_from_def by force
    then obtain nj where nj_is: "enat nj < llength Ns" and
      c_in2: "(C, active)   (snd ` (lnth Ns ` {k. nj  k  enat k < llength Ns}))"
      unfolding Liminf_llist_def using init_state by fastforce
    then have c_in3: "k. k  nj  enat k < llength Ns  (C, active)  snd (lnth Ns k)" by blast
    have nj_pos: "nj > 0" using init_state c_in2 nj_is unfolding active_subset_def lhd_is by fastforce
    obtain nj_min where nj_min_is: "nj_min = (LEAST nj. enat nj < llength Ns 
        (C, active)   (snd ` (lnth Ns ` {k. nj  k  enat k < llength Ns})))" by blast
    then have in_allk: "k. k  nj_min  enat k < llength Ns  (C, active)  snd (lnth Ns k)"
      using c_in3 nj_is c_in2 INT_E LeastI_ex
        [of "λn. enat n < llength Ns
             (C, active)   (snd ` lnth Ns ` {na. n  na  enat na < llength Ns})"]
      by blast
    have njm_smaller_D: "enat nj_min < llength Ns"
      using nj_min_is
      by (smt LeastI_ex thesis. (nj. enat nj < llength Ns;
          (C, active)   (snd ` (lnth Ns ` {k. nj  k  enat k < llength Ns}))  thesis)  thesis)
    have "nj_min > 0"
      using nj_is c_in2 nj_pos nj_min_is lhd_is
      by (metis (mono_tags, lifting) active_subset_def emptyE in_allk init_state mem_Collect_eq
          not_less snd_conv zero_enat_def chain_length_pos[OF deriv])
    then obtain njm_prec where nj_prec_is: "Suc njm_prec = nj_min" using gr0_conv_Suc by auto
    then have njm_prec_njm: "njm_prec < nj_min" by blast
    then have njm_prec_njm_enat: "enat njm_prec < enat nj_min" by simp
    have njm_prec_smaller_d: "njm_prec < llength Ns"
      by (rule less_trans[OF njm_prec_njm_enat njm_smaller_D])
    have njm_prec_all_suc: "k>njm_prec. enat k < llength Ns  (C, active)  snd (lnth Ns k)"
      using nj_prec_is in_allk by simp
    have notin_njm_prec: "(C, active)  snd (lnth Ns njm_prec)"
    proof (rule ccontr)
      assume "¬ (C, active)  snd (lnth Ns njm_prec)"
      then have absurd_hyp: "(C, active)  snd (lnth Ns njm_prec)" by simp
      have prec_smaller: "enat njm_prec < llength Ns" using nj_min_is nj_prec_is
        by (smt LeastI_ex Suc_leD thesis. (nj. enat nj < llength Ns;
            (C, active)   (snd ` (lnth Ns ` {k. nj  k  enat k < llength Ns}))  thesis)  thesis
            enat_ord_simps(1) le_eq_less_or_eq le_less_trans)
      have "(C, active)   (snd ` (lnth Ns ` {k. njm_prec  k  enat k < llength Ns}))"
      proof -
        {
          fix k
          assume k_in: "njm_prec  k  enat k < llength Ns"
          have "k = njm_prec  (C, active)  snd (lnth Ns k)" using absurd_hyp by simp
          moreover have "njm_prec < k  (C, active)  snd (lnth Ns k)"
            using nj_prec_is in_allk k_in by simp
          ultimately have "(C, active)  snd (lnth Ns k)" using k_in by fastforce
        }
        then show "(C, active)   (snd ` (lnth Ns ` {k. njm_prec  k  enat k < llength Ns}))"
          by blast
      qed
      then have "enat njm_prec < llength Ns 
          (C, active)   (snd ` (lnth Ns ` {k. njm_prec  k  enat k < llength Ns}))"
        using prec_smaller by blast
      then show False
        using nj_min_is nj_prec_is Orderings.wellorder_class.not_less_Least njm_prec_njm by blast
    qed
    then have notin_active_subs_njm_prec: "(C, active)  active_subset (snd (lnth Ns njm_prec))"
      unfolding active_subset_def by blast
    then show "nj. enat (Suc nj) < llength Ns  prems_of ι ! j  active_subset (snd (lnth Ns nj)) 
        (k. k > nj  enat k < llength Ns  prems_of ι ! j  active_subset (snd (lnth Ns k)))"
      using c_is njm_prec_all_suc njm_prec_smaller_d by (metis (mono_tags, lifting)
          active_subset_def mem_Collect_eq nj_prec_is njm_smaller_D snd_conv)
  qed
  define nj_set where "nj_set = {nj. (j{0..<m}. enat (Suc nj) < llength Ns 
      prems_of ι ! j  active_subset (snd (lnth Ns nj)) 
      (k. k > nj  enat k < llength Ns  prems_of ι ! j  active_subset (snd (lnth Ns k))))}"
  {
    assume m_null: "m = 0"
    then have "enat 0 < llength Ns  to_F ι  fst (lhd Ns)"
      using no_prems_init i_in_F m_def_F zero_enat_def chain_length_pos[OF deriv] by auto
    then have "n. enat n < llength Ns  to_F ι  fst (lnth Ns n)"
      unfolding lhd_is by blast
  }
  moreover {
    assume m_pos: "m > 0"
    have nj_not_empty: "nj_set  {}"
    proof -
      have zero_in: "0  {0..<m}" using m_pos by simp
      then obtain n0 where "enat (Suc n0) < llength Ns" and
        "prems_of ι ! 0  active_subset (snd (lnth Ns n0))" and
        "k>n0. enat k < llength Ns  prems_of ι ! 0  active_subset (snd (lnth Ns k))"
        using exist_nj by fast
      then have "n0  nj_set" unfolding nj_set_def using zero_in by blast
      then show "nj_set  {}" by auto
    qed
    have nj_finite: "finite nj_set"
      using all_ex_finite_set[OF exist_nj] by (metis (no_types, lifting) Suc_ile_eq
          dual_order.strict_implies_order linorder_neqE_nat nj_set_def)
    have "n  nj_set. nj  nj_set. nj  n"
      using nj_not_empty nj_finite using Max_ge Max_in by blast
    then obtain n where n_in: "n  nj_set" and n_bigger: "nj  nj_set. nj  n" by blast
    then obtain j0 where j0_in: "j0  {0..<m}" and suc_n_length: "enat (Suc n) < llength Ns" and
      j0_notin: "prems_of ι ! j0  active_subset (snd (lnth Ns n))" and
      j0_allin: "(k. k > n  enat k < llength Ns 
          prems_of ι ! j0  active_subset (snd (lnth Ns k)))"
      unfolding nj_set_def by blast
    obtain C0 where C0_is: "prems_of ι ! j0 = (C0, active)"
      using j0_in i_in2 unfolding m_def Inf_from_def active_subset_def
      by (smt Collect_mem_eq Collect_mono_iff atLeastLessThan_iff nth_mem old.prod.exhaust snd_conv)
    then have C0_prems_i: "(C0, active)  set (prems_of ι)" using in_set_conv_nth j0_in m_def by force
    have C0_in: "(C0, active)  (snd (lnth Ns (Suc n)))"
      using C0_is j0_allin suc_n_length by (simp add: active_subset_def)
    have C0_notin: "(C0, active)  (snd (lnth Ns n))"
      using C0_is j0_notin unfolding active_subset_def by simp
    have step_n: "lnth Ns n ↝LGC lnth Ns (Suc n)"
      using deriv chain_lnth_rel n_in unfolding nj_set_def by blast
    have is_scheduled: "T2 T1 T' N1 N C L N2. lnth Ns n = (T1, N1)  lnth Ns (Suc n) = (T2, N2) 
        T2 = T1  T'  N1 = N  {(C, L)}  N2 = N  {(C, active)}  L  active 
        T' = no_labels.Inf_between (fst ` active_subset N) {C}"
      using step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n C0_in C0_notin
      unfolding active_subset_def by fastforce
    then obtain T2 T1 T' N1 N L N2 where nth_d_is: "lnth Ns n = (T1, N1)" and
      suc_nth_d_is: "lnth Ns (Suc n) = (T2, N2)" and t2_is: "T2 = T1  T'" and
      n1_is: "N1 = N  {(C0, L)}" "N2 = N  {(C0, active)}" and
      l_not_active: "L  active" and
      tp_is: "T' = no_labels.Inf_between (fst ` active_subset N) {C0}"
      using C0_in C0_notin j0_in C0_is using active_subset_def by fastforce
    have "j  {0..<m}  prems_of ι ! j  prems_of ι ! j0  prems_of ι ! j  (active_subset N)"
      for j
    proof -
      fix j
      assume j_in: "j  {0..<m}" and
        j_not_j0: "prems_of ι ! j  prems_of ι ! j0"
      obtain nj where nj_len: "enat (Suc nj) < llength Ns" and
        nj_prems: "prems_of ι ! j  active_subset (snd (lnth Ns nj))" and
        nj_greater: "(k. k > nj  enat k < llength Ns 
            prems_of ι ! j  active_subset (snd (lnth Ns k)))"
        using exist_nj j_in by blast
      then have "nj  nj_set" unfolding nj_set_def using j_in by blast
      moreover have "nj  n"
      proof (rule ccontr)
        assume "¬ nj  n"
        then have "prems_of ι ! j = (C0, active)"
          using C0_in C0_notin step.simps[of "lnth Ns n" "lnth Ns (Suc n)"] step_n
            active_subset_def is_scheduled nj_greater nj_prems suc_n_length by auto
        then show False using j_not_j0 C0_is by simp
      qed
      ultimately have "nj < n" using n_bigger by force
      then have "prems_of ι ! j  (active_subset (snd (lnth Ns n)))"
        using nj_greater n_in Suc_ile_eq dual_order.strict_implies_order
        unfolding nj_set_def by blast
      then show "prems_of ι ! j  (active_subset N)"
        using nth_d_is l_not_active n1_is unfolding active_subset_def by force
    qed
    then have prems_i_active: "set (prems_of ι)  active_subset N  {(C0, active)}"
      using C0_prems_i C0_is m_def
      by (metis Un_iff atLeast0LessThan in_set_conv_nth insertCI lessThan_iff subrelI)
    moreover have "¬ (set (prems_of ι)  active_subset N - {(C0, active)})" using C0_prems_i by blast
    ultimately have "ι  Inf_between (active_subset N) {(C0, active)}"
      using i_in_inf_fl prems_i_active unfolding Inf_between_def Inf_from_def by blast
    then have "to_F ι  no_labels.Inf_between (fst ` active_subset N) {C0}"
      unfolding to_F_def Inf_between_def Inf_from_def
        no_labels.Inf_between_def no_labels.Inf_from_def
      using Inf_FL_to_Inf_F by force
    then have i_in_t2: "to_F ι  T2" using tp_is t2_is by simp
    have "j  {0..<m}  (k. k > n  enat k < llength Ns 
        prems_of ι ! j  active_subset (snd (lnth Ns k)))" for j
    proof (cases "j = j0")
      case True
      assume "j = j0"
      then show "(k. k > n  enat k < llength Ns 
          prems_of ι ! j  active_subset (snd (lnth Ns k)))" using j0_allin by simp
    next
      case False
      assume j_in: "j  {0..<m}" and
        "j  j0"
      obtain nj where nj_len: "enat (Suc nj) < llength Ns" and
        nj_prems: "prems_of ι ! j  active_subset (snd (lnth Ns nj))" and
        nj_greater: "(k. k > nj  enat k < llength Ns 
            prems_of ι ! j  active_subset (snd (lnth Ns k)))"
        using exist_nj j_in by blast
      then have "nj  nj_set" unfolding nj_set_def using j_in by blast
      then show "(k. k > n  enat k < llength Ns 
          prems_of ι ! j  active_subset (snd (lnth Ns k)))"
        using nj_greater n_bigger by auto
    qed
    then have allj_allk: "(c set (prems_of ι). (k. k > n  enat k < llength Ns 
        c  active_subset (snd (lnth Ns k))))"
      using m_def by (metis atLeast0LessThan in_set_conv_nth lessThan_iff)
    have "c set (prems_of ι). snd c = active"
      using prems_i_active unfolding active_subset_def by auto
    then have ex_n_i_in: "n. enat (Suc n) < llength Ns  to_F ι  fst (lnth Ns (Suc n)) 
        (c set (prems_of ι). snd c = active) 
        (c set (prems_of ι). (k. k > n  enat k < llength Ns 
          c  active_subset (snd (lnth Ns k))))"
      using allj_allk i_in_t2 suc_nth_d_is fstI n_in nj_set_def
      by auto
    then have "n. enat n < llength Ns  to_F ι  fst (lnth Ns n) 
        (c set (prems_of ι). snd c = active)  (c set (prems_of ι). (k. k  n 
          enat k < llength Ns  c  active_subset (snd (lnth Ns k))))"
      by auto
  }
  ultimately obtain n T2 N2 where i_in_suc_n: "to_F ι  fst (lnth Ns n)" and
    all_prems_active_after: "m > 0  (c set (prems_of ι). (k. k  n  enat k < llength Ns 
                  c  active_subset (snd (lnth Ns k))))" and
    suc_n_length: "enat n < llength Ns" and suc_nth_d_is: "lnth Ns n = (T2, N2)"
    by (metis less_antisym old.prod.exhaust zero_less_Suc)
  then have i_in_t2: "to_F ι  T2" by simp
  have "pn. enat (Suc p) < llength Ns  to_F ι  (fst (lnth Ns p))  to_F ι  (fst (lnth Ns (Suc p)))"
  proof (rule ccontr)
    assume
      contra: "¬ (pn. enat (Suc p) < llength Ns  to_F ι  (fst (lnth Ns p)) 
                     to_F ι  (fst (lnth Ns (Suc p))))"
    then have i_in_suc: "p0  n  enat (Suc p0) < llength Ns  to_F ι  (fst (lnth Ns p0)) 
        to_F ι  (fst (lnth Ns (Suc p0)))" for p0
      by blast
    have "p0  n  enat p0 < llength Ns  to_F ι  (fst (lnth Ns p0))" for p0
    proof (induction rule: nat_induct_at_least)
      case base
      then show ?case using i_in_t2 suc_nth_d_is
        by simp
    next
      case (Suc p0)
      assume p_bigger_n: "n  p0" and
        induct_hyp: "enat p0 < llength Ns  to_F ι  fst (lnth Ns p0)" and
        sucsuc_smaller_d: "enat (Suc p0) < llength Ns"
      have suc_p_bigger_n: "n  p0" using p_bigger_n by simp
      have suc_smaller_d: "enat p0 < llength Ns"
        using sucsuc_smaller_d Suc_ile_eq dual_order.strict_implies_order by blast
      then have "to_F ι  fst (lnth Ns p0)" using induct_hyp by blast
      then show ?case using i_in_suc[OF suc_p_bigger_n sucsuc_smaller_d] by blast
    qed
    then have i_in_all_bigger_n: "j. j  n  enat j < llength Ns  to_F ι  (fst (lnth Ns j))"
      by presburger
    have "llength (lmap fst Ns) = llength Ns" by force
    then have "to_F ι   (lnth (lmap fst Ns) ` {j. n  j  enat j < llength (lmap fst Ns)})"
      using i_in_all_bigger_n using Suc_le_D by auto
    then have "to_F ι  Liminf_llist (lmap fst Ns)"
      unfolding Liminf_llist_def using suc_n_length by auto
    then show False using final_schedule by fast
  qed
  then obtain p where p_greater_n: "p  n" and p_smaller_d: "enat (Suc p) < llength Ns" and
    i_in_p: "to_F ι  (fst (lnth Ns p))" and i_notin_suc_p: "to_F ι  (fst (lnth Ns (Suc p)))"
    by blast
  have p_neq_n: "Suc p  n" using i_notin_suc_p i_in_suc_n by blast
  have step_p: "lnth Ns p ↝LGC lnth Ns (Suc p)" using deriv p_smaller_d chain_lnth_rel by blast
  then have "T1 T2 ι N2 N1 M. lnth Ns p = (T1, N1)  lnth Ns (Suc p) = (T2, N2) 
      T1 = T2  {ι}  N2 = N1  M  active_subset M = {} 
      ι  no_labels.Red_I_𝒢 (fst ` (N1  M))"
  proof -
    have ci_or_do: "(T1 T2 ι N2 N1 M. lnth Ns p = (T1, N1)  lnth Ns (Suc p) = (T2, N2) 
        T1 = T2  {ι}  N2 = N1  M  active_subset M = {} 
        ι  no_labels.Red_I_𝒢 (fst ` (N1  M))) 
        (T1 T2 T' N. lnth Ns p = (T1, N)  lnth Ns (Suc p) = (T2, N) 
        T1 = T2  T'  T'  no_labels.Inf_from (fst ` active_subset N) = {})"
      using step.simps[of "lnth Ns p" "lnth Ns (Suc p)"] step_p i_in_p i_notin_suc_p by fastforce
    then have p_greater_n_strict: "n < Suc p"
      using suc_nth_d_is p_greater_n i_in_t2 i_notin_suc_p le_eq_less_or_eq by force
    have "m > 0  j  {0..<m}  prems_of (to_F ι) ! j  fst ` active_subset (snd (lnth Ns p))"
      for j
    proof -
      fix j
      assume
        m_pos: "m > 0" and
        j_in: "j  {0..<m}"
      then have "prems_of ι ! j  (active_subset (snd (lnth Ns p)))"
        using all_prems_active_after[OF m_pos] p_smaller_d m_def p_greater_n p_neq_n
        by (meson Suc_ile_eq atLeastLessThan_iff dual_order.strict_implies_order nth_mem
            p_greater_n_strict)
      then have "fst (prems_of ι ! j)  fst ` active_subset (snd (lnth Ns p))"
        by blast
      then show "prems_of (to_F ι) ! j  fst ` active_subset (snd (lnth Ns p))"
        unfolding to_F_def using j_in m_def by simp
    qed
    then have prems_i_active_p: "m > 0 
        to_F ι  no_labels.Inf_from (fst ` active_subset (snd (lnth Ns p)))"
      using i_in_F unfolding no_labels.Inf_from_def
      by (smt atLeast0LessThan in_set_conv_nth lessThan_iff m_def_F mem_Collect_eq subsetI)
    have "m = 0  (T1 T2 ι N2 N1 M. lnth Ns p = (T1, N1)  lnth Ns (Suc p) = (T2, N2) 
        T1 = T2  {ι}  N2 = N1  M  active_subset M = {} 
        ι  no_labels.Red_I_𝒢 (fst ` (N1  M)))"
      using ci_or_do premise_free_inf_always_from[of "to_F ι" "fst ` active_subset _", OF i_in_F]
        m_def i_in_p i_notin_suc_p m_def_F by auto
    then show "(T1 T2 ι N2 N1 M. lnth Ns p = (T1, N1)  lnth Ns (Suc p) = (T2, N2) 
        T1 = T2  {ι}  N2 = N1  M  active_subset M = {} 
        ι  no_labels.Red_I_𝒢 (fst ` (N1  M)))"
      using ci_or_do i_in_p i_notin_suc_p prems_i_active_p unfolding active_subset_def by force
  qed
  then obtain T1p T2p N1p N2p Mp where  "lnth Ns p = (T1p, N1p)" and
    suc_p_is: "lnth Ns (Suc p) = (T2p, N2p)" and "T1p = T2p  {to_F ι}" and "T2p  {to_F ι} = {}" and
    n2p_is: "N2p = N1p  Mp"and "active_subset Mp = {}" and
    i_in_red_inf: "to_F ι  no_labels.Red_I_𝒢
        (fst ` (N1p  Mp))"
    using i_in_p i_notin_suc_p by fastforce
  have "to_F ι  no_labels.Red_I (fst ` (snd (lnth Ns (Suc p))))"
    using i_in_red_inf suc_p_is n2p_is by fastforce
  then have "q  Q. (𝒢_I_q q (to_F ι)  None 
      the (𝒢_I_q q (to_F ι))  Red_I_q q ( (𝒢_F_q q ` fst ` snd (lnth Ns (Suc p)))))
       (𝒢_I_q q (to_F ι) = None 
      𝒢_F_q q (concl_of (to_F ι))   (𝒢_F_q q ` fst ` snd (lnth Ns (Suc p))) 
        Red_F_q q ( (𝒢_F_q q ` fst ` snd (lnth Ns (Suc p)))))"
    unfolding to_F_def no_labels.Red_I_def no_labels.Red_I_𝒢_q_def by blast
  then have "ι  Red_I_𝒢 (snd (lnth Ns (Suc p)))"
    using i_in_inf_fl unfolding Red_I_𝒢_def Red_I_𝒢_q_def by (simp add: to_F_def)
  then show "ι  Sup_llist (lmap Red_I_𝒢 (lmap snd Ns))"
    unfolding Sup_llist_def using suc_n_length p_smaller_d by auto
qed

theorem lgc_complete_Liminf:
  assumes
    deriv: "chain (↝LGC) Ns" and
    init_state: "active_subset (snd (lhd Ns)) = {}" and
    final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and
    no_prems_init: "ι  Inf_F. prems_of ι = []  ι  fst (lhd Ns)" and
    final_schedule: "Liminf_llist (lmap fst Ns) = {}" and
    b_in: "B  Bot_F" and
    bot_entailed: "no_labels.entails_𝒢 (fst ` snd (lhd Ns)) {B}"
  shows "BL  Bot_FL. BL  Liminf_llist (lmap snd Ns)"
proof -
  have labeled_b_in: "(B, active)  Bot_FL" using b_in by simp
  have simp_snd_lmap: "lhd (lmap snd Ns) = snd (lhd Ns)"
    by (rule llist.map_sel(1)[OF chain_not_lnull[OF deriv]])
  have labeled_bot_entailed: "entails_𝒢_L (snd (lhd Ns)) {(B, active)}"
    using labeled_entailment_lifting bot_entailed by fastforce
  have "fair (lmap snd Ns)"
    using lgc_fair[OF deriv init_state final_state no_prems_init final_schedule] .
  then show ?thesis
    using dynamically_complete_Liminf labeled_b_in lgc_to_red[OF deriv]
      labeled_bot_entailed simp_snd_lmap std_Red_I_eq
    by presburger
qed

(* thm:lgc-completeness *)
theorem lgc_complete:
  assumes
    deriv: "chain (↝LGC) Ns" and
    init_state: "active_subset (snd (lhd Ns)) = {}" and
    final_state: "passive_subset (Liminf_llist (lmap snd Ns)) = {}" and
    no_prems_init: "ι  Inf_F. prems_of ι = []  ι  fst (lhd Ns)" and
    final_schedule: "Liminf_llist (lmap fst Ns) = {}" and
    b_in: "B  Bot_F" and
    bot_entailed: "no_labels.entails_𝒢 (fst ` snd (lhd Ns)) {B}"
  shows "i. enat i < llength Ns  (BL  Bot_FL. BL  snd (lnth Ns i))"
proof -
  have "BLBot_FL. BL  Liminf_llist (lmap snd Ns)"
    using assms by (rule lgc_complete_Liminf)
  then show ?thesis
    unfolding Liminf_llist_def by auto
qed

end

end