Theory Padic_Fields
theory Padic_Fields
imports Fraction_Field Padic_Ints.Hensels_Lemma
begin
section‹Constructing the $p$-adic Valued Field›
text‹
As a field, we can define the field $\mathbb{Q}_p$ immediately as the fraction field of
$\mathbb{Z}_p$. The valuation can then be extended from to $\mathbb{Z}_p$ to $\mathbb{Q}_p$ by
defining $\text{val}(a/b) = \text{val}\ a - \text{val}\ b$ where $a, b \in \mathbb{Z}_p$. ›
subsection‹A Locale for $p$-adic Fields›
text‹
This section builds a locale for reasoning about general $p$-adic fields for a fixed $p$.
The locale fixes constants for the ring of $p$-adic integers ($\mathbb{Z}_p$) and the inclusion
map $\iota: \mathbb{Z}_p \to \mathbb{Q}_p$. ›
type_synonym padic_number = "((nat ⇒ int) × (nat ⇒ int)) set"
locale padic_fields=
fixes Q⇩p:: "_ ring" (structure)
fixes Z⇩p:: "_ ring" (structure)
fixes p
fixes ι
defines "Z⇩p ≡ padic_int p"
defines "Q⇩p ≡ Frac Z⇩p"
defines "ι ≡ domain_frac.inc Z⇩p"
assumes prime: "prime p"
sublocale padic_fields < Zp?: domain_frac Z⇩p
by (simp add: Z⇩p_def domain_frac.intro padic_int_is_domain prime)
sublocale padic_fields < Qp?: ring Q⇩p
unfolding Q⇩p_def
by (simp add: Fraction_Field.domain_frac_def domain_axioms domain_frac.fraction_field_is_field field.is_ring)
sublocale padic_fields < Qp?: cring Q⇩p
unfolding Q⇩p_def
by (simp add: Fraction_Field.domain_frac_def domain.axioms(1) domain_axioms domain_frac.fraction_field_is_domain)
sublocale padic_fields < Qp?: field Q⇩p
unfolding Q⇩p_def
by (simp add: Fraction_Field.domain_frac_def domain_axioms domain_frac.fraction_field_is_field)
sublocale padic_fields < Qp?: domain Q⇩p
by (simp add: Qp.domain_axioms)
sublocale padic_fields < padic_integers Z⇩p
apply (simp add: padic_integers_def prime)
using Z⇩p_def by auto
sublocale padic_fields < UPQ?: UP_cring Q⇩p "UP Q⇩p"
using Qp.is_cring UP_cring_def apply blast
by auto
subsection‹The Valuation Ring in $\mathbb{Q}_p$›
text‹
The valuation ring $\mathcal{O}_p$ is the subring of elements in $\mathbb{Q}_p$ with positive
valuation. It is an isomorphic copy of $\mathbb{Z}_p$.›
context padic_fields
begin
abbreviation 𝒪⇩p where
"𝒪⇩p ≡ ι ` carrier Z⇩p"
lemma inc_closed:
assumes "a ∈ carrier Z⇩p"
shows "ι a ∈ carrier Q⇩p"
using Q⇩p_def ι_def assms Zp.inc_is_hom ring_hom_closed
by fastforce
lemma inc_is_hom:
"ι ∈ ring_hom Z⇩p Q⇩p"
unfolding Q⇩p_def ι_def
by(rule Zp.inc_is_hom)
text‹An alternate formula of the map $\iota$›
lemma inc_def:
assumes "a ∈ carrier Z⇩p"
shows "ι a = frac a 𝟭⇘Z⇩p⇙"
using assms inc_equation[of a] ι_def by auto
lemma inc_of_nonzero:
assumes "a ∈ nonzero Z⇩p"
shows "ι a ∈ nonzero Q⇩p"
using ι_def assms Q⇩p_def Qp.nonzero_memI
Zp.nonzero_closed Zp.nonzero_one_closed frac_closed local.inc_def nonzero_fraction
by (metis Zp.nonzero_memE(2) inc_closed inc_inj1)
lemma inc_of_one:
"ι 𝟭⇘Z⇩p⇙ = 𝟭"
by (simp add: inc_is_hom ring_hom_one)
lemma inc_of_zero:
"ι 𝟬⇘Z⇩p⇙ = 𝟬"
apply(rule ring_hom_zero[of ι], rule inc_is_hom)
apply (simp add: Zp.ring_axioms)
by (simp add: Qp.ring_axioms)
lemma inc_of_sum:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ carrier Z⇩p"
shows "ι (a ⊕⇘Z⇩p⇙ b) = (ι a) ⊕ (ι b)"
by(rule ring_hom_add[of _ Z⇩p], rule inc_is_hom, rule assms, rule assms)
lemma inc_of_prod:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ carrier Z⇩p"
shows "ι (a ⊗⇘Z⇩p⇙ b) = (ι a) ⊗ (ι b)"
by (simp add: assms(1) assms(2) inc_is_hom ring_hom_mult)
lemma inc_pow:
assumes "a ∈ nonzero Z⇩p"
shows "ι (a[^]⇘Z⇩p⇙(n::nat)) = (ι a)[^] n"
apply(induction n)
apply (simp add: inc_of_one)
by (simp add: assms inc_of_prod Zp.nonzero_closed)
lemma inc_of_diff:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ carrier Z⇩p"
shows "ι (a ⊖⇘Z⇩p⇙ b) = (ι a) ⊖ (ι b)"
using assms unfolding a_minus_def
using inc_is_hom Qp.ring_axioms Q⇩p_def Zp.ring_hom_a_inv inc_of_sum by fastforce
lemma Units_nonzero_Qp:
assumes "u ∈ Units Q⇩p"
shows "u ∈ nonzero Q⇩p"
by (simp add: Qp.Units_nonzero assms)
lemma Units_eq_nonzero:
"Units Q⇩p = nonzero Q⇩p"
using frac_nonzero_Units unfolding Q⇩p_def Z⇩p_def
by blast
lemma Units_inverse_Qp:
assumes "u ∈ Units Q⇩p"
shows "inv⇘Q⇩p⇙ u ∈ Units Q⇩p"
using Q⇩p_def Units_eq_nonzero assms frac_nonzero_inv_Unit by auto
lemma nonzero_inverse_Qp:
assumes "u ∈ nonzero Q⇩p"
shows "inv⇘Q⇩p⇙ u ∈ nonzero Q⇩p"
using Units_eq_nonzero Units_inverse_Qp assms by auto
lemma frac_add:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
assumes "c ∈ carrier Z⇩p"
assumes "d ∈ nonzero Z⇩p"
shows "(frac a b) ⊕ (frac c d) = (frac ((a ⊗⇘Z⇩p⇙ d) ⊕⇘Z⇩p⇙ (b ⊗⇘Z⇩p⇙ c)) (b ⊗⇘Z⇩p⇙ d))"
by (simp add: Q⇩p_def assms(1) assms(2) assms(3) assms(4) local.frac_add)
lemma frac_add_common_denom:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ carrier Z⇩p"
assumes "c ∈ nonzero Z⇩p"
shows "(frac a c) ⊕ (frac b c) = frac (a ⊕⇘Z⇩p⇙ b) c"
by (simp add: Q⇩p_def assms(1) assms(2) assms(3) frac_add_common_denom)
lemma frac_mult:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
assumes "c ∈ carrier Z⇩p"
assumes "d ∈ nonzero Z⇩p"
shows "(frac a b) ⊗ (frac c d) = (frac (a ⊗⇘Z⇩p⇙ c) (b ⊗⇘Z⇩p⇙ d))"
by (simp add: Q⇩p_def assms(1) assms(2) assms(3) assms(4) frac_mult)
lemma frac_one:
assumes "a ∈ nonzero Z⇩p"
shows "frac a a = 𝟭"
by (simp add: Q⇩p_def assms frac_one)
lemma frac_closed:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
shows "frac a b ∈ carrier Q⇩p"
by (simp add: Q⇩p_def assms(1) assms(2) frac_closed)
lemma inv_in_frac:
assumes "a ∈ carrier Q⇩p"
assumes "a ≠𝟬"
shows "inv⇘Q⇩p⇙ a ∈ carrier Q⇩p"
"inv⇘Q⇩p⇙ a ≠𝟬"
"inv⇘Q⇩p⇙ a ∈ nonzero Q⇩p"
apply (simp add: assms(1) assms(2) field_inv(3))
using assms(1) assms(2) field_inv(1) apply fastforce
using Qp.not_nonzero_memE assms(1) assms(2) nonzero_inverse_Qp by blast
lemma nonzero_numer_imp_nonzero_fraction:
assumes "a ∈ nonzero Z⇩p"
assumes "b ∈ nonzero Z⇩p"
shows "frac a b ≠ 𝟬"
by (simp add: Q⇩p_def assms(1) assms(2) nonzero_fraction)
lemma nonzero_fraction_imp_numer_not_zero:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
assumes "frac a b ≠ 𝟬"
shows "a ≠ 𝟬⇘Z⇩p⇙"
using assms fraction_zero Q⇩p_def by blast
lemma nonzero_fraction_imp_nonzero_numer:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
assumes "frac a b ≠ 𝟬"
shows "a ∈ nonzero Z⇩p"
using assms(1) assms(2) assms(3) nonzero_fraction_imp_numer_not_zero not_nonzero_Zp by blast
lemma(in padic_fields) frac_inv_id:
assumes "a ∈ nonzero Z⇩p"
assumes "b ∈ nonzero Z⇩p"
assumes "c ∈ nonzero Z⇩p"
assumes "d ∈ nonzero Z⇩p"
assumes "frac a b = frac c d"
shows "frac b a = frac d c"
using frac_inv assms
by metis
lemma(in padic_fields) frac_uminus:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
shows "⊖ (frac a b) = frac (⊖⇘Z⇩p⇙ a) b"
by (simp add: Q⇩p_def assms(1) assms(2) frac_uminus)
lemma(in padic_fields) i_mult:
assumes "a ∈ carrier Z⇩p"
assumes "c ∈ carrier Z⇩p"
assumes "d ∈ nonzero Z⇩p"
shows "(ι a) ⊗ (frac c d) = frac (a ⊗⇘Z⇩p⇙ c) d"
by (simp add: Q⇩p_def ι_def assms(1) assms(2) assms(3) i_mult)
lemma numer_denom_facts:
assumes "a ∈ carrier Q⇩p"
shows "(numer a) ∈ carrier Z⇩p"
"(denom a) ∈ nonzero Z⇩p"
"a ≠ 𝟬 ⟹ numer a ≠ 𝟬⇘Z⇩p⇙"
"a ⊗ (ι (denom a)) = ι (numer a)"
"a = frac (numer a) (denom a)"
unfolding Q⇩p_def
using Q⇩p_def assms numer_denom_facts(2) apply auto[1]
using Q⇩p_def assms numer_denom_facts(3) apply blast
using Q⇩p_def assms numer_denom_facts(4) apply blast
using Q⇩p_def ι_def assms numer_denom_facts(5) apply auto[1]
using Q⇩p_def assms numer_denom_facts(1) by auto
lemma get_common_denominator:
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
obtains a b c where
"a ∈ carrier Z⇩p"
"b ∈ carrier Z⇩p"
"c ∈ nonzero Z⇩p"
"x = frac a c"
"y = frac b c"
using Q⇩p_def assms(1) assms(2) common_denominator[of x y]
by blast
abbreviation fract :: "_ ⇒ _ ⇒ _" (infixl ‹÷› 50) where
"(fract a b) ≡ (a ⊗ (inv⇘Q⇩p⇙ b))"
text‹fract generalizes frac›
lemma fract_frac:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
shows "(frac a b) = (ι a ÷ ι b)"
proof-
have B: "b ∈ carrier Z⇩p"
using Zp.nonzero_closed assms(2) by auto
have P0:"(inv⇘Q⇩p⇙ (ι b)) = frac 𝟭⇘Z⇩p⇙ b"
by (simp add: B Q⇩p_def Zp.nonzero_one_closed assms(2) frac_inv local.inc_def)
have P1: "(frac a b) = (ι a) ⊗ (frac 𝟭⇘Z⇩p⇙ b)"
by (simp add: assms(1) assms(2) i_mult)
show ?thesis
by (simp add: P0 P1)
qed
lemma frac_eq:
assumes "a ∈ nonzero Z⇩p"
assumes "b ∈ nonzero Z⇩p"
assumes "frac a b = 𝟭"
shows "a = b"
proof-
have "frac a b = frac b b"
by (simp add: assms(2) assms(3) frac_one)
then have "frac a 𝟭⇘Z⇩p⇙ = frac b 𝟭⇘Z⇩p⇙"
using assms
by (metis (no_types, lifting) Zp.nonzero_closed
Zp.nonzero_one_closed frac_eqE frac_eqI')
then show ?thesis
using ι_def assms(1) assms(2) inc_inj2 local.inc_def
by (simp add: Zp.nonzero_closed)
qed
lemma fract_cancel_right:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ nonzero Q⇩p"
shows "b ⊗ (a ÷ b) = a"
by (simp add: Qp.Units_closed Qp.m_lcomm Units_eq_nonzero assms(1)
assms(2))
lemma fract_cancel_left:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ nonzero Q⇩p"
shows "(a ÷ b) ⊗ b = a"
by (simp add: Qp.m_comm Qp.nonzero_closed assms(1) assms(2)
local.fract_cancel_right nonzero_inverse_Qp)
lemma fract_mult:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ nonzero Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "d ∈ nonzero Q⇩p"
shows "(a ÷ b) ⊗ (c ÷ d) = ((a ⊗ c)÷ (b ⊗ d))"
using Q⇩p_def assms(1) assms(2) assms(3) assms(4)
by (simp add: fract_mult)
lemma Qp_nat_pow_nonzero:
assumes "x ∈ nonzero Q⇩p"
shows "x[^](n::nat) ∈ nonzero Q⇩p"
using Qp.Units_pow_closed Units_eq_nonzero assms by auto
lemma Qp_nonzero_nat_pow:
assumes "x ∈ carrier Q⇩p"
assumes "n > 0"
assumes "x[^](n::nat) ∈ nonzero Q⇩p"
shows "x ∈ nonzero Q⇩p"
using Frac_nonzero_nat_pow Q⇩p_def assms(1) assms(2) assms(3) by blast
lemma Qp_int_pow_nonzero:
assumes "x ∈ nonzero Q⇩p"
shows "x[^](n::int) ∈ nonzero Q⇩p"
using Frac_int_pow_nonzero Q⇩p_def assms by blast
lemma Qp_nonzero_int_pow:
assumes "x ∈ carrier Q⇩p"
assumes "n > 0"
assumes "x[^](n::int) ∈ nonzero Q⇩p"
shows "x ∈ nonzero Q⇩p"
using Frac_nonzero_int_pow Q⇩p_def assms
by auto
lemma pow_p_frac_0:
assumes "(m::int) ≥ n"
assumes "n ≥0"
shows "(frac (𝗉[^]⇘Z⇩p⇙m) (𝗉[^]⇘Z⇩p⇙n)) = ι (𝗉[^]⇘Z⇩p⇙(m-n))"
proof-
have 0: "𝗉∈carrier Z⇩p"
by (simp add: Zp.nat_inc_closed)
have 1: "m - n ≥0"
using assms(1) by auto
have 2: "nat (m - n) + (nat n) = nat m"
using "1" assms(2) by linarith
have 3: "m ≥0"
using assms by auto
then have "(𝗉[^]⇘Z⇩p⇙(nat (m-n))) ⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙(nat n)) = (𝗉[^]⇘Z⇩p⇙(nat m))"
by (simp add: "2" p_natpow_prod)
then have "(𝗉[^]⇘Z⇩p⇙(m-n)) ⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n) = (𝗉[^]⇘Z⇩p⇙m)"
using int_pow_int 1 3 assms(2) int_nat_eq by metis
then have P0: "(frac (𝗉[^]⇘Z⇩p⇙m) (𝗉[^]⇘Z⇩p⇙n)) = frac ((𝗉[^]⇘Z⇩p⇙(m-n))⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n)) (𝗉[^]⇘Z⇩p⇙n)"
by simp
have "𝗉 ∈carrier Z⇩p"
by (simp add: "0")
have "(𝗉[^]⇘Z⇩p⇙(nat n)) = [(p^(nat n))] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
by (simp add: p_pow_rep0)
then have "(𝗉[^]⇘Z⇩p⇙(nat n)) ∈ carrier Z⇩p"
by (simp add: Zp_nat_inc_closed)
then have "(𝗉[^]⇘Z⇩p⇙n) ∈ carrier Z⇩p"
using assms(2) by (metis int_nat_eq int_pow_int)
then have P1: "(frac (𝗉[^]⇘Z⇩p⇙m) (𝗉[^]⇘Z⇩p⇙n)) = frac ((𝗉[^]⇘Z⇩p⇙(m-n))⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n)) ((𝟭⇘Z⇩p⇙ ⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n)))"
by (simp add: ‹[p] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ [^]⇘Z⇩p⇙ (m - n) ⊗⇘Z⇩p⇙ [p] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ [^]⇘Z⇩p⇙ n = [p] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ [^]⇘Z⇩p⇙ m›)
have P2: "(𝗉[^]⇘Z⇩p⇙(m-n)) ∈ carrier Z⇩p"
using "1" p_pow_car by blast
have P3: "(𝗉[^]⇘Z⇩p⇙n) ∈ carrier Z⇩p"
using ‹𝗉 [^]⇘Z⇩p⇙ n ∈ carrier Z⇩p›
by blast
have P4: "(𝗉[^]⇘Z⇩p⇙n) ∈ nonzero Z⇩p"
using assms(2) p_int_pow_nonzero
by blast
have P5: "𝟭⇘Z⇩p⇙ ∈ nonzero Z⇩p"
using nonzero_def
by (simp add: Zp.nonzero_one_closed)
have "(frac (𝗉[^]⇘Z⇩p⇙(m-n)) 𝟭⇘Z⇩p⇙) ⊗ (frac (𝗉[^]⇘Z⇩p⇙n) (𝗉[^]⇘Z⇩p⇙n))
= frac ((𝗉[^]⇘Z⇩p⇙(m-n))⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n)) ((𝟭⇘Z⇩p⇙ ⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n)))"
by (simp add: P2 P3 P4 Zp.nonzero_one_closed local.frac_mult)
then have "frac ((𝗉[^]⇘Z⇩p⇙(m-n))⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n)) ((𝟭⇘Z⇩p⇙ ⊗⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙n))) = (frac (𝗉[^]⇘Z⇩p⇙(m-n)) 𝟭⇘Z⇩p⇙) "
by (simp add: P2 P4 Zp.nonzero_one_closed frac_cancel_lr mult_comm)
then have P6: "(frac (𝗉[^]⇘Z⇩p⇙m) (𝗉[^]⇘Z⇩p⇙n)) = (frac (𝗉[^]⇘Z⇩p⇙(m-n)) 𝟭⇘Z⇩p⇙) "
using P1 by blast
have "(frac (𝗉[^]⇘Z⇩p⇙(m-n)) 𝟭⇘Z⇩p⇙) = ι (𝗉[^]⇘Z⇩p⇙(m-n))"
using inc_def by (simp add: P2)
then show ?thesis
using P6 by blast
qed
lemma pow_p_frac:
assumes "(m::int) ≤ n"
assumes "m ≥0"
shows "(frac (𝗉[^]⇘Z⇩p⇙m) (𝗉[^]⇘Z⇩p⇙n)) = frac 𝟭⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙(n-m))"
proof-
have "(frac (𝗉[^]⇘Z⇩p⇙n) (𝗉[^]⇘Z⇩p⇙m)) = ι (𝗉[^]⇘Z⇩p⇙(n-m))"
by (simp add: assms(1) assms(2) pow_p_frac_0)
then have P0:"(frac (𝗉[^]⇘Z⇩p⇙n) (𝗉[^]⇘Z⇩p⇙m)) = frac (𝗉[^]⇘Z⇩p⇙(n-m)) 𝟭⇘Z⇩p⇙"
by (simp add: assms(1) local.inc_def p_pow_car)
have P1: "𝟭⇘Z⇩p⇙ ∈nonzero Z⇩p"
by (simp add: Zp.nonzero_one_closed)
have P2: "𝗉[^]⇘Z⇩p⇙n ∈ nonzero Z⇩p"
using assms(1) assms(2) p_int_pow_nonzero by auto
have P3: "𝗉[^]⇘Z⇩p⇙m ∈ nonzero Z⇩p"
by (simp add: assms(2) p_int_pow_nonzero)
have P4: "(𝗉[^]⇘Z⇩p⇙(n-m)) ∈ nonzero Z⇩p"
by (simp add: assms(1) p_int_pow_nonzero)
show " frac (𝗉[^]⇘Z⇩p⇙m) (𝗉[^]⇘Z⇩p⇙n) = frac 𝟭⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙(n-m))"
using P0 P1 P2 P3 P4 p_pow_nonzero
by (meson local.frac_inv_id)
qed
text‹The copy of the prime ‹p› living in $\mathbb{Q}_p$:›
abbreviation 𝔭 where
"𝔭 ≡ [p] ⋅⇘Q⇩p⇙ 𝟭"
lemma(in domain_frac) frac_inc_of_nat:
"Frac_inc R ([(n::nat)]⋅ 𝟭) = [n]⋅⇘Frac R⇙𝟭⇘Frac R⇙"
by (simp add: inc_equation nat_inc_rep)
lemma inc_of_nat:
"(ι ([(n::nat)]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙)) = [n]⋅⇘Q⇩p⇙𝟭"
unfolding Q⇩p_def ι_def
using frac_inc_of_nat[of n]
by auto
lemma(in domain_frac) frac_inc_of_int:
"Frac_inc R ([(n::int)]⋅ 𝟭) = [n]⋅⇘Frac R⇙𝟭⇘Frac R⇙"
apply(induction n)
apply (simp add: add_pow_int_ge inc_equation nat_inc_rep)
by (simp add: add_pow_int_lt frac_uminus inc_equation nat_inc_rep nonzero_one_closed)
lemma inc_of_int:
"(ι ([(n::int)]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙)) = [n]⋅⇘Q⇩p⇙𝟭"
unfolding Q⇩p_def ι_def
using frac_inc_of_int[of n]
by auto
lemma p_inc:
"𝔭 = ι 𝗉"
by (simp add: inc_of_int)
lemma p_nonzero:
"𝔭 ∈ nonzero Q⇩p"
using Z⇩p_def Zp_nat_inc_closed inc_of_nonzero ord_Zp_p p_inc
p_nonzero by auto
lemma p_natpow_inc:
fixes n::nat
shows "𝔭[^]n = ι (𝗉 [^]⇘Z⇩p⇙ n)"
by (simp add: Qp.int_nat_pow_rep inc_of_int p_pow_rep0)
lemma p_intpow_inc:
fixes n::int
assumes "n ≥0"
shows "𝔭[^]n = ι (𝗉 [^]⇘Z⇩p⇙ n)"
using p_natpow_inc
by (metis assms int_nat_eq int_pow_int)
lemma p_intpow:
fixes n::int
assumes "n < 0"
shows "𝔭[^]n = (frac 𝟭⇘Z⇩p⇙ (𝗉 [^]⇘Z⇩p⇙ (-n)))"
proof-
have U0: "(𝔭 [^] (nat (-n))) ∈ Units Q⇩p"
using Qp.Units_pow_closed Units_eq_nonzero p_nonzero by blast
have E0: "(𝔭 [^] (nat (-n))) = (𝔭 [^] (-n))"
using assms by (simp add: int_pow_def nat_pow_def)
then have U1: "(𝔭 [^] (-n)) ∈ Units Q⇩p" using U0
by simp
have "(𝔭[^]n) = inv ⇘Q⇩p⇙ (𝔭 [^] (nat (-n)))"
using assms by (simp add: int_pow_def nat_pow_def)
then have "(𝔭[^]n) = inv ⇘Q⇩p⇙ (𝔭 [^] (-n))"
using E0 by simp
then have "(𝔭[^]n) = inv ⇘Q⇩p⇙ ι (𝗉 [^]⇘Z⇩p⇙(-n))"
using assms p_intpow_inc by auto
then have E1: "(𝔭[^]n) = inv ⇘Q⇩p⇙ frac (𝗉 [^]⇘Z⇩p⇙(-n)) 𝟭⇘Z⇩p⇙"
using assms local.inc_def p_pow_car by auto
have A: "(𝗉 [^]⇘Z⇩p⇙(-n)) ∈ nonzero Z⇩p"
using assms p_pow_nonzero p_int_pow_nonzero
by auto
then show ?thesis
using A frac_inv inc_def E1
by (simp add: Q⇩p_def Zp.nonzero_one_closed)
qed
lemma p_natpow_closed[simp]:
fixes n::nat
shows "(𝔭[^]n) ∈ (carrier Q⇩p)"
"(𝔭[^]n) ∈ (nonzero Q⇩p)"
apply blast
using Qp_nat_pow_nonzero p_nonzero by blast
lemma nonzero_int_pow_distrib:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ nonzero Q⇩p"
shows "(a ⊗ b) [^](k::int) = a[^]k ⊗ b[^]k"
proof(induction k)
case (nonneg n)
then show ?case using pow_nat[of n _ Q⇩p]
by (smt Qp.nat_pow_distrib Qp.nonzero_closed assms(1) assms(2) int_pow_int)
next
case N: (neg n)
have "a ⊗ b ∈ Units Q⇩p"
using assms Units_eq_nonzero by blast
hence "(a ⊗ b) [^] - int (Suc n) = inv ((a ⊗ b) [^] (Suc n))"
by (metis Qp.int_pow_inv' int_pow_int)
then show ?case using
Qp.int_pow_inv' Qp.int_pow_unit_closed Qp.inv_of_prod[of "a[^]Suc n" "b[^]Suc n"]
Qp.nat_pow_distrib Qp.nonzero_closed Units_eq_nonzero assms(1) assms(2) int_pow_int by metis
qed
lemma val_ring_subring:
"subring 𝒪⇩p Q⇩p"
using Q⇩p_def ι_def inc_im_is_subring by blast
lemma val_ring_closed:
"𝒪⇩p ⊆ carrier Q⇩p"
by (simp add: subringE(1) val_ring_subring)
lemma p_pow_diff:
fixes n::int
fixes m::int
assumes "n ≥0"
assumes "m ≥0"
shows "𝔭 [^] (n - m) = frac (𝗉[^]⇘Z⇩p⇙n) (𝗉[^]⇘Z⇩p⇙m)"
proof-
have 0: "comm_monoid Q⇩p"
by (simp add: Qp.comm_monoid_axioms)
have 1: "𝔭 ∈ Units Q⇩p"
using Units_eq_nonzero p_nonzero
by blast
have 2: "𝔭 [^] (n - m) = (𝔭[^]n) ⊗ (𝔭 [^] -m)"
by (metis "1" Qp.int_pow_add diff_conv_add_uminus)
have 3: "𝔭 [^] (n - m) = (𝔭[^]n) ⊗ inv⇘Q⇩p⇙(𝔭 [^] m)"
by (simp add: "1" "2" Qp.int_pow_inv')
then show ?thesis using assms
using fract_frac p_int_pow_nonzero p_intpow_inc p_pow_car by presburger
qed
lemma Qp_int_pow_add:
fixes n::int
fixes m::int
assumes "a ∈ nonzero Q⇩p"
shows "a [^] (n + m) = (a [^] n) ⊗ (a [^] m)"
using monoid.int_pow_add[of Q⇩p a n m] Units_eq_nonzero assms
by (simp add: Qp.monoid_axioms)
lemma Qp_nat_pow_pow:
fixes n::nat
fixes m::nat
assumes "a ∈ carrier Q⇩p"
shows "(a[^](n*m)) = ((a[^]n)[^]m)"
by (simp add: Qp.nat_pow_pow assms)
lemma Qp_p_nat_pow_pow:
fixes n::nat
fixes m::nat
shows "(𝔭 [^] (n*m)) = ((𝔭[^]n)[^]m)"
using Qp_nat_pow_pow
by simp
lemma Qp_units_int_pow:
fixes n::int
assumes "a ∈ nonzero Q⇩p"
shows "a[^]n = a[^]⇘units_of Q⇩p⇙n"
apply(cases "n ≥ 0")
using monoid.units_of_pow[of Q⇩p]
apply (metis int_pow_def2 mult_of_is_Units nat_pow_mult_of not_le)
by (metis Qp.Units_pow_closed Qp.units_of_inv Units_eq_nonzero assms int_pow_def2 mult_of_is_Units nat_pow_mult_of)
lemma Qp_int_pow_pow:
fixes n::int
fixes m::int
assumes "a ∈ nonzero Q⇩p"
shows "(a[^](n*m)) = ((a[^]n)[^]m)"
proof-
have 0: "a ∈ carrier (units_of Q⇩p)"
by (simp add: Units_eq_nonzero assms units_of_carrier)
have "group (units_of Q⇩p)"
using monoid.units_group Qp.units_group
by blast
then show ?thesis
using 0 group.int_pow_pow[of "units_of Q⇩p"] Qp_int_pow_nonzero Qp_units_int_pow assms
by auto
qed
lemma Qp_p_int_pow_pow:
fixes n::int
fixes m::int
shows "(𝔭 [^] (n*m)) = ((𝔭[^]n)[^]m)"
using Qp_int_pow_pow p_nonzero by blast
lemma Qp_int_nat_pow_pow:
fixes n::int
fixes m::nat
assumes "a ∈ nonzero Q⇩p"
shows "(a[^](n*m)) = ((a[^]n)[^]m)"
by (simp add: Qp_int_pow_pow assms int_pow_int)
lemma Qp_p_int_nat_pow_pow:
fixes n::int
fixes m::nat
shows "(𝔭 [^] (n*m)) = ((𝔭[^]n)[^]m)"
by (simp add: Qp_int_nat_pow_pow p_nonzero)
lemma Qp_nat_int_pow_pow:
fixes n::nat
fixes m::int
assumes "a ∈ nonzero Q⇩p"
shows "(a[^](n*m)) = ((a[^]n)[^]m)"
by (simp add: Qp_int_pow_pow assms int_pow_int)
lemma Qp_p_nat_int_pow_pow:
fixes n::nat
fixes m::int
shows "(𝔭 [^] (n*m)) = ((𝔭[^]n)[^]m)"
by (simp add: Qp_nat_int_pow_pow p_nonzero)
lemma p_intpow_closed:
fixes n::int
shows "(𝔭[^]n) ∈ (carrier Q⇩p)"
"(𝔭[^]n) ∈ (nonzero Q⇩p)"
apply (simp add: Qp.nonzero_closed Qp_int_pow_nonzero p_nonzero)
by (simp add: Qp_int_pow_nonzero p_nonzero)
lemma p_intpow_add:
fixes n::int
fixes m::int
shows "𝔭 [^] (n + m) = (𝔭 [^] n) ⊗ (𝔭 [^] m)"
using Qp_int_pow_add p_nonzero by blast
lemma p_intpow_inv:
fixes n::int
shows "(𝔭 [^] n) ⊗ (𝔭 [^] -n) = 𝟭"
using Units_eq_nonzero monoid.int_pow_inv'[of Q⇩p 𝔭 n]
by (metis add.right_inverse int_pow_0 p_intpow_add)
lemma p_intpow_inv':
fixes n::int
shows "(𝔭 [^] -n) ⊗ (𝔭 [^] n) = 𝟭"
using p_intpow_inv
by (metis add.commute p_intpow_add)
lemma p_intpow_inv'':
fixes n::int
shows "(𝔭 [^] -n) = inv⇘Q⇩p⇙ (𝔭 [^] n)"
by (simp add: Qp.int_pow_inv' Units_eq_nonzero p_nonzero)
lemma p_int_pow_factor_int_pow:
assumes "a ∈ nonzero Q⇩p"
shows "(𝔭[^](n::int) ⊗ a)[^](k::int) = 𝔭[^](n*k) ⊗ a[^]k"
using assms nonzero_int_pow_distrib p_intpow_closed(2) Qp_p_int_pow_pow by presburger
lemma p_nat_pow_factor_int_pow:
assumes "a ∈ nonzero Q⇩p"
shows "(𝔭[^](n::nat) ⊗ a)[^](k::int) = 𝔭[^](n*k) ⊗ a[^]k"
using assms Qp_p_int_nat_pow_pow p_natpow_closed(1)
by (metis int_pow_int p_int_pow_factor_int_pow)
lemma p_pow_factor:
"𝔭[^]((int N)*l + k) = (𝔭[^]l)[^](N::nat) ⊗ 𝔭[^] k"
by (metis Qp_p_int_nat_pow_pow mult_of_nat_commute p_intpow_add)
lemma p_nat_pow_factor_nat_pow:
assumes "a ∈ carrier Q⇩p"
shows "(𝔭[^](n::nat) ⊗ a)[^](k::nat) = 𝔭[^](n*k) ⊗ a[^]k"
using Qp.nat_pow_distrib Qp_p_nat_pow_pow assms p_natpow_closed(1) by presburger
lemma p_int_pow_factor_nat_pow:
assumes "a ∈ carrier Q⇩p"
shows "(𝔭[^](n::int) ⊗ a)[^](k::nat) = 𝔭[^](n*k) ⊗ a[^]k"
using assms Qp.nat_pow_distrib Qp_p_int_nat_pow_pow p_intpow_closed(1) by presburger
lemma(in ring) r_minus_distr:
assumes "a ∈ carrier R"
assumes "b ∈ carrier R"
assumes "c ∈ carrier R"
shows "a ⊗ b ⊖ a ⊗ c = a ⊗ (b ⊖ c)"
using assms
unfolding a_minus_def
by (simp add: r_distr r_minus)
subsection‹The Valuation on $\mathbb{Q}_p$›
subsubsection‹Extending the Valuation from $\mathbb{Z}_p$ to $\mathbb{Q}_p$›
text‹
The valuation of a $p$-adic number can be defined as the difference of the valuations of an
arbitrary choice of numerator and denominator.›
definition ord where
"ord x = (ord_Zp (numer x)) - (ord_Zp (denom x))"
definition val where
"val x = (if x = 𝟬 then (∞::eint) else eint (ord x))"
lemma val_ord[simp]:
assumes "a ∈ nonzero Q⇩p"
shows "val a = ord a"
using assms nonzero_def val_def by force
subsubsection‹Properties of the Valuation›
lemma ord_of_frac:
assumes "a ∈ nonzero Z⇩p"
assumes "b ∈ nonzero Z⇩p"
shows "ord (frac a b) = (ord_Zp a) - (ord_Zp b)"
proof-
have "frac a b = frac (numer (frac a b)) (denom (frac a b))"
by (simp add: assms(1) assms(2))
then have "a ⊗⇘Z⇩p⇙ (denom (frac a b)) = b ⊗⇘Z⇩p⇙ (numer (frac a b))"
by (simp add: assms(1) assms(2) numer_denom_swap)
then have "(ord_Zp a) - (ord_Zp b) = (ord_Zp (numer (frac a b))) - (ord_Zp (denom (frac a b)))"
using ord_Zp_eq_frac Q⇩p_def Z⇩p_def
by (metis Zp.frac_closed Zp.nonzero_closed Zp.numer_denom_facts(4) assms(1) assms(2) local.numer_denom_facts(1) local.numer_denom_facts(2) nonzero_fraction ord_of_nonzero(2) ord_pos)
then show ?thesis
using ord_def
by presburger
qed
lemma val_zero:
"val 𝟬 = ∞" by (simp add: val_def)
lemma ord_one[simp]:
"ord 𝟭 = 0"
using Zp.nonzero_one_closed local.frac_one ord_of_frac by fastforce
lemma val_one[simp]:
"val (𝟭) = 0"
using ord_one
by (simp add: Qp.one_nonzero zero_eint_def)
lemma val_of_frac:
assumes "a ∈ carrier Z⇩p"
assumes "b ∈ nonzero Z⇩p"
shows "val (frac a b) = (val_Zp a) - (val_Zp b)"
proof(cases "a = 𝟬⇘Z⇩p⇙")
case True
then show ?thesis
using assms(1) assms(2) local.val_zero
by (simp add: Q⇩p_def val_Zp_def)
next
case False
then have "a ∈ nonzero Z⇩p"
by (simp add: assms(1) nonzero_def)
then show ?thesis
using ord_of_frac[of a b] assms(2) val_def val_ord_Zp
nonzero_numer_imp_nonzero_fraction
by (simp add: Zp.nonzero_memE(2))
qed
lemma Z⇩p_division_Qp_0[simp]:
assumes "u ∈ Units Z⇩p"
assumes "v ∈ Units Z⇩p"
shows "frac (u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) 𝟭⇘Z⇩p⇙= frac u v"
proof-
have 0: "frac v v = 𝟭"
using frac_one
by (simp add: Q⇩p_def Zp.Units_nonzero assms(2))
have 1:"(inv⇘Z⇩p⇙ v) ∈ carrier Z⇩p"
using assms by blast
have 2:"frac (u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) 𝟭⇘Z⇩p⇙ ∈ carrier Q⇩p"
by (simp add: "1" Zp.Units_closed Zp.nonzero_one_closed assms(1) local.frac_closed)
have 3: "frac (u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) 𝟭⇘Z⇩p⇙ = (frac (u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) 𝟭⇘Z⇩p⇙) ⊗ frac v v"
by (simp add: "0" "2")
then have 4: "frac (u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) 𝟭⇘Z⇩p⇙ = (frac ((u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) ⊗⇘Z⇩p⇙ v) v)"
by (simp add: Zp.Units_nonzero Zp.nonzero_closed assms(1) assms(2) frac_eqI')
then have 4: "frac (u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) 𝟭⇘Z⇩p⇙ = (frac (u ⊗⇘Z⇩p⇙ ((inv⇘Z⇩p⇙ v) ⊗⇘Z⇩p⇙ v)) v)"
by (simp add: mult_assoc)
have 5:"(inv⇘Z⇩p⇙ v) ⊗⇘Z⇩p⇙ v = 𝟭⇘Z⇩p⇙"
by (simp add: assms(2))
then show "frac (u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) 𝟭⇘Z⇩p⇙ = (frac u v)"
by (simp add: "4" Zp.Units_closed assms(1))
qed
lemma Z⇩p_division_Qp_1:
assumes "u ∈ Units Z⇩p"
assumes "v ∈ Units Z⇩p"
obtains w where "w ∈ Units Z⇩p"
"ι w = frac u v"
proof-
have " (inv⇘Z⇩p⇙ v) ∈ Units Z⇩p"
by (simp add: assms(2))
then have "(u ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ v)) ∈ Units Z⇩p"
using assms
by blast
then show ?thesis
using Z⇩p_division_Qp_0 Zp.Units_closed assms(1) assms(2)
local.inc_def that by presburger
qed
lemma val_ring_ord_criterion:
assumes "a ∈ carrier Q⇩p"
assumes "a ≠ 𝟬"
assumes "ord a ≥ 0"
shows "a ∈ 𝒪⇩p"
proof-
obtain c d where P0: "a = frac c d" and P1: "c ∈ nonzero Z⇩p" and P2: "d ∈ nonzero Z⇩p"
by (metis assms(1) assms(2) get_common_denominator nonzero_fraction_imp_nonzero_numer)
obtain m n where P3: "m = ord_Zp c" and P4:"n = ord_Zp d"
by metis
obtain u where "u = ac_Zp c"
by simp
then have P5:"c = (𝗉[^]⇘Z⇩p⇙m) ⊗⇘Z⇩p⇙ u" and P6:"u ∈ Units Z⇩p"
apply (simp add: P1 P3 ‹u = ac_Zp c› ac_Zp_factors')
using P1 Zp.nonzero_memE
by (simp add: ‹u = ac_Zp c› ac_Zp_is_Unit)
obtain v where "v = ac_Zp d" by simp
have P7:"d = (𝗉[^]⇘Z⇩p⇙n) ⊗⇘Z⇩p⇙ v" and P8:"v ∈ Units Z⇩p"
using P2 P4 ‹v = ac_Zp d› ac_Zp_factors' apply blast
using P2 Zp.nonzero_memE
by (simp add: ‹v = ac_Zp d› ac_Zp_is_Unit)
have P9: "a = frac ((𝗉[^]⇘Z⇩p⇙m) ⊗⇘Z⇩p⇙ u) ((𝗉[^]⇘Z⇩p⇙n) ⊗⇘Z⇩p⇙ v)"
by (simp add: P0 P5 P7)
have P10: "(𝗉[^]⇘Z⇩p⇙m) ∈ carrier Z⇩p"
using P1 P3 Z⇩p_def ord_pos Zp.nonzero_closed Zp.nonzero_memE(2) p_pow_car
by auto
have P11: "(𝗉[^]⇘Z⇩p⇙n) ∈ nonzero Z⇩p"
by (simp add: P2 P4 Zp.nonzero_closed Zp.nonzero_memE(2) ord_pos p_int_pow_nonzero)
have P12: "u ∈ carrier Z⇩p"
using P6 Units_def
by blast
have P13: "v ∈ nonzero Z⇩p"
using P8 Units_def ord_of_nonzero(2)
by (simp add: Zp.Units_nonzero)
have P14: "a = (frac (𝗉[^]⇘Z⇩p⇙m) (𝗉[^]⇘Z⇩p⇙n)) ⊗ (frac u v)"
using P12 P13 P10 P9 P11 Q⇩p_def frac_mult by metis
have P15: "m ≥ n"
proof-
have "ord_Zp c ≥ ord_Zp d"
using P0 P1 P2 assms(3) ord_of_frac[of c d]
by (metis P3 P4 antisym eq_iff eq_iff_diff_eq_0 le_cases le_iff_diff_le_0 ord_Zp_def)
then show ?thesis
using P3 P4 by blast
qed
have P16: "n ≥ 0"
by (simp add: P2 P4 Zp.nonzero_closed Zp.nonzero_memE(2) ord_pos)
have P17: "a = (frac (𝗉[^]⇘Z⇩p⇙(m-n)) 𝟭⇘Z⇩p⇙) ⊗ (frac u v)"
using P14 P15 P16 local.inc_def[of "(𝗉 [^]⇘Z⇩p⇙ (n - m))"] pow_p_frac_0[of n m]
by (simp add: local.inc_def p_pow_car)
obtain w where P18: "w ∈ Units Z⇩p" and P19: "ι w = frac u v "
using Z⇩p_division_Qp_1 P6 P8 by blast
have P20: "w ∈ carrier Z⇩p"
using P18 Units_def by blast
have P21: "a = ι (𝗉[^]⇘Z⇩p⇙(m-n)) ⊗ ι w"
using P15 P17 P19 ι_def inc_equation p_pow_car by auto
have P22: "a = (frac (𝗉[^]⇘Z⇩p⇙(m-n)) 𝟭⇘Z⇩p⇙) ⊗ (frac w 𝟭⇘Z⇩p⇙)"
using P17 P19 P20 local.inc_def by auto
have P23: "𝗉[^]⇘Z⇩p⇙(m-n) ∈ carrier Z⇩p"
by (simp add: P15 p_pow_car)
have P24: "a = (frac ((𝗉[^]⇘Z⇩p⇙(m-n)) ⊗⇘Z⇩p⇙ w) 𝟭⇘Z⇩p⇙)"
using P20 P22 P23 frac_mult
by (simp add: Zp.nonzero_one_closed)
have P24: "a = ι((𝗉[^]⇘Z⇩p⇙(m-n)) ⊗⇘Z⇩p⇙ w)"
by (simp add: P20 P23 P24 cring.cring_simprules(5) domain.axioms(1) local.inc_def)
then show ?thesis
using P20 P23 by blast
qed
lemma val_ring_val_criterion:
assumes "a ∈ carrier Q⇩p"
assumes "val a ≥ 0"
shows "a ∈ 𝒪⇩p"
apply(cases "a = 𝟬")
using Qp.int_inc_zero Q⇩p_def inc_of_int apply blast
using assms unfolding val_def
by (simp add: val_ring_ord_criterion zero_eint_def)
lemma ord_of_inv:
assumes "a ∈ carrier Q⇩p"
assumes "a ≠ 𝟬"
shows "ord (inv⇘Q⇩p⇙ a) = - (ord a)"
proof-
obtain b c where
Frac: "a = frac b c" and
Car: "b ∈ carrier Z⇩p" and
Nz_c: "c ∈ nonzero Z⇩p"
using assms(1) local.numer_denom_facts(1) local.numer_denom_facts(2)
local.numer_denom_facts(5) by blast
have Nz_b: "b ∈ nonzero Z⇩p"
using Frac Car Nz_c assms(2) nonzero_fraction_imp_nonzero_numer by metis
then have "(inv⇘Q⇩p⇙ a) = frac c b"
using Frac Nz_c frac_inv Q⇩p_def
by auto
then show ?thesis using Frac Nz_b Nz_c ord_of_frac[of b c] ord_of_frac[of c b]
by (simp add: nonzero_def ord_Zp_def)
qed
lemma val_of_inv:
assumes "a ∈ carrier Q⇩p"
assumes "a ≠ 𝟬"
shows "val (inv⇘Q⇩p⇙ a) = - (val a)"
using ord_of_inv unfolding uminus_eint_def
by (simp add: assms(1) assms(2) inv_in_frac(2) val_def)
text‹Zp is a valuation ring in Qp›
lemma Z⇩p_mem:
assumes "a ∈ carrier Q⇩p"
shows "a ∈ 𝒪⇩p ∨ (inv⇘Q⇩p⇙ a ∈ 𝒪⇩p)"
proof(cases "inv⇘Q⇩p⇙a ∈ 𝒪⇩p ∨ a = 𝟬")
case True
then show ?thesis
using val_ring_subring subringE(2) by auto
next
case False
then have Nz: "a ≠ 𝟬" by auto
have "¬ (ord a < 0)"
proof
assume "ord a < 0"
then have "ord (inv⇘Q⇩p⇙ a) >0"
by (simp add: assms(1) Nz ord_of_inv)
then have 0: "ord (inv⇘Q⇩p⇙ a) ≥0"
by auto
have 1: "(inv⇘Q⇩p⇙ a) ∈ carrier Q⇩p"
by (simp add: assms(1) Nz inv_in_frac)
have 2: "(inv⇘Q⇩p⇙ a) ≠𝟬"
by (simp add: assms(1) Nz inv_in_frac(2))
then have "(inv⇘Q⇩p⇙ a) ∈ 𝒪⇩p"
using val_ring_ord_criterion by (simp add: "0" "1")
then show False
using False by blast
qed
then show ?thesis
using val_ring_ord_criterion assms(1) Nz by auto
qed
lemma Qp_val_ringI:
assumes "a ∈ carrier Q⇩p"
assumes "val a ≥ 0"
shows "a ∈ 𝒪⇩p"
using assms val_ring_val_criterion by blast
text‹Criterion for determining when an element in Qp is zero›
lemma val_nonzero:
assumes "a ∈ carrier Q⇩p"
assumes "s > val a"
shows "a ∈ nonzero Q⇩p"
proof-
have "val a ≠ ∞"
by (metis assms(2) eint_ord_simps(6))
then show ?thesis
using assms
by (metis (mono_tags, opaque_lifting) local.val_zero not_nonzero_Qp)
qed
lemma val_ineq:
assumes "a ∈ carrier Q⇩p"
assumes "val 𝟬 ≤ val a"
shows "a = 𝟬"
using assms unfolding val_def
by (metis (mono_tags, lifting) eint_ord_code(5))
lemma ord_minus:
assumes "a ∈ nonzero Q⇩p"
shows "ord a = ord (⊖a)"
proof-
have "⊖ a = ⊖ (frac (numer a) (denom a))"
using assms Qp.nonzero_closed local.numer_denom_facts(5) by auto
then have "⊖ a = (frac (⊖⇘Z⇩p⇙ (numer a)) (denom a))"
by (simp add: Qp.nonzero_closed assms local.frac_uminus local.numer_denom_facts(1) local.numer_denom_facts(2))
then show ?thesis
by (metis Q⇩p_def Qp.add.inv_eq_1_iff Qp.nonzero_closed Zp.add.inv_closed assms
local.numer_denom_facts(1) local.numer_denom_facts(2) nonzero_fraction_imp_nonzero_numer
numer_nonzero ord_Zp_of_a_inv ord_def ord_of_frac)
qed
lemma val_minus:
assumes "a ∈ carrier Q⇩p"
shows "val a = val (⊖a)"
proof(cases "a = 𝟬")
case True
then show ?thesis
using Qp.minus_zero by presburger
next
case False
then show ?thesis using Qp.domain_axioms assms cring.cring_simprules(21)
cring.cring_simprules(22) domain.axioms(1) not_nonzero_Qp
ord_minus val_def
by metis
qed
text‹The valuation is multiplicative:›
lemma ord_mult:
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
shows "(ord (x ⊗ y)) = (ord x) + (ord y)"
proof-
have 0:"x ∈ carrier Q⇩p" using assms by(simp add:nonzero_def)
have 1:"y ∈carrier Q⇩p" using assms by(simp add:nonzero_def)
obtain a b c where
A: "a ∈ carrier Z⇩p" and
B: "b ∈ carrier Z⇩p" and
C: "c ∈ nonzero Z⇩p" and
Fx: "x = frac a c" and
Fy: "y = frac b c"
using get_common_denominator 0 1 by blast
have An: "a ∈ nonzero Z⇩p"
using A C Fx assms(1) nonzero_def nonzero_fraction_imp_nonzero_numer
Qp.nonzero_memE(2) by auto
have Bn: " b ∈ nonzero Z⇩p"
using B C Fy assms(2) nonzero_def nonzero_fraction_imp_nonzero_numer
Qp.nonzero_memE(2) by auto
have Fxy: "x ⊗ y = frac (a ⊗⇘Z⇩p⇙ b) (c ⊗⇘Z⇩p⇙ c)"
by (simp add: A B C Fx Fy frac_mult)
have Cn: "c ⊗⇘Z⇩p⇙ c ∈ nonzero Z⇩p"
using C Localization.submonoid.m_closed Zp.domain_axioms domain.nonzero_is_submonoid
by metis
have Ordxy0: "ord (x ⊗ y) = ord_Zp (a ⊗⇘Z⇩p⇙ b) - ord_Zp (c ⊗⇘Z⇩p⇙ c)"
by (metis "0" "1" An Bn C Cn Fx Fxy Fy Qp.integral
Zp.nonzero_mult_closed Zp.zero_closed fraction_zero
nonzero_fraction nonzero_fraction_imp_nonzero_numer ord_of_frac)
have Ordxy1: "ord (x ⊗ y) = (ord_Zp a) + (ord_Zp b) - ((ord_Zp c) + (ord_Zp c))"
using An Bn C
by (simp add: Ordxy0 ord_Zp_mult)
show ?thesis
proof-
have "ord x + ord y = (ord_Zp a) - (ord_Zp c) + ((ord_Zp b) - (ord_Zp c))"
using An Bn C Fx Fy ord_of_frac[of a c] ord_of_frac[of b c] by presburger
then show ?thesis
using Ordxy1
by presburger
qed
qed
lemma val_mult0:
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
shows "(val (x ⊗ y)) = (val x) + (val y)"
proof-
have 0: "val x = ord x"
using assms(1) val_ord by metis
have 1: "val y = ord y"
using assms(2) val_ord by metis
have "x ⊗ y ≠ 𝟬"
using field_axioms assms(1) assms(2) integral Qp.integral_iff
Qp.nonzero_closed Qp.nonzero_memE(2) by presburger
then have 2: "val (x ⊗ y) = ord (x ⊗ y)"
by (simp add: val_def)
have 3: "val x + val y = ord x + ord y "
by (simp add: "0" "1")
have 4: "val (x ⊗ y) = ord (x ⊗ y)"
using "2" by auto
then show ?thesis using 3 4 ord_mult assms nonzero_def
by (simp add: nonzero_def)
qed
text‹val is multiplicative everywhere›
lemma val_mult:
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
shows "(val (x ⊗ y)) = (val x) + (val y)"
apply(cases "x = 𝟬 ∨ y = 𝟬")
using assms local.val_zero apply auto[1]
by (meson assms(1) assms(2) not_nonzero_Qp val_mult0)
text‹val and ord are compatible with inclusion›
lemma ord_of_inc:
assumes "x ∈ nonzero Z⇩p"
shows "ord_Zp x = ord(ι x)"
proof-
have "ι x = frac x 𝟭⇘Z⇩p⇙"
using assms(1)
by (simp add: Zp.nonzero_closed local.inc_def)
then have "ord ( ι x) = ord_Zp x - ord_Zp 𝟭⇘Z⇩p⇙"
using assms(1) ord_of_frac
by (simp add: Zp.nonzero_one_closed)
then show ?thesis
using ord_Zp_one
by (simp add: ord_Zp_def)
qed
lemma val_of_inc:
assumes "x ∈ carrier Z⇩p"
shows "val_Zp x = val (ι x)"
proof(cases "x ∈ nonzero Z⇩p")
case True
then show ?thesis
using inc_of_nonzero nonzero_def ord_Zp_def ord_of_inc val_Zp_def val_ord
by (simp add: nonzero_def)
next
case False
then show ?thesis
by (metis Zp.nonzero_memI Zp.nonzero_one_closed assms local.inc_def nonzero_fraction_imp_numer_not_zero val_Zp_def val_def)
qed
lemma Qp_inc_id:
assumes "a ∈ nonzero Q⇩p"
assumes "ord a ≥0"
obtains b where "b ∈ nonzero Z⇩p" and "a = ι b"
using assms
by (metis (no_types, opaque_lifting) Qp.nonzero_closed Qp.nonzero_memE(2)
Zp.nonzero_one_closed Zp.zero_closed Zp_defs(2) val_ring_ord_criterion image_iff local.inc_def
nonzero_fraction_imp_numer_not_zero not_nonzero_Zp that)
lemma val_ring_memI:
assumes "a ∈ carrier Q⇩p"
assumes "val a ≥ 0"
shows "a ∈ 𝒪⇩p"
using assms Qp_val_ringI by blast
lemma val_ring_memE:
assumes "a ∈ 𝒪⇩p"
shows "val a ≥ 0" "a ∈ carrier Q⇩p"
using assms val_of_inc val_pos apply auto[1]
using assms inc_closed by auto
lemma val_ring_add_closed:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
shows "a ⊕ b ∈ 𝒪⇩p"
using val_ring_subring subringE(7) by (metis assms(1) assms(2))
lemma val_ring_times_closed:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
shows "a ⊗ b ∈ 𝒪⇩p"
using val_ring_subring subringE(6) by (metis assms(1) assms(2))
lemma val_ring_ainv_closed:
assumes "a ∈ 𝒪⇩p"
shows "⊖ a ∈ 𝒪⇩p"
using val_ring_subring subringE(5) by (metis assms)
lemma val_ring_minus_closed:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
shows "a ⊖ b ∈ 𝒪⇩p"
using assms val_ring_subring val_ring_ainv_closed val_ring_add_closed
unfolding a_minus_def by blast
lemma one_in_val_ring:
"𝟭 ∈ 𝒪⇩p"
apply(rule val_ring_memI)
apply blast
unfolding val_one by blast
lemma zero_in_val_ring:
"𝟬 ∈ 𝒪⇩p"
apply(rule val_ring_memI)
apply blast
unfolding val_zero
by simp
lemma ord_p:
"ord 𝔭 = 1"
using p_nonzero ord_Zp_p ord_of_inc p_inc
by (smt Zp_int_inc_closed ord_of_nonzero(2))
lemma ord_p_pow_nat:
"ord (𝔭 [^] (n::nat)) = n"
using p_pow_nonzero ord_Zp_p ord_of_inc p_inc ord_Zp_p_pow p_natpow_inc p_pow_nonzero'
by auto
lemma ord_p_pow_int:
"ord (𝔭 [^] (n::int)) = n"
proof(cases "n ≥0")
case True
then show ?thesis
by (metis int_nat_eq int_pow_int ord_p_pow_nat)
next
case False
then have Neg: "n <0" by auto
then have 0: "𝔭[^]n = frac 𝟭⇘Z⇩p⇙ (𝗉[^]⇘Z⇩p⇙(-n))"
using p_intpow by auto
have "(𝗉[^]⇘Z⇩p⇙(-n)) ∈ nonzero Z⇩p"
using False p_int_pow_nonzero
by (simp add: nonzero_def)
then have "ord (𝔭 [^] (n::int)) = ord_Zp 𝟭⇘Z⇩p⇙ - ord_Zp (𝗉[^]⇘Z⇩p⇙(-n))"
using "0" ord_of_frac
by (simp add: Zp.nonzero_one_closed)
then have "ord (𝔭 [^] (n::int)) = - ord_Zp (𝗉[^]⇘Z⇩p⇙(-n))"
using ord_Zp_one by linarith
then have "ord (𝔭 [^] (n::int)) = -(-n)"
using Neg ord_Zp_p_int_pow
by (metis int.lless_eq neg_0_le_iff_le)
then show ?thesis
by auto
qed
lemma ord_nonneg:
assumes "x ∈ 𝒪⇩p"
assumes "x ≠ 𝟬"
shows "ord x ≥0"
proof-
obtain a where A: "x = ι a ∧ a ∈ carrier Z⇩p"
using assms(1) by blast
then have "a ∈ nonzero Z⇩p" using assms(2)
local.inc_def nonzero_fraction_imp_numer_not_zero not_nonzero_Zp
using Zp.nonzero_one_closed by blast
then have "ord_Zp a ≥0"
using A
by (simp add: Zp.nonzero_memE(2) ord_pos)
then show ?thesis
using A ‹a ∈ nonzero Z⇩p› ord_of_inc by metis
qed
lemma val_p:
"val 𝔭 = 1"
using p_inc val_Zp_p val_of_inc val_def ord_p p_nonzero val_ord
by simp
lemma val_p_int_pow:
"val (𝔭[^](k::int)) = k"
using ord_p_pow_int p_intpow_closed(2) val_ord by presburger
lemma val_p_int_pow_neg:
"val (𝔭[^](-k::int)) = - eint k"
by (metis eint.distinct(2) local.val_zero p_intpow_closed(1) p_intpow_inv'' val_of_inv val_p_int_pow)
lemma nonzero_nat_pow_ord:
assumes "a ∈ nonzero Q⇩p"
shows "ord (a [^] (n::nat)) = n * ord a"
apply(induction n)
apply simp
using Qp_nat_pow_nonzero assms semiring_normalization_rules(2)
by (simp add: semiring_normalization_rules(2) ord_mult)
lemma add_cancel_eint_geq:
assumes "(eint a) + x ≥ (eint a ) + y"
shows "x ≥y"
using assms eint_add_left_cancel_le by blast
lemma(in padic_fields) prod_equal_val_imp_equal_val:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "val (a ⊗ b) = val (a ⊗ c)"
shows "val b = val c"
proof(cases "b = 𝟬")
case True
then have "val (a ⊗ b) = ∞"
using Qp.nonzero_closed Qp.r_null assms(1) local.val_zero by presburger
then have "c = 𝟬"
using assms True
by (metis Qp.integral Qp.nonzero_closed Qp.nonzero_mult_in_car Qp.not_nonzero_memI eint_ord_simps(3) not_nonzero_Qp val_ineq)
then show ?thesis
using True by blast
next
case False
obtain n where n_def: "val a = eint n"
using assms val_ord by blast
then show ?thesis using val_mult[of a b] val_mult[of a c] unfolding n_def
by (simp add: Qp.nonzero_closed assms(1) assms(2) assms(3) assms(4))
qed
lemma two_times_eint:
shows "2*(x::eint) = x + x"
by (metis eint_2_minus_1_mult eint_add_cancel_fact plus_eq_infty_iff_eint times_eint_simps(4))
lemma times_cfs_val_mono:
assumes "u ∈ Units Q⇩p"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "val (u ⊗ a) ≤ val (u ⊗ b)"
shows "val a ≤ val b"
proof-
have "eint (ord u) + val a ≤ eint (ord u) + val b"
using assms val_ord val_mult Qp.Units_nonzero Qp.nonzero_closed Units_eq_nonzero by metis
thus ?thesis
apply(induction "val a")
using add_cancel_eint_geq apply blast
using add_cancel_eint_geq by blast
qed
lemma times_cfs_val_mono':
assumes "u ∈ Units Q⇩p"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "val (u ⊗ a) ≤ val (u ⊗ b) + α"
shows "val a ≤ val b + α"
proof-
obtain c where c_def: "c ∈ carrier Q⇩p ∧ val c = α"
by (metis Qp.zero_closed eint.exhaust local.val_zero p_intpow_closed(1) val_p_int_pow)
have 0: "val (u ⊗ a) ≤ val (u ⊗ (b ⊗ c))"
using assms val_mult[of "u ⊗ b" c] Qp.m_assoc[of u b c] c_def Qp.Units_closed Qp.cring_simprules(5)
by metis
have 1: "val a ≤ val (b ⊗ c)"
apply(rule times_cfs_val_mono[of u])
using assms apply blast using assms apply blast
apply(rule Qp.ring_simprules) using assms apply blast using c_def apply blast
by(rule 0)
show ?thesis
using 1 val_mult[of b c] assms c_def by smt
qed
lemma times_cfs_val_mono'':
assumes "u ∈ Units Q⇩p"
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "val a ≤ val b + α"
shows "val (u ⊗ a) ≤ val (u ⊗ b) + α"
apply(rule times_cfs_val_mono'[of "inv u" "u ⊗ a" "u ⊗ b" α])
using assms apply blast
apply(rule Qp.ring_simprules)
using assms apply blast using assms apply blast
apply(rule Qp.ring_simprules)
using assms apply blast using assms apply blast
using m_assoc assms
by (metis Qp.Units_closed Qp.cring_simprules(5) Qp.inv_cancelR(1))
lemma val_ineq_cancel_leq:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "val (a ⊗ b) ≤ val (a ⊗ c)"
shows "val b ≤ val c"
using Units_eq_nonzero assms(1) assms(2) assms(3) assms(4) times_cfs_val_mono by blast
lemma val_ineq_cancel_leq':
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "val b ≤ val c"
shows "val (a ⊗ b) ≤ val (a ⊗ c)"
apply(rule val_ineq_cancel_leq[of "inv a" "a ⊗ b" "a ⊗ c"])
using assms(1) nonzero_inverse_Qp apply blast
using Qp.nonzero_closed assms(1) assms(2) apply blast
using Qp.nonzero_closed assms assms(2) apply blast
by (metis Qp.inv_cancelR(1) Qp.m_closed Qp.nonzero_closed Units_eq_nonzero assms(1) assms(2) assms(3) assms(4))
lemma val_ineq_cancel_le:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "val (a ⊗ b) < val (a ⊗ c)"
shows "val b < val c"
using Qp.nonzero_closed assms(1) assms(2) assms(3) assms(4) val_mult by auto
lemma val_ineq_cancel_le':
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "val b < val c"
shows "val (a ⊗ b) < val (a ⊗ c)"
apply(rule val_ineq_cancel_le[of "inv a" "a ⊗ b" "a ⊗ c"])
using assms(1) nonzero_inverse_Qp apply blast
using Qp.nonzero_closed assms(1) assms(2) apply blast
using Qp.nonzero_closed assms assms(2) apply blast
by (metis Qp.inv_cancelR(1) Qp.m_closed Qp.nonzero_closed Units_eq_nonzero assms(1) assms(2) assms(3) assms(4))
lemma finite_val_imp_nonzero:
assumes "a ∈ carrier Q⇩p"
assumes "val a ≠ ∞"
shows "a ∈ nonzero Q⇩p"
using assms unfolding val_def nonzero_def
by (metis (mono_tags, lifting) mem_Collect_eq)
lemma val_ineq_cancel_leq'':
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "val b ≤ val c + eint N"
shows "val (a ⊗ b) ≤ val (a ⊗ c) + eint N"
proof-
obtain d where d_def: "d = 𝔭[^]N ⊗ c"
by blast
show ?thesis
proof(cases "c = 𝟬")
case True
then show ?thesis unfolding True
using True Units_eq_nonzero assms(1) assms(2) assms(4) times_cfs_val_mono'' by blast
next
case False
have F0: "c ∈ nonzero Q⇩p"
using False assms Qp.not_nonzero_memE by blast
have F1: "val (a ⊗ c) < ∞"
using F0 assms
by (metis (no_types, lifting) Qp.integral Qp.nonzero_closed Qp.nonzero_memE(2) eint.distinct(1) eint_ord_simps(4) val_def)
have F2: "b ∈ nonzero Q⇩p"
using F0 assms
by (metis False Groups.add_ac(2) add_cancel_eint_geq finite_val_imp_nonzero local.val_zero plus_eint_simps(2) val_ineq)
have F3: "ord b ≤ ord c + N"
using assms F0
by (metis F2 eint_ord_simps(1) plus_eint_simps(1) val_ord)
have F4: "ord a + ord b ≤ ord a + ord c+ N"
using assms F0 F1 F2 ord_mult F3 by presburger
have F5: "ord (a ⊗ b) ≤ ord (a ⊗ c) + N"
using F4 F2 F0 assms ord_mult by presburger
have F6: "a ⊗ b ∈ nonzero Q⇩p"
by (metis F2 Qp.integral Qp.nonzero_memE(1) Qp.nonzero_mult_closed Qp.not_nonzero_memE assms(1))
have F7: "a ⊗ c ∈ nonzero Q⇩p"
by (metis False Qp.integral Qp.nonzero_closed Qp.nonzero_memI Qp.nonzero_mult_closed assms(1) assms(3))
show "val (a ⊗ b) ≤ val (a ⊗ c) + eint N"
using val_ord[of "a ⊗ b" ] val_ord[of "a ⊗c"] F7 F7 F4
Units_eq_nonzero assms(1) assms(2) assms(3) assms(4) times_cfs_val_mono'' by blast
qed
qed
subsubsection‹The Ultrametric Inequality on $\mathbb{Q}_p$›
lemma ord_ultrametric:
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
assumes "x ⊕ y ∈ nonzero Q⇩p"
shows "ord (x ⊕ y) ≥ min (ord x) (ord y)"
proof-
have 0:"x ∈ carrier Q⇩p" using assms by(simp add:nonzero_def)
have 1:"y ∈carrier Q⇩p" using assms by(simp add:nonzero_def)
obtain a b c where
A: "a ∈ carrier Z⇩p" and
B: "b ∈ carrier Z⇩p" and
C: "c ∈ nonzero Z⇩p" and
Fx: "x = frac a c" and
Fy: "y = frac b c"
using 0 1 get_common_denominator by blast
have An: "a ∈ nonzero Z⇩p"
using A C Fx assms(1) nonzero_fraction_imp_nonzero_numer
Qp.nonzero_memE(2) by auto
have Bn: " b ∈ nonzero Z⇩p"
using B C Fy assms(2) nonzero_fraction_imp_nonzero_numer Qp.nonzero_memE(2) by auto
have Fxy: "x ⊕ y = frac (a ⊕⇘Z⇩p⇙ b) c" using 0 1
by (simp add: A B C Fx Fy frac_add_common_denom)
have ABn: " a ⊕⇘Z⇩p⇙ b ∈ nonzero Z⇩p"
proof-
have "a ⊕⇘Z⇩p⇙ b ∈ carrier Z⇩p"
using A B Z⇩p_def padic_add_closed prime by blast
then show ?thesis
using Fxy C assms(3) Qp.nonzero_memE(2)
nonzero_fraction_imp_nonzero_numer by blast
qed
have Ordx: "ord x = ord_Zp a - ord_Zp c"
using Fx An C ord_of_frac by metis
have Ordy: "ord y = ord_Zp b - ord_Zp c"
using Fy Bn C ord_of_frac by metis
have Ordxy: "ord (x ⊕ y) = ord_Zp (a ⊕⇘Z⇩p⇙ b) - ord_Zp c"
using Fxy ABn C ord_of_frac by metis
then show ?thesis
using Ordx Ordy Ordxy ord_Zp_ultrametric[of a b] ABn An Bn
by linarith
qed
lemma ord_ultrametric':
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
assumes "x ⊖⇘Q⇩p⇙ y ∈ nonzero Q⇩p"
shows "ord (x ⊖⇘Q⇩p⇙ y) ≥ min (ord x) (ord y)"
proof-
have "ord y = ord (⊖y)"
using assms(2) ord_minus by blast
then show ?thesis
using assms ord_ultrametric[of x "⊖y"]
unfolding a_minus_def
using Qp.add.inv_closed Qp.add.inv_eq_1_iff Qp.nonzero_closed Qp.nonzero_memE(2) Qp.nonzero_memI
by metis
qed
lemma val_ultrametric0:
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
assumes "x ⊕ y ∈ nonzero Q⇩p"
shows " min (val x) (val y) ≤ val (x ⊕ y) "
proof-
have 0: "val (x ⊕ y) = ord (x ⊕ y)"
using assms(3) nonzero_def val_def[of "(x ⊕ y)"] by fastforce
have 1: "val x = ord x"
using assms(1) nonzero_def val_def
by (simp add: nonzero_def)
have 2: "val y = ord y"
using assms(2) nonzero_def val_def val_ord by auto
have 3: "ord (x ⊕ y) ≥ min (ord x) (ord y)"
by (simp add: assms(1) assms(2) assms(3) ord_ultrametric)
then show ?thesis
by (simp add: "0" "1" "2")
qed
lemma val_ultrametric:
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
shows " min (val x) (val y) ≤ val (x ⊕ y)"
apply(cases "x = 𝟬 ∨ y = 𝟬")
using assms(1) assms(2) apply auto[1]
by (metis Qp.add.m_closed assms(1) assms(2) eint_ord_code(3) local.val_zero not_nonzero_Qp val_ultrametric0)
lemma val_ultrametric':
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
shows " min (val x) (val y) ≤ val (x ⊖ y)"
using val_ultrametric[of x "⊖y"]
val_minus[of y]
assms
by (metis Qp.domain_axioms a_minus_def cring.cring_simprules(3) domain.axioms(1))
lemma diff_ord_nonzero:
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
assumes "ord x ≠ ord y"
shows "x ⊕ y ∈ nonzero Q⇩p"
proof(rule ccontr)
assume " x ⊕ y ∉ nonzero Q⇩p"
then have "x ⊕ y = 𝟬"
using Qp.add.m_closed Qp.nonzero_closed Qp.nonzero_memI assms(1) assms(2) by blast
then have "x = ⊖ y"
using Qp.minus_equality Qp.nonzero_closed assms(1) assms(2) by blast
then have "ord x = ord y"
using assms(2) ord_minus by presburger
then show False
using assms(3) by blast
qed
lemma ord_ultrametric_noteq:
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
assumes "ord x > ord y"
shows "ord (x ⊕ y) = (ord y)"
proof(rule ccontr)
assume "ord (x ⊕ y) ≠ ord y"
have 00:"x ⊕ y ∈ nonzero Q⇩p"
proof(rule ccontr)
assume "x ⊕ y ∉ nonzero Q⇩p"
then have "x ⊕ y = 𝟬"
using Qp.add.m_closed Qp.nonzero_closed Qp.nonzero_memI assms(1) assms(2) by blast
then have "x = ⊖ y"
by (smt ‹x ⊕ y ∉ nonzero Q⇩p› assms(1) assms(2) assms(3) diff_ord_nonzero)
then have "ord x = ord y"
using assms(2) ord_minus by presburger
then show False
using assms(3) by linarith
qed
then have 0: "ord (x ⊕ y) > ord y"
using ord_ultrametric[of x y] ‹ord (x ⊕ y) ≠ ord y› assms(1) assms(2) assms(3)
by linarith
have 1: "((y ⊕ x) ⊖ x) = y"
using "00" Qp.add.inv_solve_right' Qp.add.m_comm Qp.minus_eq Qp.nonzero_closed assms(1) assms(2) by presburger
have 2: "ord ((y ⊕ x) ⊖ x) ≥ min (ord (y ⊕ x)) (ord x) "
using 1 assms ord_ultrametric'[of "(y ⊕ x)" x] diff_ord_nonzero by auto
have 3: "ord y ≥ min (ord x) (ord (x ⊕ y))"
using 2 1 Q⇩p_def Qp.domain_axioms Z⇩p_def assms(1) assms(2) cring.cring_simprules(10)
domain.axioms(1) Qp.nonzero_closed by fastforce
show False
using 3 0 assms
by linarith
qed
lemma ord_ultrametric_noteq':
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
assumes "ord x > ord y"
shows "ord (x ⊖ y) = (ord y)"
using assms ord_ultrametric_noteq[of x "⊖y"]
by (metis Qp.add.inv_closed Qp.minus_eq Qp.nonzero_closed Qp.nonzero_memI Qp.r_neg Qp.r_zero ord_minus)
lemma ord_ultrametric_noteq'':
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
assumes "ord y > ord x"
shows "ord (x ⊖ y) = (ord x)"
using assms ord_ultrametric_noteq'[of y x]
by (metis Qp.minus_a_inv Qp.nonzero_closed Qp.not_eq_diff_nonzero ord_minus)
lemma val_ultrametric_noteq:
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
assumes "val x > val y"
shows "val (x ⊕ y) = val y"
apply(cases "x = 𝟬")
apply (simp add: assms(2))
using assms unfolding val_def
by (smt Qp.not_nonzero_memI diff_ord_nonzero eint_ord_simps(2) not_nonzero_Qp ord_ultrametric_noteq val_def val_nonzero)
lemma val_ultrametric_noteq':
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
assumes "val x > val y"
shows "val (x ⊖ y) = val y"
using assms val_ultrametric_noteq[of x "⊖y"]
by (metis Qp.domain_axioms a_minus_def cring.cring_simprules(3) domain.axioms(1) val_minus)
lemma ultrametric_equal_eq:
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
assumes "val (y ⊖ x) > val x"
shows "val x = val y"
using assms
by (metis (no_types, lifting) Qp.add.inv_closed Qp.add.m_assoc Qp.l_neg Qp.minus_closed Qp.minus_eq Qp.r_zero val_ultrametric_noteq)
lemma ultrametric_equal_eq':
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
assumes "val (x ⊖ y) > val x"
shows "val x = val y"
using assms ultrametric_equal_eq[of x y]
by (metis Qp.minus_a_inv Qp.minus_closed val_minus)
lemma val_ultrametric_noteq'':
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
assumes "val x > val y"
shows "val (y ⊖ x) = val y"
by (metis Qp.minus_a_inv Qp.minus_closed assms(1) assms(2) assms(3) val_minus val_ultrametric_noteq')
text‹Ultrametric over finite sums:›
lemma Min_mono:
assumes "finite A"
assumes "A ≠ {}"
assumes "⋀ a. a ∈ A ⟹ f a ≤ a"
shows "Min (f`A) ≤ Min A"
by (meson Min_in Min_le_iff assms(1) assms(2) assms(3) finite_imageI image_eqI image_is_empty)
lemma Min_mono':
assumes "finite A"
assumes "⋀ (a::'a). a ∈ A ⟹ (f::'a ⇒ eint) a ≤ g a"
shows "Min (f`A) ≤ Min (g `A)"
proof-
have "(∀a ∈ A. f a ≤ g a) ⟶ Min (f`A) ≤ Min (g` A)"
apply(rule finite.induct[of A])
apply (simp add: assms(1))
apply simp
proof fix A a assume F: "finite A" "(∀a∈A. f a ≤ g a) ⟶ Min (f ` A) ≤ Min (g ` A)"
"∀a∈insert a A. f a ≤ g a"
show "Min (f ` insert a A) ≤ Min (g ` insert a A)"
proof-
obtain k where k_def: "k ∈ insert a A ∧ g k = Min (g ` insert a A)"
using assms
by (metis (mono_tags, opaque_lifting) F(1) Min_eq_iff finite.insertI finite_imageI image_iff image_is_empty insert_not_empty)
then have 0: "f k ≤ g k"
using F(3) by blast
thus ?thesis using k_def
by (metis F(1) Min_le dual_order.trans finite.insertI finite_imageI image_eqI)
qed
qed
thus ?thesis using assms by blast
qed
lemma eint_ord_trans:
assumes "(a::eint) ≤ b"
assumes "b ≤ c"
shows "a ≤ c"
using assms by auto
lemma eint_Min_geq:
assumes "finite (A::eint set)"
assumes "⋀x. x ∈ A ⟹ x ≥ c"
assumes "A ≠ {}"
shows "Min A ≥ c"
using Min_in[of A] assms(2)[of "Min A"] assms by blast
lemma eint_Min_gr:
assumes "finite (A::eint set)"
assumes "⋀x. x ∈ A ⟹ x > c"
assumes "A ≠ {}"
shows "Min A > c"
using Min_in[of A] assms(2)[of "Min A"] assms by blast
lemma finsum_val_ultrametric:
assumes "g ∈ A → carrier Q⇩p"
assumes "finite A"
assumes "A ≠ {}"
shows " val (finsum Q⇩p g A) ≥ Min (val ` (g`A))"
proof-
have "A ≠ {} ∧ g ∈ A → carrier Q⇩p ⟶ val (finsum Q⇩p g A) ≥ Min (val ` (g`A))"
apply(rule finite.induct[of A])
apply (simp add: assms(2))
apply blast
proof fix A a assume A: "finite A" "A ≠ {}∧ g ∈ A → carrier Q⇩p ⟶ val (finsum Q⇩p g A) ≥ Min (val ` g ` A)"
" insert a A ≠ {} ∧ g ∈ insert a A → carrier Q⇩p "
show "val (finsum Q⇩p g (insert a A)) ≥ Min (val ` g ` insert a A)"
apply(cases "a ∈ A")
apply (metis A(2) A(3) insert_absorb)
proof(cases "A = {}")
have g_closed: "g ∈ A → carrier Q⇩p"
using A(3) by blast
have g_closed': "g ∈ insert a A → carrier Q⇩p"
using A(3) by linarith
then have ga: "g a ∈ carrier Q⇩p"
by blast
assume a_notin: "a ∉ A"
case True
have "g a ∈ carrier Q⇩p" using A(3)
by blast
then have 0: "(finsum Q⇩p g (insert a A)) = g a"
using A True abelian_monoid.finsum_insert[of Q⇩p A a g] abelian_monoid.finsum_empty[of Q⇩p g]
Qp.abelian_monoid_axioms Qp.add.l_cancel_one Qp.zero_closed a_notin g_closed
by metis
have 1: "Min (val ` g ` insert a A) = val (g a)"
by (metis A(1) True Min_in finite.insertI finite_imageI image_empty
image_insert insert_not_empty singletonD)
show ?thesis
using 0 1
by simp
next
case False
assume a_notin: "a ∉ A"
have g_closed: "g ∈ A → carrier Q⇩p"
using A(3) by blast
have g_closed': "g ∈ insert a A → carrier Q⇩p"
using A(3) by linarith
then have ga: "g a ∈ carrier Q⇩p"
by blast
have 0: "finsum Q⇩p g (insert a A) = g a ⊕ finsum Q⇩p g A"
by (simp add: A(1) a_notin g_closed ga)
have 1: "min (val (g a)) (Min (val ` g ` A)) = Min (insert (val (g a)) (val ` g ` A))"
proof-
have 10: "finite (val ` g ` A) " using A
by blast
then have 11: "val ` g ` A ≠ {}"
using False
by blast
show ?thesis
using 10 11 Min_insert
by simp
qed
have 2: " val (g a ⊕ finsum Q⇩p g A) ≥ min (val (g a)) (val (finsum Q⇩p g A))"
using val_ultrametric[of "g a" "finsum Q⇩p g A" ] abelian_monoid.finsum_closed[of Q⇩p g A]
g_closed ga Qp.abelian_monoid_axioms by blast
have 3: " val (finsum Q⇩p g A) ≥ Min (val ` g ` A)"
using A False
by blast
have 4: " val (finsum Q⇩p g (insert a A)) ≥ min (val (g a)) (val (finsum Q⇩p g A))"
using 2 "0"
by presburger
have 5: " val (finsum Q⇩p g A) ≥ Min (val ` g ` A)"
using False "3" by blast
show " val (finsum Q⇩p g (insert a A)) ≥ Min (val ` g ` insert a A)"
using 5 4 1
by (smt image_insert min.cobounded1 min_def order_trans)
qed
qed
then show ?thesis
using assms
by blast
qed
lemma (in padic_fields) finsum_val_ultrametric':
assumes "g ∈ A → carrier Q⇩p"
assumes "finite A"
assumes "⋀i. i ∈ A ⟹ val (g i) ≥ c"
shows " val (finsum Q⇩p g A) ≥ c"
proof(cases "A = {}")
case True
then show ?thesis using assms
unfolding True Qp.finsum_empty
using eint_ord_code(3) local.val_zero by presburger
next
case False
show ?thesis
proof(rule eint_ord_trans[of _ "Min (val ` g ` A)"])
have 0: "⋀s. s ∈ val ` g ` A ⟹ s ≥ c"
proof- fix s assume A: "s ∈ val ` g ` A"
then obtain a where a_def: "a ∈ A ∧ s = val (g a)"
by blast
have s_eq: "s = val (g a)"
using a_def by blast
show "c ≤ s"
using assms(3)[of a] A a_def unfolding s_eq by blast
qed
show "c ≤ Min (val ` g ` A)"
apply(rule eint_Min_geq)
using assms apply blast using assms apply blast
using False by blast
show "Min (val ` g ` A) ≤ val (finsum Q⇩p g A)"
by(rule finsum_val_ultrametric[of g A], rule assms, rule assms, rule False)
qed
qed
lemma (in padic_fields) finsum_val_ultrametric'':
assumes "g ∈ A → carrier Q⇩p"
assumes "finite A"
assumes "⋀i. i ∈ A ⟹ val (g i) > c"
assumes "c < ∞"
shows " val (finsum Q⇩p g A) > c"
proof(cases "A = {}")
case True
then show ?thesis using assms
unfolding True Qp.finsum_empty val_zero
using eint_ord_code(3) local.val_zero by blast
next
case False
show ?thesis
proof(rule less_le_trans[of _ "Min (val ` g ` A)"])
have 0: "⋀s. s ∈ val ` g ` A ⟹ s > c"
proof- fix s assume A: "s ∈ val ` g ` A"
then obtain a where a_def: "a ∈ A ∧ s = val (g a)"
by blast
have s_eq: "s = val (g a)"
using a_def by blast
show "c < s"
using assms(3)[of a] A a_def unfolding s_eq by blast
qed
show "c < Min (val ` g ` A)"
apply(rule eint_Min_gr)
using assms apply blast using assms
using "0" apply blast
using False by blast
show "Min (val ` g ` A) ≤ val (finsum Q⇩p g A)"
by(rule finsum_val_ultrametric[of g A], rule assms, rule assms, rule False)
qed
qed
lemma Qp_diff_diff:
assumes "x ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "d ∈ carrier Q⇩p"
shows "(x ⊖ c) ⊖ (d ⊖ c) = x ⊖ d "
by (smt Qp.domain_axioms a_minus_def assms(1) assms(2) assms(3) cring.cring_simprules(10)
cring.cring_simprules(19) cring.cring_simprules(3) cring.cring_simprules(4)
cring.cring_simprules(7) domain.axioms(1))
text‹This variant of the ultrametric identity formalizes the common saying that "all triangles in $\mathbb{Q}_p$ are isosceles":›
lemma Qp_isosceles:
assumes "x ∈ carrier Q⇩p"
assumes "c ∈ carrier Q⇩p"
assumes "d ∈ carrier Q⇩p"
assumes "val (x ⊖ c) ≥ v"
assumes "val (d ⊖ c) ≥ v"
shows "val (x ⊖ d) ≥ v"
proof-
have "val (x ⊖ d) ≥ min (val (x ⊖ c)) (val (d ⊖ c))"
using assms Qp_diff_diff[of x c d]
by (metis Qp.domain_axioms cring.cring_simprules(4) domain.axioms(1) val_ultrametric')
then show ?thesis using assms
by (meson dual_order.trans min_le_iff_disj)
qed
text‹More variants on the ultrametric inequality›
lemma MinE:
assumes "finite (A::eint set)"
assumes "a = Min A"
assumes "b ∈ A"
shows "a ≤ b"
using assms by (simp add: assms(3))
lemma MinE':
assumes "finite (A::eint set)"
assumes "a = Min A"
assumes "b ∈ A - {a}"
shows "a < b"
proof-
have 0: "a ≤ b"
using assms MinE by blast
have 1: "a ≠ b" using assms by blast
show ?thesis using 0 1
by simp
qed
lemma MinE'':
assumes "finite A"
assumes "f ∈ A → (UNIV :: eint set)"
assumes "a = Min (f ` A)"
assumes "b ∈ A"
shows "a ≤ f b"
apply(rule MinE[of "f` A"]) using assms apply blast using assms apply blast using assms by blast
lemma finsum_val_ultrametric_diff:
assumes "g ∈ A → carrier Q⇩p"
assumes "finite A"
assumes "A ≠ {}"
assumes "⋀a b. a ∈ A ⟹ b ∈ A ⟹ a ≠ b ⟹ val (g a) ≠ val (g b)"
shows " val (finsum Q⇩p g A) = Min (val ` g`A)"
proof-
have "Min (val ` g ` A) ∈ val ` g ` A"
using Min_in[of "val ` g ` A"] assms by blast
then obtain a where a_def: "a ∈ A ∧ Min (val ` g`A) = val (g a)"
by blast
have 0: "⋀b. b ∈ A ⟹ b ≠ a ⟹ val (g b) > val (g a)"
apply(rule MinE'[of "val ` g ` A"]) using assms apply blast
using a_def assms apply presburger
using assms(4)[of a] a_def
by (metis image_eqI insert_Diff insert_iff)
have 1: "g a ⊕ finsum Q⇩p g (A - {a}) = finsum Q⇩p g (insert a (A - {a}))"
using assms Qp.finsum_insert[of "A - {a}" a g] a_def finite_subset[of "A - {a}" A] by blast
have 2: "finsum Q⇩p g A = g a ⊕ finsum Q⇩p g (A - {a})"
unfolding 1 using a_def
by (metis insert_Diff_single insert_absorb)
have 3: "g a ∈ carrier Q⇩p"
using a_def assms by blast
show "val (finsum Q⇩p g A) = Min (val ` g`A)"
proof(cases "A = {a}")
case True
show ?thesis using 3 Qp.finsum_empty[of g] a_def unfolding 2 unfolding True
by auto
next
case False
then have F0: "A - {a} ≠ {}"
using assms by blast
have F1: "finsum Q⇩p g (A - {a}) ∈ carrier Q⇩p"
apply(rule Qp.finsum_closed)
using assms by blast
have F2: "val (finsum Q⇩p g (A - {a})) ≥ Min (val ` g` (A- {a}))"
apply(rule finsum_val_ultrametric)
using assms apply blast using assms apply blast using False a_def by blast
have F3: "Min (val ` g` (A- {a})) ∈ (val ` g` (A- {a}))"
apply(rule Min_in)
using assms apply blast using False a_def by blast
obtain b where b_def: "b ∈ A - {a} ∧ Min (val ` g` (A- {a})) = val (g b)"
using F3 by blast
have F4: "Min (val ` g` (A- {a})) > val (g a)"
using a_def assms b_def by (metis "0" Diff_iff singletonI)
have F5: "val (finsum Q⇩p g (A - {a})) > val (g a)"
using F4 F2 less_le_trans by blast
then show ?thesis using 2 F1 3
by (metis Qp.a_ac(2) a_def val_ultrametric_noteq)
qed
qed
lemma finsum_val_ultrametric_diff':
assumes "g ∈ A → carrier Q⇩p"
assumes "finite A"
assumes "A ≠ {}"
assumes "⋀a b. a ∈ A ⟹ b ∈ A ⟹ a ≠ b ⟹ val (g a) ≠ val (g b)"
shows " val (finsum Q⇩p g A) = (MIN a ∈ A. (val (g a)))"
proof-
have 0: "(λ a. val (g a)) ` A = (val ` g`A)"
by blast
show ?thesis using assms finsum_val_ultrametric_diff[of g A] unfolding 0 by blast
qed
subsection‹Constructing the Angular Component Maps on $\mathbb{Q}_p$›
subsubsection‹Unreduced Angular Component Map›
text‹While one can compute the residue of a $p$-adic integer mod $p^n$, this operation does not generalize to the $p$-adic field unless we restrict our attention to the valuation ring. However, we can still define the angular component maps on the field $\mathbb{Q}_p$, which allows us to take a sort of residue for any element $x \in \mathbb{Q}_p$. Given a nonzero element $x \in \mathbb{Q}_p^{\times}$, we can normalize it to obtain $p^{-ord( x)}x$ which has of valuation zero, and then computes its residue (viewed as an element of $\mathbb{Z}_p$). The resulting map agrees with the standard residue map on elements of $\mathbb{Q}_p$ of valuation zero, but not on terms of positive or negative valuation. For example, the element $p^2$ has an order $1$ residue of $0$, but its order $1$ angular component is $1$. In the formalism below, we will use the term "\texttt{angular\_component}" to refer to the unreduced normalization map $x \mapsto p^{-ord( x)}x$, and use the notation "\texttt{ac n}" to refer to the angular component which has been reduced mod $p^n$. This is line with the terminology used in \<^cite>‹"denef1986"›. ›
definition angular_component where
"angular_component a = (ac_Zp (numer a)) ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ ac_Zp (denom a))"
lemma ac_fract:
assumes "c ∈ carrier Q⇩p"
assumes "a ∈ nonzero Z⇩p"
assumes "b ∈ nonzero Z⇩p"
assumes "c = frac a b"
shows "angular_component c = (ac_Zp a)⊗⇘Z⇩p⇙ inv ⇘Z⇩p⇙(ac_Zp b)"
proof-
have "(numer c) ⊗⇘Z⇩p⇙ b = (denom c) ⊗⇘Z⇩p⇙ a"
by (simp add: assms(2) assms(3) assms(4) mult_comm numer_denom_swap)
then have "ac_Zp ((numer c) ⊗⇘Z⇩p⇙ b) = ac_Zp ((denom c) ⊗⇘Z⇩p⇙ a)"
by simp
then have "(ac_Zp (numer c)) ⊗⇘Z⇩p⇙ (ac_Zp b) = (ac_Zp (denom c)) ⊗⇘Z⇩p⇙ (ac_Zp a)"
by (metis Q⇩p_def Zp.nonzero_closed Zp.numer_denom_facts(3) ac_Zp_mult assms(2) assms(3) assms(4) local.frac_closed local.numer_denom_facts(1) nonzero_fraction_imp_nonzero_numer nonzero_numer_imp_nonzero_fraction numer_denom_frac)
then have "(inv ⇘Z⇩p⇙ (ac_Zp (denom c))) ⊗⇘Z⇩p⇙ (ac_Zp (numer c)) ⊗⇘Z⇩p⇙ (ac_Zp b) = (ac_Zp a)"
using ac_Zp_is_Unit[of "ac_Zp (denom c)"] Zp.domain_axioms inv_cancelR(1)
Q⇩p_def Zp.Units_closed Zp.inv_cancelR(1) Zp.m_closed Zp.nonzero_closed Zp.nonzero_memE(2) Z⇩p_def ac_Zp_is_Unit assms(1) assms(2) mult_assoc padic_fields.numer_denom_facts(2) padic_fields_axioms by auto
then have "(inv ⇘Z⇩p⇙ (ac_Zp (denom c))) ⊗⇘Z⇩p⇙ (ac_Zp (numer c)) = (ac_Zp a) ⊗⇘Z⇩p⇙ inv ⇘Z⇩p⇙ (ac_Zp b)"
using ac_Zp_is_Unit[of "ac_Zp b"] Zp.domain_axioms inv_cancelL(2)
by (smt Q⇩p_def Zp.Units_inv_closed Zp.Units_r_inv Zp.nonzero_closed Zp.nonzero_memE(2) Zp.r_one Z⇩p_def ac_Zp_is_Unit assms(1) assms(3) mult_assoc mult_comm padic_fields.numer_denom_facts(2) padic_fields_axioms)
then show ?thesis
by (simp add: angular_component_def mult_comm)
qed
lemma angular_component_closed:
assumes "a ∈ nonzero Q⇩p"
shows "angular_component a ∈ carrier Z⇩p"
using ac_fract assms Q⇩p_def Qp.nonzero_closed Qp.nonzero_memE(2) Zp.Units_inv_closed Zp.m_closed
Zp.nonzero_closed Zp.nonzero_memE(2) Z⇩p_def ac_Zp_is_Unit angular_component_def local.numer_denom_facts(3)
padic_fields.numer_denom_facts(1) padic_fields.numer_denom_facts(2) padic_fields_axioms padic_integers.ac_Zp_in_Zp padic_integers_def prime by auto
lemma angular_component_unit:
assumes "a ∈ nonzero Q⇩p"
shows "angular_component a ∈ Units Z⇩p"
using ac_fract[of a "numer a" "denom a"] Q⇩p_def Qp.nonzero_closed
Qp.nonzero_memE(2) Zp.Units_inv_Units Zp.Units_m_closed
Zp.nonzero_closed Zp.nonzero_memE(2) Z⇩p_def ac_Zp_is_Unit
angular_component_def assms local.numer_denom_facts(1)
local.numer_denom_facts(2) padic_fields.numer_denom_facts(3)
padic_fields_axioms by auto
lemma angular_component_factors_x:
assumes "x ∈ nonzero Q⇩p"
shows "x = (𝔭[^](ord x)) ⊗ ι (angular_component x)"
proof-
have 0: "angular_component x = (ac_Zp (numer x)) ⊗⇘Z⇩p⇙ (inv⇘Z⇩p⇙ ac_Zp (denom x))"
by (simp add: angular_component_def)
have 1: "(numer x) = (𝗉[^]⇘Z⇩p⇙(ord_Zp (numer x))) ⊗⇘Z⇩p⇙ (ac_Zp (numer x))"
proof-
have "numer x ∈ nonzero Z⇩p"
using assms unfolding Q⇩p_def
by (simp add: numer_nonzero)
then show ?thesis using ac_Zp_factors_x[of "numer x"]
by (simp add: ac_Zp_factors')
qed
have 2: "(denom x) = (𝗉[^]⇘Z⇩p⇙(ord_Zp (denom x))) ⊗⇘Z⇩p⇙ (ac_Zp (denom x))"
proof-
have "denom x ∈ nonzero Z⇩p"
using nonzero_memE assms numer_denom_facts(2)
by (simp add: Qp.nonzero_closed)
then show ?thesis
using ac_Zp_factors_x[of "denom x"] Zp.nonzero_closed Zp.nonzero_memE(2) by auto
qed
have 3: "ι (angular_component x) = frac (ac_Zp (numer x)) (ac_Zp (denom x))"
by (metis "0" Q⇩p_def Qp.nonzero_closed Qp.nonzero_memE(2) Zp.nonzero_closed Zp.nonzero_memE(2) Zp.numer_denom_facts(2) Z⇩p_def Z⇩p_division_Qp_0 ac_Zp_is_Unit angular_component_closed assms local.inc_def padic_fields.numer_denom_facts(2) padic_fields.numer_denom_facts(3) padic_fields_axioms)
have 4: "(𝔭[^]((ord x))) ⊗ ι (angular_component x) =
(𝔭[^]((ord_Zp (numer x)) - (ord_Zp (denom x)))) ⊗ frac (ac_Zp (numer x)) (ac_Zp (denom x))"
using "3" ord_def by presburger
have 5: "(𝔭[^]((ord x))) ⊗ ι (angular_component x) =
frac (𝗉[^]⇘Z⇩p⇙((ord_Zp (numer x)))) (𝗉[^]⇘Z⇩p⇙(ord_Zp (denom x))) ⊗ frac (ac_Zp (numer x)) (ac_Zp (denom x))"
proof-
have "(𝔭[^]((ord_Zp (numer x)) - (ord_Zp (denom x))))
= frac (𝗉[^]⇘Z⇩p⇙((ord_Zp (numer x)))) (𝗉[^]⇘Z⇩p⇙(ord_Zp (denom x)))"
by (metis Q⇩p_def Qp.nonzero_closed Z⇩p_def assms domain.nonzero_memE(1) domain.nonzero_memE(2) numer_nonzero ord_pos p_pow_diff padic_fields.numer_denom_facts(2) padic_fields_axioms padic_int_is_domain prime)
then show ?thesis using 4 by metis
qed
have 6: "(𝔭[^]((ord x))) ⊗ ι (angular_component x) =
frac (𝗉[^]⇘Z⇩p⇙((ord_Zp (numer x))) ⊗⇘Z⇩p⇙ (ac_Zp (numer x))) (𝗉[^]⇘Z⇩p⇙(ord_Zp (denom x)) ⊗⇘Z⇩p⇙ (ac_Zp (denom x)))"
using 5 frac_mult[of "𝗉[^]⇘Z⇩p⇙((ord_Zp (numer x)))" " (𝗉[^]⇘Z⇩p⇙(ord_Zp (denom x)))" "(ac_Zp (numer x)) " " (ac_Zp (denom x))"] mult_comm
by (metis "2" Q⇩p_def Qp.nonzero_closed Zp.integral_iff Zp.nonzero_closed Zp.nonzero_memE(2) ac_Zp_in_Zp assms local.numer_denom_facts(2) not_nonzero_Zp numer_nonzero ord_pos p_int_pow_nonzero)
then show ?thesis
using "1" "2" nonzero_memE assms numer_denom_facts(5) Qp.nonzero_closed by auto
qed
lemma angular_component_mult:
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
shows "angular_component (x ⊗ y) = (angular_component x) ⊗⇘Z⇩p⇙ (angular_component y)"
proof-
obtain a b where "a = numer x" and
"b = denom x" and
a_nz: "a ∈ nonzero Z⇩p" and
b_nz: "b ∈ nonzero Z⇩p" and
x_frac: "x = frac a b"
using assms Qp.nonzero_memE[of x]
by (meson local.numer_denom_facts(1) local.numer_denom_facts(2)
local.numer_denom_facts(3) local.numer_denom_facts(5) not_nonzero_Zp)
obtain c d where "c = numer y" and
"d = denom y" and
c_nz: "c ∈ nonzero Z⇩p" and
d_nz: "d ∈ nonzero Z⇩p" and
y_frac: "y = frac c d"
using assms Qp.nonzero_memE[of y]
by (meson local.numer_denom_facts(1) local.numer_denom_facts(2) local.numer_denom_facts(3) local.numer_denom_facts(5) not_nonzero_Zp)
have 0: "(x ⊗ y) = frac (a ⊗⇘Z⇩p⇙ c) (b ⊗⇘Z⇩p⇙ d)"
using a_nz b_nz c_nz d_nz frac_mult x_frac y_frac
by (simp add: Zp.nonzero_closed)
have 1: "angular_component (x ⊗ y) = (ac_Zp (a ⊗⇘Z⇩p⇙ c)) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp (b ⊗⇘Z⇩p⇙ d))"
by (metis (mono_tags, lifting) "0" Qp.nonzero_mult_closed Zp.integral_iff Zp.nonzero_closed Zp.nonzero_mult_closed a_nz ac_fract assms(1) assms(2) b_nz c_nz d_nz not_nonzero_Zp)
have 2: "angular_component (x ⊗ y) = (ac_Zp a) ⊗⇘Z⇩p⇙ (ac_Zp c) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ ((ac_Zp b) ⊗⇘Z⇩p⇙ (ac_Zp d))"
by (simp add: "1" a_nz ac_Zp_mult b_nz c_nz d_nz)
have 3: "angular_component (x ⊗ y) = (ac_Zp a) ⊗⇘Z⇩p⇙ (ac_Zp c) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp b) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp d)"
using 2
by (simp add: Zp.inv_of_prod Zp.nonzero_closed Zp.nonzero_memE(2) ac_Zp_is_Unit b_nz d_nz mult_assoc)
have 4: "angular_component (x ⊗ y) = (ac_Zp a) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp b) ⊗⇘Z⇩p⇙ (ac_Zp c) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp d)"
using "3" a_nz ac_Zp_in_Zp ac_Zp_is_Unit b_nz c_nz m_assoc mult_comm
mult_assoc by auto
have 5: "angular_component (x ⊗ y) = ((ac_Zp a) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp b)) ⊗⇘Z⇩p⇙ ( (ac_Zp c) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp d))"
using 4 by (simp add: mult_assoc)
then show ?thesis
by (simp add: Z⇩p_def ‹a = numer x› ‹b = denom x› ‹c = numer y› ‹d = denom y›
padic_fields.angular_component_def padic_fields_axioms)
qed
lemma angular_component_inv:
assumes "x ∈ nonzero Q⇩p"
shows "angular_component (inv⇘Q⇩p⇙ x) = inv⇘Z⇩p⇙ (angular_component x)"
by (metis Q⇩p_def Qp.one_closed Zp.Units_r_inv Zp.inv_unique' Zp.nonzero_closed Zp.nonzero_one_closed Zp.zero_not_one Z⇩p_def ι_def ac_Zp_is_Unit angular_component_closed angular_component_mult assms frac_nonzero_inv(1) frac_nonzero_inv(2) inc_equation inc_of_one nonzero_inverse_Qp padic_fields.ac_fract padic_fields_axioms)
lemma angular_component_one:
"angular_component 𝟭 = 𝟭⇘Z⇩p⇙"
using ι_def ac_Zp_one ac_fract inc_equation inc_of_one
Zp.nonzero_one_closed by fastforce
lemma angular_component_ord_zero:
assumes "ord x = 0"
assumes "x ∈ nonzero Q⇩p"
shows "ι (angular_component x) = x"
proof-
have 0: "ord x ≥0"
using assms by auto
have 1: "x ∈ nonzero Q⇩p"
proof-
have "x ≠ 𝟬"
using nonzero_def assms(2) Qp.nonzero_memE(2) by auto
then show ?thesis
by (simp add: assms(2))
qed
obtain a where a_def: "a ∈ nonzero Z⇩p ∧ ι a = x"
using 0 1 assms Qp_inc_id[of x]
by metis
then have "x = frac a 𝟭⇘Z⇩p⇙"
using local.inc_def Zp.nonzero_closed by blast
then have "angular_component x = ac_Zp a ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp 𝟭⇘Z⇩p⇙)"
using ac_fract[of x a ] "1" nonzero_memE Q⇩p_def Zp.nonzero_closed Zp.nonzero_one_closed Z⇩p_def a_def
local.frac_closed padic_fields.ac_fract padic_fields_axioms by auto
then have "angular_component x = ac_Zp a ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
by (simp add: ac_Zp_one)
then have 0: "angular_component x = ac_Zp a ⊗⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
by simp
have "ac_Zp a ∈ nonzero Z⇩p"
using Zp.Units_nonzero Zp.nonzero_closed Zp.not_nonzero_memI a_def ac_Zp_is_Unit by auto
thus ?thesis using 0
by (metis Zp.l_one Zp.nonzero_closed Zp_defs(1) Zp_defs(4) a_def ac_Zp_factors'
assms(1) int_pow_0 mult_comm ord_of_inc)
qed
lemma angular_component_of_inclusion:
assumes "x ∈ nonzero Z⇩p"
assumes "y = ι x"
shows "angular_component y = ac_Zp x"
proof-
have "y = local.frac x 𝟭⇘Z⇩p⇙"
using assms
by (simp add: Zp.nonzero_closed local.inc_def)
then have 0: "angular_component y = (ac_Zp x) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ ac_Zp (𝟭⇘Z⇩p⇙)"
using assms ac_fract[of y x ]
by (simp add: ‹y = ι x› Zp.nonzero_closed Zp.nonzero_one_closed local.frac_closed)
have 1: "ac_Zp 𝟭⇘Z⇩p⇙ = 𝟭⇘Z⇩p⇙"
using ac_Zp_one by blast
have 2: "(ac_Zp x) ∈ carrier Z⇩p"
using Zp.Units_closed Zp.nonzero_closed ac_Zp_is_Unit assms(1) nonzero_fraction_imp_numer_not_zero nonzero_numer_imp_nonzero_fraction by auto
have 3: "inv ⇘Z⇩p⇙ (ac_Zp 𝟭⇘Z⇩p⇙) = 𝟭⇘Z⇩p⇙"
using 1
by simp
have 4: "(ac_Zp x) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ ac_Zp (𝟭⇘Z⇩p⇙) = (ac_Zp x) ⊗⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
using "3" by auto
have 5: "(ac_Zp x) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ ac_Zp (𝟭⇘Z⇩p⇙) = (ac_Zp x)"
using 4 2 Zp.domain_axioms by simp
then show ?thesis
by (simp add: "0")
qed
lemma res_uminus:
assumes "k > 0"
assumes "f ∈ carrier Z⇩p"
assumes "c ∈ carrier (Zp_res_ring k)"
assumes "c = ⊖⇘Zp_res_ring k⇙ (f k)"
shows "c = ((⊖⇘Z⇩p⇙ f) k)"
using Z⇩p_def assms(2) assms(4) prime Zp_residue_a_inv(1) by auto
lemma ord_fract:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ nonzero Q⇩p"
shows "ord (a ÷ b) = ord a - ord b"
using assms nonzero_memE nonzero_def nonzero_inverse_Qp ord_mult ord_of_inv
Qp.nonzero_closed Qp.nonzero_memE(2) by presburger
lemma val_fract:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ nonzero Q⇩p"
shows "val (a ÷ b) = val a - val b"
apply(cases "a = 𝟬")
apply (simp add: Units_eq_nonzero assms(2) val_def)
proof-
assume "a ≠ 𝟬"
then have 0: "a ∈ nonzero Q⇩p"
by (simp add: Qp.nonzero_memI assms(1))
have 1: "(a ÷ b) ∈ nonzero Q⇩p"
by (simp add: "0" Localization.submonoid.m_closed Qp.nonzero_is_submonoid assms(2) nonzero_inverse_Qp)
show ?thesis using 0 1 assms
by (simp add: ord_fract)
qed
lemma zero_fract:
assumes "a ∈ nonzero Q⇩p"
shows "𝟬 ÷ a = 𝟬"
by (simp add: Units_eq_nonzero assms)
lemma fract_closed:
assumes "a ∈ carrier Q⇩p"
assumes "b ∈ nonzero Q⇩p"
shows "(a ÷ b) ∈ carrier Q⇩p"
by (simp add: Units_eq_nonzero assms(1) assms(2))
lemma val_of_power:
assumes "a ∈ nonzero Q⇩p"
shows "val (a[^](n::nat)) = n*(val a)"
unfolding val_def using assms
by (simp add: Qp.nonzero_memE(2) Qp_nat_pow_nonzero nonzero_nat_pow_ord)
lemma val_zero_imp_val_pow_zero:
assumes "a ∈ carrier Q⇩p"
assumes "val a = 0"
shows "val (a[^](n::nat)) = 0"
apply(induction n)
using assms apply simp
proof-
fix n ::nat
assume A: "val (a [^] n) = 0"
have 0: "a [^] Suc n = a [^] n ⊗ a"
by simp
show "val (a [^] Suc n) = 0 "
unfolding 0 using A assms
by (simp add: val_mult)
qed
text‹val and ord of powers of p›
lemma val_p_nat_pow:
"val (𝔭[^](k::nat)) = eint k"
by (simp add: ord_p_pow_nat)
lemma ord_p_int_pow:
"ord (𝔭[^](k::int)) = k"
by (simp add: ord_p_pow_int)
lemma ord_p_nat_pow:
"ord (𝔭[^](k::nat)) = k"
by (simp add: ord_p_pow_nat)
lemma val_nonzero_frac:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ nonzero Q⇩p"
assumes "val (a ÷ b) = c"
shows "val a = val b + c"
proof-
obtain n where n_def: "c = eint n"
using assms val_ord by (metis (no_types, lifting) Qp.integral Qp.nonzero_closed inv_in_frac(1) inv_in_frac(2) val_def)
have 0: "ord (a ÷ b) = n"
by (metis assms(3) eint.distinct(2) eint.inject n_def val_def)
have 1: "ord a - ord b = n"
using 0 assms by (metis ord_fract)
have 2: "ord a = ord b + n"
using 1 by presburger
show "val a = val b + c"
unfolding n_def using 2 assms
by (metis Qp.nonzero_memE(1) fract_closed local.fract_cancel_right n_def val_mult)
qed
lemma val_nonzero_frac':
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ nonzero Q⇩p"
assumes "val (a ÷ b) = 0"
shows "val a = val b"
using val_nonzero_frac[of a b 0]
by (metis arith_simps(50) assms(1) assms(2) assms(3))
lemma equal_val_imp_equal_ord:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "val a = val b"
shows "ord a = ord b" "b ∈ nonzero Q⇩p"
using assms
apply (metis eint.inject eint.simps(3) eint_ord_simps(4) val_nonzero val_ord)
using assms unfolding nonzero_def
using val_def by auto
lemma int_pow_ord:
assumes "a ∈ nonzero Q⇩p"
shows "ord (a[^](i::int)) = i* (ord a)"
proof(induction i)
show "⋀n. ord (a [^] int n) = int n * ord a"
using assms
by (metis int_pow_int mult_of_nat_commute nonzero_nat_pow_ord)
show "⋀n. ord (a [^] - int (Suc n)) = - int (Suc n) * ord a"
proof- fix n
have "(a [^] - int (Suc n)) ⊗ (a [^] int (Suc n)) = a [^] (- int (Suc n) + int (Suc n))"
using assms Qp_int_pow_add by blast
hence "(a [^] - int (Suc n)) ⊗ (a [^] int (Suc n)) = 𝟭"
using assms
by (metis ab_group_add_class.ab_left_minus int_pow_0)
hence "ord (a [^] - int (Suc n)) + ord (a [^] int (Suc n)) = 0"
by (metis Qp_int_pow_nonzero assms ord_mult ord_one)
thus "ord (a [^] - int (Suc n)) = - int (Suc n) * ord a"
using nonzero_nat_pow_ord assms
by (metis ‹⋀n. ord (a [^] int n) = int n * ord a› add.inverse_inverse add_left_cancel more_arith_simps(4) more_arith_simps(7))
qed
qed
lemma int_pow_val:
assumes "a ∈ nonzero Q⇩p"
shows "val (a[^](i::int)) = i* (val a)"
using int_pow_ord Qp_int_pow_nonzero assms times_eint_simps(1) val_ord by presburger
lemma neg_int_pow_val:
assumes "a ∈ nonzero Q⇩p"
shows "val (a[^]-(i::int)) = - (val (a[^]i))"
using int_pow_val[of a i]
by (metis Qp_int_pow_nonzero assms int_pow_ord mult_minus_left val_ord val_p_int_pow val_p_int_pow_neg)
lemma int_pow_sum_val:
assumes "a ∈ nonzero Q⇩p"
shows "val (a[^]((i::int) + j)) = (val (a[^]i)) + val (a[^]j)"
using assms Qp.int_pow_add Qp_int_pow_nonzero Units_eq_nonzero val_mult0 by presburger
lemma int_pow_diff_val:
assumes "a ∈ nonzero Q⇩p"
shows "val (a[^]((i::int) - j)) = (val (a[^]i)) - val (a[^]j)"
proof-
obtain k where k_def: "val a = eint k"
using assms val_ord by blast
have 0: "val (a[^]((i::int) - j)) = eint ((i-j)*k)"
using assms k_def int_pow_val times_eint_simps(1) by presburger
show ?thesis unfolding 0 using k_def
by (metis "0" Qp_int_pow_nonzero Rings.ring_distribs(3) assms eint.simps(1) idiff_eint_eint int_pow_ord val_ord)
qed
lemma nat_add_pow_mult_assoc:
assumes "a ∈ carrier Q⇩p"
shows "[(n::nat)]⋅a = [n]⋅𝟭 ⊗ a"
using assms Qp.add_pow_ldistr Qp.l_one Qp.one_closed by presburger
lemma(in padic_integers) equal_res_imp_equal_ord_Zp:
assumes "N > 0"
assumes "a ∈ carrier Zp"
assumes "b ∈ carrier Zp"
assumes "a N = b N"
assumes "a N ≠ 0"
shows "ord_Zp a = ord_Zp b"
proof-
have "(a ⊖ b) N = 0"
using assms(2) assms(3) assms(4) res_diff_zero_fact'' by blast
have "ord_Zp a < N"
using assms zero_below_ord by force
then show ?thesis
by (smt R.minus_closed Zp_def ‹(a ⊖ b) N = 0› above_ord_nonzero assms(2) assms(3) assms(4) assms(5) ord_Zp_ultrametric_eq' ord_Zp_ultrametric_eq'' padic_integers.ord_Zp_not_equal_imp_notequal(2) padic_integers.ord_of_nonzero(2) padic_integers.ord_pos padic_integers_axioms residue_of_zero(2))
qed
lemma(in padic_integers) equal_res_mod:
assumes "N > k"
assumes "a ∈ carrier Zp"
assumes "b ∈ carrier Zp"
assumes "a N = b N"
shows "a k = b k"
proof-
have 0: "a k = a N mod p^k"
using assms
by (metis Zp_int_inc_rep Zp_int_inc_res less_or_eq_imp_le p_residue_padic_int)
have 1: "b k = b N mod p^k"
using assms
by (metis Zp_int_inc_rep Zp_int_inc_res less_or_eq_imp_le p_residue_padic_int)
show ?thesis unfolding 0 1 assms using assms by blast
qed
lemma Qp_char_0:
assumes "(n::nat) ≠ 0"
shows "[n]⋅𝟭 ≠ 𝟬"
proof-
have "[n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ ≠ 𝟬⇘Z⇩p⇙"
using Zp_char_0' assms by blast
thus ?thesis using inc_of_nat
by (metis Qp.nat_inc_zero Zp.nat_inc_zero Zp_nat_inc_closed ι_def inc_inj2)
qed
lemma Qp_char_0_int:
assumes "(n::int) ≠ 0"
shows "[n]⋅𝟭 ≠ 𝟬"
proof-
have "[n]⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ ≠ 𝟬⇘Z⇩p⇙"
using Zp_char_0 assms
by (metis int_inc_mult linorder_neqE_linordered_idom mult_zero_l zero_less_mult_iff)
thus ?thesis using inc_of_int
by (metis Q⇩p_def Zp_int_inc_closed ι_def inc_inj1)
qed
lemma add_int_pow_inject:
assumes "[(k::int)]⋅𝟭 = [(j::int)]⋅𝟭"
shows "k = j"
proof(rule ccontr)
assume A: "k ≠ j"
then have 0: "k - j ≠0 "
by presburger
hence 1: "[(k-j)]⋅𝟭 ≠ 𝟬 "
using Qp_char_0_int by blast
hence 2: "[k]⋅𝟭 ⊕ [(-j)]⋅ 𝟭 ≠ 𝟬 "
by (metis (no_types, opaque_lifting) Qp.add.int_pow_mult Qp.one_closed diff_minus_eq_add diff_zero minus_diff_eq)
hence 2: "[k]⋅𝟭 ⊖ [j]⋅ 𝟭 ≠ 𝟬 "
by (metis Qp.add.int_pow_mult Qp.int_inc_zero Qp.one_closed assms more_arith_simps(4))
thus False using assms
using Qp.int_inc_closed Qp.r_right_minus_eq by blast
qed
lemma val_ord_nat_inc:
assumes "(n::nat) > 0"
shows "ord ([n]⋅𝟭) = val([n]⋅𝟭)"
using val_ord assms Qp_char_0
by (metis less_irrefl_nat val_def)
lemma val_ord_int_inc:
assumes "(n::int) ≠ 0"
shows "ord ([n]⋅𝟭) = val([n]⋅𝟭)"
using val_ord assms Qp_char_0_int val_def by presburger
subsubsection‹Reduced Angular Component Maps›
definition ac :: "nat ⇒ padic_number ⇒ int" where
"ac n x = (if x = 𝟬 then 0 else (angular_component x) n)"
lemma ac_in_res_ring:
assumes "x ∈ nonzero Q⇩p"
shows "ac n x ∈ carrier (Zp_res_ring n)"
unfolding ac_def
using assms angular_component_closed[of x]
by (simp add: Qp.nonzero_memE(2) residues_closed)
lemma ac_in_res_ring'[simp]:
assumes "x ∈ carrier Q⇩p"
shows "ac n x ∈ carrier (Zp_res_ring n)"
apply(cases "x ∈ nonzero Q⇩p")
using ac_in_res_ring apply blast
by (metis Qp.nonzero_memI ac_def assms mod_0 mod_in_carrier p_res_ring_car p_residue_alt_def)
lemma ac_mult':
assumes "x ∈ nonzero Q⇩p"
assumes "y ∈ nonzero Q⇩p"
shows "ac n (x ⊗ y) = (ac n x) ⊗⇘Zp_res_ring n⇙ (ac n y)"
unfolding ac_def
proof-
have 0: "angular_component (x ⊗ y) = angular_component x ⊗⇘Z⇩p⇙ angular_component y"
using assms angular_component_mult[of x y]
by auto
show "(if x ⊗ y = 𝟬 then 0 else angular_component (x ⊗ y) n) =
(if x = 𝟬 then 0 else angular_component x n) ⊗⇘Zp_res_ring n⇙ (if y = 𝟬 then 0 else angular_component y n)"
using assms angular_component_closed[of x] angular_component_closed[of y]
by (simp add: "0" Qp.integral_iff Qp.nonzero_closed Qp.nonzero_memE(2) residue_of_prod)
qed
lemma ac_mult:
assumes "x ∈ carrier Q⇩p"
assumes "y ∈ carrier Q⇩p"
shows "ac n (x ⊗ y) = (ac n x) ⊗⇘Zp_res_ring n⇙ (ac n y)"
apply(cases "x ∈ nonzero Q⇩p ∧ y ∈ nonzero Q⇩p")
apply (simp add: ac_mult')
using assms unfolding ac_def
by (smt Qp.integral_iff Qp.nonzero_memI residue_times_zero_l residue_times_zero_r)
lemma ac_one[simp]:
assumes "n ≥ 1"
shows "ac n 𝟭 = 1"
proof-
have "ac n 𝟭 = 𝟭⇘Z⇩p⇙ n"
unfolding ac_def
using angular_component_one
by simp
then show ?thesis
using assms residue_of_one(2) by auto
qed
lemma ac_one':
assumes "n > 0"
shows "ac n 𝟭 = 𝟭⇘Zp_res_ring n⇙"
using assms residue_ring_def
by auto
lemma ac_units:
assumes "x ∈ nonzero Q⇩p"
assumes "n > 0"
shows "ac n x ∈ Units (Zp_res_ring n)"
proof-
obtain y where y_def: "y = inv x"
by simp
have y_nz: "y ∈ nonzero Q⇩p"
using assms(1) nonzero_inverse_Qp y_def
by blast
have 0: "ac n (x ⊗ y) = (ac n x) ⊗⇘Zp_res_ring n⇙ (ac n y)"
using ac_mult' assms(1) y_nz by blast
have 1: "x ⊗ y = 𝟭"
by (metis Qp.field_axioms Qp.nonzero_memE Qp.nonzero_memE assms(1) field.field_inv(2) y_def)
have 2: "(ac n x) ⊗⇘Zp_res_ring n⇙ (ac n y) = 𝟭⇘Zp_res_ring n⇙"
using "0" "1" ac_one' assms(2)
by auto
show ?thesis
by (metis "2" R_comm_monoid ac_in_res_ring assms(1) assms(2) comm_monoid.UnitsI(1) nonzero_inverse_Qp y_def)
qed
lemma ac_inv:
assumes "x ∈ nonzero Q⇩p"
assumes "n > 0"
shows "ac n (inv x) = inv⇘Zp_res_ring n⇙ (ac n x)"
proof-
have "x ⊗ inv x = 𝟭"
by (simp add: Qp.monoid_axioms Units_eq_nonzero assms(1) monoid.Units_r_inv)
then have "ac n (x ⊗ inv x) = 𝟭⇘Zp_res_ring n⇙"
by (simp add: ‹(x ÷ x) = 𝟭› ac_one' assms(2))
then have "ac n x ⊗⇘Zp_res_ring n⇙ ac n (inv x) = 𝟭⇘Zp_res_ring n⇙"
using Units_eq_nonzero Units_inverse_Qp ac_mult' assms(1)
by metis
then show ?thesis
by (metis R_comm_monoid ac_in_res_ring assms(1) assms(2) comm_monoid.comm_inv_char nonzero_inverse_Qp)
qed
lemma ac_inv':
assumes "x ∈ nonzero Q⇩p"
assumes "n > 0"
shows "ac n (inv x) ⊗⇘Zp_res_ring n⇙ (ac n x) = 𝟭⇘Zp_res_ring n⇙"
using ac_inv[of x n] ac_units[of x n] assms
by (metis (no_types, opaque_lifting) Qp.field_axioms Qp.nonzero_memE
Qp.nonzero_memE Units_eq_nonzero Units_inverse_Qp ac_mult ac_one' field.field_inv(1))
lemma ac_inv'':
assumes "x ∈ nonzero Q⇩p"
assumes "n > 0"
shows " (ac n x) ⊗⇘Zp_res_ring n⇙ ac n (inv x)= 𝟭⇘Zp_res_ring n⇙"
using ac_inv' assms(1) assms(2) residue_mult_comm by auto
lemma ac_inv''':
assumes "x ∈ nonzero Q⇩p"
assumes "n > 0"
shows "(ac n x) ⊗⇘Zp_res_ring n⇙ ac n (inv x)= 1"
"ac n (inv x) ⊗⇘Zp_res_ring n⇙ (ac n x) = 1"
by (auto simp add: ac_inv'' ac_inv' assms(1) assms(2) p_res_ring_one)
lemma ac_val:
assumes "a ∈ nonzero Q⇩p"
assumes "b ∈ nonzero Q⇩p"
assumes "val a = val b"
assumes "val (a ⊖ b) ≥ val a + n"
shows "ac n a = ac n b"
proof-
obtain m where m_def: "m = ord a"
by simp
have 0: "a = (𝔭[^]m) ⊗ ι (angular_component a)"
by (simp add: angular_component_factors_x assms(1) m_def)
have 1: "b = (𝔭[^]m) ⊗ ι (angular_component b)"
proof-
have "ord b = ord a"
using assms(1) assms(2) assms(3) by auto
then show ?thesis
by (metis angular_component_factors_x assms(2) m_def)
qed
have 2: "(a ⊖b) = (𝔭[^]m) ⊗ ι (angular_component a)
⊖(𝔭[^]m) ⊗ ι (angular_component b)"
using "0" "1" by auto
have 3: "(a ⊖b) = (𝔭[^]m) ⊗( ι (angular_component a)
⊖ ι (angular_component b))"
using 2 assms angular_component_closed inc_closed Qp.cring_simprules Qp.r_minus_distr
by (metis (no_types, lifting) p_intpow_closed(1))
have 4: "(a ⊖b) = (𝔭[^]m) ⊗( ι ((angular_component a)
⊖⇘Z⇩p⇙(angular_component b)))"
by (simp add: "3" angular_component_closed assms(1) assms(2) inc_of_diff)
have 5: "val (a ⊖b) = m + val (( ι ((angular_component a)
⊖⇘Z⇩p⇙(angular_component b))))"
by (metis "4" Zp.nonzero_one_closed angular_component_closed assms(1) assms(2)
cring.cring_simprules(4) frac_closed local.inc_def ord_p_pow_int p_intpow_closed(1)
p_intpow_closed(2) Zp.domain_axioms domain_def val_mult val_ord)
have 6: "m = val a"
using Q⇩p_def assms(1) m_def by auto
have 7: "m + val (ι (angular_component a ⊖⇘Z⇩p⇙ angular_component b)) ≥ val a + n"
using "5" assms(4) by presburger
have 8: "m + val (ι (angular_component a ⊖⇘Z⇩p⇙ angular_component b)) ≥ m + n"
using "6" "7"
by (metis plus_eint_simps(1))
have 9: "val (ι (angular_component a ⊖⇘Z⇩p⇙ angular_component b)) ≥ n"
using 8 add_le_cancel_left eint_ile eint_ord_simps(1) linear plus_eint_simps(1)
by metis
have 10: "val_Zp (angular_component a ⊖⇘Z⇩p⇙ angular_component b) ≥ n"
using 9
by (metis angular_component_closed assms(1) assms(2) cring.cring_simprules(4)
Zp.domain_axioms domain_def val_of_inc)
have 11: "(angular_component a ⊖⇘Z⇩p⇙ angular_component b) n = 𝟬⇘Zp_res_ring n⇙"
using 9
by (simp add: "10" angular_component_closed assms(1) assms(2) p_res_ring_zero zero_below_val_Zp)
have 12: "(angular_component a n) ⊖⇘Zp_res_ring n⇙ (angular_component b n) = 𝟬⇘Zp_res_ring n⇙"
using "11" angular_component_closed assms(2) residue_of_diff by auto
have 13: "(angular_component a n) = (angular_component b n)"
apply(cases "n = 0")
apply (metis angular_component_closed assms(1) assms(2) p_res_ring_0' residues_closed)
using 12 angular_component_closed residue_closed ring.ring_simprules[of "Zp_res_ring n"]
by (meson assms(1) assms(2) cring_def prime residues.cring residues_n ring.r_right_minus_eq)
then show ?thesis
by (simp add: Qp.nonzero_memE ac_def assms(1) assms(2))
qed
lemma angular_component_nat_pow:
assumes "a ∈ nonzero Q⇩p"
shows "angular_component (a [^] (k::nat)) = (angular_component a) [^]⇘Z⇩p⇙ k"
apply(induction k)
apply (simp add: angular_component_one)
by (simp add: Qp_nat_pow_nonzero angular_component_mult assms)
lemma angular_component_int_pow:
assumes "a ∈ nonzero Q⇩p"
shows "angular_component (a [^] (k::int)) = (angular_component a) [^]⇘Z⇩p⇙ k"
apply(cases "k ≥ 0")
using angular_component_nat_pow assms
apply (metis int_pow_int nonneg_int_cases)
proof-
assume "¬ 0 ≤k"
show "angular_component (a [^] k) = angular_component a [^] ⇘Z⇩p⇙ k"
using angular_component_nat_pow[of a "nat (-k)"] assms
Qp_nat_pow_nonzero[of a] ‹¬ 0 ≤ k› angular_component_inv[of "(a [^] k)"] int_pow_def2
by (metis angular_component_nat_pow angular_component_inv)
qed
lemma ac_nat_pow:
assumes "a ∈ nonzero Q⇩p"
shows "ac n (a [^] (k::nat)) = (ac n a)^ k mod (p^n)"
proof(cases "k = 0")
case True
show ?thesis apply(cases "n = 0")
apply (metis Group.nat_pow_0 Qp.one_closed True ac_in_res_ring' mod_self p_res_ring_0' power_0)
using True prime residues.one_cong residues.res_one_eq residues_n by auto
next
case False
show ?thesis
apply(cases "n = 0")
apply (metis Qp_nat_pow_nonzero ac_in_res_ring assms mod_by_1 p_res_ring_0' power_0)
using assms angular_component_nat_pow
by (metis Qp.nonzero_closed Qp.nonzero_pow_nonzero Qp.not_nonzero_memI ac_def angular_component_closed neq0_conv power_residue)
qed
lemma ac_nat_pow':
assumes "a ∈ nonzero Q⇩p"
assumes "n ≠0"
shows "ac n (a [^] (k::nat)) = (ac n a)[^]⇘Zp_res_ring n⇙ k"
proof-
have "(ac n a)^ k mod (p^n) = (ac n a)[^]⇘Zp_res_ring n⇙ k"
apply(induction k)
apply (metis Group.nat_pow_0 assms(2) prime residues.pow_cong residues_n)
by (metis Group.nat_pow_Suc Qp_nat_pow_nonzero ac_mult' ac_nat_pow assms(1))
then show ?thesis
by (simp add: ac_nat_pow assms(1))
qed
lemma ac_int_pow:
assumes "a ∈ nonzero Q⇩p"
assumes "n > 0"
shows "ac n (a [^] (k::int)) = (ac n a)[^]⇘Zp_res_ring n⇙ k"
apply(cases "k ≥0")
using assms ac_nat_pow'
apply (metis int.lless_eq int.nat_pow_0 p_residues pow_nat residues_def)
using assms ac_nat_pow' ac_inv[of "a [^] k"] ac_units[of "a [^] k"]
by (metis Qp_nat_pow_nonzero ac_inv int_pow_def2 neq0_conv)
lemma angular_component_p:
"angular_component 𝔭 = 𝟭⇘Z⇩p⇙"
proof-
have "𝔭 = frac 𝗉 𝟭⇘Z⇩p⇙"
by (simp add: Zp_nat_inc_closed local.inc_def p_inc)
then have 0: "angular_component 𝔭 = (ac_Zp 𝗉) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ (ac_Zp 𝟭⇘Z⇩p⇙)"
using ac_Zp_one unfolding angular_component_def
by (metis Q⇩p_def Qp.int_inc_closed Zp.one_nonzero Zp_int_inc_closed ac_fract
local.numer_denom_facts(2) local.numer_denom_facts(5) nonzero_fraction_imp_nonzero_numer
nonzero_numer_imp_nonzero_fraction numer_nonzero p_nonzero)
then have "angular_component 𝔭 = (ac_Zp 𝗉) ⊗⇘Z⇩p⇙ inv⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
by (simp add: ac_Zp_one)
then have "angular_component 𝔭 = (ac_Zp 𝗉)"
by (simp add: ac_Zp_p)
then show ?thesis
using ac_Zp_p
by simp
qed
lemma angular_component_p_nat_pow:
"angular_component (𝔭 [^] (n::nat)) = 𝟭⇘Z⇩p⇙"
apply(induction n)
apply (simp add: angular_component_one)
using angular_component_nat_pow angular_component_p nat_pow_one p_nonzero Zp.nat_pow_one
by presburger
lemma angular_component_p_int_pow:
"angular_component (𝔭 [^] (n::int)) = 𝟭⇘Z⇩p⇙"
apply(cases "n ≥ 0")
apply (metis angular_component_p_nat_pow int_pow_int nonneg_int_cases)
using angular_component_p_nat_pow[of "nat (-n)"] angular_component_inv[of "(𝔭 [^] n)"] angular_component_inv[of "𝔭 [^] (nat (-n))"]
by (metis (mono_tags, opaque_lifting) Group.nat_pow_0 Zp.inv_one add.inverse_neutral angular_component_one int_nat_eq
int_pow_def2 nat_0_iff nat_int nat_zminus_int p_natpow_closed(2) )
lemma ac_p_nat_pow:
assumes "k > 0"
shows "ac k (𝔭 [^] (n::nat)) = 1"
proof-
have "¬ (𝔭 [^] n) = 𝟬"
by (simp add: Qp.nonzero_memE)
have " angular_component (𝔭 [^] n) k = 1"
using assms angular_component_p_nat_pow[of n] ac_def ac_one angular_component_one
by auto
then show ?thesis
unfolding ac_def using angular_component_p_nat_pow[of n]
by (simp add: ‹(𝔭 [^] n) ≠ 𝟬›)
qed
lemma ac_p:
assumes "k > 0"
shows "ac k 𝔭 = 1"
by (metis Qp.int_inc_closed Qp.nat_pow_eone ac_p_nat_pow assms)
lemma ac_p_int_pow:
assumes "k > 0"
shows "ac k (𝔭 [^] (n::int)) = 1"
using Qp.nonzero_memE(2) ac_def ac_one' angular_component_one angular_component_p_int_pow
assms p_intpow_closed(2) p_res_ring_one by auto
lemma angular_component_p_nat_pow_factor:
assumes "a ∈ nonzero Q⇩p"
shows "angular_component ((𝔭 [^] (n::nat)) ⊗ a) = angular_component a"
proof-
have 0: "angular_component ((𝔭 [^] n) ⊗ a) = angular_component (𝔭 [^] n) ⊗⇘Z⇩p⇙ angular_component a"
using assms angular_component_mult[of "(𝔭 [^] (n::nat))" a] p_natpow_closed(2)
by blast
have 1: "angular_component (𝔭 [^] n) = 𝟭⇘Z⇩p⇙"
by (simp add: angular_component_p_nat_pow)
have 2: "angular_component ((𝔭 [^] n) ⊗ a) = 𝟭⇘Z⇩p⇙ ⊗⇘Z⇩p⇙ angular_component a"
by (simp add: "0" "1")
then show ?thesis using angular_component_closed[of a] assms Zp.domain_axioms
by (simp add: assms cring.cring_simprules(12) domain.axioms(1))
qed
lemma ac_p_nat_pow_factor:
assumes "m > 0"
assumes "a ∈ nonzero Q⇩p"
shows "ac m ((𝔭 [^] (n::nat)) ⊗ a) = ac m a"
using angular_component_p_nat_pow_factor assms ac_def
by (metis (no_types, lifting) Qp.field_axioms Qp_nat_pow_nonzero Qp.nonzero_memE
Qp.nonzero_memE Ring.integral p_nonzero)
lemma angular_component_p_nat_pow_factor_right:
assumes "a ∈ nonzero Q⇩p"
shows "angular_component (a ⊗ (𝔭 [^] (n::nat))) = angular_component a"
proof-
have "((𝔭 [^] (n::nat)) ⊗ a) = (a ⊗ (𝔭 [^] (n::nat)))"
using assms Qp.domain_axioms domain_def
by (simp add: assms domain_def Qp.nonzero_memE cring.cring_simprules(14))
then show ?thesis
using angular_component_p_nat_pow_factor[of a n]
by (simp add: assms)
qed
lemma ac_p_nat_pow_factor_right:
assumes "m > 0"
assumes "a ∈ carrier Q⇩p"
shows "ac m (a ⊗ (𝔭 [^] (n::nat))) = ac m a"
using assms angular_component_p_nat_pow_factor_right[of a n]
unfolding ac_def
by (metis Qp.integral Qp.l_null Qp.not_nonzero_memE Qp.not_nonzero_memI
angular_component_p_nat_pow_factor_right p_natpow_closed(1) p_natpow_closed(2))
lemma angular_component_p_int_pow_factor:
assumes "a ∈ carrier Q⇩p"
shows "angular_component ((𝔭 [^] (n::int)) ⊗ a) = angular_component a"
by (metis Qp.integral_iff Qp.l_one Qp.nonzero_memI Qp.one_nonzero angular_component_mult
angular_component_one angular_component_p_int_pow assms p_intpow_closed(1) p_intpow_closed(2))
lemma ac_p_int_pow_factor:
assumes "a ∈ nonzero Q⇩p"
shows "ac m ((𝔭 [^] (n::int)) ⊗ a) = ac m a"
apply(cases "m = 0")
apply (metis (no_types, lifting) Qp.integral Qp.nonzero_closed Qp.nonzero_memE(2)
ac_def angular_component_p_int_pow_factor assms p_intpow_closed(2))
using assms angular_component_p_int_pow_factor[of a n]
by (metis (no_types, lifting) Qp.integral Qp.nonzero_closed Qp.not_nonzero_memI ac_def
p_intpow_closed(2))
lemma angular_component_p_int_pow_factor_right:
assumes "a ∈ carrier Q⇩p"
shows "angular_component (a ⊗ (𝔭 [^] (n::int))) = angular_component a"
using Qp.m_comm angular_component_p_int_pow_factor assms p_intpow_closed(1) by auto
lemma ac_p_int_pow_factor_right:
assumes "a ∈ carrier Q⇩p"
shows "ac m (a ⊗ (𝔭 [^] (n::int))) = ac m a"
using assms angular_component_p_int_pow_factor_right unfolding ac_def
using Qp.integral_iff Qp.nonzero_memE(2) p_intpow_closed(1) p_intpow_closed(2) by presburger
subsection‹An Inverse for the inclusion map $\iota$›
definition to_Zp where
"to_Zp a = (if (a ∈ 𝒪⇩p) then (SOME x. x ∈ carrier Z⇩p ∧ ι x = a) else 𝟬⇘Z⇩p⇙)"
lemma to_Zp_closed:
assumes "a ∈ carrier Q⇩p"
shows "to_Zp a ∈ carrier Z⇩p"
apply(cases "a ∈ 𝒪⇩p")
using assms unfolding to_Zp_def ι_def
apply (smt image_iff tfl_some)
by simp
lemma to_Zp_inc:
assumes "a ∈ 𝒪⇩p"
shows "ι (to_Zp a) = a"
proof-
obtain c where c_def: "c = (SOME x. x ∈ carrier Z⇩p ∧ ι x = a)"
by simp
have "(∃ x. x ∈ carrier Z⇩p ∧ ι x = a)"
using assms(1)
by blast
then have "c ∈ carrier Z⇩p ∧ ι c = a"
using c_def
by (metis (mono_tags, lifting) tfl_some)
then show "ι (to_Zp a) = a"
using to_Zp_def c_def assms(1)
by auto
qed
lemma inc_to_Zp:
assumes "b ∈ carrier Z⇩p"
shows "to_Zp (ι b) = b"
proof-
have "ι (to_Zp (ι b)) = (ι b)"
using assms to_Zp_inc[of "ι b"]
by blast
then show ?thesis
using inc_inj2[of b "to_Zp (ι b)"] assms to_Zp_closed inc_closed
unfolding ι_def Q⇩p_def
by auto
qed
lemma to_Zp_add:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
shows "to_Zp (a ⊕ b) = to_Zp a ⊕⇘Z⇩p⇙ (to_Zp b)"
by (metis (no_types, lifting) Zp.domain_axioms assms(1) assms(2)
cring.cring_simprules(1) domain.axioms(1) imageE inc_of_sum inc_to_Zp)
lemma to_Zp_mult:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
shows "to_Zp (a ⊗ b) = to_Zp a ⊗⇘Z⇩p⇙ (to_Zp b)"
proof-
have "(a ⊗ b) ∈ 𝒪⇩p"
by (simp add: val_ring_subring assms(1) assms(2) subringE(6))
then have
"ι ((to_Zp a) ⊗⇘Z⇩p⇙ (to_Zp) b) = ((ι (to_Zp a)) ⊗ (ι (to_Zp b)))"
using assms(1) assms(2) inc_of_prod inc_to_Zp
by auto
then have "ι ((to_Zp a) ⊗⇘Z⇩p⇙ (to_Zp) b) = a ⊗b"
by (simp add: assms(1) assms(2) to_Zp_inc)
then have "to_Zp ( ι ((to_Zp a) ⊗⇘Z⇩p⇙ (to_Zp) b)) = to_Zp (a ⊗b)"
by simp
then show ?thesis
by (metis (no_types, opaque_lifting) Zp.domain_axioms val_ring_subring assms(1) assms(2)
cring.cring_simprules(5) domain.axioms(1) inc_to_Zp subringE(1) subset_iff to_Zp_closed)
qed
lemma to_Zp_minus:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
shows "to_Zp (a ⊖ b) = to_Zp a ⊖⇘Z⇩p⇙ (to_Zp b)"
by (metis (no_types, lifting) Zp.domain_axioms assms(1) assms(2) cring_def domain.axioms(1)
image_iff inc_of_diff inc_to_Zp ring.ring_simprules(4))
lemma to_Zp_one:
shows "to_Zp 𝟭 = 𝟭⇘Z⇩p⇙"
using Zp_def Zp.one_closed ι_def inc_of_one inc_to_Zp padic_integers_axioms
by fastforce
lemma to_Zp_zero:
shows "to_Zp 𝟬 = 𝟬⇘Z⇩p⇙"
using Q⇩p_def Zp_def Zp.domain_axioms ι_def domain_frac.inc_inj1 inc_to_Zp
padic_integers_axioms to_Zp_def domain_frac_axioms by fastforce
lemma to_Zp_ominus:
assumes "a ∈ 𝒪⇩p"
shows "to_Zp (⊖ a) = ⊖⇘Z⇩p⇙ (to_Zp a)"
proof-
have "⊖a ∈ 𝒪⇩p"
by (simp add: val_ring_subring assms subringE(5))
then show ?thesis
by (metis (no_types, lifting) Zp.domain_axioms Zp.nonzero_one_closed assms
cring.cring_simprules(3) domain.axioms(1) frac_uminus image_iff inc_to_Zp local.inc_def)
qed
lemma to_Zp_val:
assumes "a ∈ 𝒪⇩p"
shows "val_Zp (to_Zp a) = val a"
by (metis assms imageE inc_to_Zp val_of_inc)
lemma val_of_nat_inc:
"val ([(k::nat)]⋅𝟭) ≥ 0"
proof-
have "[(k::nat)]⋅𝟭 ∈ 𝒪⇩p"
by (metis Zp.one_closed Zp_nat_mult_closed image_eqI inc_of_nat)
thus ?thesis
using val_ring_memE(1) by blast
qed
lemma val_of_int_inc:
"val ([(k::int)]⋅𝟭) ≥ 0"
proof-
have "ι ([k] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙) = [k]⋅𝟭"
using inc_of_int by blast
hence "[k]⋅𝟭 ∈ 𝒪⇩p"
using Zp.one_closed Zp_nat_mult_closed image_eqI inc_of_int
by blast
thus ?thesis
using val_ring_memE(1) by blast
qed
lemma to_Zp_nat_inc:
"to_Zp ([(a::nat)]⋅𝟭) = [a]⋅⇘Z⇩p⇙𝟭 ⇘Z⇩p⇙"
apply(induction a)
using Qp.nat_inc_zero Zp.nat_inc_zero to_Zp_zero apply presburger
proof-
fix a::nat assume A: "to_Zp ([a] ⋅ 𝟭) = [a] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
have 0: "[(Suc a)]⋅𝟭 = [a]⋅𝟭 ⊕ 𝟭"
using Qp.add.nat_pow_Suc by blast
have 1: "[a]⋅𝟭 ∈ 𝒪⇩p"
using Qp.nat_inc_closed val_of_nat_inc val_ring_memI by blast
have 2: "to_Zp ([Suc a] ⋅ 𝟭) = (to_Zp ([a]⋅𝟭)) ⊕⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
using A 1 unfolding 0
by (metis Zp.cring_simprules(6) Zp.nat_inc_closed inc_of_nat inc_of_one inc_of_sum inc_to_Zp sum_closed)
show "to_Zp ([Suc a] ⋅ 𝟭) = [Suc a] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙"
unfolding 2 A
using add_comm nat_suc by presburger
qed
lemma to_Zp_int_neg:
"to_Zp ([(-int (a::nat))]⋅𝟭) = ⊖⇘Z⇩p⇙([int a]⋅⇘Z⇩p⇙𝟭 ⇘Z⇩p⇙)"
proof-
have 0: "[(-int (a::nat))]⋅𝟭 = ⊖ ([int a]⋅𝟭)"
using Qp.add.int_pow_neg by blast
have 1: "[int a]⋅𝟭 ∈ 𝒪⇩p"
using Qp.int_inc_closed val_of_int_inc val_ring_memI by blast
show ?thesis using 1 unfolding 0
by (metis Zp.int_inc_closed inc_of_int inc_to_Zp to_Zp_ominus)
qed
lemma(in ring) int_add_pow:
"[int n] ⋅ 𝟭 = [n]⋅𝟭"
unfolding add_pow_def
by (simp add: int_pow_int)
lemma int_add_pow:
"[int n] ⋅ 𝟭 = [n]⋅𝟭"
unfolding add_pow_def
by (simp add: int_pow_int)
lemma Zp_int_add_pow:
"[int n] ⋅⇘Z⇩p⇙ 𝟭⇘Z⇩p⇙ = [n]⋅⇘Z⇩p⇙𝟭⇘Z⇩p⇙"
unfolding add_pow_def
by (simp add: int_pow_int)
lemma to_Zp_int_inc:
"to_Zp ([(a::int)]⋅𝟭) = ([a]⋅⇘Z⇩p⇙𝟭 ⇘Z⇩p⇙)"
apply(induction a)
unfolding int_add_pow Zp_int_add_pow
using to_Zp_nat_inc apply blast
unfolding to_Zp_int_neg using Zp.add.int_pow_neg Zp.one_closed
by presburger
lemma to_Zp_nat_add_pow:
assumes "a ∈ 𝒪⇩p"
shows "to_Zp ([(n::nat)]⋅a) = [n]⋅⇘Z⇩p⇙ to_Zp a"
apply( induction n)
using Qp.nat_mult_zero Zp_nat_inc_zero to_Zp_zero apply presburger
proof- fix n::nat assume A: "to_Zp ([n] ⋅ a) = [n] ⋅⇘Z⇩p⇙ to_Zp a"
have 0: "[Suc n] ⋅ a = [n]⋅a ⊕ a"
using Qp.add.nat_pow_Suc by blast
have 1: "to_Zp ([n] ⋅ a ⊕ a) = to_Zp ([n] ⋅ a) ⊕⇘Z⇩p⇙ to_Zp a"
apply(rule to_Zp_add[of "[n]⋅a" a] )
apply( induction n)
using Qp.nat_mult_zero zero_in_val_ring apply blast
unfolding Qp.add.nat_pow_Suc by(rule val_ring_add_closed, blast, rule assms, rule assms)
show "to_Zp ([Suc n] ⋅ a) = [Suc n] ⋅⇘Z⇩p⇙ to_Zp a "
unfolding Qp.add.nat_pow_Suc Zp.add.nat_pow_Suc 1 A by blast
qed
lemma val_ring_res:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
shows "to_Zp (a ⊖ b) N = to_Zp a N ⊖⇘Zp_res_ring N⇙ to_Zp b N"
proof-
have "to_Zp (a ⊖ b) N = (to_Zp a ⊖⇘Z⇩p⇙ to_Zp b) N"
using assms to_Zp_minus by presburger
then show ?thesis using assms residue_of_diff to_Zp_closed val_ring_memE(2)
by (simp add: val_ring_memE(1))
qed
lemma res_diff_in_val_ring_imp_in_val_ring:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ carrier Q⇩p"
assumes "a ⊖ b ∈ 𝒪⇩p"
shows "b ∈ 𝒪⇩p"
proof-
have "b = a ⊖ (a ⊖ b)"
unfolding a_minus_def
using assms val_ring_memE(2)[of a] Qp.r_neg2 Q⇩p_def Qp.minus_sum by auto
thus ?thesis using assms val_ring_minus_closed[of a "a ⊖ b"]
by presburger
qed
lemma(in padic_fields) equal_res_imp_res_diff_zero:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "to_Zp a N = to_Zp b N"
shows "to_Zp (a ⊖ b) N = 0"
using val_ring_res[of a b] assms
by (metis res_diff_zero_fact' to_Zp_closed val_ring_memE(2))
lemma(in padic_fields) equal_res_imp_val_diff_bound:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "to_Zp a N = to_Zp b N"
shows "val (a ⊖ b) ≥ N"
using assms equal_res_imp_res_diff_zero[of a b N]
by (metis to_Zp_closed to_Zp_minus to_Zp_val val_Zp_dist_def val_Zp_dist_res_eq2 val_ring_memE(2) val_ring_minus_closed)
lemma(in padic_fields) equal_res_equal_val:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "val a < N"
assumes "to_Zp a N = to_Zp b N"
shows "val a = val b"
proof-
have "val (a ⊖ b) ≥ N"
using assms equal_res_imp_val_diff_bound by blast
then have "val (a ⊖ b) > val a"
using assms less_le_trans by blast
then show "val a = val b"
using assms by (meson ultrametric_equal_eq' val_ring_memE)
qed
lemma(in padic_fields) val_ring_equal_res_imp_equal_val:
assumes "a ∈ 𝒪⇩p"
assumes "b ∈ 𝒪⇩p"
assumes "val a < eint N"
assumes "val b < eint N"
assumes "to_Zp a N = to_Zp b N"
shows "val a = val b"
proof-
have "val_Zp (to_Zp (a ⊖ b)) ≥ N"
using assms val_ring_memE to_Zp_closed to_Zp_minus val_Zp_dist_def val_Zp_dist_res_eq2 by presburger
thus ?thesis
by (meson assms(1) assms(2) assms(3) assms(5) equal_res_equal_val)
qed
end
end