Theory Grover
section ‹Grover's algorithm›
theory Grover
imports Partial_State Gates Quantum_Hoare
begin
subsection ‹Basic definitions›
locale grover_state =
fixes n :: nat
and f :: "nat ⇒ bool"
assumes n: "n > 1"
and dimM: "card {i. i < (2::nat) ^ n ∧ f i} > 0"
"card {i. i < (2::nat) ^ n ∧ f i} < (2::nat) ^ n"
begin
definition N where
"N = (2::nat) ^ n"
definition M where
"M = card {i. i < N ∧ f i}"
lemma N_ge_0 [simp]: "0 < N" by (simp add: N_def)
lemma M_ge_0 [simp]: "0 < M" by (simp add: M_def dimM N_def)
lemma M_neq_0 [simp]: "M ≠ 0" by simp
lemma M_le_N [simp]: "M < N" by (simp add: M_def dimM N_def)
lemma M_not_ge_N [simp]: "¬ M ≥ N" using M_le_N by arith
definition ψ :: "complex vec" where
"ψ = Matrix.vec N (λi. 1 / sqrt N)"
lemma ψ_dim [simp]:
"ψ ∈ carrier_vec N"
"dim_vec ψ = N"
by (simp add: ψ_def)+
lemma ψ_eval:
"i < N ⟹ ψ $ i = 1 / sqrt N"
by (simp add: ψ_def)
lemma ψ_inner:
"inner_prod ψ ψ = 1"
apply (simp add: ψ_eval scalar_prod_def)
by (smt of_nat_less_0_iff of_real_mult of_real_of_nat_eq real_sqrt_mult_self)
lemma ψ_norm:
"vec_norm ψ = 1"
by (simp add: ψ_eval vec_norm_def scalar_prod_def)
definition α :: "complex vec" where
"α = Matrix.vec N (λi. if f i then 0 else 1 / sqrt (N - M))"
lemma α_dim [simp]:
"α ∈ carrier_vec N"
"dim_vec α = N"
by (simp add: α_def)+
lemma α_eval:
"i < N ⟹ α $ i = (if f i then 0 else 1 / sqrt (N - M))"
by (simp add: α_def)
lemma α_inner:
"inner_prod α α = 1"
apply (simp add: scalar_prod_def α_eval)
apply (subst sum.mono_neutral_cong_right[of "{0..<N}" "{0..<N}-{i. i < N ∧ f i}"])
apply auto
apply (subgoal_tac "card ({0..<N} - {i. i < N ∧ f i}) = N - M")
subgoal by (metis of_nat_0_le_iff of_real_of_nat_eq of_real_power power2_eq_square real_sqrt_pow2)
unfolding N_def M_def
by (metis (no_types, lifting) atLeastLessThan_iff card.infinite card_Diff_subset card_atLeastLessThan diff_zero dimM(1) mem_Collect_eq neq0_conv subsetI zero_order(1))
definition β :: "complex vec" where
"β = Matrix.vec N (λi. if f i then 1 / sqrt M else 0)"
lemma β_dim [simp]:
"β ∈ carrier_vec N"
"dim_vec β = N"
by (simp add: β_def)+
lemma β_eval:
"i < N ⟹ β $ i = (if f i then 1 / sqrt M else 0)"
by (simp add: β_def)
lemma β_inner:
"inner_prod β β = 1"
apply (simp add: scalar_prod_def β_eval)
apply (subst sum.mono_neutral_cong_right[of "{0..<N}" "{i. i < N ∧ f i}"])
apply auto
apply (fold M_def)
by (metis of_nat_0_le_iff of_real_of_nat_eq of_real_power power2_eq_square real_sqrt_pow2)
lemma alpha_beta_orth:
"inner_prod α β = 0"
unfolding α_def β_def by (simp add: scalar_prod_def)
lemma beta_alpha_orth:
"inner_prod β α = 0"
unfolding α_def β_def by (simp add: scalar_prod_def)
definition θ :: real where
"θ = 2 * arccos (sqrt ((N - M) / N))"
lemma cos_theta_div_2:
"cos (θ / 2) = sqrt ((N - M) / N)"
proof -
have "θ / 2 = arccos (sqrt ((N - M) / N))" using θ_def by simp
then show "cos (θ / 2) = sqrt ((N - M) / N)"
by (simp add: cos_arccos_abs)
qed
lemma sin_theta_div_2:
"sin (θ / 2) = sqrt (M / N)"
proof -
have a: "θ / 2 = arccos (sqrt ((N - M) / N))" using θ_def by simp
have N: "N > 0" using N_def by auto
have M: "M < N" using M_def dimM N_def by auto
then show "sin (θ / 2) = sqrt (M / N)"
unfolding a
apply (simp add: sin_arccos_abs)
proof -
have eq: "real (N - M) = real N - real M" using N M
using M_not_ge_N nat_le_linear of_nat_diff by blast
have "1 - real (N - M) / real N = (real N - (real N - real M)) / real N"
unfolding eq using N
by (metis diff_divide_distrib divide_self_if eq gr_implies_not0 of_nat_0_eq_iff)
then show "1 - real (N - M) / real N = real M / real N" by auto
qed
qed
lemma θ_neq_0:
"θ ≠ 0"
proof -
{
assume "θ = 0"
then have "θ / 2 = 0" by auto
then have "sin (θ / 2) = 0" by auto
}
note z = this
have "sin (θ / 2) = sqrt (M / N)" using sin_theta_div_2 by auto
moreover have "M > 0" unfolding M_def N_def using dimM by auto
ultimately have "sin (θ / 2) > 0" by auto
with z show ?thesis by auto
qed
abbreviation ccos where "ccos φ ≡ complex_of_real (cos φ)"
abbreviation csin where "csin φ ≡ complex_of_real (sin φ)"
lemma ψ_eq:
"ψ = ccos (θ / 2) ⋅⇩v α + csin (θ / 2) ⋅⇩v β"
apply (simp add: cos_theta_div_2 sin_theta_div_2)
apply (rule eq_vecI)
by (auto simp add: α_def β_def ψ_def real_sqrt_divide)
lemma psi_inner_alpha:
"inner_prod ψ α = ccos (θ / 2)"
unfolding ψ_eq
proof -
have "inner_prod (ccos (θ / 2) ⋅⇩v α) α = ccos (θ / 2)"
apply (subst inner_prod_smult_right[of _ N])
using α_dim α_inner by auto
moreover have "inner_prod (csin (θ / 2) ⋅⇩v β) α = 0"
apply (subst inner_prod_smult_right[of _ N])
using α_dim β_dim beta_alpha_orth by auto
ultimately show "inner_prod (ccos (θ / 2) ⋅⇩v α + csin (θ / 2) ⋅⇩v β) α = ccos (θ / 2)"
apply (subst inner_prod_distrib_left[of _ N])
using α_dim β_dim by auto
qed
lemma psi_inner_beta:
"inner_prod ψ β = csin (θ / 2)"
unfolding ψ_eq
proof -
have "inner_prod (ccos (θ / 2) ⋅⇩v α) β = 0"
apply (subst inner_prod_smult_right[of _ N])
using α_dim β_dim alpha_beta_orth by auto
moreover have "inner_prod (csin (θ / 2) ⋅⇩v β) β = csin (θ / 2)"
apply (subst inner_prod_smult_right[of _ N])
using β_dim β_inner by auto
ultimately show "inner_prod (ccos (θ / 2) ⋅⇩v α + csin (θ / 2) ⋅⇩v β) β = csin (θ / 2)"
apply (subst inner_prod_distrib_left[of _ N])
using α_dim β_dim by auto
qed
definition alpha_l :: "nat ⇒ complex" where
"alpha_l l = ccos ((l + 1 / 2) * θ)"
lemma alpha_l_real:
"alpha_l l ∈ Reals"
unfolding alpha_l_def by auto
lemma cnj_alpha_l:
"conjugate (alpha_l l) = alpha_l l"
using alpha_l_real Reals_cnj_iff by auto
definition beta_l :: "nat ⇒ complex" where
"beta_l l = csin ((l + 1 / 2) * θ)"
lemma beta_l_real:
"beta_l l ∈ Reals"
unfolding beta_l_def by auto
lemma cnj_beta_l:
"conjugate (beta_l l) = beta_l l"
using beta_l_real Reals_cnj_iff by auto
lemma csin_ccos_squared_add:
"ccos (a::real) * ccos a + csin a * csin a = 1"
by (smt cos_diff cos_zero of_real_add of_real_hom.hom_one of_real_mult)
lemma alpha_l_beta_l_add_norm:
"alpha_l l * alpha_l l + beta_l l * beta_l l = 1"
using alpha_l_def beta_l_def csin_ccos_squared_add by auto
definition psi_l where
"psi_l l = (alpha_l l) ⋅⇩v α + (beta_l l) ⋅⇩v β"
lemma psi_l_dim:
"psi_l l ∈ carrier_vec N"
unfolding psi_l_def α_def β_def by auto
lemma inner_psi_l:
"inner_prod (psi_l l) (psi_l l) = 1"
proof -
have eq0: "inner_prod (psi_l l) (psi_l l)
= inner_prod ((alpha_l l) ⋅⇩v α) (psi_l l) + inner_prod ((beta_l l) ⋅⇩v β) (psi_l l)"
unfolding psi_l_def
apply (subst inner_prod_distrib_left)
using α_def β_def by auto
have "inner_prod ((alpha_l l) ⋅⇩v α) (psi_l l)
= inner_prod ((alpha_l l) ⋅⇩v α) ((alpha_l l) ⋅⇩v α) + inner_prod ((alpha_l l) ⋅⇩v α) ((beta_l l) ⋅⇩v β)"
unfolding psi_l_def
apply (subst inner_prod_distrib_right)
using α_def β_def by auto
also have "… = (conjugate (alpha_l l)) * (alpha_l l) * inner_prod α α
+ (conjugate (alpha_l l)) * (beta_l l) * inner_prod α β"
apply (subst (1 2) inner_prod_smult_left_right) using α_def β_def by auto
also have "… = conjugate (alpha_l l) * (alpha_l l) "
by (simp add: alpha_beta_orth α_inner)
also have "… = (alpha_l l) * (alpha_l l)" using cnj_alpha_l by simp
finally have eq1: "inner_prod (alpha_l l ⋅⇩v α) (psi_l l) = alpha_l l * alpha_l l".
have "inner_prod ((beta_l l) ⋅⇩v β) (psi_l l)
= inner_prod ((beta_l l) ⋅⇩v β) ((alpha_l l) ⋅⇩v α) + inner_prod ((beta_l l) ⋅⇩v β) ((beta_l l) ⋅⇩v β)"
unfolding psi_l_def
apply (subst inner_prod_distrib_right)
using α_def β_def by auto
also have "… = (conjugate (beta_l l)) * (alpha_l l) * inner_prod β α
+ (conjugate (beta_l l)) * (beta_l l) * inner_prod β β"
apply (subst (1 2) inner_prod_smult_left_right) using α_def β_def by auto
also have "… = (conjugate (beta_l l)) * (beta_l l)" using β_inner beta_alpha_orth by auto
also have "… = (beta_l l) * (beta_l l)" using cnj_beta_l by auto
finally have eq2: "inner_prod (beta_l l ⋅⇩v β) (psi_l l) = beta_l l * beta_l l".
show ?thesis unfolding eq0 eq1 eq2 using alpha_l_beta_l_add_norm by auto
qed
abbreviation proj :: "complex vec ⇒ complex mat" where
"proj v ≡ outer_prod v v"
definition psi'_l where
"psi'_l l = (alpha_l l) ⋅⇩v α - (beta_l l) ⋅⇩v β"
lemma psi'_l_dim:
"psi'_l l ∈ carrier_vec N"
unfolding psi'_l_def α_def β_def by auto
definition proj_psi'_l where
"proj_psi'_l l = proj (psi'_l l)"
lemma proj_psi'_dim:
"proj_psi'_l l ∈ carrier_mat N N"
unfolding proj_psi'_l_def using psi'_l_dim by auto
lemma psi_inner_psi'_l:
"inner_prod ψ (psi'_l l) = (alpha_l l * ccos (θ / 2) - beta_l l * csin (θ / 2))"
proof -
have "inner_prod ψ (psi'_l l) = inner_prod ψ (alpha_l l ⋅⇩v α) - inner_prod ψ (beta_l l ⋅⇩v β)"
unfolding psi'_l_def apply (subst inner_prod_minus_distrib_right[of _ N]) by auto
also have "… = alpha_l l * (inner_prod ψ α) - beta_l l * (inner_prod ψ β)"
using ψ_dim α_dim β_dim by auto
also have "… = alpha_l l * (ccos (θ / 2)) - beta_l l * (csin (θ / 2))"
using psi_inner_alpha psi_inner_beta by auto
finally show ?thesis by auto
qed
lemma double_ccos_square:
"2 * ccos (a::real) * ccos a = ccos (2 * a) + 1"
proof -
have eq: "ccos (2 * a) = ccos a * ccos a - csin a * csin a"
using cos_add[of a a] by auto
have "csin a * csin a = 1 - ccos a * ccos a"
using csin_ccos_squared_add[of a]
by (metis add_diff_cancel_left')
then have "ccos a * ccos a - csin a * csin a = 2 * ccos a * ccos a - 1"
by simp
with eq show ?thesis by simp
qed
lemma double_csin_square:
"2 * csin (a::real) * csin a = 1 - ccos (2 * a)"
proof -
have eq: "ccos (2 * a) = ccos a * ccos a - csin a * csin a"
using cos_add[of a a] by auto
have "ccos a * ccos a = 1 - csin a * csin a"
using csin_ccos_squared_add[of a]
by (auto intro: add_implies_diff)
then have "ccos a * ccos a - csin a * csin a = 1 - 2 * csin (a::real) * csin a"
by simp
with eq show ?thesis by simp
qed
lemma csin_double:
"2 * csin (a::real) * ccos a = csin(2 * a)"
using sin_add[of a a] by simp
lemma ccos_add:
"ccos (x + y) = ccos x * ccos y - csin x * csin y"
using cos_add[of x y] by simp
lemma alpha_l_Suc_l_derive:
"2 * (alpha_l l * ccos (θ / 2) - beta_l l * csin (θ / 2)) * ccos (θ / 2) - alpha_l l = alpha_l (l + 1)"
(is "?lhs = ?rhs")
proof -
have "2 * ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) * ccos (θ / 2)
= (alpha_l l) * (2 * ccos (θ / 2)* ccos (θ / 2)) - (beta_l l) * (2 * csin (θ / 2) * ccos (θ / 2))"
by (simp add: left_diff_distrib)
also have "… = (alpha_l l) * (ccos (θ) + 1) - (beta_l l) * csin θ"
using double_ccos_square csin_double by auto
finally have "2 * ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) * ccos (θ / 2)
= (alpha_l l) * (ccos (θ) + 1) - (beta_l l) * csin θ".
then have "?lhs = (alpha_l l) * ccos (θ) - (beta_l l) * csin θ" by (simp add: algebra_simps)
also have "… = (alpha_l (l + 1))"
unfolding alpha_l_def beta_l_def
apply (subst ccos_add[of "(real l + 1 / 2) * θ" "θ", symmetric])
by (simp add: algebra_simps)
finally show ?thesis by auto
qed
lemma csin_add:
"csin (x + y) = ccos x * csin y + csin x * ccos y"
using sin_add[of x y] by simp
lemma beta_l_Suc_l_derive:
"2 * (alpha_l l * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) * csin (θ / 2) + beta_l l = beta_l (l + 1)"
(is "?lhs = ?rhs")
proof -
have "2 * ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) * csin (θ / 2)
= (alpha_l l) * (2 * csin (θ / 2)* ccos (θ / 2)) - (beta_l l) * (2 * csin (θ / 2) * csin (θ / 2))"
by (simp add: left_diff_distrib)
also have "… = (alpha_l l) * (csin θ) - (beta_l l) * (1 - ccos (θ))"
using double_csin_square csin_double by auto
finally have "2 * ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) * csin (θ / 2)
= (alpha_l l) * (csin θ) - (beta_l l) * (1 - ccos (θ))".
then have "?lhs = (alpha_l l) * (csin θ) + (beta_l l) * ccos θ" by (simp add: algebra_simps)
also have "… = (beta_l (l + 1))"
unfolding alpha_l_def beta_l_def
apply (subst csin_add[of "(real l + 1 / 2) * θ" "θ", symmetric])
by (simp add: algebra_simps)
finally show ?thesis by auto
qed
lemma psi_l_Suc_l_derive:
"2 * (alpha_l l * ccos (θ / 2) - beta_l l * csin (θ / 2)) ⋅⇩v ψ - psi'_l l = psi_l (l + 1)"
(is "?lhs = ?rhs")
proof -
let ?l = "2 * ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2))"
have "?l ⋅⇩v ψ = ?l ⋅⇩v (ccos (θ / 2) ⋅⇩v α + csin (θ / 2) ⋅⇩v β)" unfolding ψ_eq by auto
also have "… = ?l ⋅⇩v (ccos (θ / 2) ⋅⇩v α) + ?l ⋅⇩v (csin (θ / 2) ⋅⇩v β)"
apply (subst smult_add_distrib_vec[of _ N]) using α_dim β_dim by auto
also have "… = (?l * ccos (θ / 2)) ⋅⇩v α + (?l * csin (θ / 2)) ⋅⇩v β" by auto
finally have "?l ⋅⇩v ψ = (?l * ccos (θ / 2)) ⋅⇩v α + (?l * csin (θ / 2)) ⋅⇩v β".
then have "?l ⋅⇩v ψ - (psi'_l l) = ((?l * ccos (θ / 2)) ⋅⇩v α - (alpha_l l) ⋅⇩v α) + ((?l * csin (θ / 2)) ⋅⇩v β + (beta_l l) ⋅⇩v β)"
unfolding psi'_l_def by auto
also have "… = (?l * ccos (θ / 2) - alpha_l l) ⋅⇩v α + (?l * csin (θ / 2) + beta_l l) ⋅⇩v β"
apply (subst minus_smult_vec_distrib) apply (subst add_smult_distrib_vec) by auto
also have "… = (alpha_l (l + 1)) ⋅⇩v α + (beta_l (l + 1)) ⋅⇩v β"
using alpha_l_Suc_l_derive beta_l_Suc_l_derive by auto
finally have "?l ⋅⇩v ψ - (psi'_l l) = (alpha_l (l + 1)) ⋅⇩v α + (beta_l (l + 1)) ⋅⇩v β".
then show ?thesis unfolding psi_l_def by auto
qed
subsection ‹Grover operator›
text ‹Oracle O›
definition proj_O :: "complex mat" where
"proj_O = mat N N (λ(i, j). if i = j then (if f i then 1 else 0) else 0)"
lemma proj_O_dim:
"proj_O ∈ carrier_mat N N"
unfolding proj_O_def by auto
lemma proj_O_mult_alpha:
"proj_O *⇩v α = zero_vec N"
by (auto simp add: proj_O_def α_def scalar_prod_def)
lemma proj_O_mult_beta:
"proj_O *⇩v β = β"
by (auto simp add: proj_O_def β_def scalar_prod_def sum_only_one_neq_0)
definition mat_O :: "complex mat" where
"mat_O = mat N N (λ(i,j). if i = j then (if f i then -1 else 1) else 0)"
lemma mat_O_dim:
"mat_O ∈ carrier_mat N N"
unfolding mat_O_def by auto
lemma mat_O_mult_alpha:
"mat_O *⇩v α = α"
by (auto simp add: mat_O_def α_def scalar_prod_def sum_only_one_neq_0)
lemma mat_O_mult_beta:
"mat_O *⇩v β = - β"
by (auto simp add: mat_O_def β_def scalar_prod_def sum_only_one_neq_0)
lemma hermitian_mat_O:
"hermitian mat_O"
by (auto simp add: hermitian_def mat_O_def adjoint_eval)
lemma unitary_mat_O:
"unitary mat_O"
proof -
have "mat_O ∈ carrier_mat N N" unfolding mat_O_def by auto
moreover have "mat_O * adjoint mat_O = mat_O * mat_O" using hermitian_mat_O unfolding hermitian_def by auto
moreover have "mat_O * mat_O = 1⇩m N"
apply (rule eq_matI)
unfolding mat_O_def
apply (simp add: scalar_prod_def)
subgoal for i j apply (rule)
subgoal apply (subst sum_only_one_neq_0[of "{0..<N}" "j"]) by auto
apply (subst sum_only_one_neq_0[of "{0..<N}" "j"]) by auto
by auto
ultimately show ?thesis unfolding unitary_def inverts_mat_def by auto
qed
definition mat_Ph :: "complex mat" where
"mat_Ph = mat N N (λ(i,j). if i = j then if i = 0 then 1 else -1 else 0)"
lemma hermitian_mat_Ph:
"hermitian mat_Ph"
unfolding hermitian_def mat_Ph_def
apply (rule eq_matI)
by (auto simp add: adjoint_eval)
lemma unitary_mat_Ph:
"unitary mat_Ph"
proof -
have "mat_Ph ∈ carrier_mat N N" unfolding mat_Ph_def by auto
moreover have "mat_Ph * adjoint mat_Ph = mat_Ph * mat_Ph" using hermitian_mat_Ph unfolding hermitian_def by auto
moreover have "mat_Ph * mat_Ph = 1⇩m N"
apply (rule eq_matI)
unfolding mat_Ph_def
apply (simp add: scalar_prod_def)
subgoal for i j apply (rule)
subgoal apply (subst sum_only_one_neq_0[of "{0..<N}" "0"]) by auto
apply (subst sum_only_one_neq_0[of "{0..<N}" "j"]) by auto
by auto
ultimately show ?thesis unfolding unitary_def inverts_mat_def by auto
qed
definition mat_G' :: "complex mat" where
"mat_G' = mat N N (λ(i,j). if i = j then 2 / N - 1 else 2 / N)"
text ‹Geometrically, the Grover operator G is a rotation›
definition mat_G :: "complex mat" where
"mat_G = mat_G' * mat_O"
end
subsection ‹State of Grover's algorithm›
text ‹The dimensions are [2, 2, ..., 2, n]. We work with a very special
case as in the paper›
locale grover_state_sig = grover_state + state_sig +
fixes R :: nat
fixes K :: nat
assumes dims_def: "dims = replicate n 2 @ [K]"
assumes R: "R = pi / (2 * θ) - 1 / 2"
assumes K: "K > R"
begin
lemma K_gt_0:
"K > 0"
using K by auto
text ‹Bits q0 to q\_(n-1)›
definition vars1 :: "nat set" where
"vars1 = {0 ..< n}"
text ‹Bit r›
definition vars2 :: "nat set" where
"vars2 = {n}"
lemma length_dims:
"length dims = n + 1"
unfolding dims_def by auto
lemma dims_nth_lt_n:
"l < n ⟹ nth dims l = 2"
unfolding dims_def by (simp add: nth_append)
lemma nths_Suc_n_dims:
"nths dims {0..<(Suc n)} = dims"
using length_dims nths_upt_eq_take
by (metis add_Suc_right add_Suc_shift lessThan_atLeast0 less_add_eq_less less_numeral_extra(4)
not_less plus_1_eq_Suc take_all)
interpretation ps2_P: partial_state2 dims vars1 vars2
apply unfold_locales unfolding vars1_def vars2_def by auto
interpretation ps_P: partial_state ps2_P.dims0 ps2_P.vars1'.
abbreviation tensor_P where
"tensor_P A B ≡ ps2_P.ptensor_mat A B"
lemma tensor_P_dim:
"tensor_P A B ∈ carrier_mat d d"
proof -
have "ps2_P.d0 = prod_list (nths dims ({0..<n} ∪ {n}))" unfolding ps2_P.d0_def ps2_P.dims0_def ps2_P.vars0_def
by (simp add: vars1_def vars2_def)
also have "… = prod_list (nths dims ({0..<Suc n}))"
apply (subgoal_tac "{0..<n} ∪ {n} = {0..<(Suc n)}") by auto
also have "… = prod_list dims" using nths_Suc_n_dims by auto
also have "… = d" unfolding d_def by auto
finally show ?thesis using ps2_P.ptensor_mat_carrier by auto
qed
lemma dims_nths_le_n:
assumes "l ≤ n"
shows "nths dims {0..<l} = replicate l 2"
proof (rule nth_equalityI, auto)
have "l ≤ n ⟹ (i < Suc n ∧ i < l) = (i < l)" for i
using less_trans by fastforce
then show l: "length (nths dims {0..<l}) = l" using assms
by (auto simp add: length_nths length_dims)
have llt: "l < length dims" using length_dims assms by auto
have v1: "⋀i. i < l ⟹ {a. a < i ∧ a ∈ {0..<l}} = {0..<i}" unfolding vars1_def by auto
then have "⋀i. i < l ⟹ card {j. j < i ∧ j ∈ {0..<l}} = i" by auto
then have "nths dims {0..<l} ! i = dims ! i" if "i < l" for i
using nth_nths_card[of i dims "{0..<l}"] that llt by auto
moreover have "dims ! i = replicate n 2 ! i" if "i < n" for i unfolding dims_def
by (auto simp add: nth_append that)
moreover have "replicate n 2 ! i = replicate l 2 ! i" if "i < l" for i using assms that by auto
ultimately show "nths dims {0..<l} ! i = replicate l 2 ! i" if "i < length (nths dims {0..<l})" for i
using l that assms by auto
qed
lemma dims_nths_one_lt_n:
assumes "l < n"
shows "nths dims {l} = [2]"
proof -
have "{i. i < length dims ∧ i ∈ {l}} = {l}" using assms length_dims by auto
then have "nths dims {l} = [dims ! l]" using nths_only_one[of dims "{l}" l] by auto
moreover have "dims ! l = 2" unfolding dims_def using assms by (simp add: nth_append)
ultimately show ?thesis by auto
qed
lemma dims_vars1:
"nths dims vars1 = replicate n 2"
proof (rule nth_equalityI, auto)
show l: "length (nths dims vars1) = n"
apply (auto simp add: length_nths vars1_def length_dims)
by (metis (no_types, lifting) Collect_cong Suc_lessD card_Collect_less_nat not_less_eq)
have v1: "⋀i. i < n ⟹ {a. a < i ∧ a ∈ vars1} = {0..<i}" unfolding vars1_def by auto
then have "⋀i. i < n ⟹ card {j. j < i ∧ j ∈ vars1} = i" by auto
then have "nths dims vars1 ! i = dims ! i" if "i < n" for i
using nth_nths_card[of i dims vars1] that length_dims vars1_def by auto
moreover have "dims ! i = replicate n 2 ! i" if "i < n" for i unfolding dims_def
by (simp add: nth_append that)
ultimately show "nths dims vars1 ! i = replicate n 2 ! i" if "i < length (nths dims vars1)" for i
using l that by auto
qed
lemma nths_rep_2_n:
"nths (replicate n 2) {n} = []"
by (metis (no_types, lifting) Collect_empty_eq card.empty length_0_conv length_replicate less_Suc_eq not_less_eq nths_replicate singletonD)
lemma dims_vars2:
"nths dims vars2 = [K]"
unfolding dims_def vars2_def
apply (subst nths_append)
apply (subst nths_rep_2_n)
by simp
lemma d_vars1:
"prod_list (nths dims vars1) = N"
proof -
have eq: "{0..<n} = {..<n}" by auto
have "nths (replicate n 2 @ [K]) {0..<n} = (replicate n 2)"
apply (subst eq)
using nths_upt_eq_take by simp
then show ?thesis unfolding dims_def vars1_def N_def by auto
qed
lemma ps2_P_dims0:
"ps2_P.dims0 = dims"
proof -
have "vars1 ∪ vars2 = {0..<Suc n}" unfolding vars1_def vars2_def by auto
then have dims: "nths dims (vars1 ∪ vars2) = dims" unfolding vars1_def vars2_def using nths_Suc_n_dims by auto
then show ?thesis unfolding ps2_P.dims0_def ps2_P.vars0_def apply (subst dims) by auto
qed
lemma ps2_P_vars1':
"ps2_P.vars1' = vars1"
unfolding ps2_P.vars1'_def ps2_P.vars0_def
proof -
have eq: "vars1 ∪ vars2 = {0..<(Suc n)}" unfolding vars1_def vars2_def by auto
have "x < Suc n ⟹ {i ∈ {0..<Suc n}. i < x} = {i. i < x}" for x by auto
then have "x < Suc n ⟹ ind_in_set {0..<(Suc n)} x = x" for x unfolding ind_in_set_def by auto
then have "x ∈ vars1 ⟹ ind_in_set {0..<(Suc n)} x = x" for x unfolding vars1_def by auto
then have "ind_in_set {0..<(Suc n)} ` vars1 = vars1" by force
with eq show "ind_in_set (vars1 ∪ vars2) ` vars1 = vars1" by auto
qed
lemma ps2_P_d0:
"ps2_P.d0 = d"
unfolding ps2_P.d0_def using ps2_P_dims0 d_def by auto
lemma ps2_P_d1:
"ps2_P.d1 = N"
unfolding ps2_P.d1_def ps2_P.dims1_def by (simp add: dims_vars1 N_def)
lemma ps2_P_d2:
"ps2_P.d2 = K"
unfolding ps2_P.d2_def ps2_P.dims2_def by (simp add: dims_vars2)
lemma ps_P_d:
"ps_P.d = d"
unfolding ps_P.d_def ps2_P_dims0 by auto
lemma ps_P_d1:
"ps_P.d1 = N"
unfolding ps_P.d1_def ps_P.dims1_def ps2_P.nths_vars1' using ps2_P_d1 unfolding ps2_P.d1_def by auto
lemma ps_P_d2:
"ps_P.d2 = K"
unfolding ps_P.d2_def ps_P.dims2_def ps2_P.nths_vars2' using ps2_P_d2 unfolding ps2_P.d2_def by auto
lemma nths_uminus_vars1:
"nths dims (- vars1) = nths dims vars2"
using ps2_P.nths_vars2' unfolding ps2_P_dims0 ps2_P_vars1' ps2_P.dims2_def by auto
lemma tensor_P_mult:
assumes "m1 ∈ carrier_mat (2^n) (2^n)"
and "m2 ∈ carrier_mat (2^n) (2^n)"
and "m3 ∈ carrier_mat K K"
and "m4 ∈ carrier_mat K K"
shows "(tensor_P m1 m3) * (tensor_P m2 m4) = tensor_P (m1 * m2) (m3 * m4)"
proof -
have eq:"{0..<n} = {..<n}" by auto
have "(nths dims vars1) = replicate n 2"
unfolding dims_def vars1_def apply (subst eq)
by (simp add: nths_upt_eq_take[of "(replicate n 2 @ [K])" n])
have "ps2_P.d1 = 2^n" unfolding ps2_P.d1_def ps2_P.dims1_def using d_vars1 N_def by auto
moreover have "ps2_P.d2 = K" unfolding ps2_P.d2_def ps2_P.dims2_def using dims_vars2 by auto
ultimately show ?thesis apply (subst ps2_P.ptensor_mat_mult) using assms by auto
qed
lemma mat_ext_vars1:
shows "mat_extension dims vars1 A = tensor_P A (1⇩m K)"
unfolding Utrans_P_def ps2_P.ptensor_mat_def partial_state.mat_extension_def
partial_state.d2_def partial_state.dims2_def ps2_P.nths_vars2'[simplified ps2_P_dims0 ps2_P_vars1']
using ps2_P_d2 unfolding ps2_P.d2_def using ps2_P_dims0 ps2_P_vars1' by auto
lemma Utrans_P_is_tensor_P1:
"Utrans_P vars1 A = Utrans (tensor_P A (1⇩m K))"
unfolding Utrans_P_def ps2_P.ptensor_mat_def partial_state.mat_extension_def
partial_state.d2_def partial_state.dims2_def ps2_P.nths_vars2'[simplified ps2_P_dims0 ps2_P_vars1']
using ps2_P_d2 unfolding ps2_P.d2_def using ps2_P_dims0 ps2_P_vars1' by auto
lemma nths_dims_uminus_vars2:
"nths dims (-vars2) = nths dims vars1"
proof -
have "nths dims (-vars2) = nths dims ({0..<length dims} - vars2)"
using nths_minus_eq by auto
also have "… = nths dims vars1" unfolding vars1_def vars2_def length_dims
apply (subgoal_tac "{0..<n + 1} - {n} = {0..<n}") by auto
finally show ?thesis by auto
qed
lemma mat_ext_vars2:
assumes "A ∈ carrier_mat K K"
shows "mat_extension dims vars2 A = tensor_P (1⇩m N) A"
proof -
have "mat_extension dims vars2 A = tensor_mat dims vars2 A (1⇩m N)"
unfolding Utrans_P_def partial_state.mat_extension_def
partial_state.d2_def partial_state.dims2_def
nths_dims_uminus_vars2 dims_vars1 N_def by auto
also have "… = tensor_mat dims vars1 (1⇩m N) A"
apply (subst tensor_mat_comm[of vars1 vars2])
subgoal unfolding vars1_def vars2_def by auto
subgoal unfolding length_dims vars1_def vars2_def by auto
subgoal unfolding dims_vars1 N_def by auto
unfolding dims_vars2 using assms by auto
finally show "mat_extension dims vars2 A = tensor_P (1⇩m N) A"
unfolding ps2_P.ptensor_mat_def ps2_P_dims0 ps2_P_vars1' by auto
qed
lemma Utrans_P_is_tensor_P2:
assumes "A ∈ carrier_mat K K"
shows "Utrans_P vars2 A = Utrans (tensor_P (1⇩m N) A)"
unfolding Utrans_P_def using mat_ext_vars2 assms by auto
subsection ‹Grover's algorithm›
text ‹Apply hadamard operator to first n variables›
definition hadamard_on_i :: "nat ⇒ complex mat" where
"hadamard_on_i i = pmat_extension dims {i} (vars1 - {i}) hadamard"
declare hadamard_on_i_def [simp]
fun hadamard_n :: "nat ⇒ com" where
"hadamard_n 0 = SKIP"
| "hadamard_n (Suc i) = hadamard_n i ;; Utrans (tensor_P (hadamard_on_i i) (1⇩m K))"
text ‹Body of the loop›
definition D :: com where
"D = Utrans_P vars1 mat_O ;;
hadamard_n n ;;
Utrans_P vars1 mat_Ph ;;
hadamard_n n ;;
Utrans_P vars2 (mat_incr K)"
lemma unitary_ex_mat_O:
"unitary (tensor_P mat_O (1⇩m K))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_unitary)
subgoal using ps_P_d1 mat_O_def by auto
subgoal using ps_P_d2 by auto
subgoal using unitary_mat_O by auto
using unitary_one by auto
lemma unitary_ex_mat_Ph:
"unitary (tensor_P mat_Ph (1⇩m K))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_unitary)
subgoal using ps_P_d1 mat_Ph_def by auto
subgoal using ps_P_d2 by auto
subgoal using unitary_mat_Ph by auto
using unitary_one by auto
lemma unitary_hadamard_on_i:
assumes "k < n"
shows "unitary (hadamard_on_i k)"
proof -
interpret st2: partial_state2 dims "{k}" "vars1 - {k}"
apply unfold_locales by auto
show ?thesis unfolding hadamard_on_i_def st2.pmat_extension_def st2.ptensor_mat_def
apply (rule partial_state.tensor_mat_unitary)
subgoal unfolding partial_state.d1_def partial_state.dims1_def st2.nths_vars1' st2.dims1_def
using dims_nths_one_lt_n assms hadamard_dim by auto
subgoal unfolding st2.d2_def st2.dims2_def partial_state.d2_def partial_state.dims2_def st2.nths_vars2' st2.dims1_def
by auto
subgoal using unitary_hadamard by auto
subgoal using unitary_one by auto
done
qed
lemma unitary_exhadamard_on_i:
assumes "k < n"
shows "unitary (tensor_P (hadamard_on_i k) (1⇩m K))"
proof -
interpret st2: partial_state2 dims "{k}" "vars1 - {k}"
apply unfold_locales by auto
have d1: "st2.d0 = partial_state.d1 ps2_P.dims0 ps2_P.vars1'"
unfolding partial_state.d1_def partial_state.dims1_def ps2_P.nths_vars1' ps2_P.dims1_def
st2.d0_def st2.dims0_def st2.vars0_def using assms
apply (subgoal_tac "{k} ∪ (vars1 - {k}) = vars1") apply simp
unfolding vars1_def by auto
show ?thesis
unfolding ps2_P.ptensor_mat_def
apply (rule partial_state.tensor_mat_unitary)
subgoal unfolding hadamard_on_i_def st2.pmat_extension_def
using st2.ptensor_mat_carrier[of hadamard "1⇩m st2.d2"]
using d1 by auto
subgoal unfolding partial_state.d2_def partial_state.dims2_def ps2_P.nths_vars2' ps2_P.dims2_def dims_vars2 by auto
using unitary_hadamard_on_i unitary_one assms by auto
qed
lemma hadamard_on_i_dim:
assumes "k < n"
shows "hadamard_on_i k ∈ carrier_mat N N"
proof -
interpret st: partial_state2 dims "{k}" "(vars1 - {k})"
apply unfold_locales by auto
have vars1: "{k} ∪ (vars1 - {k}) = vars1" unfolding vars1_def using assms by auto
show ?thesis unfolding hadamard_on_i_def N_def using st.pmat_extension_carrier unfolding st.d0_def st.dims0_def st.vars0_def
using vars1 dims_vars1 by auto
qed
lemma well_com_hadamard_k:
"k ≤ n ⟹ well_com (hadamard_n k)"
proof (induct k)
case 0
then show ?case by auto
next
case (Suc n)
then have "well_com (hadamard_n n)" by auto
then show ?case unfolding hadamard_n.simps well_com.simps using tensor_P_dim unitary_exhadamard_on_i Suc by auto
qed
lemma well_com_hadamard_n:
"well_com (hadamard_n n)"
using well_com_hadamard_k by auto
lemma well_com_mat_O:
"well_com (Utrans_P vars1 mat_O)"
apply (subst Utrans_P_is_tensor_P1)
apply simp using tensor_P_dim unitary_ex_mat_O by auto
lemma well_com_mat_Ph:
"well_com (Utrans_P vars1 mat_Ph)"
apply (subst Utrans_P_is_tensor_P1)
apply simp using tensor_P_dim unitary_ex_mat_Ph by auto
lemma unitary_exmat_incr:
"unitary (tensor_P (1⇩m N) (mat_incr K))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_unitary)
using unitary_mat_incr K unitary_one by (auto simp add: ps_P_d1 ps_P_d2 mat_incr_def)
lemma well_com_mat_incr:
"well_com (Utrans_P vars2 (mat_incr K))"
apply (subst Utrans_P_is_tensor_P2)
apply (simp add: mat_incr_def) using tensor_P_dim unitary_exmat_incr by auto
lemma well_com_D: "well_com D"
unfolding D_def apply auto
using well_com_hadamard_n well_com_mat_incr well_com_mat_O well_com_mat_Ph
by auto
text ‹Test at while loop›
definition M0 :: "complex mat" where
"M0 = mat K K (λ(i,j). if i = j ∧ i ≥ R then 1 else 0)"
lemma hermitian_M0:
"hermitian M0"
by (auto simp add: hermitian_def M0_def adjoint_eval)
lemma M0_dim:
"M0 ∈ carrier_mat K K"
unfolding M0_def by auto
lemma M0_mult_M0:
"M0 * M0 = M0"
by (auto simp add: M0_def scalar_prod_def sum_only_one_neq_0)
definition M1 :: "complex mat" where
"M1 = mat K K (λ(i,j). if i = j ∧ i < R then 1 else 0)"
lemma M1_dim:
"M1 ∈ carrier_mat K K"
unfolding M1_def by auto
lemma hermitian_M1:
"hermitian M1"
by (auto simp add: hermitian_def M1_def adjoint_eval)
lemma M1_mult_M1:
"M1 * M1 = M1"
by (auto simp add: M1_def scalar_prod_def sum_only_one_neq_0)
lemma M1_add_M0:
"M1 + M0 = 1⇩m K"
unfolding M0_def M1_def by auto
text ‹Test at the end›
definition testN :: "nat ⇒ complex mat" where
"testN k = mat N N (λ(i,j). if i = k ∧ j = k then 1 else 0)"
lemma hermitian_testN:
"hermitian (testN k)"
unfolding hermitian_def testN_def
by (auto simp add: scalar_prod_def adjoint_eval)
lemma testN_mult_testN:
"testN k * testN k = testN k"
unfolding testN_def
by (auto simp add: scalar_prod_def sum_only_one_neq_0)
lemma testN_dim:
"testN k ∈ carrier_mat N N"
unfolding testN_def by auto
definition test_fst_k :: "nat ⇒ complex mat" where
"test_fst_k k = mat N N (λ(i, j). if (i = j ∧ i < k) then 1 else 0)"
lemma sum_test_k:
assumes "m ≤ N"
shows "matrix_sum N (λk. testN k) m = test_fst_k m"
proof -
have "m ≤ N ⟹ matrix_sum N (λk. testN k) m = mat N N (λ(i, j). if (i = j ∧ i < m) then 1 else 0)" for m
proof (induct m)
case 0
then show ?case apply simp apply (rule eq_matI) by auto
next
case (Suc m)
then have m: "m < N" by auto
then have m': "m ≤ N" by auto
have "matrix_sum N testN (Suc m) = testN m + matrix_sum N testN m" by simp
also have "… = mat N N (λ(i, j). if (i = j ∧ i < (Suc m)) then 1 else 0)"
unfolding testN_def Suc(1)[OF m'] apply (rule eq_matI) by auto
finally show ?case by auto
qed
then show ?thesis unfolding test_fst_k_def using assms by auto
qed
lemma test_fst_kN:
"test_fst_k N = 1⇩m N"
apply (rule eq_matI)
unfolding test_fst_k_def by auto
lemma matrix_sum_tensor_P1:
"(⋀k. k < m ⟹ g k ∈ carrier_mat N N) ⟹ (A ∈ carrier_mat K K) ⟹
matrix_sum d (λk. tensor_P (g k) A) m = tensor_P (matrix_sum N g m) A"
proof (induct m)
case 0
show ?case apply (simp) unfolding ps2_P.ptensor_mat_def
using ps_P.tensor_mat_zero1[simplified ps_P_d ps_P_d1, of A] by auto
next
case (Suc m)
then have ind: "matrix_sum d (λk. tensor_P (g k) A) m = tensor_P (matrix_sum N g m) A"
and dk: "⋀k. k < m ⟹ g k ∈ carrier_mat N N" and "A ∈ carrier_mat K K" by auto
have ds: "matrix_sum N g m ∈ carrier_mat N N" apply (subst matrix_sum_dim)
using dk by auto
show ?case apply simp
apply (subst ind)
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_add1)
unfolding ps_P_d1 ps_P_d2 using Suc ds by auto
qed
text ‹Grover's algorithm. Assume we start in the zero state›
definition Grover :: com where
"Grover = hadamard_n n ;;
While_P vars2 M0 M1 D ;;
Measure_P vars1 N testN (replicate N SKIP)"
lemma well_com_if:
"well_com (Measure_P vars1 N testN (replicate N SKIP))"
unfolding Measure_P_def apply auto
proof -
have eq0: "⋀n. mat_extension dims vars1 (testN n) = tensor_P (testN n) (1⇩m K)"
unfolding mat_ext_vars1 by auto
have eq1: "adjoint (tensor_P (testN j) (1⇩m K)) * tensor_P (testN j) (1⇩m K) = tensor_P (testN j) (1⇩m K)" for j
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_adjoint)
apply (auto simp add: ps_P_d1 ps_P_d2 testN_dim hermitian_testN[unfolded hermitian_def] hermitian_one[unfolded hermitian_def])
apply (subst ps_P.tensor_mat_mult[symmetric])
by (auto simp add: ps_P_d1 ps_P_d2 testN_dim testN_mult_testN)
have "measurement d N (λn. tensor_P (testN n) (1⇩m K))"
unfolding measurement_def
apply (simp add: tensor_P_dim)
apply (subst eq1)
apply (subst matrix_sum_tensor_P1)
apply (auto simp add: testN_dim)
apply (subst sum_test_k, simp)
apply (subst test_fst_kN)
unfolding ps2_P.ptensor_mat_def
using ps_P.tensor_mat_id ps_P_d ps_P_d1 ps_P_d2 by auto
then show "measurement d N (λn. mat_extension dims vars1 (testN n))" using eq0 by auto
show "list_all well_com (replicate N SKIP)"
apply (subst list_all_length) by simp
qed
lemma well_com_while:
"well_com (While_P vars2 M0 M1 D)"
unfolding While_P_def apply auto
apply (subst (1 2) mat_ext_vars2)
apply (auto simp add: M1_dim M0_dim)
proof -
have 2: "2 = Suc (Suc 0)" by auto
have ad0: "adjoint (tensor_P (1⇩m N) M0) = (tensor_P (1⇩m N) M0)"
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_adjoint)
unfolding ps_P_d1 ps_P_d2 by (auto simp add: M0_dim adjoint_one hermitian_M0[unfolded hermitian_def])
have ad1: "adjoint (tensor_P (1⇩m N) M1) = (tensor_P (1⇩m N) M1)"
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_adjoint)
unfolding ps_P_d1 ps_P_d2 by (auto simp add: M1_dim adjoint_one hermitian_M1[unfolded hermitian_def])
have m0: "tensor_P (1⇩m N) M0 * tensor_P (1⇩m N) M0 = tensor_P (1⇩m N) M0"
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_mult[symmetric])
unfolding ps_P_d1 ps_P_d2 using M0_dim M0_mult_M0 by auto
have m1: "tensor_P (1⇩m N) M1 * tensor_P (1⇩m N) M1 = tensor_P (1⇩m N) M1"
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_mult[symmetric])
unfolding ps_P_d1 ps_P_d2 using M1_dim M1_mult_M1 by auto
have s: "tensor_P (1⇩m N) M1 + tensor_P (1⇩m N) M0 = 1⇩m d"
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_add2[symmetric])
unfolding ps_P_d1 ps_P_d2
by (auto simp add: M1_dim M0_dim M1_add_M0 ps_P.tensor_mat_id[simplified ps_P_d1 ps_P_d2 ps_P_d])
show "measurement d 2 (λn. if n = 0 then tensor_P (1⇩m N) M0 else if n = 1 then tensor_P (1⇩m N) M1 else undefined)"
unfolding measurement_def apply (auto simp add: tensor_P_dim) apply (subst 2)
apply (simp add: ad0 ad1 m0 m1)
apply (subst assoc_add_mat[symmetric, of _ d d]) using tensor_P_dim s by auto
show "well_com D" using well_com_D by auto
qed
lemma well_com_Grover:
"well_com Grover"
unfolding Grover_def apply auto
using well_com_hadamard_n well_com_if well_com_while by auto
subsection ‹Correctness›
text ‹Pre-condition: assume in the zero state›
definition ket_pre :: "complex vec" where
"ket_pre = Matrix.vec N (λk. if k = 0 then 1 else 0)"
lemma ket_pre_dim:
"ket_pre ∈ carrier_vec N" using ket_pre_def by auto
definition pre :: "complex mat" where
"pre = proj ket_pre"
lemma pre_dim:
"pre ∈ carrier_mat N N"
using pre_def ket_pre_def by auto
lemma norm_pre:
"inner_prod ket_pre ket_pre = 1"
unfolding ket_pre_def scalar_prod_def
using sum_only_one_neq_0[of "{0..<N}" 0 "λi. (if i = 0 then 1 else 0) * cnj (if i = 0 then 1 else 0)"] by auto
lemma pre_trace:
"trace pre = 1"
unfolding pre_def
apply (subst trace_outer_prod[of _ N])
subgoal unfolding ket_pre_def by auto using norm_pre by auto
lemma positive_pre:
"positive pre"
using positive_same_outer_prod unfolding pre_def ket_pre_def by auto
lemma pre_le_one:
"pre ≤⇩L 1⇩m N"
unfolding pre_def using outer_prod_le_one norm_pre ket_pre_def by auto
text ‹Post-condition: should be in a state i with f i = 1›
definition post :: "complex mat" where
"post = mat N N (λ(i, j). if (i = j ∧ f i) then 1 else 0)"
lemma post_dim:
"post ∈ carrier_mat N N"
unfolding post_def by auto
lemma hermitian_post:
"hermitian post"
unfolding hermitian_def post_def
by (auto simp add: adjoint_eval)
text ‹Hoare triples of initialization›
definition ket_zero :: "complex vec" where
"ket_zero = Matrix.vec 2 (λk. if k = 0 then 1 else 0)"
lemma ket_zero_dim:
"ket_zero ∈ carrier_vec 2" unfolding ket_zero_def by auto
definition proj_zero where
"proj_zero = proj ket_zero"
definition ket_one where
"ket_one = Matrix.vec 2 (λk. if k = 1 then 1 else 0)"
definition proj_one where
"proj_one = proj ket_one"
definition ket_plus where
"ket_plus = Matrix.vec 2 (λk.1 / csqrt 2) "
lemma ket_plus_dim:
"ket_plus ∈ carrier_vec 2" unfolding ket_plus_def by auto
lemma ket_plus_eval [simp]:
"i < 2 ⟹ ket_plus $ i = 1 / csqrt 2"
apply (simp only: ket_plus_def)
using index_vec less_2_cases by force
lemma csqrt_2_sq [simp]:
"complex_of_real (sqrt 2) * complex_of_real (sqrt 2) = 2"
by (smt of_real_add of_real_hom.hom_one of_real_power one_add_one power2_eq_square real_sqrt_pow2)
lemma ket_plus_tensor_n:
"partial_state.tensor_vec [2, 2] {0} ket_plus ket_plus = Matrix.vec 4 (λk. 1 / 2)"
unfolding partial_state.tensor_vec_def state_sig.d_def
proof (rule eq_vecI, auto)
fix i :: nat assume i: "i < 4"
interpret st: partial_state "[2, 2]" "{0}" .
have d1_eq: "st.d1 = 2"
by (simp add: st.d1_def st.dims1_def nths_def)
have "st.encode1 i < st.d1"
by (simp add: st.d_def i)
then have i1_lt: "st.encode1 i < 2"
using d1_eq by auto
have d2_eq: "st.d2 = 2"
by (simp add: st.d2_def st.dims2_def nths_def)
have "st.encode2 i < st.d2"
by (simp add: st.d_def i)
then have i2_lt: "st.encode2 i < 2"
using d2_eq by auto
show "ket_plus $ st.encode1 i * ket_plus $ st.encode2 i * 2 = 1"
by (auto simp add: i1_lt i2_lt)
qed
definition proj_plus where
"proj_plus = proj ket_plus"
lemma hadamard_on_zero:
"hadamard *⇩v ket_zero = ket_plus"
unfolding hadamard_def ket_zero_def ket_plus_def mat_of_rows_list_def
apply (rule eq_vecI, auto simp add: scalar_prod_def)
subgoal for i
apply (drule less_2_cases)
apply (drule disjE, auto)
by (subst sum_le_2, auto)+.
fun exH_k :: "nat ⇒ complex mat" where
"exH_k 0 = hadamard_on_i 0"
| "exH_k (Suc k) = exH_k k * hadamard_on_i (Suc k)"
fun H_k :: "nat ⇒ complex mat" where
"H_k 0 = hadamard"
| "H_k (Suc k) = ptensor_mat dims {0..<Suc k} {Suc k} (H_k k) hadamard"
lemma H_k_dim:
"k < n ⟹ H_k k ∈ carrier_mat (2^(Suc k)) (2^(Suc k))"
proof (induct k)
case 0
then show ?case using hadamard_dim by auto
next
case (Suc k)
interpret st: partial_state2 dims "{0..<(Suc k)}" "{Suc k}"
apply unfold_locales by auto
have "Suc (Suc k) ≤ n" using Suc by auto
then have "nths dims ({0..<Suc (Suc k)}) = replicate (Suc (Suc k)) 2" using dims_nths_le_n by auto
moreover have "prod_list (replicate l 2) = 2^l" for l by simp
moreover have "{0..<Suc k} ∪ {Suc k} = {0..<(Suc (Suc k))}" by auto
ultimately have plssk: "prod_list (nths dims ({0..<Suc k} ∪ {Suc k})) = 2^(Suc (Suc k))" by auto
have "dim_col (H_k (Suc k)) = 2^(Suc (Suc k))" using st.ptensor_mat_dim_col unfolding st.d0_def st.dims0_def st.vars0_def using plssk by auto
moreover have "dim_row (H_k (Suc k)) = 2^(Suc (Suc k))" using st.ptensor_mat_dim_row unfolding st.d0_def st.dims0_def st.vars0_def using plssk by auto
ultimately show ?case by auto
qed
lemma exH_k_eq_H_k:
"k < n ⟹ exH_k k = pmat_extension dims {0..<(Suc k)} {(Suc k)..<n} (H_k k)"
proof(induct k)
case 0
have "{(Suc 0)..<n} = vars1 - {0..<(Suc 0)}" using vars1_def by fastforce
then show ?case unfolding exH_k.simps using vars1_def by auto
next
case (Suc k)
interpret st: partial_state2 dims "{0..<Suc k}" "{(Suc k)..<n}"
apply unfold_locales by auto
interpret st1: partial_state2 dims "{Suc k}" "{(Suc (Suc k))..<n}"
apply unfold_locales by auto
interpret st2: partial_state2 dims "{Suc k}" "vars1 - {Suc k}"
apply unfold_locales by auto
interpret st3: partial_state2 dims "{0..<Suc k}" "{Suc (Suc k)..<n}"
apply unfold_locales by auto
interpret st4: partial_state2 dims "{0..<Suc (Suc k)}" "{Suc (Suc k)..<n}"
apply unfold_locales by auto
from Suc have eq0: "exH_k (Suc k)
= (st.pmat_extension (H_k k)) * (st2.pmat_extension hadamard)" by auto
have "vars1 - {0..<Suc k} = {(Suc k)..<n}" using vars1_def by auto
then have eql1: "st.pmat_extension (H_k k) = st.ptensor_mat (H_k k) (1⇩m st.d2)"
using st.pmat_extension_def by auto
from dims_nths_one_lt_n[OF Suc(2)] have st1d1: "st1.d1 = 2" unfolding st1.d1_def st1.dims1_def by fastforce
have "{Suc k} ∪ {Suc (Suc k)..<n} = {Suc k..<n}" using Suc by auto
then have "st1.d0 = st.d2" unfolding st1.d0_def st1.dims0_def st1.vars0_def st.d2_def st.dims2_def by fastforce
then have eql2: "st1.ptensor_mat (1⇩m 2) (1⇩m st1.d2) = 1⇩m st.d2"
using st1.ptensor_mat_id st1d1 by auto
have eql3: "st.ptensor_mat (H_k k) (1⇩m st.d2) = st.ptensor_mat (H_k k) (st1.ptensor_mat (1⇩m 2) (1⇩m st1.d2))"
apply (subst eql2[symmetric]) by auto
have eqr1: "(st2.pmat_extension hadamard) = st2.ptensor_mat hadamard (1⇩m st2.d2)" using st2.pmat_extension_def by auto
have splitset: "{0..<Suc k} ∪ {Suc (Suc k)..<n} = vars1 - {Suc k}" unfolding vars1_def using Suc(2) by auto
have Sksplit: "{Suc k} ∪ {Suc (Suc k)..<n} = {Suc k..<n}" using Suc(2) by auto
have Sksplit1: "{0..<Suc k}∪{Suc k} = {0..<Suc (Suc k)}" by auto
have "st.ptensor_mat (H_k k) (st1.ptensor_mat (1⇩m 2) (1⇩m st1.d2))
= ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (ptensor_mat dims {0..<Suc k} {Suc k} (H_k k) (1⇩m 2)) (1⇩m st1.d2)"
apply (subst ptensor_mat_assoc[symmetric, of "{0..<Suc k}" "{Suc k}" "{Suc (Suc k)..<n}" "H_k k" "1⇩m 2" "1⇩m st1.d2", simplified Sksplit])
using Suc length_dims by auto
also have "… = ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (ptensor_mat dims {Suc k} {0..<Suc k} (1⇩m 2) (H_k k)) (1⇩m st1.d2)"
using ptensor_mat_comm[of "{0..<Suc k}" "{Suc k}"] by auto
also have "… = ptensor_mat dims {Suc k} ({0..<Suc k} ∪ {Suc (Suc k)..<n})
(1⇩m 2)
(ptensor_mat dims {0..<Suc k} {Suc (Suc k)..<n} (H_k k) (1⇩m st1.d2))"
apply (subst sup_commute)
apply (subst ptensor_mat_assoc[of "{Suc k}" "{0..<Suc k}" "{Suc (Suc k)..<n}" "(1⇩m 2)" "H_k k" "1⇩m st1.d2"])
using Suc length_dims by auto
finally have eql4: "st.pmat_extension (H_k k)
= st2.ptensor_mat (1⇩m 2) (st3.ptensor_mat (H_k k) (1⇩m st3.d2))" using eql1 eql3 splitset by auto
have "st2.ptensor_mat (1⇩m 2) (st3.ptensor_mat (H_k k) (1⇩m st3.d2)) * st2.ptensor_mat hadamard (1⇩m st2.d2)
= st2.ptensor_mat ((1⇩m 2)*hadamard) ((st3.ptensor_mat (H_k k) (1⇩m st3.d2))*(1⇩m st2.d2))"
apply (rule st2.ptensor_mat_mult[symmetric, of "1⇩m 2" "hadamard" "(st3.ptensor_mat (H_k k) (1⇩m st3.d2))" "(1⇩m st2.d2)"])
subgoal unfolding st2.d1_def st2.dims1_def
by (simp add: dims_nths_one_lt_n Suc(2))
subgoal unfolding st2.d1_def st2.dims1_def
apply (simp add: dims_nths_one_lt_n Suc(2)) using hadamard_dim by auto
subgoal unfolding st2.d2_def[unfolded st2.dims2_def]
using st3.ptensor_mat_dim_col[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset]
st3.ptensor_mat_dim_row[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset] by auto
by auto
also have "… = st2.ptensor_mat (hadamard) (st3.ptensor_mat (H_k k) (1⇩m st3.d2))"
unfolding st2.d2_def[unfolded st2.dims2_def]
using hadamard_dim st3.ptensor_mat_dim_col[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset]
st3.ptensor_mat_dim_row[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset] by auto
also have "… = ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (ptensor_mat dims {Suc k} {0..<Suc k} hadamard (H_k k)) (1⇩m st3.d2)"
apply (subst ptensor_mat_assoc[symmetric, of "{Suc k}" "{0..<Suc k}" "{Suc (Suc k)..<n}" "hadamard" "H_k k" "1⇩m st3.d2", simplified splitset])
using Suc length_dims by auto
also have "… = ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (H_k (Suc k)) (1⇩m st3.d2)"
using ptensor_mat_comm[of "{Suc k}"] Sksplit1 by auto
also have "… = ptensor_mat dims ({0..<Suc (Suc k)}) {Suc (Suc k)..<n} (H_k (Suc k)) (1⇩m st3.d2)" using Sksplit1 by auto
also have "… = pmat_extension dims {0..<Suc (Suc k)} {Suc (Suc k)..<n} (H_k (Suc k))"
unfolding st4.pmat_extension_def by auto
finally show ?case using eq0 eql4 eqr1 by auto
qed
lemma mult_exH_k_left:
assumes "Suc k < n"
shows "hadamard_on_i (Suc k) * exH_k k = exH_k (Suc k)"
proof -
interpret st: partial_state2 dims "{0..<Suc k}" "{(Suc k)..<n}"
apply unfold_locales by auto
interpret st1: partial_state2 dims "{Suc k}" "{(Suc (Suc k))..<n}"
apply unfold_locales by auto
interpret st2: partial_state2 dims "{Suc k}" "vars1 - {Suc k}"
apply unfold_locales by auto
interpret st3: partial_state2 dims "{0..<Suc k}" "{Suc (Suc k)..<n}"
apply unfold_locales by auto
interpret st4: partial_state2 dims "{0..<Suc (Suc k)}" "{Suc (Suc k)..<n}"
apply unfold_locales by auto
from exH_k_eq_H_k assms have eq0: "exH_k (Suc k)
= (st.pmat_extension (H_k k)) * (st2.pmat_extension hadamard)" by auto
have "vars1 - {0..<Suc k} = {(Suc k)..<n}" using vars1_def by auto
then have eql1: "st.pmat_extension (H_k k) = st.ptensor_mat (H_k k) (1⇩m st.d2)"
using st.pmat_extension_def by auto
from dims_nths_one_lt_n[OF assms] have st1d1: "st1.d1 = 2" unfolding st1.d1_def st1.dims1_def by fastforce
have "{Suc k} ∪ {Suc (Suc k)..<n} = {Suc k..<n}" using assms by auto
then have "st1.d0 = st.d2" unfolding st1.d0_def st1.dims0_def st1.vars0_def st.d2_def st.dims2_def by fastforce
then have eql2: "st1.ptensor_mat (1⇩m 2) (1⇩m st1.d2) = 1⇩m st.d2"
using st1.ptensor_mat_id st1d1 by auto
have eql3: "st.ptensor_mat (H_k k) (1⇩m st.d2) = st.ptensor_mat (H_k k) (st1.ptensor_mat (1⇩m 2) (1⇩m st1.d2))"
apply (subst eql2[symmetric]) by auto
have eqr1: "(st2.pmat_extension hadamard) = st2.ptensor_mat hadamard (1⇩m st2.d2)" using st2.pmat_extension_def by auto
have splitset: "{0..<Suc k} ∪ {Suc (Suc k)..<n} = vars1 - {Suc k}" unfolding vars1_def using assms by auto
have Sksplit: "{Suc k} ∪ {Suc (Suc k)..<n} = {Suc k..<n}" using assms by auto
have Sksplit1: "{0..<Suc k}∪{Suc k} = {0..<Suc (Suc k)}" by auto
have "st.ptensor_mat (H_k k) (st1.ptensor_mat (1⇩m 2) (1⇩m st1.d2))
= ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (ptensor_mat dims {0..<Suc k} {Suc k} (H_k k) (1⇩m 2)) (1⇩m st1.d2)"
apply (subst ptensor_mat_assoc[symmetric, of "{0..<Suc k}" "{Suc k}" "{Suc (Suc k)..<n}" "H_k k" "1⇩m 2" "1⇩m st1.d2", simplified Sksplit])
using assms length_dims by auto
also have "… = ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (ptensor_mat dims {Suc k} {0..<Suc k} (1⇩m 2) (H_k k)) (1⇩m st1.d2)"
using ptensor_mat_comm[of "{0..<Suc k}" "{Suc k}"] by auto
also have "… = ptensor_mat dims {Suc k} ({0..<Suc k} ∪ {Suc (Suc k)..<n})
(1⇩m 2)
(ptensor_mat dims {0..<Suc k} {Suc (Suc k)..<n} (H_k k) (1⇩m st1.d2))"
apply (subst sup_commute)
apply (subst ptensor_mat_assoc[of "{Suc k}" "{0..<Suc k}" "{Suc (Suc k)..<n}" "(1⇩m 2)" "H_k k" "1⇩m st1.d2"]) using assms length_dims by auto
finally have "st.pmat_extension (H_k k)
= st2.ptensor_mat (1⇩m 2) (st3.ptensor_mat (H_k k) (1⇩m st3.d2))" using eql1 eql3 splitset by auto
moreover have "st.pmat_extension (H_k k) = exH_k k" using exH_k_eq_H_k assms by auto
ultimately have eql4: "exH_k k = st2.ptensor_mat (1⇩m 2) (st3.ptensor_mat (H_k k) (1⇩m st3.d2))" by auto
have "st2.ptensor_mat hadamard (1⇩m st2.d2) * st2.ptensor_mat (1⇩m 2) (st3.ptensor_mat (H_k k) (1⇩m st3.d2))
= st2.ptensor_mat (hadamard*(1⇩m 2)) ((1⇩m st2.d2)* (st3.ptensor_mat (H_k k) (1⇩m st3.d2)))"
apply (rule st2.ptensor_mat_mult[symmetric, of "hadamard" "1⇩m 2" "(1⇩m st2.d2)" "(st3.ptensor_mat (H_k k) (1⇩m st3.d2))"])
subgoal unfolding st2.d1_def st2.dims1_def apply (simp add: dims_nths_one_lt_n assms) using hadamard_dim by auto
subgoal unfolding st2.d1_def st2.dims1_def by (simp add: dims_nths_one_lt_n assms)
subgoal by auto
subgoal unfolding st2.d2_def[unfolded st2.dims2_def] using st3.ptensor_mat_dim_col[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset]
st3.ptensor_mat_dim_row[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset] by auto
done
also have "… = st2.ptensor_mat (hadamard) (st3.ptensor_mat (H_k k) (1⇩m st3.d2))"
unfolding st2.d2_def[unfolded st2.dims2_def]
using hadamard_dim st3.ptensor_mat_dim_col[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset]
st3.ptensor_mat_dim_row[unfolded st3.d0_def st3.dims0_def st3.vars0_def, simplified splitset] by auto
also have "… = ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (ptensor_mat dims {Suc k} {0..<Suc k} hadamard (H_k k)) (1⇩m st3.d2)"
apply (subst ptensor_mat_assoc[symmetric, of "{Suc k}" "{0..<Suc k}" "{Suc (Suc k)..<n}" "hadamard" "H_k k" "1⇩m st3.d2", simplified splitset])
using assms length_dims by auto
also have "… = ptensor_mat dims ({0..<Suc k}∪{Suc k}) {Suc (Suc k)..<n} (H_k (Suc k)) (1⇩m st3.d2)"
using ptensor_mat_comm[of "{Suc k}"] Sksplit1 by auto
also have "… = ptensor_mat dims ({0..<Suc (Suc k)}) {Suc (Suc k)..<n} (H_k (Suc k)) (1⇩m st3.d2)" using Sksplit1 by auto
also have "… = pmat_extension dims {0..<Suc (Suc k)} {Suc (Suc k)..<n} (H_k (Suc k))"
unfolding st4.pmat_extension_def by auto
also have "… = exH_k (Suc k)" using exH_k_eq_H_k[of "Suc k"] assms by auto
finally have "st2.ptensor_mat hadamard (1⇩m st2.d2) * st2.ptensor_mat (1⇩m 2) (st3.ptensor_mat (H_k k) (1⇩m st3.d2))
=exH_k (Suc k)".
then show ?thesis unfolding hadamard_on_i_def
using eql4 eqr1 by auto
qed
lemma exH_eq_H:
"exH_k (n - 1) = H_k (n - 1)"
proof -
have "∃m. n = Suc (Suc m)" using n by presburger
then obtain m where m: "n = Suc (Suc m)" using n by auto
then have "exH_k m = pmat_extension dims {0..<(Suc m)} {(Suc m)..<n} (H_k m)" using exH_k_eq_H_k by auto
then have "exH_k (Suc m) = pmat_extension dims {0..<(Suc m)} {(Suc m)..<n} (H_k m)
* (pmat_extension dims {Suc m} (vars1 - {Suc m}) hadamard)" by auto
moreover have "{(Suc m)..<n} = {Suc m}" using m by auto
moreover have "vars1 - {Suc m} = {0..<Suc m}" unfolding vars1_def using m by auto
ultimately have eqSm: "exH_k (Suc m) = pmat_extension dims {0..<(Suc m)} {Suc m} (H_k m)
* (pmat_extension dims {Suc m} {0..<Suc m} hadamard)" by auto
interpret stm1: partial_state2 dims "{Suc m}" "{0..<Suc m}"
apply unfold_locales by auto
interpret stm2: partial_state2 dims "{0..<Suc m}" "{Suc m}"
apply unfold_locales by auto
have "nths dims {0..<Suc m} = replicate (Suc m) 2" using dims_nths_le_n m by auto
then have stm2d1: "stm2.d1 = 2^(Suc m)" unfolding stm2.d1_def stm2.dims1_def by auto
have stm2d2: "stm2.d2 = 2" unfolding stm2.d2_def stm2.dims2_def using dims_nths_one_lt_n m by auto
have "m < n" using m by auto
then have "H_k m ∈ carrier_mat (2^(Suc m)) (2^(Suc m))" using H_k_dim by auto
then have Hkm1: "(H_k m) * (1⇩m stm2.d1) = (H_k m)" unfolding stm2d1 by auto
have eqd12: "stm1.d2 = stm2.d1" unfolding stm1.d2_def stm1.dims2_def stm2.d1_def stm2.dims1_def by auto
have "pmat_extension dims {Suc m} {0..<Suc m} hadamard = stm1.ptensor_mat hadamard (1⇩m stm1.d2)" using stm1.pmat_extension_def by auto
also have "… = stm2.ptensor_mat (1⇩m stm2.d1) hadamard" using ptensor_mat_comm eqd12 by auto
finally have eqr: "(pmat_extension dims {Suc m} {0..<Suc m} hadamard) = stm2.ptensor_mat (1⇩m stm2.d1) hadamard".
then have "exH_k (Suc m) = stm2.ptensor_mat (H_k m) (1⇩m stm2.d2) * stm2.ptensor_mat (1⇩m stm2.d1) hadamard"
using eqSm unfolding stm2.pmat_extension_def by auto
also have "… = stm2.ptensor_mat ((H_k m) * (1⇩m stm2.d1)) (1⇩m stm2.d2 * hadamard)"
apply (rule stm2.ptensor_mat_mult[symmetric, of "H_k m" "1⇩m stm2.d1" "1⇩m stm2.d2" "hadamard"])
unfolding stm2d1 stm2d2 using H_k_dim m hadamard_dim by auto
also have "… = stm2.ptensor_mat (H_k m) (hadamard)" using H_k_dim hadamard_dim stm2d1 stm2d2 Hkm1 by auto
also have "… = H_k (Suc m)" unfolding stm2.ptensor_mat_def H_k.simps by auto
finally have "exH_k (Suc m) = H_k (Suc m)" by auto
moreover have "Suc m = n - 1" using m by auto
ultimately show ?thesis by auto
qed
fun ket_zero_k :: "nat ⇒ complex vec" where
"ket_zero_k 0 = ket_zero"
| "ket_zero_k (Suc k) = ptensor_vec dims {0..<(Suc k)} {Suc k} (ket_zero_k k) ket_zero"
lemma ket_zero_k_dim:
assumes "k < n"
shows "ket_zero_k k ∈ carrier_vec (2^(Suc k))"
proof (cases k)
case 0
show ?thesis using ket_zero_dim 0 by auto
next
case (Suc k)
interpret st: partial_state2 dims "{0..<(Suc k)}" "{Suc k}"
apply unfold_locales by auto
have "Suc (Suc k) ≤ n" using assms Suc by auto
then have "nths dims ({0..<Suc (Suc k)}) = replicate (Suc (Suc k)) 2" using dims_nths_le_n by auto
moreover have "prod_list (replicate l 2) = 2^l" for l by simp
moreover have "{0..<Suc k} ∪ {Suc k} = {0..<(Suc (Suc k))}" by auto
ultimately have plssk: "prod_list (nths dims ({0..<Suc k} ∪ {Suc k})) = 2^(Suc (Suc k))" by auto
show ?thesis apply (rule carrier_vecI) unfolding ket_zero_k.simps Suc
using st.ptensor_vec_dim[of "ket_zero_k k" ket_zero] plssk unfolding st.d0_def st.dims0_def st.vars0_def by auto
qed
fun ket_plus_k where
"ket_plus_k 0 = ket_plus"
| "ket_plus_k (Suc k) = ptensor_vec dims {0..<(Suc k)} {Suc k} (ket_plus_k k) ket_plus"
lemma ket_plus_k_dim:
assumes "k < n"
shows "ket_plus_k k ∈ carrier_vec (2^(Suc k))"
proof (cases k)
case 0
show ?thesis using ket_plus_dim 0 by auto
next
case (Suc k)
interpret st: partial_state2 dims "{0..<(Suc k)}" "{Suc k}"
apply unfold_locales by auto
have "Suc (Suc k) ≤ n" using assms Suc by auto
then have "nths dims ({0..<Suc (Suc k)}) = replicate (Suc (Suc k)) 2" using dims_nths_le_n by auto
moreover have "prod_list (replicate l 2) = 2^l" for l by simp
moreover have "{0..<Suc k} ∪ {Suc k} = {0..<(Suc (Suc k))}" by auto
ultimately have plssk: "prod_list (nths dims ({0..<Suc k} ∪ {Suc k})) = 2^(Suc (Suc k))" by auto
show ?thesis apply (rule carrier_vecI) unfolding ket_zero_k.simps Suc
using st.ptensor_vec_dim plssk unfolding st.d0_def st.dims0_def st.vars0_def by auto
qed
lemma H_k_ket_zero_k:
"k < n ⟹ (H_k k) *⇩v (ket_zero_k k) = (ket_plus_k k)"
proof (induct k)
case 0
show ?case using hadamard_on_zero unfolding H_k.simps ket_zero_k.simps ket_plus_k.simps by auto
next
case (Suc k)
then have k: "k < n" by auto
interpret st: partial_state2 dims "{0..<(Suc k)}" "{Suc k}"
apply unfold_locales by auto
have "nths dims {0..<Suc k} = replicate (Suc k) 2" using dims_nths_le_n Suc by auto
then have std1: "st.d1 = 2^(Suc k)" unfolding st.d1_def st.dims1_def by auto
have std2: "st.d2 = 2" unfolding st.d2_def st.dims2_def using dims_nths_one_lt_n Suc by auto
have "H_k (Suc k) *⇩v ket_zero_k (Suc k) = st.ptensor_mat (H_k k) hadamard *⇩v st.ptensor_vec (ket_zero_k k) ket_zero" by auto
also have "… = st.ptensor_vec ((H_k k) *⇩v (ket_zero_k k)) (hadamard *⇩v ket_zero)"
using st.ptensor_mat_mult_vec[unfolded std1 std2, OF H_k_dim[OF k] ket_zero_k_dim[OF k] hadamard_dim ket_zero_dim] by auto
also have "… = st.ptensor_vec (ket_plus_k k) ket_plus" using Suc hadamard_on_zero by auto
finally show ?case by auto
qed
lemma encode1_replicate_2:
"partial_state.encode1 (replicate (Suc k) 2) {0..<k} i = i mod (2 ^ k)"
proof -
have take_Suc: "take k (replicate (Suc k) 2) = replicate k 2"
apply (subst take_replicate) by auto
have take_encode: "take k (digit_encode (replicate (Suc k) 2) i) = digit_encode (replicate k 2) i"
apply (subst digit_encode_take) using take_Suc by metis
show ?thesis
unfolding partial_state.encode1_def partial_state.dims1_def
nths_upt_eq_take[simplified lessThan_atLeast0] take_Suc take_encode
digit_decode_encode prod_list_replicate ..
qed
lemma encode2_replicate_2:
assumes "i < 2 ^ Suc k"
shows "partial_state.encode2 (replicate (Suc k) 2) {0..<k} i = i div (2 ^ k)"
proof -
have drop_Suc: "drop k (replicate (Suc k) 2) = [2]"
apply (subst drop_replicate) by auto
have drop_encode: "drop k (digit_encode (replicate (Suc k) 2) i) = digit_encode [2] (i div (2 ^ k))"
unfolding digit_encode_drop drop_Suc take_replicate prod_list_replicate
by (metis lessI min.strict_order_iff)
have le2: "i div 2 ^ k < 2"
using assms by (auto simp add: less_mult_imp_div_less)
have prod_list_2: "prod_list [2] = 2" by simp
show ?thesis
unfolding partial_state.encode2_def partial_state.dims2_def
nths_minus_upt_eq_drop[simplified lessThan_atLeast0] drop_Suc drop_encode
digit_decode_encode prod_list_2
using le2 by auto
qed
lemma ket_zero_k_decode:
"k < n ⟹ ket_zero_k k = Matrix.vec (2^(Suc k)) (λk. if k = 0 then 1 else 0)"
proof (induct k)
case 0
show ?case apply (rule eq_vecI) by (auto simp add: ket_zero_def)
next
case (Suc k)
then have k: "k < n" by auto
have kzkk: "ket_zero_k k = Matrix.vec (2 ^ Suc k) (λk. if (k = 0) then 1 else 0)" using Suc(1)[OF k] by auto
have dSk: "ket_zero_k (Suc k) ∈ carrier_vec (2^(Suc (Suc k)))" using ket_zero_k_dim[OF Suc(2)] by auto
interpret st: partial_state "replicate (Suc (Suc k)) 2" "{0..<Suc k}".
interpret st2: partial_state2 dims "{0..<Suc k}" "{Suc k}" by (unfold_locales, auto)
have splitset: "({0..<Suc k} ∪ {Suc k}) = {0..<Suc (Suc k)}" by auto
then have st2dims0: "st2.dims0 = replicate (Suc (Suc k)) 2" unfolding st2.dims0_def st2.vars0_def
using dims_nths_le_n[of "Suc (Suc k)"] Suc by auto
have "⋀x. (x ∈ {0..<Suc k} ⟹ {y ∈ {0..<Suc (Suc k)}. y < x} = {0..<x})" by auto
then have cardeq: "⋀x. (x ∈ {0..<Suc k} ⟹ card {y ∈ {0..<Suc (Suc k)}. y < x} = card {0..<x})" by auto
have setcong: "⋀g h I. (⋀x. (x ∈ I ⟹ g x = h x)) ⟹ {g x | x. x ∈ I} = {h x | x. x ∈ I}" by metis
have "{card {y ∈ {0..<Suc (Suc k)}. y < x} |x. x ∈ {0..<Suc k}} = {card {0..<x} |x. x ∈ {0..<Suc k}} "
using setcong[OF cardeq, of "{0..<Suc k}"] by auto
also have "… = {0..<Suc k}" by auto
finally have st2vars1': "st2.vars1' = {0..<Suc k}" unfolding st2.vars1'_def st2.vars0_def splitset ind_in_set_def by fastforce
have st2pvsttv: "st2.ptensor_vec = st.tensor_vec" unfolding st2.ptensor_vec_def using st2dims0 st2vars1' by auto
have "st.encode1 0 = 0" using encode1_replicate_2[of "Suc k" 0] by auto
moreover have "st.encode2 0 = 0" using encode2_replicate_2[of 0 "Suc k"] by auto
moreover have std: "st.d = 2^(Suc (Suc k))" unfolding st.d_def by auto
ultimately have kzkk0: "ket_zero_k (Suc k) $ 0 = 1"
unfolding ket_zero_k.simps st2pvsttv st.tensor_vec_def ket_zero_def using kzkk by auto
have kzkki: "ket_zero_k (Suc k) $ i = 0" if ine0: "i ≠ 0" and ile: "i < 2^(Suc (Suc k))" for i
proof (cases "i mod (2 ^ Suc k) ≠ 0")
case True
then have "ket_zero_k k $ st.encode1 i = 0" unfolding kzkk using encode1_replicate_2[of "Suc k" i] ile by auto
then show ?thesis unfolding ket_zero_k.simps st2pvsttv st.tensor_vec_def ket_zero_def std using ile by auto
next
case False
have "i div (2 ^ Suc k) ≠ 0 ∨ i mod (2 ^ Suc k) ≠ 0" using ine0 by fastforce
then have "i div (2 ^ Suc k) ≠ 0" using False by auto
moreover have "i div (2 ^ Suc k) < 2" using ile less_mult_imp_div_less by auto
ultimately have "i div (2 ^ Suc k) = 1" by auto
then have "st.encode2 i = 1" using encode2_replicate_2[of i "Suc k"] ile by auto
then have "Matrix.vec 2 (λk. if k = 0 then 1 else 0) $ st.encode2 i = 0"
unfolding kzkk by fastforce
then show ?thesis unfolding ket_zero_k.simps st2pvsttv st.tensor_vec_def ket_zero_def std using ile by auto
qed
show ?case apply (rule eq_vecI)
subgoal for i using kzkk0 kzkki by auto
using carrier_vecD[OF dSk] by auto
qed
lemma ket_plus_k_decode:
"k < n ⟹ ket_plus_k k = Matrix.vec (2^(Suc k)) (λl. 1 / csqrt (2^(Suc k)))"
proof (induct k)
case 0
then show ?case unfolding ket_plus_k.simps ket_plus_def by auto
next
case (Suc k)
then have kpkk: "ket_plus_k k = Matrix.vec (2 ^ Suc k) (λl. 1 / csqrt (2 ^ Suc k))" by auto
have dSk: "ket_plus_k (Suc k) ∈ carrier_vec (2^(Suc (Suc k)))" using ket_plus_k_dim[OF Suc(2)] by auto
interpret st: partial_state "replicate (Suc (Suc k)) 2" "{0..<Suc k}".
interpret st2: partial_state2 dims "{0..<Suc k}" "{Suc k}" by (unfold_locales, auto)
have splitset: "({0..<Suc k} ∪ {Suc k}) = {0..<Suc (Suc k)}" by auto
then have st2dims0: "st2.dims0 = replicate (Suc (Suc k)) 2" unfolding st2.dims0_def st2.vars0_def
using dims_nths_le_n[of "Suc (Suc k)"] Suc by auto
have "⋀x. (x ∈ {0..<Suc k} ⟹ {y ∈ {0..<Suc (Suc k)}. y < x} = {0..<x})" by auto
then have cardeq: "⋀x. (x ∈ {0..<Suc k} ⟹ card {y ∈ {0..<Suc (Suc k)}. y < x} = card {0..<x})" by auto
have setcong: "⋀g h I. (⋀x. (x ∈ I ⟹ g x = h x)) ⟹ {g x | x. x ∈ I} = {h x | x. x ∈ I}" by metis
have "{card {y ∈ {0..<Suc (Suc k)}. y < x} |x. x ∈ {0..<Suc k}} = {card {0..<x} |x. x ∈ {0..<Suc k}} "
using setcong[OF cardeq, of "{0..<Suc k}"] by auto
also have "… = {0..<Suc k}" by auto
finally have st2vars1': "st2.vars1' = {0..<Suc k}" unfolding st2.vars1'_def st2.vars0_def splitset ind_in_set_def by blast
have st2pvsttv: "st2.ptensor_vec = st.tensor_vec" unfolding st2.ptensor_vec_def using st2dims0 st2vars1' by auto
have "csqrt (2 ^ (Suc k)) = complex_of_real (sqrt (2 ^ (Suc k)))" by simp
moreover have "complex_of_real (sqrt (2 ^ (Suc k))) * complex_of_real (sqrt 2) = complex_of_real (sqrt (2 ^ (Suc (Suc k))))"
by (metis of_real_mult power_Suc power_commutes real_sqrt_power)
ultimately have "csqrt (2 ^ (Suc k)) * csqrt 2 = csqrt (2 ^ (Suc (Suc k)))" by auto
moreover have "1 / csqrt (2 ^ Suc k) * 1 / csqrt 2 = 1 / (csqrt (2 ^ (Suc k)) * csqrt 2)" by simp
ultimately have csqrt2p :"1 / csqrt (2 ^ Suc k) * 1 / csqrt 2 = 1 / (csqrt (2 ^ (Suc (Suc k))))" by simp
have std: "st.d = 2^(Suc (Suc k))" unfolding st.d_def by auto
have nthsSSk2: "nths (replicate (Suc (Suc k)) 2) {0..<Suc k} = replicate (Suc k) 2"
unfolding nths_replicate[of "Suc (Suc k)" 2 "{0..<Suc k}"]
by (smt Collect_cong ‹{card {0..<x} |x. x ∈ {0..<Suc k}} = {0..<Suc k}› atLeastLessThan_iff card_atLeastLessThan diff_zero less_SucI)
then have std1: "st.d1 = 2^(Suc k)" unfolding st.d1_def st.dims1_def nthsSSk2 by auto
have "{i. i < Suc (Suc k) ∧ i ∈ {Suc k..}} = {Suc k}" by auto
then have "nths (replicate (Suc (Suc k)) 2) ({Suc k..}) = replicate 1 2" unfolding nths_replicate by auto
moreover have "(- {0..<Suc k}) = {Suc k..}" by auto
ultimately have nthsSSk2c: "nths (replicate (Suc (Suc k)) 2) (- {0..<Suc k}) = replicate 1 2" by auto
have std2: "st.d2 = 2" unfolding st.d2_def st.dims2_def apply (subst nthsSSk2c) by auto
have "st.encode1 i < st.d1" if "i < st.d" for i using that st.encode1_lt[OF that] by auto
then have kpkki: "ket_plus_k k $ st.encode1 i = 1 / csqrt (2^(Suc k))" if "i < st.d" for i unfolding kpkk std1 using that by auto
have "st.encode2 i < st.d2" if "i < st.d" for i using that st.encode2_lt[OF that] by auto
then have kpi: "ket_plus $ st.encode2 i = 1 / csqrt 2" if "i < st.d" for i unfolding ket_plus_def std2 using that by auto
have kzkki: "ket_plus_k (Suc k) $ i = 1 / (csqrt (2 ^ (Suc (Suc k))))" if "i < st.d" for i
unfolding ket_plus_k.simps st2pvsttv st.tensor_vec_def using csqrt2p kpkki kpi that by auto
show ?case apply (rule eq_vecI)
subgoal for i using kzkki unfolding std by auto
using carrier_vecD[OF dSk] by auto
qed
lemma exH_k_mult_pre_is_psi:
"exH_k (n - 1) *⇩v ket_pre = ψ"
proof -
have "exH_k (n - 1) = H_k (n - 1)" using exH_eq_H by auto
moreover have "ket_zero_k (n - 1) = ket_pre" using ket_zero_k_decode[of "n - 1"] ket_pre_def N_def n by auto
moreover have "ket_plus_k (n - 1) = ψ" using ket_plus_k_decode[of "n - 1"] ψ_def N_def n by auto
moreover have "H_k (n - 1) *⇩v ket_zero_k (n - 1) = ket_plus_k (n - 1)" using H_k_ket_zero_k n by auto
ultimately show ?thesis by auto
qed
definition ket_k :: "nat ⇒ complex vec" where
"ket_k x = Matrix.vec K (λk. if k = x then 1 else 0)"
lemma ket_k_dim:
"ket_k k ∈ carrier_vec K"
unfolding ket_k_def by auto
lemma mat_incr_mult_ket_k:
"k < K ⟹ (mat_incr K) *⇩v (ket_k k) = (ket_k ((k + 1) mod K))"
apply (rule eq_vecI)
unfolding mat_incr_def ket_k_def
apply (simp add: scalar_prod_def)
apply (case_tac "k = K - 1")
subgoal for i apply auto by (simp add: sum_only_one_neq_0[of _ "K - 1"])
subgoal for i apply auto by (simp add: sum_only_one_neq_0[of _ "i - 1"])
by auto
definition proj_k where
"proj_k x = proj (ket_k x)"
lemma proj_k_dim:
"proj_k k ∈ carrier_mat K K"
unfolding proj_k_def using ket_k_dim by auto
lemma norm_ket_k_lt_K:
"k < K ⟹ inner_prod (ket_k k) (ket_k k) = 1"
unfolding ket_k_def apply (simp add: scalar_prod_def)
using sum_only_one_neq_0[of "{0..<K}" k "λi. (if i = k then 1 else 0) * cnj (if i = k then 1 else 0)"] by auto
lemma norm_ket_k_ge_K:
"k ≥ K ⟹ inner_prod (ket_k k) (ket_k k) = 0"
unfolding ket_k_def by (simp add: scalar_prod_def)
lemma norm_ket_k:
"inner_prod (ket_k k) (ket_k k) ≤ 1"
apply (case_tac "k < K")
using norm_ket_k_lt_K norm_ket_k_ge_K by (auto simp: less_eq_complex_def)
lemma proj_k_mat:
assumes "k < K"
shows "proj_k k = mat K K (λ(i, j). if (i = j ∧ i = k) then 1 else 0)"
apply (rule eq_matI)
apply (simp add: proj_k_def ket_k_def index_outer_prod)
using proj_k_dim by auto
lemma positive_proj_k:
"positive (proj_k k)"
using positive_same_outer_prod unfolding proj_k_def ket_k_def by auto
lemma proj_k_le_one:
"(proj_k k) ≤⇩L 1⇩m K"
unfolding proj_k_def using outer_prod_le_one norm_ket_k ket_k_def by auto
definition proj_psi where
"proj_psi = proj ψ"
lemma proj_psi_dim:
"proj_psi ∈ carrier_mat N N"
unfolding proj_psi_def ψ_def by auto
lemma norm_psi:
"inner_prod ψ ψ = 1"
apply (simp add: ψ_eval scalar_prod_def)
by (metis norm_of_nat norm_of_real of_real_mult of_real_of_nat_eq real_sqrt_mult_self)
lemma proj_psi_mat:
"proj_psi = mat N N (λk. 1 / N)"
unfolding proj_psi_def
apply (rule eq_matI, simp_all)
apply (simp add: ψ_def index_outer_prod)
apply (smt of_nat_less_0_iff of_real_of_nat_eq of_real_power power2_eq_square real_sqrt_pow2)
by (auto simp add: carrier_matD[OF outer_prod_dim[OF ψ_dim(1) ψ_dim(1)]])
lemma hermitian_proj_psi:
"hermitian proj_psi"
unfolding hermitian_def proj_psi_mat apply (rule eq_matI)
by (auto simp add: adjoint_eval)
lemma hermitian_exproj_psi:
"hermitian (tensor_P proj_psi (1⇩m K))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_hermitian)
using proj_psi_dim ps_P_d1 ps_P_d2 hermitian_proj_psi hermitian_one by auto
lemma proj_psi_is_projection:
"proj_psi * proj_psi = proj_psi"
proof -
have "proj_psi * proj_psi = inner_prod ψ ψ ⋅⇩m proj_psi"
unfolding proj_psi_def
apply (subst outer_prod_mult_outer_prod) using ψ_def by auto
also have "… = proj_psi"
using ψ_inner by auto
finally show ?thesis.
qed
lemma proj_psi_trace:
"trace (proj_psi) = 1"
unfolding proj_psi_def
apply (subst trace_outer_prod[of _ N])
subgoal unfolding ψ_def by auto using norm_psi by auto
lemma positive_proj_psi:
"positive (proj_psi)"
using positive_same_outer_prod unfolding proj_psi_def ψ_def by auto
lemma proj_psi_le_one:
"(proj_psi) ≤⇩L 1⇩m N"
unfolding proj_psi_def using outer_prod_le_one norm_psi ψ_def by auto
lemma hermitian_hadamard_on_k:
assumes "k < n"
shows "hermitian (hadamard_on_i k)"
proof -
interpret st2: partial_state2 dims "{k}" "(vars1 - {k})"
apply unfold_locales by auto
have st2d1: "st2.dims1 = [2]" unfolding st2.dims1_def dims_def
using assms dims_nths_one_lt_n local.dims_def st2.dims1_def by auto
show "hermitian (hadamard_on_i k)" unfolding hadamard_on_i_def st2.pmat_extension_def st2.ptensor_mat_def
apply (rule partial_state.tensor_mat_hermitian)
subgoal unfolding partial_state.d1_def partial_state.dims1_def st2.nths_vars1' hadamard_def by (simp add: st2d1)
subgoal unfolding partial_state.d2_def partial_state.dims2_def st2.nths_vars2' st2.d2_def by auto
subgoal unfolding hermitian_def hadamard_def apply (rule eq_matI) by (auto simp add: adjoint_dim adjoint_eval)
using hermitian_one by auto
qed
lemma hermitian_H_k:
"k < n ⟹ hermitian (H_k k)"
proof (induct k)
case 0
show ?case unfolding H_k.simps hermitian_def hadamard_def apply (rule eq_matI) by (auto simp add: adjoint_dim adjoint_eval)
next
case (Suc k)
interpret st2: partial_state2 dims "{0..<Suc k}" "{Suc k}"
apply unfold_locales by auto
have st2d1: "prod_list st2.dims1 = (2^(Suc k))" unfolding st2.dims1_def dims_def using Suc(2)
using dims_nths_le_n local.dims_def st2.dims1_def by auto
have st2d2: "st2.dims2 = [2]" unfolding st2.dims2_def dims_def using Suc(2)
using dims_nths_one_lt_n local.dims_def st2.dims2_def by auto
show ?case unfolding H_k.simps st2.ptensor_mat_def
apply (rule partial_state.tensor_mat_hermitian)
subgoal unfolding partial_state.d1_def partial_state.dims1_def st2.nths_vars1' using st2d1 H_k_dim Suc by auto
subgoal unfolding partial_state.d2_def partial_state.dims2_def st2.nths_vars2' st2.d2_def using st2d2 by (simp add: hadamard_def)
subgoal using Suc by auto
using hermitian_hadamard by auto
qed
lemma unitary_H_k:
"k < n ⟹ unitary (H_k k)"
proof (induct k)
case 0
show ?case using unitary_hadamard by auto
next
case (Suc k)
then have k: "k < n" by auto
interpret st2: partial_state2 dims "{0..<Suc k}" "{Suc k}" by (unfold_locales, auto)
have st2d1: "prod_list st2.dims1 = (2^(Suc k))" unfolding st2.dims1_def dims_def using Suc(2)
using dims_nths_le_n local.dims_def st2.dims1_def by auto
have st2d2: "st2.dims2 = [2]" unfolding st2.dims2_def dims_def using Suc(2)
using dims_nths_one_lt_n local.dims_def st2.dims2_def by auto
show ?case unfolding H_k.simps st2.ptensor_mat_def
apply (rule partial_state.tensor_mat_unitary[of "H_k k" st2.dims0 st2.vars1' hadamard] )
unfolding partial_state.d1_def partial_state.dims1_def st2.nths_vars1' partial_state.d2_def partial_state.dims2_def
st2.nths_vars2'
apply (auto simp add: st2d1 st2d2 )
subgoal using H_k_dim[OF k] by auto
subgoal using hadamard_dim by auto
subgoal using Suc by auto
using unitary_hadamard by auto
qed
lemma exH_k_dim:
shows "k < n ⟹ exH_k k ∈ carrier_mat N N"
apply (induct k)
using hadamard_on_i_dim by auto
lemma exH_n_dim:
shows "exH_k (n - 1) ∈ carrier_mat N N"
using exH_k_dim n by auto
lemma unitary_exH_k:
shows "k < n ⟹ unitary (exH_k k)"
proof (induct k)
case 0
then show ?case unfolding exH_k.simps using unitary_hadamard_on_i 0 by auto
next
case (Suc k)
show ?case unfolding exH_k.simps apply (subst unitary_times_unitary[of _ N])
subgoal using exH_k_dim Suc by auto
subgoal using hadamard_on_i_dim Suc by auto
subgoal using Suc by auto
using unitary_hadamard_on_i Suc by auto
qed
lemma hermitian_exH_n:
"hermitian (exH_k (n - 1))"
using hermitian_H_k exH_eq_H n by auto
lemma exH_k_mult_psi_is_pre:
"exH_k (n - 1) *⇩v ψ = ket_pre"
proof -
let ?H = "exH_k (n - 1)"
have "hermitian ?H" using hermitian_H_k exH_eq_H n by auto
then have eqad: "adjoint ?H = ?H" unfolding hermitian_def by auto
have d: "?H ∈ carrier_mat N N" using exH_k_dim n by auto
have "unitary ?H" using unitary_exH_k n by auto
then have id: "?H * ?H = 1⇩m N"
unfolding unitary_def inverts_mat_def
using d apply (subst (2) eqad[symmetric]) by auto
have "?H *⇩v ψ = ?H *⇩v (?H *⇩v ket_pre)"
using exH_k_mult_pre_is_psi by auto
also have "… = (?H * ?H) *⇩v ket_pre"
using d ket_pre_def by auto
also have "… = ket_pre"
using id ket_pre_def by auto
finally show ?thesis by auto
qed
fun exexH_k :: "nat ⇒ complex mat" where
"exexH_k k = tensor_P (exH_k k) (1⇩m K)"
lemma unitary_exexH_k:
"k < n ⟹ unitary (exexH_k k)"
unfolding exexH_k.simps ps2_P.ptensor_mat_def
apply (subst partial_state.tensor_mat_unitary)
subgoal using exH_k_dim unfolding partial_state.d1_def partial_state.dims1_def ps2_P.nths_vars1' ps2_P.dims1_def dims_vars1 N_def by auto
subgoal unfolding partial_state.d2_def partial_state.dims2_def ps2_P.nths_vars2' ps2_P.dims2_def dims_vars2 by auto
using unitary_exH_k unitary_one by auto
lemma exexH_k_dim:
"k < n ⟹ exexH_k k ∈ carrier_mat d d"
unfolding exexH_k.simps using ps2_P.ptensor_mat_carrier ps2_P_d0 by auto
lemma hoare_seq_utrans:
fixes P :: "complex mat"
assumes "unitary U1" and "unitary U2" and "is_quantum_predicate P"
and dU1: "U1 ∈ carrier_mat d d" and dU2: "U2 ∈ carrier_mat d d"
shows "
⊢⇩p
{adjoint (U2 * U1) * P * (U2 * U1)}
Utrans U1;; Utrans U2
{P}"
proof -
have hp0: "⊢⇩p {adjoint (U2) * P * (U2)} Utrans U2 {P}"
using assms hoare_partial.intros by auto
have qp: "is_quantum_predicate (adjoint (U2) * P * (U2))"
using qp_close_under_unitary_operator assms by auto
then have hp1: "⊢⇩p {adjoint U1 * (adjoint (U2) * P * (U2)) * U1} Utrans U1 {adjoint (U2) * P * (U2)}"
using hoare_partial.intros by auto
have dP: "P ∈ carrier_mat d d" using assms is_quantum_predicate_def by auto
have eq: "adjoint U1 * (adjoint U2 * P * U2) * U1 = adjoint (U2 * U1) * P * (U2 * U1)"
using dU1 dU2 dP by (mat_assoc d)
with hp1 have hp2: "⊢⇩p {adjoint (U2 * U1) * P * (U2 * U1)} Utrans U1 {adjoint (U2) * P * (U2)}" by auto
have "is_quantum_predicate (adjoint U1 * (adjoint U2 * P * U2) * U1)" using qp qp_close_under_unitary_operator assms by auto
then have "is_quantum_predicate (adjoint (U2 * U1) * P * (U2 * U1))" using eq by auto
then show ?thesis using hoare_partial.intros(3)[OF _ qp assms(3)] hp0 hp2 by auto
qed
lemma qp_close_after_exexH_k:
fixes P :: "complex mat"
assumes "is_quantum_predicate P"
shows "k < n ⟹ is_quantum_predicate (adjoint (exexH_k k) * P * exexH_k k)"
apply (subst qp_close_under_unitary_operator)
subgoal using exexH_k_dim by auto
subgoal using unitary_exexH_k by auto
using assms by auto
lemma hoare_hadamard_n:
fixes P :: "complex mat"
shows "is_quantum_predicate P ⟹ k < n ⟹
⊢⇩p
{adjoint (exexH_k k) * P * exexH_k k}
hadamard_n (Suc k)
{P}"
proof (induct k arbitrary: P)
case 0
have qp: "is_quantum_predicate (adjoint (exexH_k 0) * P * exexH_k 0)"
using qp_close_under_unitary_operator[OF _ unitary_exhadamard_on_i[of 0]] tensor_P_dim 0 by auto
then have "⊢⇩p {adjoint (exexH_k 0) * P * exexH_k 0} SKIP {adjoint (exexH_k 0) * P * exexH_k 0}"
using hoare_partial.intros(1) by auto
moreover have "⊢⇩p {adjoint (exexH_k 0) * P * exexH_k 0} Utrans (tensor_P (hadamard_on_i 0) (1⇩m K)) {P}"
using hoare_partial.intros(2) 0 by auto
ultimately have "⊢⇩p {adjoint (exexH_k 0) * P * exexH_k 0} SKIP;; Utrans (tensor_P (hadamard_on_i 0) (1⇩m K)) {P}"
using hoare_partial.intros(3) qp 0 by auto
then show ?case using qp by auto
next
case (Suc k)
have h1: "⊢⇩p
{adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * P * (tensor_P (hadamard_on_i (Suc k)) (1⇩m K))}
Utrans (tensor_P (hadamard_on_i (Suc k)) (1⇩m K))
{P}"
using hoare_partial.intros Suc by auto
have qp: "is_quantum_predicate (adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * P * (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)))"
apply (subst qp_close_under_unitary_operator)
subgoal using ps2_P.ptensor_mat_carrier ps2_P_d0 by auto
subgoal unfolding ps2_P.ptensor_mat_def apply (subst partial_state.tensor_mat_unitary )
subgoal unfolding partial_state.d1_def partial_state.dims1_def ps2_P.nths_vars1' ps2_P.dims1_def d_vars1 using hadamard_on_i_dim Suc by auto
subgoal unfolding partial_state.d2_def partial_state.dims2_def ps2_P.nths_vars2' ps2_P.dims2_def using dims_vars2 by auto
using unitary_hadamard_on_i unitary_one Suc by auto
using Suc by auto
then have h2: "⊢⇩p
{adjoint (exexH_k k) * (adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * P * (tensor_P (hadamard_on_i (Suc k)) (1⇩m K))) * exexH_k k}
hadamard_n (Suc k)
{adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * P * (tensor_P (hadamard_on_i (Suc k)) (1⇩m K))}"
using Suc by auto
have "(tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * exexH_k k
= (tensor_P (hadamard_on_i (Suc k) * (exH_k k)) (1⇩m K * (1⇩m K)))"
apply (subst ps2_P.ptensor_mat_mult)
subgoal using hadamard_on_i_dim ps2_P_d1 Suc by auto
subgoal using exH_k_dim ps2_P_d1 Suc by auto
using ps2_P_d2 by auto
also have "… = exexH_k (Suc k)" using mult_exH_k_left Suc by auto
finally have eq1: "(tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * exexH_k k = exexH_k (Suc k)".
then have eq2: "adjoint (exexH_k k) * adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) = adjoint (exexH_k (Suc k))"
apply (subst adjoint_mult[symmetric, of _ d d _ d])
subgoal using tensor_P_dim by auto
using exexH_k_dim Suc by auto
have dP: "P ∈ carrier_mat d d" using is_quantum_predicate_def Suc by auto
moreover have dH: "exexH_k k ∈ carrier_mat d d" using exexH_k_dim Suc by auto
moreover have dHi: "tensor_P (hadamard_on_i (Suc k)) (1⇩m K) ∈ carrier_mat d d" using tensor_P_dim by auto
ultimately have eq3: "adjoint (exexH_k k) * (adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * P * tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * exexH_k k
= (adjoint (exexH_k k) * adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K))) * P * (tensor_P (hadamard_on_i (Suc k)) (1⇩m K) * exexH_k k)"
by (mat_assoc d)
show ?case apply (subst hadamard_n.simps)
apply (subst hoare_partial.intros(3)[of _ "adjoint (tensor_P (hadamard_on_i (Suc k)) (1⇩m K)) * P * (tensor_P (hadamard_on_i (Suc k)) (1⇩m K))"])
subgoal using qp_close_after_exexH_k[of P "Suc k"] Suc by auto
subgoal using qp by auto
subgoal using Suc by auto
subgoal using h2[simplified eq3 eq1 eq2] by auto
using h1 by auto
qed
lemma qp_pre:
"is_quantum_predicate (tensor_P pre (proj_k 0))"
unfolding is_quantum_predicate_def
proof (intro conjI)
show "tensor_P pre (proj_k 0) ∈ carrier_mat d d" using tensor_P_dim by auto
interpret st: partial_state dims vars1 .
have d1: "st.d1 = N" unfolding st.d1_def st.dims1_def using d_vars1 by auto
have d2: "st.d2 = K" unfolding st.d2_def st.dims2_def nths_uminus_vars1 dims_vars2 by auto
show "positive (tensor_P pre (proj_k 0))"
unfolding ps2_P.ptensor_mat_def ps2_P_dims0 ps2_P_vars1'
apply (subst st.tensor_mat_positive)
subgoal unfolding pre_def using outer_prod_dim ket_pre_def d1 by auto
subgoal unfolding proj_k_def using outer_prod_dim ket_k_def d2 by auto
subgoal using positive_pre by auto
using positive_proj_k[of 0] K_gt_0 by auto
show "tensor_P pre (proj_k 0) ≤⇩L 1⇩m d"
unfolding ps2_P.ptensor_mat_def ps2_P_dims0 ps2_P_vars1'
apply (subst st.tensor_mat_le_one)
subgoal using pre_def ket_pre_def outer_prod_dim d1 by auto
subgoal using proj_k_def K_gt_0 ket_k_def outer_prod_dim d2 by auto
using d1 d2 K_gt_0 outer_prod_dim positive_pre positive_proj_k pre_le_one proj_k_le_one by auto
qed
lemma qp_init_post:
"is_quantum_predicate (tensor_P proj_psi (proj_k 0))"
unfolding is_quantum_predicate_def
proof (intro conjI)
show "tensor_P proj_psi (proj_k 0) ∈ carrier_mat d d" using tensor_P_dim by auto
interpret st: partial_state dims vars1 .
have d1: "st.d1 = N" unfolding st.d1_def st.dims1_def using d_vars1 by auto
have d2: "st.d2 = K" unfolding st.d2_def st.dims2_def nths_uminus_vars1 dims_vars2 by auto
show "positive (tensor_P proj_psi (proj_k 0))"
unfolding ps2_P.ptensor_mat_def ps2_P_dims0 ps2_P_vars1'
apply (subst st.tensor_mat_positive)
subgoal unfolding proj_psi_def using outer_prod_dim ψ_def d1 by auto
subgoal unfolding proj_k_def using outer_prod_dim ket_k_def d2 by auto
subgoal using positive_proj_psi by auto
using positive_proj_k[of 0] K_gt_0 by auto
show "tensor_P proj_psi (proj_k 0) ≤⇩L 1⇩m d"
unfolding ps2_P.ptensor_mat_def ps2_P_dims0 ps2_P_vars1'
apply (subst st.tensor_mat_le_one)
subgoal using proj_psi_def outer_prod_dim d1 by auto
subgoal using proj_k_def K_gt_0 ket_k_def outer_prod_dim d2 by auto
using d1 d2 K_gt_0 outer_prod_dim positive_proj_psi positive_proj_k proj_psi_le_one proj_k_le_one by auto
qed
lemma tensor_P_adjoint_left_right:
assumes "m1 ∈ carrier_mat N N" and "m2 ∈ carrier_mat K K" and "m3 ∈ carrier_mat N N" and "m4 ∈ carrier_mat K K"
shows "adjoint (tensor_P m1 m2) * tensor_P m3 m4 * tensor_P m1 m2 = tensor_P (adjoint m1 * m3 * m1) (adjoint m2 * m4 * m2)"
proof -
have eq1: "adjoint (tensor_P m1 m2) = tensor_P (adjoint m1) (adjoint m2)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_adjoint)
using ps_P_d1 ps_P_d2 assms by auto
have eq2: "adjoint (tensor_P m1 m2) * tensor_P m3 m4 = tensor_P (adjoint m1 * m3) (adjoint m2 * m4)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_mult)
using ps_P_d1 ps_P_d2 assms eq1 unfolding ps2_P.ptensor_mat_def by (auto simp add: adjoint_dim)
have eq3: "tensor_P (adjoint m1 * m3) (adjoint m2 * m4) * (tensor_P m1 m2) = tensor_P (adjoint m1 * m3 * m1) (adjoint m2 * m4 * m2)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_mult[of "adjoint m1 * m3"])
using ps_P_d1 ps_P_d2 assms by (auto simp add: adjoint_dim)
show ?thesis using eq1 eq2 eq3 by auto
qed
abbreviation exH_n where
"exH_n ≡ exH_k (n - 1)"
lemma hoare_triple_init:
"⊢⇩p
{tensor_P pre (proj_k 0)}
hadamard_n n
{tensor_P proj_psi (proj_k 0)}"
proof -
have h: "⊢⇩p
{adjoint (exexH_k (n - 1)) * (tensor_P proj_psi (proj_k 0)) * (exexH_k (n - 1))}
hadamard_n n
{tensor_P proj_psi (proj_k 0)}"
using hoare_hadamard_n[OF qp_init_post, of "n - 1"] qp_init_post n by auto
have "adjoint (exexH_k (n - 1)) * tensor_P proj_psi (proj_k 0) * exexH_k (n - 1) =
tensor_P (adjoint exH_n * proj_psi * exH_n) (adjoint (1⇩m K) * proj_k 0 * 1⇩m K)"
unfolding exexH_k.simps
apply (subst tensor_P_adjoint_left_right)
using exH_k_dim proj_psi_def ψ_def proj_k_def ket_k_def n by (auto)
moreover have "adjoint exH_n * proj_psi * exH_n = pre"
unfolding proj_psi_def pre_def
apply (subst outer_prod_left_right_mat[of _ N _ N _ N _ N])
subgoal using ψ_def by auto
subgoal using exH_k_dim n by (simp add: adjoint_dim)
subgoal using exH_k_dim n by simp
apply (subst (1 2) hermitian_exH_n[simplified hermitian_def])
apply (subst (1 2) exH_k_mult_psi_is_pre)
by auto
moreover have "adjoint (1⇩m K) * (proj_k 0) * (1⇩m K) = proj_k 0"
apply (subst adjoint_one) using proj_k_dim[of 0] K_gt_0 by auto
ultimately have "adjoint (exexH_k (n - 1)) * tensor_P proj_psi (proj_k 0) * exexH_k (n - 1) = tensor_P pre (proj_k 0)"
by auto
with h show ?thesis by auto
qed
text ‹Hoare triples of while loop›
definition proj_psi_l where
"proj_psi_l l = proj (psi_l l)"
lemma positive_psi_l:
"k < K ⟹ positive (proj_psi_l k)"
unfolding proj_psi_l_def
apply (subst positive_same_outer_prod)
using psi_l_dim by auto
lemma hermitian_proj_psi_l:
"k < K ⟹ hermitian (proj_psi_l k)"
using positive_psi_l positive_is_hermitian by auto
definition P' where
"P' = tensor_P (proj_psi_l R) (proj_k R)"
lemma proj_psi_l_dim:
"proj_psi_l l ∈ carrier_mat N N"
unfolding proj_psi_l_def using psi_l_def by auto
definition Q :: "complex mat" where
"Q = matrix_sum d (λl. tensor_P (proj_psi_l l) (proj_k l)) R"
lemma psi_l_le_id:
shows "proj_psi_l l ≤⇩L 1⇩m N"
proof -
have "inner_prod (psi_l l) (psi_l l) = 1"
using inner_psi_l by auto
then show ?thesis using outer_prod_le_one psi_l_def proj_psi_l_def by auto
qed
lemma positive_proj_psi_l:
shows "positive (proj_psi_l l)"
using positive_same_outer_prod proj_psi_l_def psi_l_dim by auto
definition proj_fst_k :: "nat ⇒ complex mat" where
"proj_fst_k k = mat K K (λ(i, j). if (i = j ∧ i < k) then 1 else 0)"
lemma hermitian_proj_fst_k:
"adjoint (proj_fst_k k) = proj_fst_k k"
by (auto simp add: proj_fst_k_def adjoint_eval)
lemma proj_fst_k_is_projection:
"proj_fst_k k * proj_fst_k k = proj_fst_k k"
by (auto simp add: proj_fst_k_def scalar_prod_def sum_only_one_neq_0)
lemma positive_proj_fst_k:
"positive (proj_fst_k k)"
proof -
have "(proj_fst_k k) * adjoint (proj_fst_k k) = (proj_fst_k k)"
using hermitian_proj_fst_k proj_fst_k_is_projection by auto
then have "∃M. M * adjoint M = (proj_fst_k k)" by auto
then show ?thesis apply (subst positive_if_decomp) using proj_fst_k_def by auto
qed
lemma proj_fst_k_le_one:
"proj_fst_k k ≤⇩L 1⇩m K"
proof -
define M where "M l = mat K K (λ(i, j). if (i = j ∧ i ≥ l) then (1::complex) else 0)" for l
have eq: "1⇩m K - proj_fst_k k = M k" unfolding M_def proj_fst_k_def
apply (rule eq_matI) by auto
have "M k * M k = M k" unfolding M_def
apply (rule eq_matI) apply (simp add: scalar_prod_def)
apply (subst sum_only_one_neq_0[of _ j]) by auto
moreover have "adjoint (M k) = M k" unfolding M_def
apply (rule eq_matI) by (auto simp add: adjoint_eval)
ultimately have "M k * adjoint (M k) = M k" by auto
then have "∃M. M * adjoint M = 1⇩m K - proj_fst_k k" using eq by auto
then have "positive (1⇩m K - proj_fst_k k)"
apply (subst positive_if_decomp) using proj_fst_k_def by auto
then show ?thesis unfolding lowner_le_def using proj_fst_k_def by auto
qed
lemma sum_proj_k:
assumes "m ≤ K"
shows "matrix_sum K (λk. proj_k k) m = proj_fst_k m"
proof -
have "m ≤ K ⟹ matrix_sum K (λk. proj_k k) m = mat K K (λ(i, j). if (i = j ∧ i < m) then 1 else 0)" for m
proof (induct m)
case 0
then show ?case apply simp apply (rule eq_matI) by auto
next
case (Suc m)
then have m: "m < K" by auto
then have m': "m ≤ K" by auto
have "matrix_sum K proj_k (Suc m) = proj_k m + matrix_sum K proj_k m" by simp
also have "… = mat K K (λ(i, j). if (i = j ∧ i < (Suc m)) then 1 else 0)"
unfolding proj_k_mat[OF m] Suc(1)[OF m'] apply (rule eq_matI) by auto
finally show ?case by auto
qed
then show ?thesis unfolding proj_fst_k_def using assms by auto
qed
lemma proj_psi_proj_k_le_exproj_k:
shows "tensor_P (proj_psi_l k) (proj_k l) ≤⇩L tensor_P (1⇩m N) (proj_k l)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive_le)
subgoal using proj_psi_l_def psi_l_dim ps_P_d1 by auto
subgoal using proj_k_def ket_k_def ps_P_d2 by auto
subgoal using positive_proj_psi_l by auto
subgoal using positive_same_outer_prod proj_k_def ket_k_def by auto
subgoal using psi_l_le_id by auto
apply (subst lowner_le_refl[of _ K]) by (auto simp add: proj_k_def ket_k_def)
definition Q1 :: "complex mat" where
"Q1 = matrix_sum d (λl. tensor_P (proj_psi'_l l) (proj_k l)) R"
lemma tensor_P_left_right_partial1:
assumes "m1 ∈ carrier_mat N N" and "m2 ∈ carrier_mat N N" and "m3 ∈ carrier_mat K K" and "m4 ∈ carrier_mat N N"
shows "tensor_P m1 (1⇩m K) * tensor_P m2 m3 * tensor_P m4 (1⇩m K) = tensor_P (m1 * m2 * m4) m3"
proof -
have "tensor_P m1 (1⇩m K) * tensor_P m2 m3 = tensor_P (m1 * m2) m3"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_mult[symmetric])
using assms ps_P_d1 ps_P_d2 by auto
moreover have "tensor_P (m1 * m2) m3 * tensor_P m4 (1⇩m K) = tensor_P (m1 * m2 * m4) m3"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_mult[symmetric])
using assms ps_P_d1 ps_P_d2 by auto
ultimately show ?thesis by auto
qed
lemma tensor_P_left_right_partial2:
assumes "m1 ∈ carrier_mat K K" and "m2 ∈ carrier_mat K K" and "m3 ∈ carrier_mat N N" and "m4 ∈ carrier_mat K K"
shows "tensor_P (1⇩m N) m1 * tensor_P m3 m2 * tensor_P (1⇩m N) m4 = tensor_P m3 (m1 * m2 * m4)"
proof -
have "tensor_P (1⇩m N) m1 * tensor_P m3 m2 = tensor_P m3 (m1 * m2)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_mult[symmetric])
using assms ps_P_d1 ps_P_d2 by auto
moreover have "tensor_P m3 (m1 * m2) * tensor_P (1⇩m N) m4 = tensor_P m3 (m1 * m2 * m4)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_mult[symmetric])
using assms ps_P_d1 ps_P_d2 by auto
ultimately show ?thesis by auto
qed
lemma matrix_sum_mult_left_right:
fixes A B :: "complex mat"
assumes dg: "(⋀k. k < l ⟹ g k ∈ carrier_mat m m) "
and dA: "A ∈ carrier_mat m m" and dB: "B ∈ carrier_mat m m"
shows "matrix_sum m (λk. A * g k * B) l = A * matrix_sum m g l * B"
proof -
have eq: "A * matrix_sum m g l = matrix_sum m (λk. A * g k) l"
using matrix_sum_distrib_left assms by auto
have "A * matrix_sum m g l * B = matrix_sum m (λk. A * g k * B) l"
apply (subst eq)
using matrix_sum_mult_right[of l "λk. A * g k"] assms by auto
then show ?thesis by auto
qed
lemma mat_O_split:
"mat_O = 1⇩m N - 2 ⋅⇩m proj_O"
apply (rule eq_matI)
unfolding mat_O_def proj_O_def by auto
lemma mat_O_mult_psi'_l:
"mat_O *⇩v (psi'_l l) = psi_l l"
proof -
have "mat_O *⇩v (psi'_l l) = mat_O *⇩v ((alpha_l l) ⋅⇩v α) - mat_O *⇩v ((beta_l l) ⋅⇩v β)"
unfolding psi'_l_def apply (subst mult_minus_distrib_mat_vec)
using mat_O_dim α_dim β_dim by auto
also have "… = (alpha_l l) ⋅⇩v (mat_O *⇩v α) - (beta_l l) ⋅⇩v (mat_O *⇩v β)"
using mult_mat_vec_smult_vec_assoc[of mat_O N N] mat_O_dim α_dim β_dim by auto
also have "… = (alpha_l l) ⋅⇩v α - (beta_l l) ⋅⇩v (- β)"
using mat_O_mult_alpha mat_O_mult_beta by auto
also have "… = (alpha_l l) ⋅⇩v α + (beta_l l) ⋅⇩v β"
by auto
finally show ?thesis unfolding psi_l_def by auto
qed
lemma mat_O_times_Q1:
"adjoint (tensor_P mat_O (1⇩m K)) * Q1 * (tensor_P mat_O (1⇩m K)) = Q"
proof -
let ?m1 = "tensor_P mat_O (1⇩m K)"
have eq:"adjoint ?m1 = ?m1"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_adjoint)
apply (auto simp add: mat_O_dim ps_P_d1 ps_P_d2)
by (simp add: hermitian_mat_O[unfolded hermitian_def] hermitian_one[unfolded hermitian_def])
{
fix l
let ?m2 = "tensor_P (proj_psi'_l l) (proj_k l)"
have "?m1 * ?m2 * ?m1 = tensor_P (mat_O * (proj_psi'_l l) * mat_O) (proj_k l)"
apply (subst tensor_P_left_right_partial1)
using mat_O_dim proj_psi'_dim proj_k_dim by auto
moreover have "mat_O * (proj_psi'_l l) * mat_O = outer_prod (psi_l l) (psi_l l)"
unfolding proj_psi'_l_def apply (subst outer_prod_left_right_mat[of _ N _ N _ N _ N])
using psi'_l_dim mat_O_dim mat_O_mult_psi'_l hermitian_mat_O[unfolded hermitian_def] by auto
ultimately have "?m1 * ?m2 * ?m1 = tensor_P (proj_psi_l l) (proj_k l)" unfolding proj_psi_l_def by auto
}
note p1 = this
have "adjoint (tensor_P mat_O (1⇩m K)) * Q1 * (tensor_P mat_O (1⇩m K)) = ?m1 * Q1 * ?m1"
using eq by auto
also have "… = matrix_sum d (λl. ?m1 * (tensor_P (proj_psi'_l l) (proj_k l)) * ?m1) R"
unfolding Q1_def
apply (subst matrix_sum_mult_left_right) using tensor_P_dim by auto
also have "… = Q"
unfolding Q_def using p1 by auto
finally show ?thesis by auto
qed
definition Q2 where
"Q2 = matrix_sum d (λl. tensor_P (proj_psi_l (l + 1)) (proj_k l)) R"
lemma Q2_dim:
"Q2 ∈ carrier_mat d d"
unfolding Q2_def apply (subst matrix_sum_dim) using tensor_P_dim by auto
lemma Q2_le_one:
"Q2 ≤⇩L 1⇩m d"
proof -
have leq: "Q2 ≤⇩L matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) R"
unfolding Q2_def
apply (subst lowner_le_matrix_sum)
subgoal using tensor_P_dim by auto
subgoal using tensor_P_dim by auto
using proj_psi_proj_k_le_exproj_k by auto
have "matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) R
= tensor_P (1⇩m N) (matrix_sum K proj_k R)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_matrix_sum2[simplified ps_P_d ps_P_d2])
subgoal using ps_P_d1 by auto
using proj_k_dim by auto
also have "… = tensor_P (1⇩m N) (proj_fst_k R)" using sum_proj_k K by auto
also have "… ≤⇩L tensor_P (1⇩m N) (1⇩m K)" unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive_le)
subgoal using ps_P_d1 by auto
subgoal using ps_P_d2 proj_fst_k_def by auto
subgoal using positive_one by auto
subgoal using positive_proj_fst_k by auto
subgoal using lowner_le_refl[of "1⇩m N" N] by auto
using proj_fst_k_le_one by auto
also have "… = 1⇩m d" unfolding ps2_P.ptensor_mat_def
using ps_P.tensor_mat_id ps_P_d1 ps_P_d2 ps_P_d by auto
finally have leq2: "matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) R ≤⇩L 1⇩m d" by auto
have ds: "matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) R ∈ carrier_mat d d"
apply (subst matrix_sum_dim) using tensor_P_dim by auto
then show ?thesis using leq leq2 lowner_le_trans[OF Q2_dim ds, of "1⇩m d"] by auto
qed
lemma qp_Q2:
"is_quantum_predicate Q2"
unfolding is_quantum_predicate_def
proof (intro conjI)
show "Q2 ∈ carrier_mat d d" unfolding Q2_def
apply (subst matrix_sum_dim) using tensor_P_dim by auto
next
show "positive Q2" unfolding Q2_def
apply (subst matrix_sum_positive)
subgoal using tensor_P_dim by auto
subgoal for k unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive)
subgoal using proj_psi_l_def psi_l_dim ps_P_d1 by auto
subgoal using proj_k_dim ps_P_d2 K by auto
subgoal using positive_proj_psi_l by auto
using positive_proj_k K by auto
by auto
next
show "Q2 ≤⇩L 1⇩m d" using Q2_le_one by auto
qed
lemma pre_mat:
"pre = mat N N (λ(i, j). if i = j ∧ i = 0 then 1 else 0)"
apply (rule eq_matI)
subgoal for i j unfolding pre_def apply (subst index_outer_prod[OF ket_pre_dim ket_pre_dim])
apply simp_all
unfolding ket_pre_def by auto
using outer_prod_dim[OF ket_pre_dim ket_pre_dim, folded pre_def] by auto
lemma mat_Ph_split:
"mat_Ph = 2 ⋅⇩m pre - 1⇩m N"
unfolding mat_Ph_def pre_mat
apply (rule eq_matI) by auto
lemma H_Ph_H:
"exexH_k (n-1) * tensor_P mat_Ph (1⇩m K) * exexH_k (n - 1) = 2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d"
unfolding mat_Ph_split exexH_k.simps
apply (subst tensor_P_left_right_partial1)
subgoal using exH_k_dim[of "n - 1"] n by auto
subgoal using pre_dim by auto
subgoal by auto
proof -
have eq1: "exH_n * exH_n = 1⇩m N"
using unitary_exH_k[of "n - 1"]
unfolding unitary_def inverts_mat_def
using n hermitian_exH_n[simplified hermitian_def] exH_n_dim by auto
have eq2: "exH_n * pre * exH_n = proj_psi"
unfolding pre_def proj_psi_def
apply (subst outer_prod_left_right_mat[of _ N _ N _ N _ N])
subgoal using ket_pre_dim by auto
subgoal using exH_n_dim by auto
apply (subst hermitian_exH_n[simplified hermitian_def])
using exH_k_mult_pre_is_psi by auto
have eq3: "exH_n * (2 ⋅⇩m pre) * exH_n = 2 ⋅⇩m (exH_n * pre * exH_n)"
using pre_dim exH_n_dim by (mat_assoc N)
have "exH_n * (2 ⋅⇩m pre - 1⇩m N) * exH_n = exH_n * (2 ⋅⇩m pre) * exH_n - exH_n * exH_n"
using pre_dim exH_n_dim apply (mat_assoc N) by auto
also have "… = 2 ⋅⇩m (exH_n * pre * exH_n) - 1⇩m N"
using eq1 eq3 by auto
finally have eq4: "exH_n * (2 ⋅⇩m pre - 1⇩m N) * exH_n = 2 ⋅⇩m proj_psi - 1⇩m N" using eq2 by auto
show "tensor_P (exH_n * (2 ⋅⇩m pre - 1⇩m N) * exH_n) (1⇩m K) = 2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d"
unfolding eq4 unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_minus1)
unfolding ps_P_d1 ps_P_d2 apply (auto simp add: proj_psi_dim)
apply (subst ps_P.tensor_mat_scale1)
unfolding ps_P_d1 ps_P_d2 apply (auto simp add: proj_psi_dim)
apply (subst ps_P.tensor_mat_id[simplified ps_P_d1 ps_P_d2 ps_P_d]) by auto
qed
lemma hermitian_proj_psi_minus_1:
"hermitian (2 ⋅⇩m proj_psi - 1⇩m N)"
unfolding hermitian_def
apply (subst adjoint_minus[of _ N N])
apply (auto simp add: proj_psi_dim)
apply (subst adjoint_scale)
using hermitian_proj_psi[simplified hermitian_def] hermitian_def adjoint_one by auto
lemma unitary_proj_psi_minus_1:
"unitary (2 ⋅⇩m proj_psi - 1⇩m N)"
proof -
have a: "adjoint (2 ⋅⇩m proj_psi) = 2 ⋅⇩m proj_psi"
apply (subst adjoint_scale) using hermitian_proj_psi[simplified hermitian_def] by simp
have eq: "adjoint (2 ⋅⇩m proj_psi - 1⇩m N) = 2 ⋅⇩m proj_psi - 1⇩m N"
apply (subst adjoint_minus) using proj_psi_dim a adjoint_one by auto
have "(2 ⋅⇩m proj_psi) * (2 ⋅⇩m proj_psi) = 4 ⋅⇩m (proj_psi * proj_psi)"
using proj_psi_dim by auto
also have "… = 4 ⋅⇩m proj_psi" using proj_psi_is_projection by auto
finally have sq: "(2 ⋅⇩m proj_psi) * (2 ⋅⇩m proj_psi) = 4 ⋅⇩m proj_psi".
have l: "(2 ⋅⇩m proj_psi) * (2 ⋅⇩m proj_psi - 1⇩m N) = 4 ⋅⇩m proj_psi - (2 ⋅⇩m proj_psi)"
apply (subst mult_minus_distrib_mat) using proj_psi_dim sq by auto
have "(2 ⋅⇩m proj_psi - 1⇩m N) * adjoint (2 ⋅⇩m proj_psi - 1⇩m N)
= (2 ⋅⇩m proj_psi - 1⇩m N) * (2 ⋅⇩m proj_psi - 1⇩m N)" using eq by auto
also have "… = (2 ⋅⇩m proj_psi) * (2 ⋅⇩m proj_psi - 1⇩m N) - 2 ⋅⇩m proj_psi + 1⇩m N"
apply (subst minus_mult_distrib_mat[of _ N N]) using proj_psi_dim by auto
also have "… = 4 ⋅⇩m proj_psi - (2 ⋅⇩m proj_psi) - 2 ⋅⇩m proj_psi + 1⇩m N"
using l by auto
also have "… = 1⇩m N" using proj_psi_dim by auto
finally have "(2 ⋅⇩m proj_psi - 1⇩m N) * adjoint (2 ⋅⇩m proj_psi - 1⇩m N) = 1⇩m N".
then show ?thesis unfolding unitary_def inverts_mat_def using proj_psi_dim by auto
qed
lemma proj_psi_minus_1_mult_psi'_l:
"(2 ⋅⇩m proj_psi - 1⇩m N) *⇩v psi'_l l = psi_l (l + 1)"
proof -
have eq1: "(2 ⋅⇩m proj_psi - 1⇩m N) *⇩v psi'_l l = 2 ⋅⇩m proj_psi *⇩v psi'_l l - psi'_l l"
apply (subst minus_mult_distrib_mat_vec)
using psi'_l_dim proj_psi'_dim proj_psi_dim by auto
have eq2: "2 ⋅⇩m proj_psi *⇩v (psi'_l l) = 2 ⋅⇩v (proj_psi *⇩v (psi'_l l))"
apply (subst smult_mat_mult_mat_vec_assoc)
using proj_psi_dim psi'_l_dim by auto
have "proj_psi *⇩v (psi'_l l) = inner_prod ψ (psi'_l l) ⋅⇩v ψ"
unfolding proj_psi_def
apply (subst outer_prod_mult_vec[of _ N _ N])
using ψ_dim psi'_l_dim by auto
also have "… = ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) ⋅⇩v ψ"
using psi_inner_psi'_l by auto
finally have "proj_psi *⇩v (psi'_l l) = ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) ⋅⇩v ψ" by auto
then have eq3: "2 ⋅⇩v (proj_psi *⇩v (psi'_l l)) = 2 * ((alpha_l l) * ccos (θ / 2) - (beta_l l) * csin (θ / 2)) ⋅⇩v ψ" by auto
then show "(2 ⋅⇩m proj_psi - (1⇩m N)) *⇩v (psi'_l l) = psi_l (l + 1)"
using eq1 eq2 eq3 psi_l_Suc_l_derive by simp
qed
lemma proj_psi_minus_1_mult_psi_Suc_l:
"(2 ⋅⇩m proj_psi - 1⇩m N) *⇩v psi_l (l + 1) = psi'_l l"
proof -
have id: "(2 ⋅⇩m proj_psi - 1⇩m N) * (2 ⋅⇩m proj_psi - 1⇩m N) = 1⇩m N"
using unitary_proj_psi_minus_1 unfolding unitary_def hermitian_proj_psi_minus_1[simplified hermitian_def]
unfolding inverts_mat_def by auto
have "(2 ⋅⇩m proj_psi - 1⇩m N) *⇩v psi_l (l + 1) = (2 ⋅⇩m proj_psi - 1⇩m N) *⇩v ((2 ⋅⇩m proj_psi - 1⇩m N) *⇩v psi'_l l)"
using proj_psi_minus_1_mult_psi'_l by auto
also have "… = ((2 ⋅⇩m proj_psi - 1⇩m N) * (2 ⋅⇩m proj_psi - 1⇩m N) *⇩v psi'_l l)"
apply (subst assoc_mult_mat_vec) using proj_psi_dim psi'_l_dim by auto
also have "… = psi'_l l" using psi'_l_dim id by auto
finally show ?thesis by auto
qed
lemma exproj_psi_minus_1_tensor:
"(2 ⋅⇩m tensor_P proj_psi (1⇩m K)) - 1⇩m d = tensor_P (2 ⋅⇩m proj_psi - (1⇩m N)) (1⇩m K)"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_id[symmetric, simplified ps_P_d])
apply (auto simp add: ps_P_d1 ps_P_d2)
apply (subst ps_P.tensor_mat_scale1[symmetric])
apply (auto simp add: ps_P_d1 ps_P_d2 proj_psi_dim)
apply (subst ps_P.tensor_mat_minus1)
by (auto simp add: ps_P_d1 ps_P_d2 proj_psi_dim)
lemma unitary_exproj_psi_minus_1:
"unitary (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d)"
unfolding exproj_psi_minus_1_tensor
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_unitary)
using ps_P_d1 ps_P_d2 unitary_proj_psi_minus_1 unitary_one by auto
lemma proj_psi_minus_1_Q2:
"adjoint (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d) * Q2 * (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d) = Q1"
proof -
have eq1: "adjoint (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d) = 2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d"
apply (subst adjoint_minus[of _ d d])
subgoal using tensor_P_dim[of proj_psi] by auto
subgoal by auto
apply (subst adjoint_one) apply (subst adjoint_scale)
using hermitian_exproj_psi[simplified hermitian_def] by auto
let ?m1 = "tensor_P (2 ⋅⇩m proj_psi - (1⇩m N)) (1⇩m K)"
{
fix l
let ?m2 = "tensor_P (proj_psi_l (l + 1)) (proj_k l)"
have 121: "?m1 * ?m2 * ?m1
= tensor_P ((2 ⋅⇩m proj_psi - (1⇩m N)) * (proj_psi_l (l + 1)) * (2 ⋅⇩m proj_psi - (1⇩m N)))
(proj_k l)"
apply (subst tensor_P_left_right_partial1)
using proj_psi_dim proj_psi_l_dim proj_k_dim by auto
have "(2 ⋅⇩m proj_psi - (1⇩m N)) * (proj_psi_l (l + 1)) * (2 ⋅⇩m proj_psi - (1⇩m N))
= outer_prod ((2 ⋅⇩m proj_psi - (1⇩m N)) *⇩v (psi_l (l + 1))) ((2 ⋅⇩m proj_psi - (1⇩m N)) *⇩v (psi_l (l + 1)))"
unfolding proj_psi_l_def apply (subst outer_prod_left_right_mat[of _ N _ N _ N _ N])
using proj_psi_dim psi_l_dim hermitian_proj_psi_minus_1[simplified hermitian_def] by auto
also have "… = outer_prod (psi'_l l) (psi'_l l)"
using proj_psi_minus_1_mult_psi_Suc_l by auto
finally have "(2 ⋅⇩m proj_psi - (1⇩m N)) * (proj_psi_l (l + 1)) * (2 ⋅⇩m proj_psi - (1⇩m N))
= outer_prod (psi'_l l) (psi'_l l)".
then have "?m1 * ?m2 * ?m1 = tensor_P (proj_psi'_l l) (proj_k l)"
using 121 proj_psi'_l_def by auto
}
note p1 = this
have "adjoint (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d) * Q2 * (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d)
= (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d) * Q2 * (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d)"
using eq1 by auto
also have "… = matrix_sum d
(λl. (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d) * tensor_P (proj_psi_l (l + 1)) (proj_k l) * (2 ⋅⇩m tensor_P proj_psi (1⇩m K) - 1⇩m d))
R" unfolding Q2_def apply (subst matrix_sum_mult_left_right)
using tensor_P_dim by auto
also have "… = matrix_sum d (λl. tensor_P (proj_psi'_l l) (proj_k l)) R"
using p1 exproj_psi_minus_1_tensor by auto
also have "… = Q1" unfolding Q1_def by auto
finally show ?thesis using eq1 by auto
qed
lemma qp_Q1:
"is_quantum_predicate Q1"
unfolding proj_psi_minus_1_Q2[symmetric]
apply (subst qp_close_under_unitary_operator)
using tensor_P_dim unitary_exproj_psi_minus_1 qp_Q2 by auto
lemma qp_Q:
"is_quantum_predicate Q"
proof -
have u: "unitary (tensor_P mat_O (1⇩m K))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_unitary)
subgoal unfolding ps_P_d1 mat_O_def by auto
subgoal unfolding ps_P_d2 by auto
subgoal using unitary_mat_O by auto
using unitary_one by auto
then show ?thesis using tensor_P_dim qp_Q1
using qp_close_under_unitary_operator[OF tensor_P_dim u qp_Q1]
by (simp add: mat_O_times_Q1 )
qed
lemma hoare_triple_D1:
"⊢⇩p
{Q}
Utrans_P vars1 mat_O
{Q1}"
unfolding Utrans_P_is_tensor_P1
mat_O_times_Q1[symmetric]
apply (subst hoare_partial.intros(2))
using qp_Q1 by auto
lemma hoare_triple_D2:
"⊢⇩p
{Q1}
hadamard_n n ;;
Utrans_P vars1 mat_Ph ;;
hadamard_n n
{Q2}"
proof -
let ?H = "exexH_k (n - 1)"
let ?Ph = "tensor_P mat_Ph (1⇩m K)"
let ?O = "tensor_P mat_O (1⇩m K)"
have h1: "⊢⇩p
{adjoint ?H * Q2 * ?H}
hadamard_n n
{Q2}"
using hoare_hadamard_n[OF qp_Q2, of "n - 1"] n by auto
have qp1: "is_quantum_predicate ((adjoint ?H) * Q2 * ?H)"
using qp_close_under_unitary_operator unitary_exexH_k n exexH_k_dim qp_Q2 by auto
then have h2: "⊢⇩p
{adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph}
Utrans_P vars1 mat_Ph
{adjoint ?H * Q2 * ?H}"
using qp1 Utrans_P_is_tensor_P1 hoare_partial.intros by auto
have qp2: "is_quantum_predicate (adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph)"
using qp_close_under_unitary_operator[of "tensor_P mat_Ph (1⇩m K)"] ps2_P.ptensor_mat_carrier ps2_P_d0 unitary_ex_mat_Ph qp1 by auto
then have h3: "⊢⇩p
{adjoint ?H * (adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph) * ?H}
hadamard_n n
{adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph}"
using hoare_hadamard_n[OF qp2, of "n - 1"] n by auto
have qp3: "is_quantum_predicate (adjoint ?H * (adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph) * ?H)"
using qp_close_under_unitary_operator[of "?H"] exexH_k_dim unitary_exexH_k qp2 n by auto
have h4: "⊢⇩p
{adjoint ?H * (adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph) * ?H}
hadamard_n n ;;
Utrans_P vars1 mat_Ph
{adjoint ?H * Q2 * ?H}"
using h2 h3 qp1 qp2 qp3 hoare_partial.intros by auto
then have h5: "⊢⇩p
{adjoint ?H * (adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph) * ?H}
hadamard_n n ;;
Utrans_P vars1 mat_Ph ;;
hadamard_n n
{Q2}"
using h1 qp_Q2 qp3 qp1 hoare_partial.intros(3)[OF qp3 qp1 qp_Q2 h4 h1] by auto
have "adjoint ?H * (adjoint ?Ph * (adjoint ?H * Q2 * ?H) * ?Ph) * ?H =
adjoint (?H * ?Ph * ?H) * Q2 * (?H * ?Ph * ?H)"
apply (mat_assoc d) using exexH_k_dim n tensor_P_dim Q2_dim by auto
also have "… = Q1" using H_Ph_H proj_psi_minus_1_Q2 by auto
finally show ?thesis using h5 by auto
qed
definition exM0 where
"exM0 = tensor_P (1⇩m N) M0"
lemma M0_mult_ket_k_R:
"M0 *⇩v ket_k R = ket_k R"
apply (rule eq_vecI)
unfolding M0_def ket_k_def
by (auto simp add: scalar_prod_def sum_only_one_neq_0)
lemma exP0_P':
"adjoint exM0 * P' * exM0 = P'"
proof -
have eq: "adjoint exM0 = exM0"
unfolding exM0_def ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_adjoint)
unfolding ps_P_d1 ps_P_d2 using M0_dim adjoint_one hermitian_M0[unfolded hermitian_def] by auto
have eq2: "M0 * (proj_k R) * M0 = (proj_k R)"
unfolding proj_k_def
apply (subst outer_prod_left_right_mat[of _ K _ K _ K _ K])
unfolding hermitian_M0[unfolded hermitian_def] M0_mult_ket_k_R
using ket_k_dim M0_dim by auto
show ?thesis unfolding eq unfolding exM0_def P'_def
apply (subst tensor_P_left_right_partial2)
using M0_dim proj_k_dim eq2 proj_psi_l_dim by auto
qed
definition exM1 where
"exM1 = tensor_P (1⇩m N) M1"
lemma M1_mult_ket_k:
assumes "k < R"
shows "M1 *⇩v ket_k k = ket_k k"
apply (rule eq_vecI)
unfolding M1_def ket_k_def
by (auto simp add: scalar_prod_def assms R sum_only_one_neq_0)
lemma exP1_Q:
"adjoint exM1 * Q * exM1 = Q"
proof -
have eq: "adjoint exM1 = exM1"
unfolding exM1_def ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_adjoint)
unfolding ps_P_d1 ps_P_d2 using M1_dim adjoint_one hermitian_M1[unfolded hermitian_def] by auto
{
fix k assume k: "k < R"
let ?m = "tensor_P (proj_psi_l k) (proj_k k)"
have "exM1 * ?m * exM1 = tensor_P (proj_psi_l k) (M1 * (proj_k k) * M1)"
unfolding exM1_def apply (subst tensor_P_left_right_partial2)
using M1_dim proj_k_dim proj_psi_l_dim by auto
also have "… = tensor_P (proj_psi_l k) (outer_prod (M1 *⇩v ket_k k) (M1 *⇩v ket_k k))"
unfolding proj_k_def apply (subst outer_prod_left_right_mat[of _ K _ K _ K _ K])
unfolding hermitian_M1[unfolded hermitian_def]
using ket_k_dim M1_dim by auto
finally have "exM1 * ?m * exM1 = ?m" unfolding proj_k_def using k M1_mult_ket_k by auto
}
note p1 = this
have "adjoint exM1 * Q * exM1 = exM1 * Q * exM1" using eq by auto
also have "… = matrix_sum d (λk. exM1 * (tensor_P (proj_psi_l k) (proj_k k)) * exM1) R"
unfolding Q_def
apply (subst matrix_sum_mult_left_right)
using tensor_P_dim exM1_def by auto
also have "… = matrix_sum d (λk. tensor_P (proj_psi_l k) (proj_k k)) R"
apply (subst matrix_sum_cong)
using p1 by auto
finally show ?thesis using Q_def by auto
qed
lemma qp_P':
"is_quantum_predicate P'"
unfolding is_quantum_predicate_def
proof (intro conjI)
show "P' ∈ carrier_mat d d" unfolding P'_def using tensor_P_dim by auto
show "positive P'" unfolding P'_def ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive)
apply (auto simp add: ps_P_d1 ps_P_d2 proj_O_dim proj_k_dim)
using proj_psi_l_dim positive_proj_psi_l positive_proj_k K by auto
show "P' ≤⇩L 1⇩m d" unfolding P'_def ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_le_one[simplified ps_P_d])
by (auto simp add: ps_P_d1 ps_P_d2 proj_psi_l_dim K proj_k_dim positive_proj_psi_l positive_proj_k proj_k_le_one psi_l_le_id)
qed
lemma P'_add_Q:
"P' + Q = matrix_sum d (λl. tensor_P (proj_psi_l l) (proj_k l)) (R + 1)"
apply simp unfolding P'_def Q_def by auto
lemma positive_Qk:
"positive (tensor_P (proj_psi_l l) (proj_k l))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive)
unfolding ps_P_d1 ps_P_d2
using proj_psi_l_dim proj_k_dim positive_proj_psi_l positive_proj_k by auto
lemma P'_Q_dim:
"P' + Q ∈ carrier_mat d d"
unfolding P'_add_Q
apply (subst matrix_sum_dim)
using tensor_P_dim by auto
lemma P'_add_Q_le_one:
"P' + Q ≤⇩L 1⇩m d"
proof -
have leq: "matrix_sum d (λl. tensor_P (proj_psi_l l) (proj_k l)) (R + 1)
≤⇩L matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) (R + 1)"
unfolding Q2_def
apply (subst lowner_le_matrix_sum)
subgoal using tensor_P_dim by auto
subgoal using tensor_P_dim by auto
using proj_psi_proj_k_le_exproj_k by auto
have "matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) (R + 1)
= tensor_P (1⇩m N) (matrix_sum K proj_k (R + 1))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_matrix_sum2[simplified ps_P_d ps_P_d2])
subgoal using ps_P_d1 by auto
using proj_k_dim by auto
also have "… = tensor_P (1⇩m N) (proj_fst_k (R + 1))" using sum_proj_k[of "R + 1"] K by auto
also have "… ≤⇩L tensor_P (1⇩m N) (1⇩m K)" unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive_le)
subgoal using ps_P_d1 by auto
subgoal using ps_P_d2 proj_fst_k_def by auto
subgoal using positive_one by auto
subgoal using positive_proj_fst_k by auto
subgoal using lowner_le_refl[of "1⇩m N" N] by auto
using proj_fst_k_le_one by auto
also have "… = 1⇩m d" unfolding ps2_P.ptensor_mat_def
using ps_P.tensor_mat_id ps_P_d1 ps_P_d2 ps_P_d by auto
finally have leq2: "matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) (R + 1) ≤⇩L 1⇩m d" by auto
have ds: "matrix_sum d (λk. tensor_P (1⇩m N) (proj_k k)) (R + 1) ∈ carrier_mat d d"
apply (subst matrix_sum_dim) using tensor_P_dim by auto
then show ?thesis
using leq leq2 lowner_le_trans[OF P'_Q_dim ds, of "1⇩m d"] unfolding P'_add_Q by auto
qed
lemma qp_P'_Q:
"is_quantum_predicate (P' + Q)"
unfolding is_quantum_predicate_def
proof (intro conjI)
show "P' + Q ∈ carrier_mat d d"
unfolding P'_add_Q apply (subst matrix_sum_dim)
using tensor_P_dim by auto
show "positive (P' + Q)" unfolding P'_add_Q
apply (subst matrix_sum_positive)
using tensor_P_dim positive_Qk by auto
show " P' + Q ≤⇩L 1⇩m d" using P'_add_Q_le_one by auto
qed
lemma Q2_leq_lemma:
"tensor_P (1⇩m N) (mat_incr K) * Q2 * adjoint (tensor_P (1⇩m N) (mat_incr K)) ≤⇩L P' + Q"
proof -
have ad: "adjoint (tensor_P (1⇩m N) (mat_incr K)) = tensor_P (1⇩m N) (adjoint (mat_incr K))"
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_adjoint)
using ps_P_d1 ps_P_d2 mat_incr_dim adjoint_one by auto
let ?m1 = "tensor_P (1⇩m N) (mat_incr K)"
let ?m3 = "tensor_P (1⇩m N) (adjoint (mat_incr K))"
{
fix l assume "l < R"
then have "l < K - 1" using K by auto
then have m: "(mat_incr K) *⇩v (ket_k l) = (ket_k (l + 1))"
using mat_incr_mult_ket_k by auto
let ?m2 = "tensor_P (proj_psi_l (l + 1)) (proj_k l)"
have eq: "?m1 * ?m2 * ?m3 = tensor_P (proj_psi_l (l + 1)) ((mat_incr K) * (proj_k l) * adjoint (mat_incr K))"
apply (subst tensor_P_left_right_partial2)
using proj_k_dim proj_psi_l_dim mat_incr_dim adjoint_dim[OF mat_incr_dim] by auto
have "(mat_incr K) * (proj_k l) * adjoint (mat_incr K) = outer_prod ((mat_incr K) *⇩v (ket_k l)) ((mat_incr K) *⇩v (ket_k l))"
unfolding proj_k_def apply (subst outer_prod_left_right_mat[of _ K _ K _ K _ K])
using ket_k_dim mat_incr_dim adjoint_dim[OF mat_incr_dim] adjoint_adjoint[of "mat_incr K"] by auto
also have "… = proj_k (l + 1)" unfolding proj_k_def using m by auto
finally have "?m1 * ?m2 * ?m3 = tensor_P (proj_psi_l (l + 1)) (proj_k (l + 1))" using eq by auto
}
note p1 = this
have "?m1 * Q2 * ?m3
= matrix_sum d (λl. ?m1 * (tensor_P (proj_psi_l (l + 1)) (proj_k l)) * ?m3) R"
unfolding Q2_def apply(subst matrix_sum_mult_left_right)
using tensor_P_dim by auto
also have "… = matrix_sum d (λl. tensor_P (proj_psi_l (l + 1)) (proj_k (l + 1))) R"
apply (subst matrix_sum_cong) using p1 by auto
finally have eq1: "?m1 * Q2 * ?m3 = matrix_sum d (λl. tensor_P (proj_psi_l (l + 1)) (proj_k (l + 1))) R" (is "_=?r") .
have eq2: "P' + Q = tensor_P (proj_psi_l 0) (proj_k 0) + ?r"
unfolding P'_add_Q
apply (subst matrix_sum_Suc_remove_head) using tensor_P_dim by auto
have "tensor_P (proj_psi_l 0) (proj_k 0) + ?r ≤⇩L P' + Q"
unfolding eq2[symmetric] apply (subst lowner_le_refl) using P'_Q_dim by auto
moreover have "positive (tensor_P (proj_psi_l 0) (proj_k 0))"
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_positive)
unfolding ps_P_d1 ps_P_d2 using proj_psi_l_dim proj_k_dim positive_proj_psi_l positive_proj_k by auto
moreover have "matrix_sum d (λl. tensor_P (proj_psi_l (l + 1)) (proj_k (l + 1))) R ∈ carrier_mat d d"
apply (subst matrix_sum_dim) using tensor_P_dim by auto
ultimately have "?r ≤⇩L P' + Q"
apply (subst add_positive_le_reduce2[of ?r d "tensor_P (proj_psi_l 0) (proj_k 0)" "P' + Q"])
using tensor_P_dim P'_Q_dim by auto
then show ?thesis using eq1 ad by auto
qed
lemma Q2_leq:
"Q2 ≤⇩L adjoint (tensor_P (1⇩m N) (mat_incr K)) * (P' + Q) * tensor_P (1⇩m N) (mat_incr K)"
proof -
let ?m1 = "tensor_P (1⇩m N) (mat_incr K)"
let ?m2 = "adjoint (tensor_P (1⇩m N) (mat_incr K))"
have "?m1 * ?m2 = 1⇩m d"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_adjoint)
unfolding ps_P_d1 ps_P_d2 apply (auto simp add: mat_incr_dim adjoint_one)
apply (subst ps_P.tensor_mat_mult[symmetric])
unfolding ps_P_d1 ps_P_d2 apply (auto simp add: mat_incr_dim adjoint_dim mat_incr_mult_adjoint_mat_incr)
using ps_P.tensor_mat_id ps_P_d ps_P_d1 ps_P_d2 by auto
then have inv: "?m2 * ?m1 = 1⇩m d"
using mat_mult_left_right_inverse[of ?m1 d ?m2]
tensor_P_dim adjoint_dim by auto
have d: "?m1 * Q2 * ?m2 ∈ carrier_mat d d" using tensor_P_dim adjoint_dim[OF tensor_P_dim] Q2_dim by fastforce
have le: "?m2 * (?m1 * Q2 * ?m2) * ?m1 ≤⇩L ?m2 * (P' + Q) * ?m1" (is "lowner_le ?l ?r")
apply (subst lowner_le_keep_under_measurement[of _ d])
using Q2_leq_lemma tensor_P_dim P'_Q_dim d by auto
have "?l = (?m2 * ?m1) * Q2 * (?m2 * ?m1)"
apply (mat_assoc d) using tensor_P_dim Q2_dim by auto
also have "… = 1⇩m d * Q2 * 1⇩m d" using inv by auto
also have "… = Q2" using Q2_dim by auto
finally have eq: "?l = Q2".
show ?thesis using eq le by auto
qed
lemma hoare_triple_D3:
"⊢⇩p
{Q2}
Utrans_P vars2 (mat_incr K)
{adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1}"
unfolding exP0_P' exP1_Q
proof -
let ?m = "tensor_P (1⇩m N) (mat_incr K)"
have h1: "⊢⇩p
{adjoint ?m * (P' + Q) * ?m}
Utrans ?m
{P' + Q}"
using qp_P'_Q hoare_partial.intros by auto
have qp: "is_quantum_predicate (adjoint ?m * (P' + Q) * ?m)"
using qp_close_under_unitary_operator tensor_P_dim qp_P'_Q unitary_exmat_incr by auto
then have "⊢⇩p
{Q2}
Utrans ?m
{P' + Q}"
using hoare_partial.intros(6)[OF qp_Q2 qp_P'_Q qp qp_P'_Q] Q2_leq h1 lowner_le_refl[OF P'_Q_dim] by auto
moreover have "Utrans ?m = Utrans_P vars2 (mat_incr K)"
apply (subst Utrans_P_is_tensor_P2) unfolding mat_incr_def by auto
ultimately show "⊢⇩p {Q2} Utrans_P vars2 (mat_incr K) {P' + Q}" by auto
qed
lemma qp_D3_post:
"is_quantum_predicate (adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1)"
unfolding exP0_P' exP1_Q using qp_P'_Q by auto
lemma hoare_triple_D:
"⊢⇩p
{Q}
D
{adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1}"
proof -
have "⊢⇩p {Q1} hadamard_n n;; (Utrans_P vars1 mat_Ph;; hadamard_n n) {Q2}"
using well_com_hadamard_n well_com_mat_Ph hoare_triple_D2 qp_Q1 qp_Q2 by (auto simp add: hoare_patial_seq_assoc)
then have "⊢⇩p {Q} Utrans_P vars1 mat_O;; (hadamard_n n;; (Utrans_P vars1 mat_Ph;; hadamard_n n)) {Q2}"
using hoare_triple_D1 qp_Q qp_Q1 qp_Q2 hoare_partial.intros(3) by auto
moreover have "well_com (Utrans_P vars1 mat_Ph;; hadamard_n n)" using well_com_hadamard_n well_com_mat_Ph by auto
ultimately have "⊢⇩p {Q} (Utrans_P vars1 mat_O;; hadamard_n n);; (Utrans_P vars1 mat_Ph;; hadamard_n n) {Q2}"
using well_com_hadamard_n well_com_mat_O qp_Q qp_Q2 by (auto simp add: hoare_patial_seq_assoc)
moreover have "well_com (Utrans_P vars1 mat_O;; hadamard_n n)"
using well_com_mat_O well_com_hadamard_n by auto
ultimately have "⊢⇩p {Q} Utrans_P vars1 mat_O;; hadamard_n n;; Utrans_P vars1 mat_Ph;; hadamard_n n {Q2}"
using well_com_hadamard_n well_com_mat_Ph qp_Q qp_Q2 by (auto simp add: hoare_patial_seq_assoc)
with qp_Q qp_Q2 qp_D3_post hoare_triple_D3 show "⊢⇩p
{Q}
D
{adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1}"
unfolding D_def using hoare_partial.intros(3) by auto
qed
lemma psi_is_psi_l0:
"ψ = psi_l 0"
unfolding ψ_eq psi_l_def alpha_l_def beta_l_def by auto
lemma proj_psi_is_proj_psi_l0:
"proj_psi = proj_psi_l 0"
unfolding proj_psi_def psi_is_psi_l0 proj_psi_l_def by auto
lemma lowner_le_Q:
"tensor_P proj_psi (proj_k 0) ≤⇩L adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1"
proof -
let ?r = "matrix_sum d (λl. tensor_P (proj_psi_l l) (proj_k l)) (R + 1)"
let ?l = "tensor_P (proj_psi_l 0) (proj_k 0)"
have eq: "?r = ?l + matrix_sum d (λl. tensor_P (proj_psi_l (l + 1)) (proj_k (l + 1))) R" (is "_ = _ + ?s")
apply (subst matrix_sum_Suc_remove_head)
using tensor_P_dim by auto
have d: "?s ∈ carrier_mat d d"
apply (subst matrix_sum_dim) using tensor_P_dim by auto
have pt: "positive (tensor_P (proj_psi_l l) (proj_k l))" for l
unfolding ps2_P.ptensor_mat_def apply (subst ps_P.tensor_mat_positive)
unfolding ps_P_d1 ps_P_d2 using proj_psi_l_dim proj_k_dim positive_proj_psi_l positive_proj_k by auto
have ps: "positive ?s"
apply (subst matrix_sum_positive)
subgoal using tensor_P_dim by auto
using pt by auto
have "?l ≤⇩L ?r"
unfolding eq
apply (subst add_positive_le_reduce1[of ?l d ?s])
subgoal using tensor_P_dim by auto
subgoal using d by auto
subgoal using tensor_P_dim d by auto
subgoal using ps by auto
apply (subst lowner_le_refl[of _ d])
using tensor_P_dim d by auto
then show ?thesis unfolding exP0_P' exP1_Q P'_add_Q proj_psi_is_proj_psi_l0 by auto
qed
lemma hoare_triple_while:
"⊢⇩p
{adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1}
While_P vars2 M0 M1 D
{P'}"
proof -
let ?m = "λ(n::nat). if n = 0 then mat_extension dims vars2 M0 else
if n = 1 then mat_extension dims vars2 M1 else undefined"
have dM0: "M0 ∈ carrier_mat K K" unfolding M0_def by auto
have dM1: "M1 ∈ carrier_mat K K" unfolding M1_def by auto
have m0: "?m 0 = exM0" apply (simp) unfolding exM0_def ps2_P.ptensor_mat_def mat_ext_vars2[OF dM0] by auto
have m1: "?m 1 = exM1" unfolding exM1_def ps2_P.ptensor_mat_def mat_ext_vars2[OF dM1] by auto
have "⊢⇩p {Q} D {adjoint (?m 0) * P' * (?m 0) + adjoint (?m 1) * Q * (?m 1)}"
using hoare_triple_D m0 m1 by auto
then show ?thesis unfolding While_P_def using qp_D3_post qp_P' hoare_partial.intros(5)[OF qp_P' qp_Q, of D ?m] m0 m1 by auto
qed
lemma R_and_a_half_θ:
"(R + 1/2) * θ = pi / 2"
using R θ_neq_0 by auto
lemma psi_lR_is_beta:
"psi_l R = β"
unfolding psi_l_def alpha_l_def beta_l_def R_and_a_half_θ by auto
lemma post_mult_beta:
"post *⇩v β = β"
by (auto simp add: post_def β_def scalar_prod_def sum_only_one_neq_0)
lemma post_mult_post:
"post * post = post"
by (auto simp add: post_def scalar_prod_def sum_only_one_neq_0)
lemma post_mult_proj_psi_lR:
"post * proj_psi_l R = proj_psi_l R"
proof -
let ?R = "proj_psi_l R"
have "post * ?R = post * ?R * 1⇩m N"
using post_dim proj_psi_l_dim[of R] by auto
also have "… = outer_prod (post *⇩v psi_l R) ((1⇩m N) *⇩v psi_l R)"
unfolding proj_psi_l_def
apply (subst outer_prod_left_right_mat[of _ N _ N _ N _ N])
by (auto simp add: psi_l_dim post_dim adjoint_one)
also have "… = ?R" unfolding proj_psi_l_def unfolding psi_lR_is_beta unfolding post_mult_beta
using β_dim by auto
finally show "post * ?R = ?R".
qed
lemma proj_psi_lR_mult_post:
"proj_psi_l R * post = proj_psi_l R"
proof -
let ?R = "proj_psi_l R"
have "?R * post = 1⇩m N * ?R * post"
using post_dim proj_psi_l_dim[of R] by auto
also have "… = outer_prod ((1⇩m N) *⇩v psi_l R) (post *⇩v psi_l R)"
unfolding proj_psi_l_def
apply (subst outer_prod_left_right_mat[of _ N _ N _ N _ N])
by (auto simp add: psi_l_dim post_dim hermitian_post[unfolded hermitian_def])
also have "… = ?R" unfolding proj_psi_l_def unfolding psi_lR_is_beta unfolding post_mult_beta
using β_dim by auto
finally show "?R * post = ?R".
qed
lemma proj_psi_lR_mult_proj_psi_lR:
"proj_psi_l R * proj_psi_l R = proj_psi_l R"
unfolding proj_psi_l_def psi_lR_is_beta
apply (subst outer_prod_mult_outer_prod[of _ N _ N _ _ N])
by (auto simp add: β_inner)
lemma proj_psi_lR_le_post:
"proj_psi_l R ≤⇩L post"
proof -
let ?R = "proj_psi_l R"
let ?s = "post - ?R"
have eq1: "post * (post - ?R) = post - ?R"
apply (subst mult_minus_distrib_mat[of _ N N _ N])
apply (auto simp add: post_dim proj_psi_l_dim[of R])
using post_mult_post post_mult_proj_psi_lR by auto
have eq2: "?R * (post - ?R) = 0⇩m N N"
apply (subst mult_minus_distrib_mat[of _ N N _ N])
apply (auto simp add: post_dim proj_psi_l_dim[of R])
unfolding proj_psi_lR_mult_post proj_psi_lR_mult_proj_psi_lR
using proj_psi_l_dim[of R] by auto
have "adjoint ?s = ?s"
apply (subst adjoint_minus[of _ N N])
using post_dim proj_psi_l_dim hermitian_post hermitian_proj_psi_l K by (auto simp add: hermitian_def)
then have "?s * adjoint ?s = ?s * ?s" by auto
also have "… = post * (post - ?R) - ?R * (post - ?R)"
using post_dim proj_psi_l_dim[of R] by (mat_assoc N)
also have "… = post - ?R"
unfolding eq1 eq2 using post_dim proj_psi_l_dim[of R] by auto
finally have "?s * adjoint ?s = ?s".
then have "∃M. M * adjoint M = ?s" by auto
then have "positive ?s" apply (subst positive_if_decomp[of ?s N]) using post_dim proj_psi_l_dim[of R] by auto
then show ?thesis unfolding lowner_le_def using post_dim proj_psi_l_dim[of R] by auto
qed
lemma P'_le_post_R:
"P' ≤⇩L (tensor_P post (proj_k R))"
proof -
let ?r = "tensor_P post (proj_k R)"
have "?r - P' = tensor_P (post - proj_psi_l R) (proj_k R)"
unfolding P'_def ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_minus1)
unfolding ps_P_d1 ps_P_d2
using post_dim proj_psi_l_dim proj_k_dim by auto
moreover have "positive (tensor_P (post - proj_psi_l R) (proj_k R))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive)
unfolding ps_P_d1 ps_P_d2
using proj_psi_lR_le_post[unfolded lowner_le_def]
post_dim proj_psi_l_dim[of R] proj_k_dim positive_proj_k
by auto
ultimately show "P' ≤⇩L ?r"
unfolding lowner_le_def P'_def
using tensor_P_dim by auto
qed
lemma positive_post:
"positive post"
proof -
have ad: "adjoint post = post" using hermitian_post[unfolded hermitian_def] by auto
then have "post * adjoint post = post"
unfolding ad post_mult_post by auto
then have "∃M. M * adjoint M = post" by auto
then show ?thesis using positive_if_decomp post_dim by auto
qed
lemma lowner_le_P':
"P' ≤⇩L tensor_P post (1⇩m K)"
proof -
let ?r = "tensor_P post (1⇩m K)"
let ?m = "tensor_P post (proj_k R)"
have "?m ≤⇩L ?r"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive_le)
unfolding ps_P_d1 ps_P_d2
using post_dim proj_k_dim positive_post positive_proj_k
lowner_le_refl[of post] proj_k_le_one by auto
then show "P' ≤⇩L ?r"
using lowner_le_trans[of P' d ?m ?r] P'_le_post_R
unfolding P'_def using tensor_P_dim by auto
qed
lemma post_mult_testNk:
assumes "f k"
shows "post * (testN k) = testN k"
using assms by (auto simp add: post_def testN_def scalar_prod_def sum_only_one_neq_0)
lemma post_mult_testNk_neg:
assumes "¬ f k"
shows "post * testN k = 0⇩m N N"
using assms by (auto simp add: post_def testN_def scalar_prod_def sum_only_one_neq_0)
lemma testN_post1:
"f k ⟹ adjoint (testN k) * post * testN k = testN k"
apply (subst assoc_mult_mat[of _ N N _ N _ N])
apply (auto simp add: adjoint_dim testN_dim post_dim)
apply (subst post_mult_testNk, simp)
unfolding hermitian_testN[unfolded hermitian_def]
using testN_mult_testN by auto
lemma testN_post2:
"¬ f k ⟹ adjoint (testN k) * post * testN k = 0⇩m N N"
apply (subst assoc_mult_mat[of _ N N _ N _ N])
apply (auto simp add: adjoint_dim testN_dim post_dim)
apply (subst post_mult_testNk_neg, simp)
unfolding hermitian_testN[unfolded hermitian_def]
using testN_dim[of k] by auto
definition post_fst_k :: "nat ⇒ complex mat" where
"post_fst_k k = mat N N (λ(i, j). if (i = j ∧ f i ∧ i < k) then 1 else 0)"
lemma post_fst_kN:
"post_fst_k N = post"
unfolding post_fst_k_def post_def by auto
lemma post_fst_k_Suc:
"f i ⟹ post_fst_k (Suc i) = testN i + post_fst_k i"
apply (rule eq_matI)
unfolding post_fst_k_def testN_def by auto
lemma post_fst_k_Suc_neg:
"¬ f i ⟹ post_fst_k (Suc i) = post_fst_k i"
apply (rule eq_matI)
unfolding post_fst_k_def
apply auto
using less_antisym by fastforce
lemma testN_sum:
"matrix_sum N (λk. adjoint (testN k) * post * testN k) N = post"
proof -
have "m ≤ N ⟹ matrix_sum N (λk. adjoint (testN k) * post * testN k) m = post_fst_k m" for m
proof (induct m)
case 0
then show ?case apply simp unfolding post_fst_k_def by auto
next
case (Suc m)
then have m: "m ≤ N" by auto
show ?case
proof (cases "f m")
case True
show ?thesis apply simp
apply (subst testN_post1[OF True])
apply (subst Suc(1)[OF m])
using post_fst_k_Suc True by auto
next
case False
show ?thesis apply simp
apply (subst testN_post2[OF False])
apply (subst Suc(1)[OF m])
using post_fst_k_Suc_neg False post_fst_k_def by auto
qed
qed
then show ?thesis using post_fst_kN by auto
qed
lemma tensor_P_testN_sum:
"matrix_sum d (λk. adjoint (tensor_P (testN k) (1⇩m K)) * tensor_P post (1⇩m K) * tensor_P (testN k) (1⇩m K)) N =
tensor_P post (1⇩m K)"
proof -
have eq: "adjoint (tensor_P (testN k) (1⇩m K)) * tensor_P post (1⇩m K) * tensor_P (testN k) (1⇩m K) =
tensor_P (adjoint (testN k) * post * (testN k)) (1⇩m K)" for k
apply (subst tensor_P_adjoint_left_right)
subgoal unfolding testN_def by auto
subgoal by auto
subgoal using post_dim by auto
using adjoint_one by auto
moreover have "matrix_sum N (λk. adjoint (testN k) * post * testN k) N = post"
using testN_sum by auto
show ?thesis unfolding eq
apply (subst matrix_sum_tensor_P1)
subgoal unfolding testN_def by auto
subgoal by auto
using testN_sum by auto
qed
lemma post_le_one:
"post ≤⇩L 1⇩m N"
proof -
let ?s = "1⇩m N - post"
have eq1: "1⇩m N * (1⇩m N - post) = 1⇩m N - post"
apply (mat_assoc N) using post_dim by auto
have eq2: "post * (1⇩m N - post) = 0⇩m N N"
apply (subst mult_minus_distrib_mat[of _ N N])
using post_dim by (auto simp add: post_mult_post)
have "adjoint ?s = ?s"
apply (subst adjoint_minus)
apply (auto simp add: post_dim adjoint_dim)
using adjoint_one hermitian_post[unfolded hermitian_def] by auto
then have "?s * adjoint ?s = ?s * ?s" by auto
also have "… = 1⇩m N * (1⇩m N - post) - post * (1⇩m N - post)"
apply (mat_assoc N) using post_dim by auto
also have "… = ?s" unfolding eq1 eq2 using post_dim by auto
finally have "?s * adjoint ?s = ?s".
then have "∃M. M * adjoint M = ?s" by auto
then have "positive ?s" apply (subst positive_if_decomp[of ?s N]) using post_dim by auto
then show ?thesis unfolding lowner_le_def using post_dim by auto
qed
lemma qp_post:
"is_quantum_predicate (tensor_P post (1⇩m K))"
unfolding is_quantum_predicate_def
proof (intro conjI)
show "tensor_P post (1⇩m K) ∈ carrier_mat d d"
using tensor_P_dim by auto
show "positive (tensor_P post (1⇩m K))"
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive)
by (auto simp add: ps_P_d1 ps_P_d2 post_dim positive_post positive_one)
show "tensor_P post (1⇩m K) ≤⇩L 1⇩m d"
unfolding ps_P.tensor_mat_id[symmetric, unfolded ps_P_d ps_P_d1 ps_P_d2]
unfolding ps2_P.ptensor_mat_def
apply (subst ps_P.tensor_mat_positive_le)
unfolding ps_P_d1 ps_P_d2 using post_dim positive_post positive_one post_le_one lowner_le_refl[of "1⇩m K" K]
by auto
qed
lemma hoare_triple_if:
"⊢⇩p
{tensor_P post (1⇩m K)}
Measure_P vars1 N testN (replicate N SKIP)
{tensor_P post (1⇩m K)}"
proof -
define M where "M = (λn. mat_extension dims vars1 (testN n))"
define Post where "Post = (λ(k::nat). tensor_P post (1⇩m K))"
have M: "M = (λn. tensor_P (testN n) (1⇩m K))"
unfolding M_def using mat_ext_vars1 by auto
have skip: "⋀k. k < N ⟹ (replicate N SKIP) ! k = SKIP" by simp
have h: "⋀k. k < N ⟹ ⊢⇩p {Post k} replicate N SKIP ! k {tensor_P post (1⇩m K)}"
unfolding Post_def skip using qp_post hoare_partial.intros by auto
moreover have "⋀k. k < N ⟹ is_quantum_predicate (Post k)" unfolding Post_def using qp_post by auto
ultimately show ?thesis
unfolding Measure_P_def apply (fold M_def)
using hoare_partial.intros(4)[of N Post "tensor_P post (1⇩m K)" "replicate N SKIP" M]
unfolding M Post_def using tensor_P_testN_sum qp_post by auto
qed
theorem grover_partial_deduct:
"⊢⇩p
{tensor_P pre (proj_k 0)}
Grover
{tensor_P post (1⇩m K)}"
unfolding Grover_def
proof -
have "⊢⇩p
{tensor_P pre (proj_k 0)}
hadamard_n n
{adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1}"
using hoare_partial.intros(6)[OF qp_pre qp_D3_post qp_pre qp_init_post]
hoare_triple_init lowner_le_refl[OF tensor_P_dim] lowner_le_Q by auto
then have "⊢⇩p
{tensor_P pre (proj_k 0)}
hadamard_n n;;
While_P vars2 M0 M1 D
{P'}"
using hoare_triple_while hoare_partial.intros(3) qp_pre qp_D3_post qp_P' by auto
then have "⊢⇩p
{tensor_P pre (proj_k 0)}
hadamard_n n;;
While_P vars2 M0 M1 D
{tensor_P post (1⇩m K)}"
using lowner_le_P' hoare_partial.intros(6)[OF qp_pre qp_post qp_pre qp_P']
lowner_le_P' lowner_le_refl[OF tensor_P_dim] by auto
then show " ⊢⇩p
{tensor_P pre (proj_k 0)}
hadamard_n n;;
While_P vars2 M0 M1 D;;
Measure_P vars1 N testN (replicate N SKIP)
{tensor_P post (1⇩m K)}"
using hoare_triple_if qp_pre qp_post hoare_partial.intros(3) by auto
qed
theorem grover_partial_correct:
"⊨⇩p
{tensor_P pre (proj_k 0)}
Grover
{tensor_P post (1⇩m K)}"
using grover_partial_deduct well_com_Grover qp_pre qp_post hoare_partial_sound by auto
end
end