Theory First_Map
section ‹First map›
theory First_Map
imports Nullable_Set "HOL-Library.Finite_Map"
begin
type_synonym ('n, 't) first_map = "('n, 't lookahead list) fmap"
fun nullableSym :: "('n, 't) symbol ⇒ 'n set ⇒ bool" where
"nullableSym (T _) _ = False"
| "nullableSym (NT x) nu = (x ∈ nu)"
definition findOrEmpty :: "'n ⇒ ('n, 't) first_map ⇒ 't lookahead list" where
"findOrEmpty x m = (case fmlookup m x of None ⇒ [] | Some y ⇒ y)"
fun firstSym :: "('n, 't) symbol ⇒ ('n, 't) first_map ⇒ 't lookahead list" where
"firstSym (T x) _ = [LA x]"
| "firstSym (NT x) fi = findOrEmpty x fi"
definition list_union :: "'a list ⇒ 'a list ⇒ 'a list" (infixr ‹@@› 65) where
"list_union ls1 ls2 = ls1 @ (filter (λx. x ∉ set ls1) ls2)"
lemma in_atleast1_list: "a ∈ set (ls1 @@ ls2) ⟹ a ∈ set ls1 ∨ a ∈ set ls2"
unfolding list_union_def
by auto
lemma set_list_union[simp]: "set (ls1 @@ ls2) = set ls1 ∪ set ls2"
unfolding list_union_def
by auto
lemma mem_list_union: "ls1 = ls1 @@ ls2 ⟹ e ∈ set ls2 ⟹ e ∈ set ls1"
by (metis Un_iff set_list_union)
lemma list_union_I2: "e ∈ set ls2 ⟹ e ∈ set (ls1 @@ ls2)"
by simp
fun firstGamma :: "('n, 't) rhs ⇒ 'n set ⇒ ('n, 't) first_map ⇒ 't lookahead list" where
"firstGamma [] _ _ = []"
| "firstGamma (s#gamma') nu fi =
(if nullableSym s nu then firstSym s fi @@ firstGamma gamma' nu fi else firstSym s fi)"
definition updateFi :: "'n set ⇒ ('n, 't) prod ⇒ ('n, 't) first_map ⇒ ('n, 't) first_map" where
"updateFi ≡ λnu (x, gamma) fi. (let
fg = firstGamma gamma nu fi;
xFirst = findOrEmpty x fi;
xFirst' = xFirst @@ fg in (if xFirst' = xFirst ∨ fg = [] then fi else fmupd x xFirst' fi))"
definition firstPass :: "('n, 't) prods ⇒ 'n set ⇒ ('n, 't) first_map ⇒ ('n, 't) first_map" where
"firstPass ps nu fi = foldr (updateFi nu) ps fi"
partial_function (option) mkFirstMap' :: "('n, 't) prods ⇒ 'n set ⇒ ('n, 't) first_map
⇒ ('n, 't) first_map option" where
"mkFirstMap' ps nu fi = (let fi' = firstPass ps nu fi in
(if fi = fi' then Some fi else mkFirstMap' ps nu fi'))"
definition mkFirstMap :: "('n, 't) grammar ⇒ 'n set ⇒ ('n, 't) first_map" where
"mkFirstMap g nu = the (mkFirstMap' (prods g) nu fmempty)"
subsection ‹Termination›
fun leftmostLookahead :: "('n, 't) rhs ⇒ 't lookahead option" where
"leftmostLookahead [] = None"
| "leftmostLookahead ((T y)#gamma') = Some (LA y)"
| "leftmostLookahead ((NT _)#gamma') = leftmostLookahead gamma'"
definition leftmostLookaheads :: "('n, 't) prods ⇒ 't lookahead set" where
"leftmostLookaheads ps = the ` leftmostLookahead ` snd ` set ps"
lemma in_leftmostLookaheads_cons: "x ∈ leftmostLookaheads ps ⟹ x ∈ leftmostLookaheads (p # ps)"
unfolding leftmostLookaheads_def by auto
definition pairsOf :: "('n, 't) first_map ⇒ ('n × 't lookahead) set" where
"pairsOf fi = {(a, b). a |∈| fmdom fi ∧ b ∈ set (findOrEmpty a fi)}"
definition all_nt :: "('n, 't) rhs ⇒ bool" where
"all_nt gamma = (∀s ∈ set gamma. (case s of (NT _) ⇒ True | (T _) ⇒ False))"
definition all_pairs_are_first_candidates:: "('n, 't) first_map ⇒ ('n, 't) prods ⇒ bool" where
"all_pairs_are_first_candidates fi ps =
(∀x la. (x, la) ∈ pairsOf fi ⟶ (x ∈ lhSet ps ∧ la ∈ leftmostLookaheads ps))"
definition countFirstCands :: "('n, 't) prods ⇒ ('n, 't) first_map ⇒ nat" where
"countFirstCands ps fi = (let allCandidates = (lhSet ps) × (leftmostLookaheads ps) in
card (allCandidates - (pairsOf fi)))"
lemma gpre_nullable_leftmost_lk_some: "all_nt gpre
⟹ leftmostLookahead (gpre @ (T y) # gsuf) = Some (LA y)"
by (induction gpre) (auto simp: all_nt_def split: symbol.splits)
lemma gpre_nullable_in_leftmost_lks:
"(x, (gpre @ (T y) # gsuf)) ∈ set ps ⟹ all_nt gpre ⟹ (LA y) ∈ leftmostLookaheads ps"
proof (induction ps)
case Nil
then show ?case by auto
next
case (Cons p ps')
then show ?case
proof (cases "p = (x, gpre @ (T y) # gsuf)")
case True
then show ?thesis unfolding leftmostLookaheads_def
using Cons.prems(2) gpre_nullable_leftmost_lk_some by fastforce
next
case False
then show ?thesis using Cons by (auto simp add: in_leftmostLookaheads_cons)
qed
qed
lemma in_firstGamma_in_leftmost_lks':
assumes "(x, gpre @ gsuf) ∈ set ps" "all_pairs_are_first_candidates fi ps" "all_nt gpre"
shows "la ∈ set (firstGamma gsuf nu fi) ⟹ la ∈ leftmostLookaheads ps"
using assms
proof (induction gsuf arbitrary: gpre)
case Nil
then show ?case by auto
next
case (Cons y gsuf)
consider (T) a where "y = T a" | (NT_nullable) a where "y = NT a" and "nullableSym y nu"
| (NT_not_nullable) a where "y = NT a" and "¬ nullableSym y nu" by (cases y; auto)
then show ?case
proof cases
case T
then show ?thesis using Cons.prems by (auto intro: gpre_nullable_in_leftmost_lks)
next
case (NT_nullable a)
then consider (in_findOrEmpty) "la ∈ set (findOrEmpty a fi)"
| (in_firstGamma) "la ∈ set (firstGamma gsuf nu fi)"
using Cons.prems(1) by fastforce
then show ?thesis
proof cases
case in_findOrEmpty
then have "(a, la) ∈ pairsOf fi" unfolding findOrEmpty_def
using fmdom_notD in_findOrEmpty pairsOf_def by fastforce
then show ?thesis using Cons.prems(3) unfolding all_pairs_are_first_candidates_def by auto
next
case in_firstGamma
then show ?thesis using Cons.prems(2,3,4) by
(auto intro: Cons.IH[of "gpre @ [y]"] simp add: all_nt_def NT_nullable)
qed
next
case NT_not_nullable
then have "(a, la) ∈ pairsOf fi" using Cons.prems(1) unfolding pairsOf_def by
(cases "fmlookup fi a"; auto intro: fmdomI simp add: NT_not_nullable findOrEmpty_def)
then show ?thesis using Cons.prems(3) unfolding all_pairs_are_first_candidates_def by auto
qed
qed
lemma in_firstGamma_in_leftmost_lks: "(x, gamma) ∈ set ps ⟹ all_pairs_are_first_candidates fi ps
⟹ la ∈ set (firstGamma gamma nu fi) ⟹ la ∈ leftmostLookaheads ps"
by (auto intro: in_firstGamma_in_leftmost_lks'[of x "[]" gamma] simp add: all_nt_def)
lemma updateFi_cases:
fixes nu and x :: 'n and gamma :: "('n, 't) rhs" and fi
defines "fg ≡ firstGamma gamma nu fi"
defines "xFirst ≡ findOrEmpty x fi"
defines "xFirst' ≡ xFirst @@ fg"
obtains (unchanged) "xFirst' = xFirst" "updateFi nu (x, gamma) fi = fi"
| (empty) "fg = []" "updateFi nu (x, gamma) fi = fi"
| (new) la where "xFirst' ≠ xFirst ⟹ la ∈ set fg ⟹ la ∉ set xFirst
⟹ updateFi nu (x, gamma) fi = fmupd x xFirst' fi"
unfolding updateFi_def fg_def[symmetric] xFirst_def[symmetric] xFirst'_def[symmetric]
by atomize_elim (auto split: if_split_asm simp: Let_def xFirst'_def fg_def xFirst_def)
lemma firstPass_induct:
fixes ps :: "('n, 't) prods"
and nu :: "'n set"
and fi :: "('n, 't) first_map"
and P :: "('n, 't) prods ⇒ 'n set ⇒ ('n, 't) first_map ⇒ bool"
assumes Nil: "P [] nu fi"
and Cons_changed: "⋀p ps'. (P ps' nu fi ⟹ fi ≠ firstPass ps' nu fi ⟹ P (p # ps') nu fi)"
and Cons_same: "⋀p ps'. (P ps' nu fi ⟹ fi = firstPass ps' nu fi ⟹ P (p # ps') nu fi)"
shows "P (ps :: ('n, 't) prods) nu fi"
using Nil Cons_changed Cons_same
by -(rule list.induct[where ?P = "λls. P ls nu fi"]; blast)
lemma in_findOrEmpty_iff_in_pairsOf: "la ∈ set (findOrEmpty x fi) ⟷ (x, la) ∈ pairsOf fi"
unfolding findOrEmpty_def pairsOf_def using fmdom_notD by fastforce
lemma in_pairsOf_exists: "(x, la) ∈ pairsOf fi ⟷ (∃s. fmlookup fi x = Some s ∧ la ∈ set s)"
unfolding pairsOf_def findOrEmpty_def using fmlookup_dom_iff by fastforce
lemma in_findOrEmpty_exists_set:
"la ∈ set (findOrEmpty x m) ⟷ (∃s. fmlookup m x = Some s ∧ la ∈ set s)"
using in_findOrEmpty_iff_in_pairsOf in_pairsOf_exists by fast
lemma in_add_value: "(x, la) ∈ pairsOf (fmupd x s fi) ⟷ la ∈ set s"
by (simp add: in_pairsOf_exists)
lemma firstPass_Nil[simp]: "firstPass [] x y = y"
unfolding firstPass_def by simp
text‹Lemma for the simplification of \<^term>‹firstPass›.
In general, one function call should be unfolded
instead of replacing it with its definition with \<^term>‹foldr›.›
lemma firstPass_cons[simp]: "firstPass (a # ps) nu fi = updateFi nu a (firstPass ps nu fi)"
by (simp add: firstPass_def)
lemma unfold_updateFi: "updateFi nu (x, gamma) fi =
(if findOrEmpty x fi @@ firstGamma gamma nu fi = findOrEmpty x fi
∨ findOrEmpty x fi @@ firstGamma gamma nu fi = []
then fi else fmupd x (findOrEmpty x fi @@ firstGamma gamma nu fi) fi)"
by (auto simp add: updateFi_def Let_def list_union_def)
lemma in_add_keys: "la ∈ set s ⟷ (x, la) ∈ pairsOf (fmupd x s fi)"
by (simp add: in_findOrEmpty_iff_in_pairsOf[symmetric] findOrEmpty_def)
lemma in_add_keys_neq: "x ≠ y ⟹ (y, la) ∈ pairsOf fi ⟷ (y, la) ∈ pairsOf (fmupd x s fi)"
by (simp add: findOrEmpty_def pairsOf_def)
lemma updateFi_subset: "pairsOf fi ⊆ pairsOf (updateFi nu p fi)"
proof (rule subrelI)
fix y la
assume A: "(y, la) ∈ pairsOf fi"
obtain x gamma where p_def: "p = (x, gamma)" by (cases p)
then consider "updateFi nu (x, gamma) fi = fi"
| "x = y" "updateFi nu (x, gamma) fi = fmupd x (findOrEmpty x fi @@ firstGamma gamma nu fi) fi"
| "x ≠ y" "updateFi nu (x, gamma) fi = fmupd x (findOrEmpty x fi @@ firstGamma gamma nu fi) fi"
using unfold_updateFi by metis
then show "(y, la) ∈ pairsOf (updateFi nu p fi)"
proof (cases)
case 1
then show ?thesis using p_def A by simp
next
case 2
then show ?thesis
by (simp add: A in_add_value in_findOrEmpty_iff_in_pairsOf p_def list_union_def)
next
case 3
then show ?thesis
by (metis A in_add_keys_neq p_def)
qed
qed
lemma firstPass_cons_subset: "pairsOf (firstPass ps nu fi) ⊆ pairsOf (firstPass (p # ps) nu fi)"
using updateFi_subset by (cases p, simp, blast)
lemma firstPass_mono: "pairsOf (firstPass ps nu fi) ⊆ pairsOf (firstPass (qs @ ps) nu fi)"
by (induction qs arbitrary: ps) (simp, metis append_Cons firstPass_cons_subset subsetD subsetI)
lemma firstPass_subset: "pairsOf fi ⊆ pairsOf (firstPass ps nu fi)"
using firstPass_cons_subset by (induction ps; simp add: firstPass_def; blast)
lemma firstPass_empty_set:
"fmlookup (firstPass ps nu fi) x = Some [] ⟹ fmlookup fi x = Some []"
proof (induction ps)
case Nil
then show ?case by simp
next
case (Cons p ps)
then show ?case using Cons by (cases p) (auto simp add: unfold_updateFi split: if_split_asm)
qed
lemma firstPass_None: "fmlookup (firstPass ps nu fi) x = None ⟹ fmlookup fi x = None"
proof (induction ps)
case Nil
then show ?case by simp
next
case (Cons p ps)
then show ?case using Cons by (cases p) (auto simp add: unfold_updateFi split: if_split_asm)
qed
lemma firstPass_neq_findOrEmpty:
assumes "fmlookup fi x ≠ fmlookup (firstPass ps nu fi) x"
shows "findOrEmpty x fi ≠ findOrEmpty x (firstPass ps nu fi)"
proof (cases "fmlookup (firstPass ps nu fi) x")
case None
then have "fmlookup fi x = None" by (auto intro: firstPass_None)
then show ?thesis using None assms by auto
next
case (Some xSet)
then have "xSet ≠ []" using firstPass_empty_set assms by fastforce
then show ?thesis
using assms
by (auto simp add: Some findOrEmpty_def split: option.splits)
qed
text‹Injectivity of \<^term>‹pairsOf››
lemma firstPass_only_appends: "∃suf. findOrEmpty x (firstPass ps nu fi) = findOrEmpty x fi @ suf"
unfolding firstPass_def
proof (induction ps)
case Nil
then show ?case by auto
next
case (Cons p ps)
obtain y gamma where p_def: "p = (y, gamma)" by (cases p)
let ?fg = "firstGamma gamma nu (foldr (updateFi nu) ps fi)"
let ?xFirst = "findOrEmpty y (foldr (updateFi nu) ps fi)"
let ?xFirst' = "?xFirst @@ ?fg"
show ?case
proof (cases "?xFirst' = ?xFirst ∨ ?fg = []")
case True
then show ?thesis using p_def Cons by (auto simp add: updateFi_def)
next
case False
note outerFalse = this
have "findOrEmpty x (foldr (updateFi nu) (p # ps) fi)
= findOrEmpty x (fmupd y ?xFirst' (foldr (updateFi nu) ps fi))"
using p_def False by (auto simp add: updateFi_def)
then show ?thesis using Cons by (cases "x = y") (auto simp add: list_union_def findOrEmpty_def)
qed
qed
lemma firstPass_suf_distinct: "findOrEmpty x (firstPass ps nu fi) = findOrEmpty x fi @ suf
⟹ suf ≠ [] ⟹ la ∈ set suf ⟹ la ∉ set (findOrEmpty x fi)"
proof (induction ps arbitrary: x fi suf)
case Nil
then show ?case by auto
next
case (Cons p ps)
obtain y gamma where p_def: "p = (y, gamma)" by (cases p)
let ?fg = "firstGamma gamma nu (foldr (updateFi nu) ps fi)"
let ?xFirst = "findOrEmpty y (foldr (updateFi nu) ps fi)"
let ?xFirst' = "?xFirst @@ ?fg"
show ?case
proof (cases "?xFirst' = ?xFirst ∨ ?fg = []")
case True
then show ?thesis
using Cons.IH Cons.prems(1-3) p_def
by (simp add: firstPass_def updateFi_def)
next
case False
obtain suf' where suf'_def: "findOrEmpty x (firstPass ps nu fi) = findOrEmpty x fi @ suf'"
by (meson firstPass_only_appends)
then show ?thesis
proof (cases "x = y")
case True
then have "findOrEmpty x (firstPass (p # ps) nu fi) = ?xFirst'"
using False p_def
by (simp add: findOrEmpty_def firstPass_def updateFi_def)
then have "findOrEmpty x fi @ suf
= (findOrEmpty x fi @ suf') @@ firstGamma gamma nu (firstPass ps nu fi)"
using Cons.prems(1) suf'_def True
by (auto simp add: firstPass_def)
then show ?thesis unfolding list_union_def using Cons suf'_def by force
next
case False
then have "findOrEmpty x (firstPass (p # ps) nu fi) = findOrEmpty x (firstPass ps nu fi)"
using p_def by (auto simp add: findOrEmpty_def updateFi_def Let_def)
then show ?thesis using Cons by auto
qed
qed
qed
lemma pairsOf_inj: "fi ≠ firstPass ps nu fi ⟹ pairsOf fi ≠ pairsOf (firstPass ps nu fi)"
proof -
assume "fi ≠ firstPass ps nu fi"
then obtain y where y_diff: "findOrEmpty y fi ≠ findOrEmpty y (firstPass ps nu fi)"
using firstPass_neq_findOrEmpty
by (metis fmap_ext)
obtain suf where suf_def: "findOrEmpty y (firstPass ps nu fi) = findOrEmpty y fi @ suf"
and "suf ≠ []"
using firstPass_only_appends y_diff by force
then obtain la where "la ∈ set suf" and "la ∉ set (findOrEmpty y fi)"
by (meson firstPass_suf_distinct last_in_set suf_def)
then show ?thesis
using in_findOrEmpty_iff_in_pairsOf suf_def
by fastforce
qed
lemma firstPass_not_equiv_subset:
"fi ≠ firstPass ps nu fi ⟹ pairsOf fi ⊂ pairsOf (firstPass ps nu fi)"
using pairsOf_inj firstPass_subset by blast
lemma firstPass_subset_lhs_lks: "all_pairs_are_first_candidates (firstPass ps nu fi) ps
⟹ pairsOf (firstPass ps nu fi) ⊆ lhSet ps × leftmostLookaheads ps ∪ pairsOf fi"
proof (induction ps)
case Nil
then show ?case by simp
next
case (Cons p ps)
obtain x gamma where "p = (x, gamma)" by fastforce
from Cons.prems have "all_pairs_are_first_candidates (firstPass ps nu fi) (p # ps)"
unfolding all_pairs_are_first_candidates_def using firstPass_cons_subset by blast
then have "set (firstGamma gamma nu (firstPass ps nu fi)) ⊆ leftmostLookaheads (p # ps)"
by (auto intro: in_firstGamma_in_leftmost_lks simp add: ‹p = (x, gamma)›)
then show ?case using Cons.prems all_pairs_are_first_candidates_def by fastforce
qed
lemma finite_leftmostLookaheads: "finite (leftmostLookaheads ps)"
unfolding leftmostLookaheads_def by auto
lemma firstPass_not_equiv_candidates_lt: "all_pairs_are_first_candidates (firstPass ps nu fi) ps
⟹ fi ≠ (firstPass ps nu fi)
⟹ countFirstCands ps (firstPass ps nu fi) < countFirstCands ps fi"
proof -
assume A1: "all_pairs_are_first_candidates (firstPass ps nu fi) ps"
and A2: "fi ≠ (firstPass ps nu fi)"
have "finite (lhSet ps × leftmostLookaheads ps)"
by (simp add: finite_leftmostLookaheads lhSet_def)
moreover have "lhSet ps × leftmostLookaheads ps - pairsOf (firstPass ps nu fi)
⊂ lhSet ps × leftmostLookaheads ps - pairsOf fi"
using firstPass_not_equiv_subset firstPass_subset_lhs_lks A1 A2 by fastforce
ultimately have "card (lhSet ps × leftmostLookaheads ps - pairsOf (firstPass ps nu fi))
< card (lhSet ps × leftmostLookaheads ps - pairsOf fi)"
by (auto intro: psubset_card_mono)
then show "countFirstCands ps (firstPass ps nu fi) < countFirstCands ps fi"
unfolding countFirstCands_def by simp
qed
lemma firstPass_preserves_apac': "all_pairs_are_first_candidates fi (ps1 @ ps2)
⟹ all_pairs_are_first_candidates (firstPass ps2 nu fi) (ps1 @ ps2)"
proof (induction ps2 arbitrary: ps1)
case Nil
then show ?case unfolding all_pairs_are_first_candidates_def by (simp add: firstPass_def)
next
case (Cons p ps2')
obtain x gamma where p_def: "p = (x, gamma)" by fastforce
then show ?case using Cons.IH[of "ps1 @ [p]"] Cons.prems
proof (cases rule:
updateFi_cases[where x = x and nu = nu and gamma = gamma and fi = "firstPass ps2' nu fi"])
case (new la)
then have "x' ∈ lhSet (ps1 @ p # ps2') ∧ la' ∈ leftmostLookaheads (ps1 @ p # ps2')"
if "(x', la') ∈ pairsOf (firstPass (p # ps2') nu fi)" for x' la'
proof -
from that consider "x = x'" and "la' ∈ set (findOrEmpty x (firstPass ps2' nu fi))"
| "x = x'" and "la' ∈ set (firstGamma gamma nu (firstPass ps2' nu fi))"
| "(x', la') ∈ pairsOf (firstPass ps2' nu fi)"
unfolding p_def
using firstPass_cons[of "(x, gamma)" ps2' nu fi] unfold_updateFi[of nu x gamma]
in_add_keys in_add_keys_neq in_atleast1_list
by metis
then show ?thesis using Cons.prems Cons.IH[of "ps1 @ [p]"]
by (cases, auto intro: in_firstGamma_in_leftmost_lks
simp: lhSet_def p_def all_pairs_are_first_candidates_def in_findOrEmpty_iff_in_pairsOf)
qed
then show ?thesis by (simp add: all_pairs_are_first_candidates_def)
qed (auto simp add: p_def)
qed
lemma firstPass_preserves_apac:
"all_pairs_are_first_candidates fi ps ⟹ all_pairs_are_first_candidates (firstPass ps nu fi) ps"
using firstPass_preserves_apac'[of fi "[]" ps] by auto
text‹Termination proof for \<^term>‹mkFirstMap'› given that \<^term>‹all_pairs_are_first_candidates›
holds for the first call and therefore also for every following iteration.›
lemma mkFirstMap'_dom_if_apac:
"mkFirstMap' ps nu fi ≠ None" if "all_pairs_are_first_candidates fi ps"
using that
proof (induction "(ps, nu, fi)" arbitrary: fi
rule: measure_induct_rule[where f = "λ(ps, nu, fi). countFirstCands ps fi"])
case (less fi)
have "fi ≠ firstPass ps nu fi ⟹ countFirstCands ps (firstPass ps nu fi) < countFirstCands ps fi"
using less.prems by (simp add: firstPass_not_equiv_candidates_lt firstPass_preserves_apac)
moreover have "fi ≠ firstPass ps nu fi ⟹ all_pairs_are_first_candidates (firstPass ps nu fi) ps"
using less.prems by (rule firstPass_preserves_apac)
ultimately have F: "fi ≠ firstPass ps nu fi ⟹ mkFirstMap' ps nu (firstPass ps nu fi) ≠ None" by
(simp add: less.hyps)
then show ?case
proof (cases "fi ≠ firstPass ps nu fi")
case True
then show ?thesis using F by (simp add: mkFirstMap'.simps[of ps nu fi])
next
case False
then show ?thesis by (simp add: mkFirstMap'.simps[of ps nu fi])
qed
qed
lemma empty_fi_apac: "all_pairs_are_first_candidates fmempty ps"
unfolding all_pairs_are_first_candidates_def pairsOf_def by auto
lemma mkFirstMap_simp: "mkFirstMap g nu ≡ (let fi' = firstPass (prods g) nu fmempty in
(if fmempty = fi' then fmempty else the (mkFirstMap' (prods g) nu fi')))"
unfolding mkFirstMap_def
by (smt (verit, del_insts) mkFirstMap'.simps option.sel)
subsection ‹Correctness Definitions›
definition first_map_sound :: "('n, 't) first_map ⇒ ('n, 't) grammar ⇒ bool" where
"first_map_sound fi g =
(∀x la xFirst. fmlookup fi x = Some xFirst ∧ la ∈ set xFirst ⟶ first_sym g la (NT x))"
definition first_map_complete :: "('n, 't) first_map ⇒ ('n, 't) grammar ⇒ bool" where
"first_map_complete fi g = (∀la s x. first_sym g la s
∧ s = (NT x) ⟶ (∃xFirst. fmlookup fi x = Some xFirst ∧ la ∈ set xFirst))"
abbreviation first_map_for :: "('n, 't) first_map ⇒ ('n, 't) grammar ⇒ bool" where
"first_map_for fi g ≡ first_map_sound fi g ∧ first_map_complete fi g"
subsection ‹Soundness›
lemma firstSym_first_sym: assumes "first_map_sound fi g" and "la ∈ set (firstSym s fi)"
shows "first_sym g la s"
proof (cases s)
case (NT x)
then show ?thesis using assms first_map_sound_def in_findOrEmpty_exists_set by fastforce
next
case (T x)
then show ?thesis using assms(2) FirstT by fastforce
qed
lemma nullable_app: "nullable_gamma g xs ⟹ nullable_gamma g ys ⟹ nullable_gamma g (xs @ ys)"
by (induction xs; force elim: nullable_gamma.cases intro: NullableCons)
lemma nullableSym_nullable_sym: assumes "nullable_set_for nu g"
shows "nullableSym s nu ⟷ nullable_sym g s"
proof (cases s)
case (NT x1)
then show ?thesis using assms nullable_set_sound_def nullable_set_complete_def by fastforce
next
case (T x2)
then show ?thesis by (simp add: nullable_sym.simps)
qed
lemma firstGamma_first_sym': "nullable_set_for nu g ⟹ first_map_sound fi g
⟹ (x, gpre @ gsuf) ∈ set (prods g) ⟹ nullable_gamma g gpre
⟹ la ∈ set (firstGamma gsuf nu fi) ⟹ first_sym g la (NT x)"
proof (induction gsuf arbitrary: gpre)
case Nil
then show ?case by auto
next
case (Cons s syms)
then show ?case
proof (cases "nullableSym s nu")
case True
consider (la_in_firstSym) "la ∈ set (firstSym s fi)"
| (la_in_firstGamma) "la ∈ set (firstGamma syms nu fi)"
using Cons.prems(5) True by auto
then show ?thesis
proof (cases)
case la_in_firstSym
then show ?thesis using Cons.prems(2,3,4) FirstNT firstSym_first_sym by fast
next
case la_in_firstGamma
have "(x, (gpre @ [s]) @ syms) ∈ set (prods g)" using Cons.prems(3) by auto
moreover have "nullable_gamma g (gpre @ [s])"
proof (rule nullable_app)
show "nullable_gamma g gpre" by (simp add: Cons.prems(4))
next
have "nullable_sym g s" using Cons.prems(1) True nullableSym_nullable_sym by auto
then show "nullable_gamma g [s]" by - (rule NullableCons, auto simp add: NullableNil)
qed
moreover have "la ∈ set (firstGamma syms nu fi)" by (simp add: la_in_firstGamma)
ultimately show ?thesis using Cons.prems(1,2) by - (rule Cons.IH[where gpre = "gpre @ [s]"])
qed
next
case False
then show ?thesis using firstSym_first_sym Cons.prems(2,3,4,5) FirstNT by fastforce
qed
qed
lemma firstGamma_first_sym: "nullable_set_for nu g ⟹ first_map_sound fi g
⟹ (x, gamma) ∈ set (prods g) ⟹ la ∈ set (firstGamma gamma nu fi) ⟹ first_sym g la (NT x)"
using NullableNil append.left_neutral firstGamma_first_sym' by force
lemma firstPass_preserves_soundness': "nullable_set_for nu g ⟹ first_map_sound fi g
⟹ set ps ⊆ set (prods g) ⟹ first_map_sound (firstPass ps nu fi) g"
proof (induction ps)
case Nil
then show ?case by (simp add: firstPass_def)
next
case (Cons a suf)
obtain x gamma where "a = (x, gamma)" by fastforce
let ?fi' = "firstPass suf nu fi"
let ?fg = "firstGamma gamma nu ?fi'"
let ?xFirst = "findOrEmpty x ?fi'"
let ?xFirst' = "?xFirst @@ ?fg"
have fi'_sound: "first_map_sound ?fi' g" using Cons by auto
show ?case
proof (cases "?xFirst = ?xFirst'")
case True
then show ?thesis using ‹a = (x, gamma)› True fi'_sound by (auto simp add: unfold_updateFi)
next
case False
have "fmlookup (fmupd x (?xFirst @@ ?xFirst') ?fi') y = Some yFirst ⟹ la ∈ set yFirst
⟹ first_sym g la (NT y)" for y yFirst la
proof (cases "x = y")
case True
assume "fmlookup (fmupd x (?xFirst @@ ?xFirst') ?fi') y = Some yFirst" "la ∈ set yFirst"
then consider (la_in_xFirst) "la ∈ set ?xFirst" | (la_in_fg) "la ∈ set ?fg"
using ‹la ∈ set yFirst› True
by auto
then show ?thesis
proof (cases)
case la_in_xFirst
then have "la ∈ set (firstSym (NT y) ?fi')" using True by auto
then show ?thesis by - (rule firstSym_first_sym, auto simp add: fi'_sound)
next
case la_in_fg
have "(y, gamma) ∈ set (prods g)" using Cons.prems(3) True ‹a = (x, gamma)› by auto
then show ?thesis using fi'_sound Cons.prems(1) la_in_fg by
- (rule firstGamma_first_sym[of nu g ?fi' y gamma], auto)
qed
next
case False
assume "fmlookup (fmupd x (?xFirst @@ ?xFirst') ?fi') y = Some yFirst" "la ∈ set yFirst"
then have "fmlookup ?fi' y = Some yFirst" by (simp add: False)
then show ?thesis using ‹la ∈ set yFirst› fi'_sound first_map_sound_def by fastforce
qed
then have "first_map_sound (fmupd x ?xFirst' ?fi') g" unfolding first_map_sound_def by auto
then show ?thesis using ‹a = (x, gamma)› False fi'_sound by (auto simp add: unfold_updateFi)
qed
qed
lemma firstPass_preserves_soundness: "nullable_set_for nu g ⟹ first_map_sound fi g
⟹ first_map_sound (firstPass (prods g) nu fi) g"
by (simp add: firstPass_preserves_soundness')
lemma mkFirstMap'_preserves_soundness: "nullable_set_for nu g ⟹ first_map_sound fi g
⟹ all_pairs_are_first_candidates fi (prods g)
⟹ first_map_sound (the (mkFirstMap' (prods g) nu fi)) g"
proof (induction "countFirstCands (prods g) fi" arbitrary: fi rule: less_induct)
case less
let ?fi' = "firstPass (prods g) nu fi"
obtain fi'' where fi''_def: "mkFirstMap' (prods g) nu ?fi' = Some fi''"
using firstPass_preserves_apac[of fi "prods g" nu] less.prems(3)
mkFirstMap'_dom_if_apac[of "firstPass (prods g) nu fi"] by auto
moreover have "first_map_sound (if fi = ?fi' then fi else fi'') g"
proof (cases "fi = ?fi'")
case True
then show ?thesis using less.prems(2) by auto
next
case False
have "countFirstCands (prods g) ?fi' < countFirstCands (prods g) fi" using less.prems(3) False
by (simp add: firstPass_not_equiv_candidates_lt firstPass_preserves_apac)
moreover have "first_map_sound ?fi' g" using less.prems by
- (rule firstPass_preserves_soundness, auto)
ultimately show ?thesis using firstPass_preserves_apac less fi''_def by fastforce
qed
ultimately show ?case by (auto simp add: mkFirstMap'.simps Let_def)
qed
lemma empty_fi_sound: "first_map_sound fmempty g"
unfolding first_map_sound_def by auto
theorem mkFirstMap_sound: "nullable_set_for nu g ⟹ first_map_sound (mkFirstMap g nu) g"
unfolding mkFirstMap_def
by (simp add: empty_fi_sound mkFirstMap'_preserves_soundness empty_fi_apac)
subsection ‹Completeness›
lemma la_in_firstGamma_t: "nullable_set_for nu g ⟹ nullable_gamma g gpre
⟹ LA y ∈ set (firstGamma (gpre @ T y # gsuf) nu fi)"
proof (induction gpre)
case Nil
then show ?case by simp
next
case (Cons s gpre)
from Cons.prems(2) have "nullable_sym g s" by (cases) auto
then have "nullableSym s nu" using Cons.prems(1) nullableSym_nullable_sym by blast
from Cons.prems(2) have "nullable_gamma g gpre" by (cases) simp
then have "LA y ∈ set (firstGamma (gpre @ T y # gsuf) nu fi)" using Cons.IH Cons.prems(1) by auto
then show ?case using ‹nullableSym s nu› by auto
qed
lemma la_in_firstGamma_nt: "nullable_set_for nu g ⟹ nullable_gamma g gpre
⟹ fmlookup fi x = Some xFirst ⟹ la ∈ set xFirst
⟹ la ∈ set (firstGamma (gpre @ NT x # gsuf) nu fi)"
proof (induction gpre)
case Nil
then show ?case by (simp add: findOrEmpty_def)
next
case (Cons s gpre)
from Cons.prems(2) have "nullable_sym g s" by (cases) auto
then have "nullableSym s nu" using Cons.prems(1) nullableSym_nullable_sym by blast
from Cons.prems(2) have "nullable_gamma g gpre" by (cases) simp
then have "la ∈ set (firstGamma (gpre @ NT x # gsuf) nu fi)"
using Cons.IH Cons.prems(1,3,4) by blast
then show ?case using ‹nullableSym s nu› by auto
qed
lemma firstPass_preserves_key_value_subset: "fmlookup fi x = Some xFirst
⟹ ∃xFirst'. fmlookup (firstPass ps nu fi) x = Some xFirst' ∧ set xFirst ⊆ set xFirst'"
proof (induction ps arbitrary: x)
case Nil
then show ?case unfolding firstPass_def by auto
next
case (Cons p ps)
then obtain y gamma where "p = (y, gamma)" by fastforce
let ?fi' = "firstPass ps nu fi"
let ?fg = "firstGamma gamma nu ?fi'"
let ?yFirst = "findOrEmpty y ?fi'"
let ?yFirst' = "?yFirst @@ ?fg"
obtain xFirst' where "fmlookup ?fi' x = Some xFirst'" and "set xFirst ⊆ set xFirst'"
using Cons by auto
show ?case
proof (cases "?yFirst = ?yFirst'")
case True
then have "fmlookup (firstPass (p # ps) nu fi) x = fmlookup ?fi' x" by
(simp add: ‹p = (y, gamma)› unfold_updateFi)
then show ?thesis using ‹fmlookup ?fi' x = Some xFirst'› ‹set xFirst ⊆ set xFirst'› by simp
next
case False
show ?thesis
proof (cases "x = y")
case True
then have "fmlookup (firstPass (p # ps) nu fi) x = Some ?yFirst'" using False by
(auto simp add: ‹p = (y, gamma)› unfold_updateFi list_union_def)
moreover have "set xFirst' ⊆ set ?yFirst'"
using True ‹fmlookup ?fi' x = Some xFirst'› findOrEmpty_def in_findOrEmpty_exists_set
by fastforce
ultimately show ?thesis using ‹set xFirst ⊆ set xFirst'› by blast
next
case False
then have "fmlookup (firstPass (p # ps) nu fi) x = fmlookup ?fi' x"
by (simp add: ‹p = (y, gamma)› unfold_updateFi)
then show ?thesis using ‹fmlookup ?fi' x = Some xFirst'› ‹set xFirst ⊆ set xFirst'› by simp
qed
qed
qed
lemma firstPass_equiv_cons_tl: assumes "fi = firstPass (p # ps) nu fi"
shows "fi = firstPass ps nu fi"
proof-
obtain x gamma where "p = (x, gamma)" by fastforce
let ?fi' = "firstPass ps nu fi"
let ?fg = "firstGamma gamma nu ?fi'"
let ?xFirst = "findOrEmpty x ?fi'"
let ?xFirst' = "?xFirst @@ ?fg"
show "fi = firstPass ps nu fi"
proof (cases "?xFirst = ?xFirst'")
case True
then show ?thesis using True assms by (auto simp add: ‹p = (x, gamma)› unfold_updateFi)
next
case False
show ?thesis
proof -
have "fi = fmupd x ?xFirst' ?fi'" using False assms by
(simp add: ‹p = (x, gamma)› unfold_updateFi list_union_def split: if_splits)
then have "fmlookup fi x = Some ?xFirst'" by (metis fmupd_lookup)
have "firstPass ps nu fi = fi"
by (metis assms firstPass_cons_subset firstPass_subset pairsOf_inj subset_antisym)
then have "firstGamma gamma nu (firstPass ps nu fi) = []"
using ‹fmlookup fi x = Some ?xFirst'› False
unfolding findOrEmpty_def by (auto split: option.splits)
moreover have "firstGamma gamma nu (firstPass ps nu fi) ≠ []"
by (metis False append_self_conv empty_iff filter_True list.set(1) list_union_def)
ultimately show "fi = firstPass ps nu fi" by auto
qed
qed
qed
lemma firstPass_equiv_right_t': "(lx, gpre @ (T y) # gsuf) ∈ set psuf ⟹ nullable_set_for nu g
⟹ nullable_gamma g gpre ⟹ fi = firstPass psuf nu fi ⟹ prods g = ppre @ psuf
⟹ (∃lxFirst. fmlookup fi lx = Some lxFirst ∧ (LA y) ∈ set lxFirst)"
proof (induction psuf arbitrary: ppre)
case Nil
then show ?case by auto
next
case (Cons p psuf)
obtain lx' gamma where "p = (lx', gamma)" by fastforce
from Cons.prems(1) consider (prod_is_p) "(lx, gpre @ T y # gsuf) = p"
| (prod_in_psuf) "(lx, gpre @ T y # gsuf) ∈ set psuf" by auto
then show ?case
proof (cases)
case prod_is_p
let ?fi' = "firstPass psuf nu fi"
let ?fg = "firstGamma (gpre @ T y # gsuf) nu ?fi'"
let ?lxFirst = "findOrEmpty lx ?fi'"
let ?lxFirst' = "?lxFirst @@ ?fg"
from Cons.prems(4) have " fi = firstPass ((lx, gpre @ T y # gsuf) # psuf) nu fi"
using prod_is_p by blast
then consider (same) "?lxFirst = ?lxFirst'" "fi = firstPass psuf nu fi"
| (new) "?lxFirst ≠ ?lxFirst'" "fi = fmupd lx ?lxFirst' ?fi'"
by (metis Nil_is_append_conv firstPass_cons list_union_def unfold_updateFi)
then show ?thesis
proof (cases)
case same
have "LA y ∈ set ?fg" using Cons.prems(2,3) by - (rule la_in_firstGamma_t, auto)
then have "LA y ∈ set ?lxFirst" using same(1) by (auto intro: mem_list_union)
then have "LA y ∈ set (findOrEmpty lx fi)" using same(2) by auto
then show ?thesis by (simp add: in_findOrEmpty_exists_set)
next
case new
from new(2) obtain lxFirst where "fmlookup fi lx = Some lxFirst" and "?lxFirst' = lxFirst" by
(metis fmupd_lookup)
then have "LA y ∈ set lxFirst" using la_in_firstGamma_t Cons.prems(2,3) by fastforce
then show ?thesis using ‹fmlookup fi lx = Some lxFirst› by simp
qed
next
case prod_in_psuf
then have "(lx, gpre @ T y # gsuf) ∈ set psuf" by auto
moreover have "fi = firstPass psuf nu fi" using Cons.prems(4) firstPass_equiv_cons_tl by blast
moreover have "prods g = (ppre @ [p]) @ psuf" by (simp add: Cons.prems(5))
ultimately show ?thesis using Cons.prems(2,3) by
- (rule Cons.IH[where ppre = "ppre @ [p]"], auto)
qed
qed
lemma firstPass_equiv_right_t: "(lx, gpre @ (T y) # gsuf) ∈ set (prods g) ⟹ nullable_set_for nu g
⟹ nullable_gamma g gpre ⟹ fi = firstPass (prods g) nu fi
⟹ ∃lxFirst. fmlookup fi lx = Some lxFirst ∧ LA y ∈ set lxFirst"
by (simp add: firstPass_equiv_right_t')
lemma firstPass_equiv_right_nt': "nullable_set_for nu g ⟹ fi = firstPass psuf nu fi
⟹ (lx, gpre @ (NT rx) # gsuf) ∈ set psuf ⟹ nullable_gamma g gpre
⟹ fmlookup fi rx = Some rxFirst ⟹ la ∈ set rxFirst ⟹ ppre @ psuf = (prods g)
⟹ ∃lxFirst. fmlookup fi lx = Some lxFirst ∧ la ∈ set lxFirst"
proof (induction psuf arbitrary: ppre)
case Nil
then show ?case by auto
next
case (Cons p psuf)
obtain lx' gamma where "p = (lx', gamma)" by fastforce
from Cons.prems(1) consider (prod_is_p) "(lx, gpre @ NT rx # gsuf) = p"
| (prod_in_psuf) "(lx, gpre @ NT rx # gsuf) ∈ set psuf" using Cons.prems(3) by auto
then show ?case
proof (cases)
case prod_is_p
let ?fi' = "firstPass psuf nu fi"
let ?fg = "firstGamma (gpre @ NT rx # gsuf) nu ?fi'"
let ?lxFirst = "findOrEmpty lx ?fi'"
let ?lxFirst' = "?lxFirst @@ ?fg"
from Cons.prems(2) have "fi = firstPass ((lx, gpre @ NT rx # gsuf) # psuf) nu fi"
using prod_is_p by blast
then consider (same) "?lxFirst = ?lxFirst'" "fi = firstPass psuf nu fi"
| (new) "?lxFirst ≠ ?lxFirst'" "fi = fmupd lx ?lxFirst' ?fi'"
using firstPass_cons la_in_firstGamma_nt[OF Cons.prems(1,4-6)]
unfold_updateFi[where gamma = "gpre @ NT rx # gsuf"]
unfolding list_union_def
by (auto split: if_splits)
then show ?thesis
proof (cases)
case same
then have "la ∈ set (findOrEmpty lx fi)" using Cons.prems(1,4,5,6) la_in_firstGamma_nt by
(metis mem_list_union)
then show ?thesis by (simp add: in_findOrEmpty_exists_set)
next
case new
have "la ∈ set ?lxFirst'"
proof (rule list_union_I2)
from Cons.prems(2) have "fi = firstPass psuf nu fi" by (rule firstPass_equiv_cons_tl)
then have "fmlookup (firstPass psuf nu fi) rx = Some rxFirst" using Cons.prems(5) by auto
then show "la ∈ set ?fg"
using Cons.prems(1,4,6) ‹fi = firstPass ((lx, gpre @ NT rx # gsuf) # psuf) nu fi›
by - (rule la_in_firstGamma_nt[where xFirst = "rxFirst"])
qed
then show ?thesis by (metis fmupd_lookup new(2))
qed
next
case prod_in_psuf
then have "(lx, gpre @ NT rx # gsuf) ∈ set psuf" by auto
moreover have "fi = firstPass psuf nu fi" using Cons.prems(2) firstPass_equiv_cons_tl by blast
moreover have "prods g = (ppre @ [p]) @ psuf" by (simp add: Cons.prems(7))
ultimately show ?thesis using Cons.prems(1,4,5,6,7) prod_in_psuf by
- (rule Cons.IH[where ppre = "ppre @ [p]"], auto)
qed
qed
lemma firstPass_equiv_right_nt: "nullable_set_for nu g ⟹ fi = firstPass (prods g) nu fi
⟹ (lx, gpre @ (NT rx) # gsuf) ∈ set (prods g) ⟹ nullable_gamma g gpre
⟹ fmlookup fi rx = Some rxFirst ⟹ la ∈ set rxFirst
⟹ ∃lxFirst. fmlookup fi lx = Some lxFirst ∧ la ∈ set lxFirst"
by (simp add: firstPass_equiv_right_nt')
lemma firstPass_equiv_complete: assumes "nullable_set_for nu g" "fi = firstPass (prods g) nu fi"
shows "first_map_complete fi g"
proof -
have "first_sym g la s
⟹ (∀x. s = NT x ⟶ (∃ xFirst. fmlookup fi x = Some xFirst ∧ la ∈ set xFirst))" for la s
proof (induction rule: first_sym.induct)
case (FirstT)
then show ?case by blast
next
case (FirstNT lx gpre s gsuf la)
then show ?case
proof (cases s)
case (NT rx)
then obtain rxFirst where "fmlookup fi rx = Some rxFirst ∧ la ∈ set rxFirst"
using FirstNT.IH by auto
then show ?thesis using FirstNT.hyps(1,2) NT assms firstPass_equiv_right_nt by fastforce
next
case (T y)
from FirstNT.hyps(3) have "la = LA y" by (cases) (auto simp add: T)
then show ?thesis using firstPass_equiv_right_t using FirstNT.hyps(1,2) T assms by fastforce
qed
qed
then show ?thesis by (simp add: first_map_complete_def)
qed
lemma mkFirstMap'_complete: "nullable_set_for nu g ⟹ all_pairs_are_first_candidates fi (prods g)
⟹ first_map_complete (the (mkFirstMap' (prods g) nu fi)) g"
proof (induction "countFirstCands (prods g) fi" arbitrary: fi rule: less_induct)
case less
let ?fi' = "firstPass (prods g) nu fi"
obtain fi' where fi'_def: "mkFirstMap' (prods g) nu ?fi' = Some fi'"
by (meson firstPass_preserves_apac less.prems(2) mkFirstMap'_dom_if_apac not_Some_eq)
moreover have "first_map_complete (if fi = ?fi' then fi else fi') g"
proof (cases "fi = ?fi'")
case True
then show ?thesis using firstPass_equiv_complete less.prems(1) by auto
next
case False
have "countFirstCands (prods g) ?fi' < countFirstCands (prods g) fi" by
(simp add: False firstPass_not_equiv_candidates_lt firstPass_preserves_apac less.prems(2))
moreover have "nullable_set_for nu g" by (simp add: less.prems(1))
moreover have "all_pairs_are_first_candidates ?fi' (prods g)" by
(simp add: firstPass_preserves_apac less.prems(2))
ultimately show ?thesis
using fi'_def less.hyps by force
qed
ultimately show ?case by (auto simp add: mkFirstMap'.simps Let_def)
qed
theorem mkFirstMap_complete: "nullable_set_for nu g ⟹ first_map_complete (mkFirstMap g nu) g"
unfolding mkFirstMap_def
using empty_fi_apac mkFirstMap'_complete by fastforce
theorem mkFirstMap_correct: "nullable_set_for nu g ⟹ first_map_for (mkFirstMap g nu) g"
using mkFirstMap_sound mkFirstMap_complete
by fastforce
declare mkFirstMap'.simps[code]
end