Theory Labeled_Lifting_to_Non_Ground_Calculi

(*  Title:       Labeled Lifting to Non-Ground Calculi
 *  Author:      Sophie Tourret <stourret at mpi-inf.mpg.de>, 2019-2020 *)

section ‹Labeled Lifting to Non-Ground Calculi›

text ‹This section formalizes the extension of the lifting results to labeled
  calculi. This corresponds to section 3.4 of the report.›

theory Labeled_Lifting_to_Non_Ground_Calculi
  imports Lifting_to_Non_Ground_Calculi
begin

lemma po_on_empty_rel[simp]: "po_on (λ_ _. False) UNIV"
  unfolding po_on_def irreflp_on_def transp_on_def by auto

subsection ‹Labeled Lifting with a Family of Tiebreaker Orderings›

locale labeled_tiebreaker_lifting = no_labels: tiebreaker_lifting Bot_F Inf_F
  Bot_G entails_G Inf_G Red_I_G Red_F_G 𝒢_F 𝒢_I Prec_F
  for
    Bot_F :: "'f set" and
    Inf_F :: "'f inference set" and
    Bot_G :: "'g set" and
    entails_G :: "'g set  'g set  bool"  (infix ⊨G 50) and
    Inf_G :: "'g inference set" and
    Red_I_G :: "'g set  'g inference set" and
    Red_F_G :: "'g set  'g set" and
    𝒢_F :: "'f  'g set" and
    𝒢_I :: "'f inference  'g inference set option" and
    Prec_F :: "'g  'f  'f  bool" (infix  50)
  + fixes
    Inf_FL :: ('f × 'l) inference set
  assumes
    Inf_F_to_Inf_FL: ιF  Inf_F  length (Ll :: 'l list) = length (prems_of ιF) 
      L0. Infer (zip (prems_of ιF) Ll) (concl_of ιF, L0)  Inf_FL and
    Inf_FL_to_Inf_F: ιFL  Inf_FL  Infer (map fst (prems_of ιFL)) (fst (concl_of ιFL))  Inf_F
begin

definition to_F :: ('f × 'l) inference  'f inference where
  to_F ιFL = Infer (map fst (prems_of ιFL)) (fst (concl_of ιFL))

abbreviation Bot_FL :: ('f × 'l) set where
  Bot_FL  Bot_F × UNIV

abbreviation 𝒢_F_L :: ('f × 'l)  'g set where
  𝒢_F_L CL  𝒢_F (fst CL)

abbreviation 𝒢_I_L :: ('f × 'l) inference  'g inference set option where
  𝒢_I_L ιFL  𝒢_I (to_F ιFL)

(* lem:labeled-grounding-function *)
sublocale standard_lifting Inf_FL Bot_G Inf_G "(⊨G)" Red_I_G Red_F_G Bot_FL 𝒢_F_L 𝒢_I_L
proof
  show "Bot_FL  {}"
    using no_labels.Bot_F_not_empty by simp
next
  show "B  Bot_FL  𝒢_F_L B  {}" for B
    using no_labels.Bot_map_not_empty by auto
next
  show "B  Bot_FL  𝒢_F_L B  Bot_G" for B
    using no_labels.Bot_map by force
next
  fix CL
  show "𝒢_F_L CL  Bot_G  {}  CL  Bot_FL"
    using no_labels.Bot_cond by (metis SigmaE UNIV_I UNIV_Times_UNIV mem_Sigma_iff prod.sel(1))
next
  fix ι
  assume
    i_in: ι  Inf_FL and
    ground_not_none: 𝒢_I_L ι  None
  then show "the (𝒢_I_L ι)  Red_I_G (𝒢_F_L (concl_of ι))"
    unfolding to_F_def using no_labels.inf_map Inf_FL_to_Inf_F by fastforce
qed

(* sublocale tiebreaker_lifting Bot_FL Inf_FL Bot_G entails_G Inf_G Red_I_G Red_F_G 𝒢_F_L 𝒢_I_L
 *   "λg Cl Cl'. False"
 *   by unfold_locales simp+ *)

notation entails_𝒢 (infix ⊨𝒢L 50)

(* lem:labeled-consequence *)
lemma labeled_entailment_lifting: "NL1 ⊨𝒢L NL2  fst ` NL1 ⊨𝒢 fst ` NL2"
  by simp

lemma red_inf_impl: "ι  Red_I_𝒢 NL  to_F ι  no_labels.Red_I_𝒢 (fst ` NL)"
  unfolding Red_I_𝒢_def no_labels.Red_I_𝒢_def using Inf_FL_to_Inf_F by (auto simp: to_F_def)

(* lem:labeled-saturation *)
lemma labeled_saturation_lifting: "saturated NL  no_labels.saturated (fst ` NL)"
  unfolding saturated_def no_labels.saturated_def Inf_from_def no_labels.Inf_from_def
proof clarify
  fix ι
  assume
    subs_Red_I: "{ι  Inf_FL. set (prems_of ι)  NL}  Red_I_𝒢 NL" and
    i_in: "ι  Inf_F" and
    i_prems: "set (prems_of ι)  fst ` NL"
  define Lli where "Lli i = (SOME x. ((prems_of ι)!i,x)  NL)" for i
  have [simp]:"((prems_of ι)!i,Lli i)  NL" if "i < length (prems_of ι)" for i
    using that i_prems unfolding Lli_def by (metis nth_mem someI_ex DomainE Domain_fst subset_eq)
  define Ll where "Ll = map Lli [0..<length (prems_of ι)]"
  have Ll_length: "length Ll = length (prems_of ι)" unfolding Ll_def by auto
  have subs_NL: "set (zip (prems_of ι) Ll)  NL" unfolding Ll_def by (auto simp:in_set_zip)
  obtain L0 where L0: "Infer (zip (prems_of ι) Ll) (concl_of ι, L0)  Inf_FL"
    using Inf_F_to_Inf_FL[OF i_in Ll_length] ..
  define ι_FL where "ι_FL = Infer (zip (prems_of ι) Ll) (concl_of ι, L0)"
  then have "set (prems_of ι_FL)  NL" using subs_NL by simp
  then have "ι_FL  {ι  Inf_FL. set (prems_of ι)  NL}" unfolding ι_FL_def using L0 by blast
  then have "ι_FL  Red_I_𝒢 NL" using subs_Red_I by fast
  moreover have "ι = to_F ι_FL" unfolding to_F_def ι_FL_def using Ll_length by (cases ι) auto
  ultimately show "ι  no_labels.Red_I_𝒢 (fst ` NL)" by (auto intro: red_inf_impl)
qed

(* lem:labeled-static-ref-compl *)
lemma stat_ref_comp_to_labeled_sta_ref_comp:
  assumes static:
    "statically_complete_calculus Bot_F Inf_F (⊨𝒢) no_labels.Red_I_𝒢 no_labels.Red_F_𝒢"
  shows "statically_complete_calculus Bot_FL Inf_FL (⊨𝒢L) Red_I_𝒢 Red_F_𝒢"
proof
  fix Bl :: 'f × 'l and Nl :: ('f × 'l) set
  assume
    Bl_in: Bl  Bot_FL and
    Nl_sat: saturated Nl and
    Nl_entails_Bl: Nl ⊨𝒢L {Bl}
  define B where "B = fst Bl"
  have B_in: "B  Bot_F" using Bl_in B_def SigmaE by force
  define N where "N = fst ` Nl"
  have N_sat: "no_labels.saturated N"
    using N_def Nl_sat labeled_saturation_lifting by blast
  have N_entails_B: "N ⊨𝒢 {B}"
    using Nl_entails_Bl unfolding labeled_entailment_lifting N_def B_def by force
  have "B'  Bot_F. B'  N" using B_in N_sat N_entails_B
    using static[unfolded statically_complete_calculus_def
        statically_complete_calculus_axioms_def] by blast
  then obtain B' where in_Bot: "B'  Bot_F" and in_N: "B'  N" by force
  then have "B'  fst ` Bot_FL" by fastforce
  obtain Bl' where in_Nl: "Bl'  Nl" and fst_Bl': "fst Bl' = B'"
    using in_N unfolding N_def by blast
  have "Bl'  Bot_FL" using fst_Bl' in_Bot vimage_fst by fastforce
  then show Bl'Bot_FL. Bl'  Nl using in_Nl by blast
qed

end


subsection ‹Labeled Lifting with a Family of Redundancy Criteria›

locale labeled_lifting_intersection = no_labels: lifting_intersection Inf_F
  Bot_G Q Inf_G_q entails_q Red_I_q Red_F_q Bot_F 𝒢_F_q 𝒢_I_q "λg Cl Cl'. False"
  for
    Bot_F :: "'f set" and
    Inf_F :: "'f inference set" and
    Bot_G :: "'g set" and
    Q :: "'q set" and
    entails_q :: "'q  'g set  'g set  bool"  and
    Inf_G_q :: "'q  'g inference set" and
    Red_I_q :: "'q  'g set  'g inference set" and
    Red_F_q :: "'q  'g set  'g set" and
    𝒢_F_q :: "'q  'f  'g set" and
    𝒢_I_q :: "'q  'f inference  'g inference set option"
  + fixes
    Inf_FL :: ('f × 'l) inference set
  assumes
    Inf_F_to_Inf_FL:
      ιF  Inf_F  length (Ll :: 'l list) = length (prems_of ιF) 
       L0. Infer (zip (prems_of ιF) Ll) (concl_of ιF, L0)  Inf_FL and
    Inf_FL_to_Inf_F: ιFL  Inf_FL  Infer (map fst (prems_of ιFL)) (fst (concl_of ιFL))  Inf_F
begin

definition to_F :: ('f × 'l) inference  'f inference where
  to_F ιFL = Infer (map fst (prems_of ιFL)) (fst (concl_of ιFL))

abbreviation Bot_FL :: ('f × 'l) set where
  Bot_FL  Bot_F × UNIV

abbreviation 𝒢_F_L_q :: 'q  ('f × 'l)  'g set where
  𝒢_F_L_q q CL  𝒢_F_q q (fst CL)

abbreviation 𝒢_I_L_q :: 'q  ('f × 'l) inference  'g inference set option where
  𝒢_I_L_q q ιFL  𝒢_I_q q (to_F ιFL)

abbreviation 𝒢_Fset_L_q :: "'q  ('f × 'l) set  'g set" where
  "𝒢_Fset_L_q q N   (𝒢_F_L_q q ` N)"

definition Red_I_𝒢_L_q :: "'q  ('f × 'l) set  ('f × 'l) inference set" where
  "Red_I_𝒢_L_q q N =
   {ι  Inf_FL. (𝒢_I_L_q q ι  None  the (𝒢_I_L_q q ι)  Red_I_q q (𝒢_Fset_L_q q N))
     (𝒢_I_L_q q ι = None  𝒢_F_L_q q (concl_of ι)  𝒢_Fset_L_q q N  Red_F_q q (𝒢_Fset_L_q q N))}"

abbreviation Red_I_𝒢_L :: "('f × 'l) set  ('f × 'l) inference set" where
  "Red_I_𝒢_L N  (q  Q. Red_I_𝒢_L_q q N)"

abbreviation entails_𝒢_L_q :: "'q  ('f × 'l) set  ('f × 'l) set  bool" where
  "entails_𝒢_L_q q N1 N2  entails_q q (𝒢_Fset_L_q q N1) (𝒢_Fset_L_q q N2)"

lemma lifting_q:
  assumes "q  Q"
  shows "labeled_tiebreaker_lifting Bot_F Inf_F Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q)
    (Red_F_q q) (𝒢_F_q q) (𝒢_I_q q) (λg Cl Cl'. False) Inf_FL"
  using assms no_labels.standard_lifting_family Inf_F_to_Inf_FL Inf_FL_to_Inf_F
  by (simp add: labeled_tiebreaker_lifting_axioms_def labeled_tiebreaker_lifting_def)

lemma lifted_q:
  assumes q_in: "q  Q"
  shows "standard_lifting Inf_FL Bot_G (Inf_G_q q) (entails_q q) (Red_I_q q) (Red_F_q q)
    Bot_FL (𝒢_F_L_q q) (𝒢_I_L_q q)"
proof -
  interpret q_lifting: labeled_tiebreaker_lifting Bot_F Inf_F Bot_G "entails_q q" "Inf_G_q q"
    "Red_I_q q" "Red_F_q q" "𝒢_F_q q" "𝒢_I_q q" "λg Cl Cl'. False" Inf_FL
    using lifting_q[OF q_in] .
  have "𝒢_I_L_q q = q_lifting.𝒢_I_L"
    unfolding to_F_def q_lifting.to_F_def by simp
  then show ?thesis
    using q_lifting.standard_lifting_axioms by simp
qed

lemma ord_fam_lifted_q:
  assumes q_in: "q  Q"
  shows "tiebreaker_lifting Bot_FL Inf_FL Bot_G (entails_q q) (Inf_G_q q) (Red_I_q q)
    (Red_F_q q) (𝒢_F_L_q q) (𝒢_I_L_q q) (λg Cl Cl'. False)"
proof -
  interpret standard_q_lifting: standard_lifting Inf_FL Bot_G "Inf_G_q q" "entails_q q"
    "Red_I_q q" "Red_F_q q" Bot_FL "𝒢_F_L_q q" "𝒢_I_L_q q"
    using lifted_q[OF q_in] .
  have "minimal_element (λCl Cl'. False) UNIV"
    by (simp add: minimal_element.intro po_on_def transp_onI wfp_on_imp_irreflp_on)
  then show ?thesis
    using standard_q_lifting.standard_lifting_axioms
    by (simp add: tiebreaker_lifting_axioms_def tiebreaker_lifting_def)
qed

definition Red_F_𝒢_empty_L_q :: "'q  ('f × 'l) set  ('f × 'l) set" where
  "Red_F_𝒢_empty_L_q q N = {C. D  𝒢_F_L_q q C. D  Red_F_q q (𝒢_Fset_L_q q N) 
    (E  N. False  D  𝒢_F_L_q q E)}"

abbreviation Red_F_𝒢_empty_L :: "('f × 'l) set  ('f × 'l) set" where
  "Red_F_𝒢_empty_L N  (q  Q. Red_F_𝒢_empty_L_q q N)"

lemma all_lifted_red_crit:
  assumes q_in: "q  Q"
  shows "calculus Bot_FL Inf_FL (entails_𝒢_L_q q) (Red_I_𝒢_L_q q) (Red_F_𝒢_empty_L_q q)"
proof -
  interpret ord_q_lifting: tiebreaker_lifting Bot_FL Inf_FL Bot_G "entails_q q"
    "Inf_G_q q" "Red_I_q q" "Red_F_q q" "𝒢_F_L_q q" "𝒢_I_L_q q" "λg Cl Cl'. False"
    using ord_fam_lifted_q[OF q_in] .
  have "Red_I_𝒢_L_q q = ord_q_lifting.Red_I_𝒢"
    unfolding Red_I_𝒢_L_q_def ord_q_lifting.Red_I_𝒢_def by simp
  moreover have "Red_F_𝒢_empty_L_q q = ord_q_lifting.Red_F_𝒢"
    unfolding Red_F_𝒢_empty_L_q_def ord_q_lifting.Red_F_𝒢_def by simp
  ultimately show ?thesis
    using ord_q_lifting.calculus_axioms by argo
qed

lemma all_lifted_cons_rel:
  assumes q_in: "q  Q"
  shows "consequence_relation Bot_FL (entails_𝒢_L_q q)"
  using all_lifted_red_crit calculus_def q_in by blast

sublocale consequence_relation_family Bot_FL Q entails_𝒢_L_q
  using all_lifted_cons_rel by (simp add: consequence_relation_family.intro no_labels.Q_nonempty)

sublocale intersection_calculus Bot_FL Inf_FL Q entails_𝒢_L_q Red_I_𝒢_L_q Red_F_𝒢_empty_L_q
  using intersection_calculus.intro[OF consequence_relation_family_axioms]
  by (simp add: all_lifted_red_crit intersection_calculus_axioms_def no_labels.Q_nonempty)

lemma in_Inf_FL_imp_to_F_in_Inf_F: "ι  Inf_FL  to_F ι  Inf_F"
  by (simp add: Inf_FL_to_Inf_F to_F_def)

lemma in_Inf_from_imp_to_F_in_Inf_from: "ι  Inf_from N  to_F ι  no_labels.Inf_from (fst ` N)"
  unfolding Inf_from_def no_labels.Inf_from_def to_F_def by (auto intro: Inf_FL_to_Inf_F)

notation no_labels.entails_𝒢 (infix ⊨∩𝒢 50)

abbreviation entails_𝒢_L :: "('f × 'l) set  ('f × 'l) set  bool" (infix ⊨∩𝒢L 50) where
  "(⊨∩𝒢L)  entails"

lemmas entails_𝒢_L_def = entails_def

(* lem:labeled-consequence-intersection *)
lemma labeled_entailment_lifting: "NL1 ⊨∩𝒢L NL2  fst ` NL1 ⊨∩𝒢 fst ` NL2"
  unfolding no_labels.entails_𝒢_def entails_𝒢_L_def by force

lemma red_inf_impl: "ι  Red_I NL  to_F ι  no_labels.Red_I_𝒢 (fst ` NL)"
  unfolding no_labels.Red_I_𝒢_def Red_I_def
proof clarify
  fix X Xa q
  assume
    q_in: "q  Q" and
    i_in_inter: "ι  (q  Q. Red_I_𝒢_L_q q NL)"
  have i_in_q: "ι  Red_I_𝒢_L_q q NL" using q_in i_in_inter image_eqI by blast
  then have i_in: "ι  Inf_FL" unfolding Red_I_𝒢_L_q_def by blast
  have to_F_in: "to_F ι  Inf_F" unfolding to_F_def using Inf_FL_to_Inf_F[OF i_in] .
  have rephrase1: "(CLNL. 𝒢_F_q q (fst CL)) = ( (𝒢_F_q q ` fst ` NL))" by blast
  have rephrase2: "fst (concl_of ι) = concl_of (to_F ι)"
    unfolding concl_of_def to_F_def by simp
  have subs_red: "(𝒢_I_L_q q ι  None  the (𝒢_I_L_q q ι)  Red_I_q q (𝒢_Fset_L_q q NL))
     (𝒢_I_L_q q ι = None  𝒢_F_L_q q (concl_of ι)  𝒢_Fset_L_q q NL  Red_F_q q (𝒢_Fset_L_q q NL))"
    using i_in_q unfolding Red_I_𝒢_L_q_def by blast
  then have to_F_subs_red: "(𝒢_I_q q (to_F ι)  None 
      the (𝒢_I_q q (to_F ι))  Red_I_q q (no_labels.𝒢_Fset_q q (fst ` NL)))
     (𝒢_I_q q (to_F ι) = None 
      𝒢_F_q q (concl_of (to_F ι))
       no_labels.𝒢_Fset_q q (fst ` NL)  Red_F_q q (no_labels.𝒢_Fset_q q (fst ` NL)))"
    using rephrase1 rephrase2 by metis
  then show "to_F ι  no_labels.Red_I_𝒢_q q (fst ` NL)"
    using to_F_in unfolding no_labels.Red_I_𝒢_q_def by simp
qed

(* lem:labeled-saturation-intersection *)
lemma labeled_family_saturation_lifting: "saturated NL  no_labels.saturated (fst ` NL)"
  unfolding saturated_def no_labels.saturated_def Inf_from_def no_labels.Inf_from_def
proof clarify
  fix ιF
  assume
    labeled_sat: "{ι  Inf_FL. set (prems_of ι)  NL}  Red_I NL" and
    iF_in: "ιF  Inf_F" and
    iF_prems: "set (prems_of ιF)  fst ` NL"
  define Lli where "Lli i = (SOME x. ((prems_of ιF)!i,x)  NL)" for i
  have [simp]:"((prems_of ιF)!i,Lli i)  NL" if "i < length (prems_of ιF)" for i
    using that iF_prems nth_mem someI_ex unfolding Lli_def by (metis DomainE Domain_fst subset_eq)
  define Ll where "Ll = map Lli [0..<length (prems_of ιF)]"
  have Ll_length: "length Ll = length (prems_of ιF)" unfolding Ll_def by auto
  have subs_NL: "set (zip (prems_of ιF) Ll)  NL" unfolding Ll_def by (auto simp:in_set_zip)
  obtain L0 where L0: "Infer (zip (prems_of ιF) Ll) (concl_of ιF, L0)  Inf_FL"
    using Inf_F_to_Inf_FL[OF iF_in Ll_length] ..
  define ιFL where "ιFL = Infer (zip (prems_of ιF) Ll) (concl_of ιF, L0)"
  then have "set (prems_of ιFL)  NL" using subs_NL by simp
  then have "ιFL  {ι  Inf_FL. set (prems_of ι)  NL}" unfolding ιFL_def using L0 by blast
  then have "ιFL  Red_I NL" using labeled_sat by fast
  moreover have "ιF = to_F ιFL" unfolding to_F_def ιFL_def using Ll_length by (cases ιF) auto
  ultimately show "ιF  no_labels.Red_I_𝒢 (fst ` NL)"
    by (auto intro: red_inf_impl)
qed

(* thm:labeled-static-ref-compl-intersection *)
theorem labeled_static_ref:
  assumes calc: "statically_complete_calculus Bot_F Inf_F (⊨∩𝒢) no_labels.Red_I_𝒢
    no_labels.Red_F_𝒢_empty"
  shows "statically_complete_calculus Bot_FL Inf_FL (⊨∩𝒢L) Red_I Red_F"
proof
  fix Bl :: 'f × 'l and Nl :: ('f × 'l) set
  assume
    Bl_in: Bl  Bot_FL and
    Nl_sat: saturated Nl and
    Nl_entails_Bl: Nl ⊨∩𝒢L {Bl}
  define B where "B = fst Bl"
  have B_in: "B  Bot_F" using Bl_in B_def SigmaE by force
  define N where "N = fst ` Nl"
  have N_sat: "no_labels.saturated N"
    using N_def Nl_sat labeled_family_saturation_lifting by blast
  have N_entails_B: "N ⊨∩𝒢 {B}"
    using Nl_entails_Bl unfolding labeled_entailment_lifting N_def B_def by force
  have "B'  Bot_F. B'  N" using B_in N_sat N_entails_B
      calc[unfolded statically_complete_calculus_def
        statically_complete_calculus_axioms_def]
    by blast
  then obtain B' where in_Bot: "B'  Bot_F" and in_N: "B'  N" by force
  then have "B'  fst ` Bot_FL" by fastforce
  obtain Bl' where in_Nl: "Bl'  Nl" and fst_Bl': "fst Bl' = B'"
    using in_N unfolding N_def by blast
  have "Bl'  Bot_FL" using fst_Bl' in_Bot vimage_fst by fastforce
  then show Bl'Bot_FL. Bl'  Nl using in_Nl by blast
qed

end

end