Theory Semantics

(* Author: Matthias Brun,   ETH Zürich, 2019 *)
(* Author: Dmitriy Traytel, ETH Zürich, 2019 *)

section ‹Semantics of $\lambda\bullet$›

(*<*)
theory Semantics
  imports FMap_Lemmas Syntax
begin
(*>*)

text ‹Avoid clash with substitution notation.›
no_notation inverse_divide (infixl '/ 70)

text ‹Help automated provers with smallsteps.›
declare One_nat_def[simp del]

subsection ‹Equivariant Hash Function›

consts hash_real :: "term  hash"

nominal_function map_fixed :: "var  var list  term  term" where
  "map_fixed fp l Unit = Unit" |
  "map_fixed fp l (Var y) = (if y  set l then (Var y) else (Var fp))" |
  "atom y  (fp, l)  map_fixed fp l (Lam y t) = (Lam y ((map_fixed fp (y # l) t)))" |
  "atom y  (fp, l)  map_fixed fp l (Rec y t) = (Rec y ((map_fixed fp (y # l) t)))" |
  "map_fixed fp l (Inj1 t) = (Inj1 ((map_fixed fp l t)))" |
  "map_fixed fp l (Inj2 t) = (Inj2 ((map_fixed fp l t)))" |
  "map_fixed fp l (Pair t1 t2) = (Pair ((map_fixed fp l t1)) ((map_fixed fp l t2)))" |
  "map_fixed fp l (Roll t) = (Roll ((map_fixed fp l t)))" |
  "atom y  (fp, l)  map_fixed fp l (Let t1 y t2) = (Let ((map_fixed fp l t1)) y ((map_fixed fp (y # l) t2)))" |
  "map_fixed fp l (App t1 t2) = (App ((map_fixed fp l t1)) ((map_fixed fp l t2)))" |
  "map_fixed fp l (Case t1 t2 t3) = (Case ((map_fixed fp l t1)) ((map_fixed fp l t2)) ((map_fixed fp l t3)))" |
  "map_fixed fp l (Prj1 t) = (Prj1 ((map_fixed fp l t)))" |
  "map_fixed fp l (Prj2 t) = (Prj2 ((map_fixed fp l t)))" |
  "map_fixed fp l (Unroll t) = (Unroll ((map_fixed fp l t)))" |
  "map_fixed fp l (Auth t) = (Auth ((map_fixed fp l t)))" |
  "map_fixed fp l (Unauth t) = (Unauth ((map_fixed fp l t)))" |
  "map_fixed fp l (Hash h) = (Hash h)" |
  "map_fixed fp l (Hashed h t) = (Hashed h ((map_fixed fp l t)))"
  using [[simproc del: alpha_lst defined_all]]
  subgoal by (simp add: eqvt_def map_fixed_graph_aux_def)
  subgoal by (erule map_fixed_graph.induct) (auto simp: fresh_star_def fresh_at_base)
                      apply clarify
  subgoal for P fp l t
    by (rule term.strong_exhaust[of t P "(fp, l)"]) (auto simp: fresh_star_def fresh_Pair)
                      apply (simp_all add: fresh_star_def fresh_at_base)
  subgoal for y fp l t ya fpa la ta
    apply (erule conjE)+
    apply (erule Abs_lst1_fcb2'[where c = "(fp, l)"])
       apply (simp_all add: eqvt_at_def)
       apply (simp_all add: perm_supp_eq Abs_fresh_iff fresh_Pair)
    done
  subgoal for y fp l t ya fpa la ta
    apply (erule conjE)+
    apply (erule Abs_lst1_fcb2'[where c = "(fp, l)"])
       apply (simp_all add: eqvt_at_def)
       apply (simp_all add: perm_supp_eq Abs_fresh_iff fresh_Pair)
    done
  subgoal for y fp l t ya fpa la ta
    apply (erule conjE)+
    apply (erule Abs_lst1_fcb2'[where c = "(fp, l)"])
       apply (simp_all add: eqvt_at_def)
       apply (simp_all add: perm_supp_eq Abs_fresh_iff fresh_Pair)
    done
  done
nominal_termination (eqvt)
  by lexicographic_order

definition hash where
  "hash t = hash_real (map_fixed undefined [] t)"

lemma permute_map_list: "p  l = map (λx. p  x) l"
  by (induct l) auto

lemma map_fixed_eqvt: "p  l = l  map_fixed v l (p  t) = map_fixed v l t"
proof (nominal_induct t avoiding: v l p rule: term.strong_induct)
  case (Var x)
  then show ?case
    by (auto simp: term.supp supp_at_base permute_map_list list_eq_iff_nth_eq in_set_conv_nth)
next
  case (Lam y e)
  from Lam(1,2,3,5) Lam(4)[of p "y # l" v] show ?case
    by (auto simp: fresh_perm)
next
  case (Rec y e)
  from Rec(1,2,3,5) Rec(4)[of p "y # l" v] show ?case
    by (auto simp: fresh_perm)
next
  case (Let e' y e)
  from Let(1,2,3,6) Let(4)[of p l v] Let(5)[of p "y # l" v] show ?case
    by (auto simp: fresh_perm)
qed (auto simp: permute_pure)

lemma hash_eqvt[eqvt]: "p  hash t = hash (p  t)"
  unfolding permute_pure hash_def by (auto simp: map_fixed_eqvt)

lemma map_fixed_idle: "{x. ¬ atom x  t}  set l  map_fixed v l t = t"
proof (nominal_induct t avoiding: v l rule: term.strong_induct)
  case (Var x)
  then show ?case
    by (auto simp: subset_iff fresh_at_base)
next
  case (Lam y e)
  from Lam(1,2,4) Lam(3)[of "y # l" v] show ?case
    by (auto simp: fresh_Pair Abs1_eq)
next
  case (Rec y e)
  from Rec(1,2,4) Rec(3)[of "y # l" v] show ?case
    by (auto simp: fresh_Pair Abs1_eq)
next
  case (Let e' y e)
  from Let(1,2,5) Let(3)[of l v] Let(4)[of "y # l" v] show ?case
    by (auto simp: fresh_Pair Abs1_eq)
qed (auto simp: subset_iff)

lemma map_fixed_idle_closed:
  "closed t  map_fixed undefined [] t = t"
  by (rule map_fixed_idle) auto

lemma map_fixed_inj_closed:
  "closed t  closed u  map_fixed undefined [] t = map_fixed undefined [] u  t = u"
  by (rule box_equals[OF _ map_fixed_idle_closed map_fixed_idle_closed])

lemma hash_eq_hash_real_closed:
  assumes "closed t"
  shows "hash t = hash_real t"
  unfolding hash_def map_fixed_idle_closed[OF assms] ..

subsection ‹Substitution›

nominal_function subst_term :: "term  term  var  term" (‹_[_ '/ _] [250, 200, 200] 250) where
  "Unit[t' / x] = Unit" |
  "(Var y)[t' / x] = (if x = y then t' else Var y)" |
  "atom y  (x, t')  (Lam y t)[t' / x] = Lam y (t[t' / x])" |
  "atom y  (x, t')  (Rec y t)[t' / x] = Rec y (t[t' / x])" |
  "(Inj1 t)[t' / x] = Inj1 (t[t' / x])" |
  "(Inj2 t)[t' / x] = Inj2 (t[t' / x])" |
  "(Pair t1 t2)[t' / x] = Pair (t1[t' / x]) (t2[t' / x]) " |
  "(Roll t)[t' / x] = Roll (t[t' / x])" |
  "atom y  (x, t')  (Let t1 y t2)[t' / x] = Let (t1[t' / x]) y (t2[t' / x])" |
  "(App t1 t2)[t' / x] = App (t1[t' / x]) (t2[t' / x])" |
  "(Case t1 t2 t3)[t' / x] = Case (t1[t' / x]) (t2[t' / x]) (t3[t' / x])" |
  "(Prj1 t)[t' / x] = Prj1 (t[t' / x])" |
  "(Prj2 t)[t' / x] = Prj2 (t[t' / x])" |
  "(Unroll t)[t' / x] = Unroll (t[t' / x])" |
  "(Auth t)[t' / x] = Auth (t[t' / x])" |
  "(Unauth t)[t' / x] = Unauth (t[t' / x])" |
  "(Hash h)[t' / x] = Hash h" |
  "(Hashed h t)[t' / x] = Hashed h (t[t' / x])"
  using [[simproc del: alpha_lst defined_all]]
  subgoal by (simp add: eqvt_def subst_term_graph_aux_def)
  subgoal by (erule subst_term_graph.induct) (auto simp: fresh_star_def fresh_at_base)
                      apply clarify
  subgoal for P a b t
    by (rule term.strong_exhaust[of a P "(b, t)"]) (auto simp: fresh_star_def fresh_Pair)
                      apply (simp_all add: fresh_star_def fresh_at_base)
  subgoal
    apply (erule conjE)
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
       apply (simp_all add: perm_supp_eq Abs_fresh_iff fresh_Pair)
    done
  subgoal
    apply (erule conjE)
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
       apply (simp_all add: perm_supp_eq Abs_fresh_iff fresh_Pair)
    done
  subgoal
    apply (erule conjE)
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
       apply (simp_all add: perm_supp_eq Abs_fresh_iff fresh_Pair)
    done
  done
nominal_termination (eqvt)
  by lexicographic_order

type_synonym tenv = "(var, term) fmap"

nominal_function psubst_term :: "term  tenv  term" where
  "psubst_term Unit f = Unit" |
  "psubst_term (Var y) f = (case f $$ y of Some t  t | None  Var y)" |
  "atom y  f  psubst_term (Lam y t) f = Lam y (psubst_term t f)" |
  "atom y  f  psubst_term (Rec y t) f = Rec y (psubst_term t f)" |
  "psubst_term (Inj1 t) f = Inj1 (psubst_term t f)" |
  "psubst_term (Inj2 t) f = Inj2 (psubst_term t f)" |
  "psubst_term (Pair t1 t2) f = Pair (psubst_term t1 f) (psubst_term t2 f) " |
  "psubst_term (Roll t) f = Roll (psubst_term t f)" |
  "atom y  f  psubst_term (Let t1 y t2) f = Let (psubst_term t1 f) y (psubst_term t2 f)" |
  "psubst_term (App t1 t2) f = App (psubst_term t1 f) (psubst_term t2 f)" |
  "psubst_term (Case t1 t2 t3) f = Case (psubst_term t1 f) (psubst_term t2 f) (psubst_term t3 f)" |
  "psubst_term (Prj1 t) f = Prj1 (psubst_term t f)" |
  "psubst_term (Prj2 t) f = Prj2 (psubst_term t f)" |
  "psubst_term (Unroll t) f = Unroll (psubst_term t f)" |
  "psubst_term (Auth t) f = Auth (psubst_term t f)" |
  "psubst_term (Unauth t) f = Unauth (psubst_term t f)" |
  "psubst_term (Hash h) f = Hash h" |
  "psubst_term (Hashed h t) f = Hashed h (psubst_term t f)"
  using [[simproc del: alpha_lst defined_all]]
  subgoal by (simp add: eqvt_def psubst_term_graph_aux_def)
  subgoal by (erule psubst_term_graph.induct) (auto simp: fresh_star_def fresh_at_base)
  apply clarify
  subgoal for P a b
    by (rule term.strong_exhaust[of a P b]) (auto simp: fresh_star_def fresh_Pair)
                      apply (simp_all add: fresh_star_def fresh_at_base)
  subgoal by clarify
  subgoal
    apply (erule conjE)
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff)
    done
  subgoal
    apply (erule conjE)
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff)
    done
  subgoal
    apply (erule conjE)
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff)
    done
  done
nominal_termination (eqvt)
  by lexicographic_order

nominal_function subst_type :: "ty  ty  tvar  ty" where
  "subst_type One t' x = One" |
  "subst_type (Fun t1 t2) t' x = Fun (subst_type t1 t' x) (subst_type t2 t' x)" |
  "subst_type (Sum t1 t2) t' x = Sum (subst_type t1 t' x) (subst_type t2 t' x)" |
  "subst_type (Prod t1 t2) t' x = Prod (subst_type t1 t' x) (subst_type t2 t' x)" |
  "atom y  (t', x)  subst_type (Mu y t) t' x = Mu y (subst_type t t' x)" |
  "subst_type (Alpha y) t' x = (if y = x then t' else Alpha y)" |
  "subst_type (AuthT t) t' x = AuthT (subst_type t t' x)"
  using [[simproc del: alpha_lst defined_all]]
  subgoal by (simp add: eqvt_def subst_type_graph_aux_def)
  subgoal by (erule subst_type_graph.induct) (auto simp: fresh_star_def fresh_at_base)
  apply clarify
  subgoal for P a
    by (rule ty.strong_exhaust[of a P]) (auto simp: fresh_star_def)
                      apply (simp_all add: fresh_star_def fresh_at_base)
  subgoal
    apply (erule conjE)
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff fresh_Pair)
    done
  done
nominal_termination (eqvt)
  by lexicographic_order

lemma fresh_subst_term: "atom x  t[t' / x']  (x = x'  atom x  t)  (atom x'  t  atom x  t')"
  by (nominal_induct t avoiding: t' x x' rule: term.strong_induct) (auto simp add: fresh_at_base)

lemma term_fresh_subst[simp]: "atom x  t  atom x  s  (atom (x::var))  t[s / y]"
  by (nominal_induct t avoiding: s y rule: term.strong_induct) (auto)

lemma term_subst_idle[simp]: "atom y  t  t[s / y] = t"
  by (nominal_induct t avoiding: s y rule: term.strong_induct) (auto simp: fresh_Pair fresh_at_base)

lemma term_subst_subst: "atom y1  atom y2  atom y1  s2  t[s1 / y1][s2 / y2] = t[s2 / y2][s1[s2 / y2] / y1]"
  by (nominal_induct t avoiding: y1 y2 s1 s2 rule: term.strong_induct) auto

lemma fresh_psubst:
  fixes x :: var
  assumes "atom x  e" "atom x  vs"
  shows   "atom x  psubst_term e vs"
  using assms
  by (induct e vs rule: psubst_term.induct)
    (auto simp: fresh_at_base elim: fresh_fmap_fresh_Some split: option.splits)

lemma fresh_subst_type:
  "atom α  subst_type τ τ' α'  ((α = α'  atom α  τ)  (atom α'  τ  atom α  τ'))"
  by (nominal_induct τ avoiding: α α' τ' rule: ty.strong_induct) (auto simp add: fresh_at_base)

lemma type_fresh_subst[simp]: "atom x  t  atom x  s  (atom (x::tvar))  subst_type t s y"
  by (nominal_induct t avoiding: s y rule: ty.strong_induct) (auto)

lemma type_subst_idle[simp]: "atom y  t  subst_type t s y = t"
  by (nominal_induct t avoiding: s y rule: ty.strong_induct) (auto simp: fresh_Pair fresh_at_base)

lemma type_subst_subst: "atom y1  atom y2  atom y1  s2 
  subst_type (subst_type t s1 y1) s2 y2 = subst_type (subst_type t s2 y2) (subst_type s1 s2 y2) y1"
  by (nominal_induct t avoiding: y1 y2 s1 s2 rule: ty.strong_induct) auto

subsection ‹Weak Typing Judgement›

type_synonym tyenv = "(var, ty) fmap"

inductive judge_weak :: "tyenv  term  ty  bool" (‹_ W _ : _› [150,0,150] 149) where
  jw_Unit:   "Γ W Unit : One" |
  jw_Var:    " Γ $$ x = Some τ 
            Γ W Var x : τ" |
  jw_Lam:    " atom x  Γ; Γ(x $$:= τ1) W e : τ2 
            Γ W Lam x e : Fun τ1 τ2" |
  jw_App:    " Γ W e : Fun τ1 τ2; Γ W e' : τ1 
            Γ W App e e' : τ2" |
  jw_Let:    " atom x  (Γ, e1); Γ W e1 : τ1; Γ(x $$:= τ1) W e2 : τ2 
            Γ W Let e1 x e2 : τ2" |
  jw_Rec:    " atom x  Γ; atom y  (Γ,x); Γ(x $$:= Fun τ1 τ2) W Lam y e : Fun τ1 τ2 
            Γ W Rec x (Lam y e) : Fun τ1 τ2" |
  jw_Inj1:   " Γ W e : τ1 
            Γ W Inj1 e : Sum τ1 τ2" |
  jw_Inj2:   " Γ W e : τ2 
            Γ W Inj2 e : Sum τ1 τ2" |
  jw_Case:   " Γ W e : Sum τ1 τ2; Γ W e1 : Fun τ1 τ; Γ W e2 : Fun τ2 τ 
            Γ W Case e e1 e2 : τ" |
  jw_Pair:   " Γ W e1 : τ1; Γ W e2 : τ2 
            Γ W Pair e1 e2 : Prod τ1 τ2" |
  jw_Prj1:   " Γ W e : Prod τ1 τ2 
            Γ W Prj1 e : τ1" |
  jw_Prj2:   " Γ W e : Prod τ1 τ2 
            Γ W Prj2 e : τ2" |
  jw_Roll:   " atom α  Γ; Γ W e : subst_type τ (Mu α τ) α 
            Γ W Roll e : Mu α τ" |
  jw_Unroll: " atom α  Γ; Γ W e : Mu α τ 
            Γ W Unroll e : subst_type τ (Mu α τ) α" |
  jw_Auth:   " Γ W e : τ 
            Γ W Auth e : τ" |
  jw_Unauth: " Γ W e : τ 
            Γ W Unauth e : τ"

declare judge_weak.intros[simp]
declare judge_weak.intros[intro]

equivariance judge_weak
nominal_inductive judge_weak
  avoids jw_Lam: x
       | jw_Rec: x and y
       | jw_Let: x
       | jw_Roll: α
       | jw_Unroll: α
  by (auto simp: fresh_subst_type fresh_Pair)

text ‹Inversion rules for typing judgment.›

inductive_cases jw_Unit_inv[elim]: "Γ W Unit : τ"
inductive_cases jw_Var_inv[elim]: "Γ W Var x : τ"

lemma jw_Lam_inv[elim]:
  assumes "Γ W Lam x e : τ"
  and     "atom x  Γ"
  obtains τ1 τ2 where "τ = Fun τ1 τ2" "(Γ(x $$:= τ1)) W e : τ2"
  using assms proof (atomize_elim, nominal_induct Γ "Lam x e" τ avoiding: x e rule: judge_weak.strong_induct)
  case (jw_Lam x Γ τ1 t τ2 y u)
  then show ?case
    by (auto simp: perm_supp_eq elim!:
        iffD1[OF Abs_lst1_fcb2'[where f = "λx t (Γ, τ1, τ2). (Γ(x $$:= τ1)) W t : τ2"
        and c = "(Γ, τ1, τ2)" and a = x and b = y and x = t and y = u, unfolded prod.case],
        rotated -1])
qed

lemma swap_permute_swap: "atom x  π  atom y  π  (x  y)  π  (x  y)  t = π  t"
  by (subst permute_eqvt) (auto simp: flip_fresh_fresh)

lemma jw_Rec_inv[elim]:
  assumes "Γ W Rec x t : τ"
  and     "atom x  Γ"
  obtains y e τ1 τ2 where "atom y  (Γ,x)" "t = Lam y e" "τ = Fun τ1 τ2" "Γ(x $$:= Fun τ1 τ2) W Lam y e : Fun τ1 τ2"
  using [[simproc del: alpha_lst]] assms
proof (atomize_elim, nominal_induct Γ "Rec x t" τ avoiding: x t rule: judge_weak.strong_induct)
  case (jw_Rec x Γ y τ1 τ2 e z t)
  then show ?case
  proof (nominal_induct t avoiding: y x z rule: term.strong_induct)
    case (Lam y' e')
    show ?case
    proof (intro exI conjI)
      from Lam.prems show "atom y  (Γ, z)" by simp
      from Lam.hyps(1-3) Lam.prems show "Lam y' e' = Lam y ((y'  y)  e')"
        by (subst term.eq_iff(3), intro Abs_lst_eq_flipI) (simp add: fresh_at_base)
      from Lam.hyps(1-3) Lam.prems show "Γ(z $$:= Fun τ1 τ2) W Lam y ((y'  y)  e') : Fun τ1 τ2"
        by (elim judge_weak.eqvt[of "Γ(x $$:= Fun τ1 τ2)" "Lam y e" "Fun τ1 τ2" "(x  z)", elim_format])
          (simp add: perm_supp_eq Abs1_eq_iff fresh_at_base swap_permute_swap fresh_perm flip_commute)
    qed simp
  qed (simp_all add: Abs1_eq_iff)
qed

inductive_cases jw_Inj1_inv[elim]: "Γ W Inj1 e : τ"
inductive_cases jw_Inj2_inv[elim]: "Γ W Inj2 e : τ"
inductive_cases jw_Pair_inv[elim]: "Γ W Pair e1 e2 : τ"

lemma jw_Let_inv[elim]:
  assumes "Γ W Let e1 x e2 : τ2"
  and     "atom x  (e1, Γ)"
  obtains τ1 where "Γ W e1 : τ1" "Γ(x $$:= τ1) W e2 : τ2"
using assms proof (atomize_elim, nominal_induct Γ "Let e1 x e2" τ2 avoiding: e1 x e2 rule: judge_weak.strong_induct)
  case (jw_Let x Γ e1 τ1 e2 τ2 x' e2')
  then show ?case
    by (auto simp: fresh_Pair perm_supp_eq elim!:
        iffD1[OF Abs_lst1_fcb2'[where f = "λx t (Γ, τ1, τ2). Γ(x $$:= τ1) W t : τ2"
        and c = "(Γ, τ1, τ2)" and a = x and b = x' and x = e2 and y = e2', unfolded prod.case],
        rotated -1])
qed

inductive_cases jw_Prj1_inv[elim]: "Γ W Prj1 e : τ1"
inductive_cases jw_Prj2_inv[elim]: "Γ W Prj2 e : τ2"
inductive_cases jw_App_inv[elim]: "Γ W App e e' : τ2"
inductive_cases jw_Case_inv[elim]: "Γ W Case e e1 e2 : τ"
inductive_cases jw_Auth_inv[elim]: "Γ W Auth e : τ"
inductive_cases jw_Unauth_inv[elim]: "Γ W Unauth e : τ"

lemma subst_type_perm_eq:
  assumes "atom b  t"
  shows   "subst_type t (Mu a t) a = subst_type ((a  b)  t) (Mu b ((a  b)  t)) b"
  using assms proof -
  have f: "atom a  subst_type t (Mu a t) a" by (rule iffD2[OF fresh_subst_type]) simp
  have    "atom b  subst_type t (Mu a t) a" by (auto simp: assms)
  with f have "subst_type t (Mu a t) a = (a  b)  subst_type t (Mu a t) a"
    by (simp add: flip_fresh_fresh)
  then show "subst_type t (Mu a t) a  = subst_type ((a  b)  t) (Mu b ((a  b)  t)) b"
    by simp
qed

lemma jw_Roll_inv[elim]:
  assumes "Γ W Roll e : τ"
  and     "atom α  (Γ, τ)"
  obtains τ' where "τ = Mu α τ'" "Γ W e : subst_type τ' (Mu α τ') α"
  using assms [[simproc del: alpha_lst]]
  proof (atomize_elim, nominal_induct Γ "Roll e" τ avoiding: e α rule: judge_weak.strong_induct)
  case (jw_Roll α Γ e τ α')
  then show ?case
    by (auto simp: perm_supp_eq fresh_Pair fresh_at_base subst_type.eqvt
      intro!: exI[of _ "(α  α')  τ"] Abs_lst_eq_flipI dest: judge_weak.eqvt[of _ _ _ "(α  α')"])
qed

lemma jw_Unroll_inv[elim]:
  assumes "Γ W Unroll e : τ"
  and     "atom α  (Γ, τ)"
  obtains τ' where "τ = subst_type τ' (Mu α τ') α" "Γ W e : Mu α τ'"
  using assms proof (atomize_elim, nominal_induct Γ "Unroll e" τ avoiding: e α rule: judge_weak.strong_induct)
  case (jw_Unroll α Γ e τ α')
  then show ?case
    by (auto simp: perm_supp_eq fresh_Pair subst_type_perm_eq fresh_subst_type
      intro!: exI[of _ "(α  α')  τ"] dest: judge_weak.eqvt[of _ _ _ "(α  α')"])
qed

text ‹Additional inversion rules based on type rather than term.›

inductive_cases jw_Prod_inv[elim]: "{$$} W e : Prod τ1 τ2"
inductive_cases jw_Sum_inv[elim]: "{$$} W e : Sum τ1 τ2"

lemma jw_Fun_inv[elim]:
  assumes "{$$} W v : Fun τ1 τ2" "value v"
  obtains e x where "v = Lam x e  v = Rec x e" "atom x  (c::term)"
  using assms [[simproc del: alpha_lst]]
proof (atomize_elim, nominal_induct "{$$} :: tyenv" v "Fun τ1 τ2" avoiding: τ1 τ2 rule: judge_weak.strong_induct)
  case (jw_Lam x τ1 e τ2)
  then obtain x' where "atom (x'::var)  (c, e)" using finite_supp obtain_fresh' by blast
  then have "[[atom x]]lst. e = [[atom x']]lst. (x  x')  e  atom x'  c"
    by (simp add: Abs_lst_eq_flipI fresh_Pair)
  then show ?case
    by auto
next
  case (jw_Rec x y τ1 τ2 e')
  obtain x' where "atom (x'::var)  (c, Lam y e')" using finite_supp obtain_fresh by blast
  then have "[[atom x]]lst. Lam y e' = [[atom x']]lst. (x  x')  (Lam y e')  atom x'  c"
    using Abs_lst_eq_flipI fresh_Pair by blast
  then show ?case
    by auto
qed simp_all

lemma jw_Mu_inv[elim]:
  assumes "{$$} W v : Mu α τ" "value v"
  obtains v' where "v = Roll v'"
  using assms by (atomize_elim, nominal_induct "{$$} :: tyenv" v "Mu α τ" rule: judge_weak.strong_induct) simp_all


subsection ‹Erasure of Authenticated Types›

nominal_function erase :: "ty  ty" where
  "erase One = One" |
  "erase (Fun τ1 τ2) = Fun (erase τ1) (erase τ2)" |
  "erase (Sum τ1 τ2) = Sum (erase τ1) (erase τ2)" |
  "erase (Prod τ1 τ2) = Prod (erase τ1) (erase τ2)" |
  "erase (Mu α τ) = Mu α (erase τ)" |
  "erase (Alpha α) = Alpha α" |
  "erase (AuthT τ) = erase τ"
  using [[simproc del: alpha_lst]]
  subgoal by (simp add: eqvt_def erase_graph_aux_def)
  subgoal by (erule erase_graph.induct) (auto simp: fresh_star_def fresh_at_base)
  subgoal for P x
    by (rule ty.strong_exhaust[of x P x]) (auto simp: fresh_star_def)
                      apply (simp_all add: fresh_star_def fresh_at_base)
  subgoal
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff)
    done
  done
nominal_termination (eqvt)
  by lexicographic_order

lemma fresh_erase_fresh:
  assumes "atom x  τ"
  shows   "atom x  erase τ"
  using assms by (induct τ rule: ty.induct) auto

lemma fresh_fmmap_erase_fresh:
  assumes "atom x  Γ"
  shows   "atom x  fmmap erase Γ"
  using assms by transfer simp

lemma erase_subst_type_shift[simp]:
  "erase (subst_type τ τ' α) = subst_type (erase τ) (erase τ') α"
  by (induct τ τ' α rule: subst_type.induct) (auto simp: fresh_Pair fresh_erase_fresh)

definition erase_env :: "tyenv  tyenv" where
  "erase_env = fmmap erase"

subsection ‹Strong Typing Judgement›

inductive judge :: "tyenv  term  ty  bool" (‹_  _ : _› [150,0,150] 149) where
  j_Unit:   "Γ  Unit : One" |
  j_Var:    " Γ $$ x = Some τ 
            Γ  Var x : τ" |
  j_Lam:    " atom x  Γ; Γ(x $$:= τ1)  e : τ2 
            Γ  Lam x e : Fun τ1 τ2" |
  j_App:    " Γ  e : Fun τ1 τ2; Γ  e' : τ1 
            Γ  App e e' : τ2" |
  j_Let:    " atom x  (Γ, e1); Γ  e1 : τ1; Γ(x $$:= τ1)  e2 : τ2 
            Γ  Let e1 x e2 : τ2" |
  j_Rec:    " atom x  Γ; atom y  (Γ,x); Γ(x $$:= Fun τ1 τ2)  Lam y e' : Fun τ1 τ2 
            Γ  Rec x (Lam y e') : Fun τ1 τ2" |
  j_Inj1:   " Γ  e : τ1 
            Γ  Inj1 e : Sum τ1 τ2" |
  j_Inj2:   " Γ  e : τ2 
            Γ  Inj2 e : Sum τ1 τ2" |
  j_Case:   " Γ  e : Sum τ1 τ2; Γ  e1 : Fun τ1 τ; Γ  e2 : Fun τ2 τ 
            Γ  Case e e1 e2 : τ" |
  j_Pair:   " Γ  e1 : τ1; Γ  e2 : τ2 
            Γ  Pair e1 e2 : Prod τ1 τ2" |
  j_Prj1:   " Γ  e : Prod τ1 τ2 
            Γ  Prj1 e : τ1" |
  j_Prj2:   " Γ  e : Prod τ1 τ2 
            Γ  Prj2 e : τ2" |
  j_Roll:   " atom α  Γ; Γ  e : subst_type τ (Mu α τ) α 
            Γ  Roll e : Mu α τ" |
  j_Unroll: " atom α  Γ; Γ  e : Mu α τ 
            Γ  Unroll e : subst_type τ (Mu α τ) α" |
  j_Auth:   " Γ  e : τ 
            Γ  Auth e : AuthT τ" |
  j_Unauth: " Γ  e : AuthT τ 
            Γ  Unauth e : τ"

declare judge.intros[intro]

equivariance judge
nominal_inductive judge
  avoids j_Lam: x
       | j_Rec: x and y
       | j_Let: x
       | j_Roll: α
       | j_Unroll: α
  by (auto simp: fresh_subst_type fresh_Pair)

lemma judge_imp_judge_weak:
  assumes "Γ  e : τ"
  shows   "erase_env Γ W e : erase τ"
  using assms unfolding erase_env_def
  by (induct Γ e τ rule: judge.induct) (simp_all add: fresh_Pair fresh_fmmap_erase_fresh fmmap_fmupd)

subsection ‹Shallow Projection›

nominal_function shallow :: "term  term" (_) where
  "Unit  = Unit" |
  "Var v = Var v" |
  "Lam x e = Lam x e" |
  "Rec x e = Rec x e" |
  "Inj1 e = Inj1 e" |
  "Inj2 e = Inj2 e" |
  "Pair e1 e2 = Pair e1 e2" |
  "Roll e = Roll e" |
  "Let e1 x e2 = Let e1 x e2" |
  "App e1 e2 = App e1 e2" |
  "Case e e1 e2 = Case e e1 e2" |
  "Prj1 e = Prj1 e" |
  "Prj2 e = Prj2 e" |
  "Unroll e = Unroll e" |
  "Auth e = Auth e" |
  "Unauth e = Unauth e" |
  ― ‹No rule is defined for Hash, but: "[..] preserving that structure in every case but that of <h, v> [..]"›
  "Hash h = Hash h" |
  "Hashed h e = Hash h"
  using [[simproc del: alpha_lst]]
  subgoal by (simp add: eqvt_def shallow_graph_aux_def)
  subgoal by (erule shallow_graph.induct) (auto simp: fresh_star_def fresh_at_base)
  subgoal for P a
    by (rule term.strong_exhaust[of a P a]) (auto simp: fresh_star_def)
                      apply (simp_all add: fresh_star_def fresh_at_base)
  subgoal
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff)
    done
  subgoal
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff)
    done
  subgoal
    apply (erule Abs_lst1_fcb2')
       apply (simp_all add: eqvt_at_def)
      apply (simp_all add: perm_supp_eq Abs_fresh_iff)
    done
  done
nominal_termination (eqvt)
  by lexicographic_order

lemma fresh_shallow: "atom x  e  atom x  e"
  by (induct e rule: term.induct) auto

subsection ‹Small-step Semantics›

datatype mode = I | P | V ― ‹Ideal, Prover and Verifier modes›

instantiation mode :: pure
begin
definition permute_mode :: "perm  mode  mode" where
  "permute_mode π h = h"
instance proof qed (auto simp: permute_mode_def)
end

type_synonym proofstream = "term list"

inductive smallstep :: "proofstream  term  mode  proofstream  term  bool" (_, _ _ _, _) where
  s_App1:      "  π, e1   m   π', e1'  
                π, App e1 e2   m   π', App e1' e2 " |
  s_App2:      " value v1;  π, e2   m   π', e2'  
                π, App v1 e2   m   π', App v1 e2' " |
  s_AppLam:    " value v; atom x  (v,π) 
                π, App (Lam x e) v   _   π, e[v / x] " |
  s_AppRec:    " value v; atom x  (v,π) 
                π, App (Rec x e) v   _   π, App (e[(Rec x e) / x]) v " |
  s_Let1:      " atom x  (e1,e1',π,π');  π, e1   m   π', e1'  
                π, Let e1 x e2   m   π', Let e1' x e2 " |
  s_Let2:      " value v; atom x  (v,π) 
                π, Let v x e   _   π, e[v / x] " |
  s_Inj1:      "  π, e   m   π', e'  
                π, Inj1 e   m   π', Inj1 e' " |
  s_Inj2:      "  π, e   m   π', e'  
                π, Inj2 e   m   π', Inj2 e' " |
  s_Case:      "  π, e   m   π', e'  
                π, Case e e1 e2   m   π', Case e' e1 e2 " |
  ― ‹Case rules are different from paper to account for recursive functions.›
  s_CaseInj1:  " value v 
                π, Case (Inj1 v) e1 e2   _   π, App e1 v " |
  s_CaseInj2:  " value v 
                π, Case (Inj2 v) e1 e2   _   π, App e2 v " |
  s_Pair1:     "  π, e1   m   π', e1'  
                π, Pair e1 e2   m   π', Pair e1' e2 " |
  s_Pair2:     " value v1;  π, e2   m   π', e2'  
                π, Pair v1 e2   m   π', Pair v1 e2' " |
  s_Prj1:      "  π, e  m  π', e'  
                π, Prj1 e   m   π', Prj1 e' " |
  s_Prj2:      "  π, e  m  π', e'  
                π, Prj2 e   m   π', Prj2 e' " |
  s_PrjPair1:  " value v1; value v2 
                π, Prj1 (Pair v1 v2)   _   π, v1 " |
  s_PrjPair2:  " value v1; value v2 
                π, Prj2 (Pair v1 v2)   _   π, v2 " |
  s_Unroll:    " π, e   m   π', e' 
                π, Unroll e   m   π', Unroll e' " |
  s_Roll:      " π, e   m   π', e' 
                π, Roll e   m   π', Roll e' " |
  s_UnrollRoll:" value v 
                π, Unroll (Roll v)   _   π, v " |
  ― ‹Mode-specific rules›
  s_Auth:      " π, e  m  π', e' 
                π, Auth e  m  π', Auth e' " |
  s_Unauth:    " π, e  m  π', e' 
                π, Unauth e  m  π', Unauth e' " |
  s_AuthI:     " value v 
                π, Auth v  I  π, v " |
  s_UnauthI:   " value v 
                π, Unauth v  I  π, v " |
  s_AuthP:     " closed v; value v 
                π, Auth v  P  π, Hashed (hash v) v " |
  s_UnauthP:   " value v 
                π, Unauth (Hashed h v)  P  π @ [v], v " |
  s_AuthV:     " closed v; value v 
                π, Auth v  V  π, Hash (hash v) " |
  s_UnauthV:   " closed s0; hash s0 = h 
                s0#π, Unauth (Hash h)  V  π, s0 "

declare smallstep.intros[simp]
declare smallstep.intros[intro]

equivariance smallstep
nominal_inductive smallstep
  avoids s_AppLam: x
       | s_AppRec: x
       | s_Let1:   x
       | s_Let2:   x
  by (auto simp add: fresh_Pair fresh_subst_term)

inductive smallsteps :: "proofstream  term  mode  nat  proofstream  term  bool" (_, _ __ _, _) where
  s_Id: " π, e  _0  π, e " |
  s_Tr: "  π1, e1  mi  π2, e2 ;  π2, e2  m  π3, e3  
         π1, e1  m(i+1)  π3, e3 "

declare smallsteps.intros[simp]
declare smallsteps.intros[intro]

equivariance smallsteps
nominal_inductive smallsteps .

lemma steps_1_step[simp]: " π, e  m1  π', e'  =  π, e  m  π', e' " (is "?L  ?R")
proof
  assume ?L
  then show ?R
  proof (induct π e m "1::nat" π' e' rule: smallsteps.induct)
    case (s_Tr π1 e1 m i π2 e2 π3 e3)
    then show ?case
      by (induct π1 e1 m i π2 e2 rule: smallsteps.induct) auto
  qed simp
qed (auto intro: s_Tr[where i=0, simplified])

text ‹Inversion rules for smallstep(s) predicates.›

lemma value_no_step[intro]:
  assumes " π1, v  m  π2, t " "value v"
  shows   "False"
  using assms by (induct π1 v m π2 t rule: smallstep.induct) auto

lemma subst_term_perm:
  assumes "atom x'  (x, e)"
  shows "e[v / x] = ((x  x')  e)[v / x']"
  using assms [[simproc del: alpha_lst]]
  by (nominal_induct e avoiding: x x' v rule: term.strong_induct)
     (auto simp: fresh_Pair fresh_at_base(2) permute_hash_def)

inductive_cases s_Unit_inv[elim]: " π1, Unit   m   π2, v "

inductive_cases s_App_inv[consumes 1, case_names App1 App2 AppLam AppRec, elim]: " π, App v1 v2  m  π', e "

lemma s_Let_inv':
  assumes " π, Let e1 x e2   m   π', e' "
  and     "atom x  (e1,π)"
  obtains e1' where "(e' = e2[e1 / x]  value e1  π = π')  ( π, e1   m   π', e1'   e' = Let e1' x e2  ¬ value e1)"
  using assms [[simproc del: alpha_lst]]
  by (atomize_elim, induct π "Let e1 x e2" m π' e' rule: smallstep.induct)
     (auto simp: fresh_Pair fresh_subst_term perm_supp_eq elim: Abs_lst1_fcb2')

lemma s_Let_inv[consumes 2, case_names Let1 Let2, elim]:
  assumes " π, Let e1 x e2   m   π', e' "
  and     "atom x  (e1,π)"
  and     "e' = e2[e1 / x]  value e1  π = π'  Q"
  and     "e1'.  π, e1   m   π', e1'   e' = Let e1' x e2  ¬ value e1  Q"
  shows   "Q"
  using assms by (auto elim: s_Let_inv')

inductive_cases s_Case_inv[consumes 1, case_names Case Inj1 Inj2, elim]:
  " π, Case e e1 e2   m   π', e' "
inductive_cases s_Prj1_inv[consumes 1, case_names Prj1 PrjPair1, elim]:
  " π, Prj1 e   m   π', v "
inductive_cases s_Prj2_inv[consumes 1, case_names Prj2 PrjPair2, elim]:
  " π, Prj2 e   m   π', v "
inductive_cases s_Pair_inv[consumes 1, case_names Pair1 Pair2, elim]:
  " π, Pair e1 e2  m  π', e' "
inductive_cases s_Inj1_inv[consumes 1, case_names Inj1, elim]:
  " π, Inj1 e  m  π', e' "
inductive_cases s_Inj2_inv[consumes 1, case_names Inj2, elim]:
  " π, Inj2 e  m  π', e' "
inductive_cases s_Roll_inv[consumes 1, case_names Roll, elim]:
  " π, Roll e  m  π', e' "
inductive_cases s_Unroll_inv[consumes 1, case_names Unroll UnrollRoll, elim]:
  " π, Unroll e   m   π', e' "
inductive_cases s_AuthI_inv[consumes 1, case_names Auth AuthI, elim]:
  " π, Auth e   I   π', e' "
inductive_cases s_UnauthI_inv[consumes 1, case_names Unauth UnauthI, elim]:
  " π, Unauth e   I   π', e' "
inductive_cases s_AuthP_inv[consumes 1, case_names Auth AuthP, elim]:
  " π, Auth e   P   π', e' "
inductive_cases s_UnauthP_inv[consumes 1, case_names Unauth UnauthP, elim]:
  " π, Unauth e   P   π', e' "
inductive_cases s_AuthV_inv[consumes 1, case_names Auth AuthV, elim]:
  " π, Auth e   V   π', e' "
inductive_cases s_UnauthV_inv[consumes 1, case_names Unauth UnauthV, elim]:
  " π, Unauth e   V   π', e' "

inductive_cases s_Id_inv[elim]: " π1, e1  m0  π2, e2 "
inductive_cases s_Tr_inv[elim]: " π1, e1  mi  π3, e3 "

text ‹Freshness with smallstep.›

lemma fresh_smallstep_I:
  fixes x :: var
  assumes " π, e  I  π', e' " "atom x  e"
  shows   "atom x  e'"
  using assms by (induct π e I π' e' rule: smallstep.induct) (auto simp: fresh_subst_term)

lemma fresh_smallstep_P:
  fixes x :: var
  assumes " π, e  P  π', e' " "atom x  e"
  shows   "atom x  e'"
  using assms by (induct π e P π' e' rule: smallstep.induct) (auto simp: fresh_subst_term)

lemma fresh_smallsteps_I:
  fixes x :: var
  assumes " π, e  Ii  π', e' " "atom x  e"
  shows   "atom x  e'"
  using assms by (induct π e I i π' e' rule: smallsteps.induct) (simp_all add: fresh_smallstep_I)

lemma fresh_ps_smallstep_P:
  fixes x :: var
  assumes " π, e  P  π', e' " "atom x  e" "atom x  π"
  shows   "atom x  π'"
  using assms proof (induct π e P π' e' rule: smallstep.induct)
  case (s_UnauthP v π h)
  then show ?case
    by (simp add: fresh_Cons fresh_append fresh_shallow)
  qed auto

text ‹Proofstream lemmas.›

lemma smallstepI_ps_eq:
  assumes " π, e  I  π', e' "
  shows   "π = π'"
  using assms by (induct π e I π' e' rule: smallstep.induct) auto

lemma smallstepI_ps_emptyD:
  "π, e I [], e'  [], e I [], e'"
  "[], e I π, e'  [], e I [], e'"
  using smallstepI_ps_eq by force+

lemma smallstepsI_ps_eq:
  assumes "π, e Ii π', e'"
  shows   "π = π'"
  using assms by (induct π e I i π' e' rule: smallsteps.induct) (auto dest: smallstepI_ps_eq)

lemma smallstepsI_ps_emptyD:
  "π, e Ii [], e'  [], e Ii [], e'"
  "[], e Ii π, e'  [], e Ii [], e'"
  using smallstepsI_ps_eq by force+

lemma smallstepV_consumes_proofstream:
  assumes " π1, eV  V  π2, eV' "
  obtains π where "π1 = π @ π2"
  using assms by (induct π1 eV V π2 eV' rule: smallstep.induct) auto

lemma smallstepsV_consumes_proofstream:
  assumes " π1, eV  Vi  π2, eV' "
  obtains π where "π1 = π @ π2"
  using assms by (induct π1 eV V i π2 eV' rule: smallsteps.induct)
                 (auto elim: smallstepV_consumes_proofstream)

lemma smallstepP_generates_proofstream:
  assumes " π1, eP  P  π2, eP' "
  obtains π where "π2 = π1 @ π"
  using assms by (induct π1 eP P π2 eP' rule: smallstep.induct) auto

lemma smallstepsP_generates_proofstream:
  assumes " π1, eP  Pi  π2, eP' "
  obtains π where "π2 = π1 @ π"
  using assms by (induct π1 eP P i π2 eP' rule: smallsteps.induct)
                 (auto elim: smallstepP_generates_proofstream)

lemma smallstepV_ps_append:
  " π, eV  V  π', eV'    π @ X, eV  V  π' @ X, eV' " (is "?L  ?R")
proof (rule iffI)
  assume ?L then show ?R
    by (nominal_induct π eV V π' eV' avoiding: X rule: smallstep.strong_induct)
       (auto simp: fresh_append fresh_Pair)
next
  assume ?R then show ?L
    by (nominal_induct "π @ X" eV V "π' @ X" eV' avoiding: X rule: smallstep.strong_induct)
       (auto simp: fresh_append fresh_Pair)
qed

lemma smallstepV_ps_to_suffix:
  assumes "π, e V π' @ X, e'"
  obtains π'' where "π = π'' @ X"
  using assms
  by (induct π e V "π' @ X" e' rule: smallstep.induct) auto

lemma smallstepsV_ps_append:
  " π, eV  Vi  π', eV'    π @ X, eV  Vi  π' @ X, eV' " (is "?L  ?R")
proof (rule iffI)
  assume ?L then show ?R
  proof (induct π eV V i π' eV' rule: smallsteps.induct)
    case (s_Tr π1 e1 i π2 e2 π3 e3)
    then show ?case
      by (auto simp: iffD1[OF smallstepV_ps_append])
  qed simp
next
  assume ?R then show ?L
  proof (induct "π @ X" eV V i "π' @ X" eV' arbitrary: π' rule: smallsteps.induct)
    case (s_Tr e1 i π2 e2 e3)
    from s_Tr(3) obtain π''' where "π2 = π''' @ X"
      by (auto elim: smallstepV_ps_to_suffix)
    with s_Tr show ?case
      by (auto dest: iffD2[OF smallstepV_ps_append])
  qed simp
qed

lemma smallstepP_ps_prepend:
  " π, eP  P  π', eP'    X @ π, eP  P  X @ π', eP' " (is "?L  ?R")
proof (rule iffI)
  assume ?L then show ?R
  proof (nominal_induct π eP P π' eP' avoiding: X rule: smallstep.strong_induct)
    case (s_UnauthP v π h)
    then show ?case
      by (subst append_assoc[symmetric, of X π "[v]"]) (erule smallstep.s_UnauthP)
  qed (auto simp: fresh_append fresh_Pair)
next
  assume ?R then show ?L
    by (nominal_induct "X @ π" eP P "X @ π'" eP' avoiding: X rule: smallstep.strong_induct)
       (auto simp: fresh_append fresh_Pair)
qed

lemma smallstepsP_ps_prepend:
  " π, eP  Pi  π', eP'    X @ π, eP  Pi  X @ π', eP' " (is "?L  ?R")
proof (rule iffI)
  assume ?L then show ?R
  proof (induct π eP P i π' eP' rule: smallsteps.induct)
    case (s_Tr π1 e1 i π2 e2 π3 e3)
    then show ?case
      by (auto simp: iffD1[OF smallstepP_ps_prepend])
  qed simp
next
  assume ?R then show ?L
  proof (induct "X @ π" eP P i "X @ π'" eP' arbitrary: π' rule: smallsteps.induct)
    case (s_Tr e1 i π2 e2 e3)
    then obtain π'' where π'': "π2 = X @ π @ π''"
      by (auto elim: smallstepsP_generates_proofstream)
    then have "π, e1 Pi π @ π'', e2"
      by (auto dest: s_Tr(2))
    with π'' s_Tr(1,3) show ?case
      by (auto dest: iffD2[OF smallstepP_ps_prepend])
  qed simp
qed

subsection ‹Type Progress›

lemma type_progress:
  assumes "{$$} W e : τ"
  shows   "value e  (e'.  [], e  I  [], e' )"
using assms proof (nominal_induct "{$$} :: tyenv" e τ rule: judge_weak.strong_induct)
  case (jw_Let x e1 τ1 e2 τ2)
  then show ?case
    by (auto 0 3 simp: fresh_smallstep_I elim!: s_Let2[of e2]
      intro: exI[where P="λe. _, _ _ _, e", OF s_Let1, rotated])
next
  case (jw_Prj1 v τ1 τ2)
  then show ?case
    by (auto elim!: jw_Prod_inv[of v τ1 τ2])
next
  case (jw_Prj2 v τ1 τ2)
  then show ?case
    by (auto elim!: jw_Prod_inv[of v τ1 τ2])
next
  case (jw_App e τ1 τ2 e')
  then show ?case
    by (auto 0 4 elim: jw_Fun_inv[of _ _ _ e'])
next
  case (jw_Case v v1 v2 τ1 τ2 τ)
  then show ?case
    by (auto 0 4 elim: jw_Sum_inv[of _ v1 v2])
qed fast+

subsection ‹Weak Type Preservation›

lemma fresh_tyenv_None:
  fixes Γ :: tyenv
  shows "atom x  Γ  Γ $$ x = None" (is "?L  ?R")
proof
  assume assm: ?L show ?R
  proof (rule ccontr)
    assume "Γ $$ x  None"
    then obtain τ where "Γ $$ x = Some τ" by blast
    with assm have "a :: var. atom a  Γ  Γ $$ a = Some τ"
      using fmap_freshness_lemma_unique[OF exI, of x Γ]
      by (simp add: fresh_Pair fresh_Some) metis
    then have "{a :: var. atom a  Γ}  fmdom' Γ"
      by (auto simp: image_iff Ball_def fmlookup_dom'_iff)
    moreover
    { assume "infinite {a :: var. ¬ atom a  Γ}"
      then have "infinite {a :: var. atom a  supp Γ}"
        unfolding fresh_def by auto
      then have "infinite (supp Γ)"
        by (rule contrapos_nn)
          (auto simp: image_iff inv_f_f[of atom] inj_on_def
            elim!: finite_surj[of _ _ "inv atom"] bexI[rotated])
      then have False
        using finite_supp[of Γ] by blast
    }
    then have "infinite {a :: var. atom a  Γ}"
      by auto
    ultimately show False
      using finite_subset[of "{a. atom a  Γ}" "fmdom' Γ"] unfolding fmdom'_alt_def
      by auto
  qed
next
  assume ?R then show ?L
  proof (induct Γ arbitrary: x)
    case (fmupd y z Γ)
    then show ?case
      by (cases "y = x") (auto intro: fresh_fmap_update)
  qed simp
qed

lemma judge_weak_fresh_env_fresh_term[dest]:
  fixes a :: var
  assumes "Γ W e : τ" "atom a  Γ"
  shows   "atom a  e"
  using assms proof (nominal_induct Γ e τ avoiding: a rule: judge_weak.strong_induct)
  case (jw_Var Γ x τ)
  then show ?case
    by (cases "a = x") (auto simp: fresh_tyenv_None)
qed (simp_all add: fresh_Cons fresh_fmap_update)

lemma judge_weak_weakening_1:
  assumes "Γ W e : τ" "atom y  e"
  shows   "Γ(y $$:= τ') W e : τ"
  using assms proof (nominal_induct Γ e τ avoiding: y τ' rule: judge_weak.strong_induct)
  case (jw_Lam x Γ τ1 e τ2)
  from jw_Lam(5)[of y τ'] jw_Lam(1-4,6) show ?case
    by (auto simp add: fresh_at_base fmupd_reorder_neq fresh_fmap_update)
next
  case (jw_App v v' Γ τ1 τ2)
  then show ?case
    by (force simp add: fresh_at_base fmupd_reorder_neq fresh_fmap_update)
next
  case (jw_Let x Γ e1 τ1 e2 τ2)
  from jw_Let(6)[of y τ'] jw_Let(8)[of y τ'] jw_Let(1-5,7,9) show ?case
    by (auto simp add: fresh_at_base fmupd_reorder_neq fresh_fmap_update)
next
  case (jw_Rec x Γ z τ1 τ2 e')
  from jw_Rec(9)[of y τ'] jw_Rec(1-8,10) show ?case
    by (auto simp add: fresh_at_base fmupd_reorder_neq fresh_fmap_update fresh_Pair)
next
  case (jw_Case v v1 v2 Γ τ1 τ2 τ)
  then show ?case
    by (fastforce simp add: fresh_at_base fmupd_reorder_neq fresh_fmap_update)
next
  case (jw_Roll α Γ v τ)
  then show ?case
    by (simp add: fresh_fmap_update)
next
  case (jw_Unroll α Γ v τ)
  then show ?case
    by (simp add: fresh_fmap_update)
qed auto

lemma judge_weak_weakening_2:
  assumes "Γ W e : τ" "atom y  Γ"
  shows   "Γ(y $$:= τ') W e : τ"
  proof -
    from assms have "atom y  e"
      by (rule judge_weak_fresh_env_fresh_term)
    with assms show "Γ(y $$:= τ') W e : τ" by (simp add: judge_weak_weakening_1)
  qed

lemma judge_weak_weakening_env:
  assumes "{$$} W e : τ"
  shows   "Γ W e : τ"
using assms proof (induct Γ)
  case fmempty
  then show ?case by assumption
next
  case (fmupd x y Γ)
  then show ?case
    by (simp add: fresh_tyenv_None judge_weak_weakening_2)
qed

lemma value_subst_value:
  assumes "value e" "value e'"
  shows   "value (e[e' / x])"
  using assms by (induct e  e'  x rule: subst_term.induct) auto

lemma judge_weak_subst[intro]:
  assumes "Γ(a $$:= τ') W e : τ" "{$$} W e' : τ'"
  shows   "Γ W e[e' / a] : τ"
  using assms proof (nominal_induct "Γ(a $$:= τ')" e τ avoiding: a e' Γ rule: judge_weak.strong_induct)
  case (jw_Var x τ)
  then show ?case
    by (auto simp: judge_weak_weakening_env)
next
  case (jw_Lam x τ1 e τ2)
  then show ?case
    by (fastforce simp: fmupd_reorder_neq)
next
  case (jw_Rec x y τ1 τ2 e)
  then show ?case
    by (fastforce simp: fmupd_reorder_neq)
next
  case (jw_Let x e1 τ1 e2 τ2)
  then show ?case
    by (fastforce simp: fmupd_reorder_neq)
qed fastforce+

lemma type_preservation:
  assumes " [], e  I  [], e' " "{$$} W e : τ"
  shows   "{$$} W e' : τ"
  using assms [[simproc del: alpha_lst]]
proof (nominal_induct "[]::proofstream" e I "[]::proofstream" e' arbitrary: τ rule: smallstep.strong_induct)
case (s_AppLam v x e)
  then show ?case by force
next
  case (s_AppRec v x e)
  then show ?case
    by (elim jw_App_inv jw_Rec_inv) (auto 0 3 simp del: subst_term.simps)
next
  case (s_Let1 x e1 e1' e2)
  from s_Let1(1,2,7) show ?case
    by (auto intro: s_Let1(6) del: jw_Let_inv elim!: jw_Let_inv)
next
  case (s_Unroll e e')
  then obtain α::tvar where "atom α  τ"
    using obtain_fresh by blast
  with s_Unroll show ?case
    by (auto elim: jw_Unroll_inv[where α = α])
next
  case (s_Roll e e')
  then obtain α::tvar where "atom α  τ"
    using obtain_fresh by blast
  with s_Roll show ?case
    by (auto elim: jw_Roll_inv[where α = α])
next
  case (s_UnrollRoll v)
  then obtain α::tvar where "atom α  τ"
    using obtain_fresh by blast
  with s_UnrollRoll show ?case
    by (fastforce simp: Abs1_eq(3) elim: jw_Roll_inv[where α = α] jw_Unroll_inv[where α = α])
qed fastforce+

subsection ‹Corrected Lemma 1 from Miller et al.~cite"adsg": Weak Type Soundness›

lemma type_soundness:
  assumes "{$$} W e : τ"
  shows   "value e  (e'.  [], e  I  [], e'   {$$} W e' : τ)"
proof (cases "value e")
  case True
  then show ?thesis by simp
next
  case False
  with assms obtain e' where "[], e I [], e'" by (auto dest: type_progress)
  with assms show ?thesis
    by (auto simp: type_preservation)
qed

(*<*)
end
(*>*)