Theory Link_Algebra
section‹Link\_Algebra: Defining equivalence of tangles and links›
theory Link_Algebra
imports Tangles Tangle_Algebra Tangle_Moves
begin
inductive Tangle_Equivalence :: "wall ⇒ wall ⇒ bool" (infixl ‹~› 64)
where
refl [intro!, Pure.intro!, simp]: " a ~ a"
|equality [Pure.intro]: "linkrel a b ⟹ a ~ b"
|domain_compose:"(domain_wall a = 0)∧(is_tangle_diagram a) ⟹ a ~ ((basic [])∘a)"
|codomain_compose:"(codomain_wall a = 0) ∧ (is_tangle_diagram a) ⟹ a ~ (a ∘ (basic []))"
|compose_eq:"((B::wall) ~ D) ∧ ((A::wall) ~ C)
∧(is_tangle_diagram A)∧(is_tangle_diagram B)
∧(is_tangle_diagram C)∧(is_tangle_diagram D)
∧(domain_wall B)= (codomain_wall A)
∧(domain_wall D)= (codomain_wall C)
⟹((A::wall) ∘ B) ~ (C ∘ D)"
|trans: "A~B ⟹ B~C ⟹ A ~ C"
|sym:"A~ B ⟹ B ~A"
|tensor_eq: "((B::wall) ~ D) ∧ ((A::wall) ~ C) ∧(is_tangle_diagram A)∧(is_tangle_diagram B)
∧(is_tangle_diagram C)∧(is_tangle_diagram D) ⟹((A::wall) ⊗ B) ~ (C ⊗ D)"
inductive Framed_Tangle_Equivalence :: "wall ⇒ wall ⇒ bool" (infixl ‹~f› 64)
where
refl [intro!, Pure.intro!, simp]: " a ~f a"
|equality [Pure.intro]: "framed_linkrel a b ⟹ a ~f b"
|domain_compose:"(domain_wall a = 0) ∧ (is_tangle_diagram a) ⟹ a ~f ((basic [])∘a)"
|codomain_compose:"(codomain_wall a = 0) ∧ (is_tangle_diagram a) ⟹ a ~f (a ∘ (basic []))"
|compose_eq:"((B::wall) ~f D) ∧ ((A::wall) ~f C)
∧(is_tangle_diagram A)∧(is_tangle_diagram B)
∧(is_tangle_diagram C)∧(is_tangle_diagram D)
∧(domain_wall B)= (codomain_wall A)
∧(domain_wall D)= (codomain_wall C)
⟹((A::wall) ∘ B) ~f (C ∘ D)"
|trans: "A~fB ⟹ B~fC ⟹ A ~f C"
|sym:"A~f B ⟹ B ~fA"
|tensor_eq: "((B::wall) ~f D) ∧ ((A::wall) ~f C) ∧(is_tangle_diagram A)∧(is_tangle_diagram B)
∧(is_tangle_diagram C)∧(is_tangle_diagram D) ⟹((A::wall) ⊗ B) ~f (C ⊗ D)"
definition Tangle_Diagram_Equivalence::"Tangle_Diagram ⇒ Tangle_Diagram ⇒ bool"
(infixl ‹~T› 64)
where
"Tangle_Diagram_Equivalence T1 T2 ≡
(Rep_Tangle_Diagram T1) ~ (Rep_Tangle_Diagram T2)"
definition Link_Diagram_Equivalence::"Link_Diagram ⇒ Link_Diagram ⇒ bool"
(infixl ‹~L› 64)
where
"Link_Diagram_Equivalence T1 T2 ≡ (Rep_Link_Diagram T1) ~ (Rep_Link_Diagram T2)"
quotient_type Tangle = "Tangle_Diagram"/"Tangle_Diagram_Equivalence"
morphisms Rep_Tangles Abs_Tangles
proof (rule equivpI)
show "reflp Tangle_Diagram_Equivalence"
unfolding reflp_def Tangle_Diagram_Equivalence_def
Tangle_Equivalence.refl
by auto
show "symp Tangle_Diagram_Equivalence"
unfolding Tangle_Diagram_Equivalence_def symp_def
using Tangle_Diagram_Equivalence_def Tangle_Equivalence.sym
by auto
show "transp Tangle_Diagram_Equivalence"
unfolding Tangle_Diagram_Equivalence_def transp_def
using Tangle_Diagram_Equivalence_def Tangle_Equivalence.trans
by metis
qed
quotient_type Link = "Link_Diagram"/"Link_Diagram_Equivalence"
morphisms Rep_Links Abs_Links
proof (rule equivpI)
show "reflp Link_Diagram_Equivalence"
unfolding reflp_def Link_Diagram_Equivalence_def
Tangle_Equivalence.refl
by auto
show "symp Link_Diagram_Equivalence"
unfolding Link_Diagram_Equivalence_def symp_def
using Link_Diagram_Equivalence_def Tangle_Equivalence.sym
by auto
show "transp Link_Diagram_Equivalence"
unfolding Link_Diagram_Equivalence_def transp_def
using Link_Diagram_Equivalence_def Tangle_Equivalence.trans
by metis
qed
definition Framed_Tangle_Diagram_Equivalence::"Tangle_Diagram ⇒ Tangle_Diagram ⇒ bool"
(infixl ‹~T› 64)
where
"Framed_Tangle_Diagram_Equivalence T1 T2
≡ (Rep_Tangle_Diagram T1) ~ (Rep_Tangle_Diagram T2)"
definition Framed_Link_Diagram_Equivalence::"Link_Diagram ⇒ Link_Diagram ⇒ bool"
(infixl ‹~L› 64)
where
"Framed_Link_Diagram_Equivalence T1 T2
≡ (Rep_Link_Diagram T1) ~ (Rep_Link_Diagram T2)"
quotient_type Framed_Tangle = "Tangle_Diagram"
/"Framed_Tangle_Diagram_Equivalence"
morphisms Rep_Framed_Tangles Abs_Framed_Tangles
proof (rule equivpI)
show "reflp Framed_Tangle_Diagram_Equivalence"
unfolding reflp_def Framed_Tangle_Diagram_Equivalence_def
Framed_Tangle_Equivalence.refl
by auto
show "symp Framed_Tangle_Diagram_Equivalence"
unfolding Framed_Tangle_Diagram_Equivalence_def symp_def
using Framed_Tangle_Diagram_Equivalence_def
Framed_Tangle_Equivalence.sym
by (metis Tangle_Equivalence.sym)
show "transp Framed_Tangle_Diagram_Equivalence"
unfolding Framed_Tangle_Diagram_Equivalence_def transp_def
using Framed_Tangle_Diagram_Equivalence_def Framed_Tangle_Equivalence.trans
by (metis Tangle_Equivalence.trans)
qed
quotient_type Framed_Link = "Link_Diagram"/"Framed_Link_Diagram_Equivalence"
morphisms Rep_Framed_Links Abs_Framed_Links
proof (rule equivpI)
show "reflp Framed_Link_Diagram_Equivalence"
unfolding reflp_def Framed_Link_Diagram_Equivalence_def
Framed_Tangle_Equivalence.refl
by auto
show "symp Framed_Link_Diagram_Equivalence"
unfolding Framed_Link_Diagram_Equivalence_def symp_def
using Framed_Link_Diagram_Equivalence_def Framed_Tangle_Equivalence.sym
by (metis Tangle_Equivalence.sym)
show "transp Framed_Link_Diagram_Equivalence"
unfolding Framed_Link_Diagram_Equivalence_def transp_def
using Framed_Link_Diagram_Equivalence_def Framed_Tangle_Equivalence.trans
by (metis Tangle_Equivalence.trans)
qed
end