Theory FMap_Lemmas
theory FMap_Lemmas
imports "HOL-Library.Finite_Map"
Nominal2_Lemmas
begin
text ‹Nominal setup for finite maps.›
abbreviation fmap_update (‹_'(_ $$:= _')› [1000,0,0] 1000) where "fmap_update Γ x τ ≡ fmupd x τ Γ"
notation fmlookup (infixl ‹$$› 999)
notation fmempty (‹{$$}›)
instantiation fmap :: (pt, pt) pt
begin
unbundle fmap.lifting
lift_definition
permute_fmap :: "perm ⇒ ('a, 'b) fmap ⇒ ('a, 'b) fmap"
is
"permute :: perm ⇒ ('a ⇀ 'b) ⇒ ('a ⇀ 'b)"
proof -
fix p and f :: "'a ⇀ 'b"
assume "finite (dom f)"
then show "finite (dom (p ∙ f))"
proof (rule finite_surj[of _ _ "permute p"]; unfold dom_def, safe)
fix x y
assume some: "(p ∙ f) x = Some y"
show "x ∈ permute p ` {a. f a ≠ None}"
proof (rule image_eqI[of _ _ "- p ∙ x"])
from some show "- p ∙ x ∈ {a. f a ≠ None}"
by (auto simp: permute_self pemute_minus_self
dest: arg_cong[of _ _ "permute (- p)"] intro!: exI[of _ "- p ∙ y"])
qed (simp only: permute_minus_cancel)
qed
qed
instance
proof
fix x :: "('a, 'b) fmap"
show "0 ∙ x = x"
by transfer simp
next
fix p q and x :: "('a, 'b) fmap"
show "(p + q) ∙ x = p ∙ q ∙ x"
by transfer simp
qed
end
lemma fmempty_eqvt[eqvt]:
shows "(p ∙ {$$}) = {$$}"
by transfer simp
lemma fmap_update_eqvt[eqvt]:
shows "(p ∙ f(a $$:= b)) = (p ∙ f)((p ∙ a) $$:= (p ∙ b))"
by transfer (simp add: map_upd_def)
lemma fmap_apply_eqvt[eqvt]:
shows "(p ∙ (f $$ b)) = (p ∙ f) $$ (p ∙ b)"
by transfer simp
lemma fresh_fmempty[simp]:
shows "a ♯ {$$}"
unfolding fresh_def supp_def
by transfer simp
lemma fresh_fmap_update:
shows "⟦a ♯ f; a ♯ x; a ♯ y⟧ ⟹ a ♯ f(x $$:= y)"
unfolding fresh_conv_MOST
by (elim MOST_rev_mp) simp
lemma supp_fmempty[simp]:
shows "supp {$$} = {}"
by (simp add: supp_def)
lemma supp_fmap_update:
shows "supp (f(x $$:= y)) ⊆ supp(f, x, y)"
using fresh_fmap_update
by (auto simp: fresh_def supp_Pair)
instance fmap :: (fs, fs) fs
proof
fix x :: "('a, 'b) fmap"
show "finite (supp x)"
by (induct x rule: fmap_induct)
(simp_all add: supp_Pair finite_supp finite_subset[OF supp_fmap_update])
qed
lemma fresh_transfer[transfer_rule]:
"((=) ===> pcr_fmap (=) (=) ===> (=)) fresh fresh"
unfolding fresh_def supp_def rel_fun_def pcr_fmap_def cr_fmap_def simp_thms
option.rel_eq fun_eq_iff[symmetric]
by (auto elim!: finite_subset[rotated] simp: fmap_ext)
lemma fmmap_eqvt[eqvt]: "p ∙ (fmmap f F) = fmmap (p ∙ f) (p ∙ F)"
by (induct F arbitrary: f rule: fmap_induct) (auto simp add: fmap_update_eqvt fmmap_fmupd)
lemma fmap_freshness_lemma:
fixes h :: "('a::at,'b::pt) fmap"
assumes a: "∃a. atom a ♯ (h, h $$ a)"
shows "∃x. ∀a. atom a ♯ h ⟶ h $$ a = x"
using assms unfolding fresh_Pair
by transfer (simp add: fresh_Pair freshness_lemma)
lemma fmap_freshness_lemma_unique:
fixes h :: "('a::at,'b::pt) fmap"
assumes "∃a. atom a ♯ (h, h $$ a)"
shows "∃!x. ∀a. atom a ♯ h ⟶ h $$ a = x"
using assms unfolding fresh_Pair
by transfer (rule freshness_lemma_unique, auto simp: fresh_Pair)
lemma fmdrop_fset_fmupd[simp]:
"(fmdrop_fset A f)(x $$:= y) = fmdrop_fset (A |-| {|x|}) f(x $$:= y)"
including fmap.lifting and fset.lifting
by transfer (auto simp: map_drop_set_def map_upd_def map_filter_def)
lemma fresh_fset_fminus:
assumes "atom x ♯ A"
shows "A |-| {|x|} = A"
using assms by (induct A) (simp_all add: finsert_fminus_if fresh_finsert)
lemma fresh_fun_app:
shows "atom x ♯ F ⟹ x ≠ y ⟹ F y = Some a ⟹ atom x ♯ a"
using supp_fun_app[of F y]
by (auto simp: fresh_def supp_Some atom_not_fresh_eq)
lemma fresh_fmap_fresh_Some:
"atom x ♯ F ⟹ x ≠ y ⟹ F $$ y = Some a ⟹ atom x ♯ a"
including fmap.lifting
by (transfer) (auto elim: fresh_fun_app)
lemma fmdrop_eqvt: "p ∙ fmdrop x F = fmdrop (p ∙ x) (p ∙ F)"
by transfer (auto simp: map_drop_def map_filter_def)
lemma fmfilter_eqvt: "p ∙ fmfilter Q F = fmfilter (p ∙ Q) (p ∙ F)"
by transfer (auto simp: map_filter_def)
lemma fmdrop_eq_iff:
"fmdrop x B = fmdrop y B ⟷ x = y ∨ (x ∉ fmdom' B ∧ y ∉ fmdom' B)"
by transfer (auto simp: map_drop_def map_filter_def fun_eq_iff, metis)
lemma fresh_fun_upd:
shows "⟦a ♯ f; a ♯ x; a ♯ y⟧ ⟹ a ♯ f(x := y)"
unfolding fresh_conv_MOST by (elim MOST_rev_mp) simp
lemma supp_fun_upd:
shows "supp (f(x := y)) ⊆ supp(f, x, y)"
using fresh_fun_upd by (auto simp: fresh_def supp_Pair)
lemma map_drop_fun_upd: "map_drop x F = F(x := None)"
unfolding map_drop_def map_filter_def by auto
lemma fresh_fmdrop_in_fmdom: "⟦ x ∈ fmdom' B; y ♯ B; y ♯ x ⟧ ⟹ y ♯ fmdrop x B"
by transfer (auto simp: map_drop_fun_upd fresh_None intro!: fresh_fun_upd)
lemma fresh_fmdrop:
assumes "x ♯ B" "x ♯ y"
shows "x ♯ fmdrop y B"
using assms by (cases "y ∈ fmdom' B") (auto dest!: fresh_fmdrop_in_fmdom simp: fmdrop_idle')
lemma fresh_fmdrop_fset:
fixes x :: atom and A :: "(_ :: at_base) fset"
assumes "x ♯ A" "x ♯ B"
shows "x ♯ fmdrop_fset A B"
using assms(1) by (induct A) (auto simp: fresh_fmdrop assms(2) fresh_finsert)
end