Theory BVExec

(*  Title:      HOL/MicroJava/BV/JVM.thy
    Author:     Tobias Nipkow, Gerwin Klein
    Copyright   2000 TUM
*)

section ‹Kildall for the JVM \label{sec:JVM}›

theory BVExec
imports
  "../DFA/Abstract_BV"
  TF_JVM
begin

definition kiljvm :: "'addr jvm_prog  nat  nat  ty  
                    'addr instr list  ex_table  tyi' err list  tyi' err list"
where
  "kiljvm P mxs mxl Tr is xt 
  kildall (JVM_SemiType.le P mxs mxl) (JVM_SemiType.sup P mxs mxl) 
          (exec P mxs Tr xt is)"

definition  wt_kildall :: "'addr jvm_prog  cname  ty list  ty  nat  nat  
                         'addr instr list  ex_table  bool"
where
  "wt_kildall P C' Ts Tr mxs mxl0 is xt 
   0 < size is  
   (let first  = Some ([],[OK (Class C')]@(map OK Ts)@(replicate mxl0 Err));
        start  = OK first#(replicate (size is - 1) (OK None));
        result = kiljvm P mxs (1+size Ts+mxl0) Tr is xt  start
    in n < size is. result!n  Err)"

definition wf_jvm_progk :: "'addr jvm_prog  bool"
where
  "wf_jvm_progk P 
  wf_prog (λP C' (M,Ts,Tr,(mxs,mxl0,is,xt)). wt_kildall P C' Ts Tr mxs mxl0 is xt) P"


theorem (in start_context) is_bcv_kiljvm:
  "is_bcv r Err step (size is) A (kiljvm P mxs mxl Tr is xt)"
(*<*)
  apply (insert wf)
  apply (unfold kiljvm_def)
  apply (fold r_def f_def step_def_exec)
  apply (rule is_bcv_kildall)
       apply simp
       apply (rule Semilat.intro)
       apply (fold sl_def2, erule semilat_JVM)
      apply simp
      apply blast
     apply (simp add: JVM_le_unfold)
    apply (rule exec_pres_type)
   apply (rule bounded_step)
  apply (erule step_mono)
  done
(*>*)

(* FIXME: move? *)
lemma subset_replicate [intro?]: "set (replicate n x)  {x}"
  by (induct n) auto

lemma in_set_replicate:
  assumes "x  set (replicate n y)"
  shows "x = y"
(*<*)
proof -
  note assms
  also have "set (replicate n y)  {y}" ..
  finally show ?thesis by simp
qed
(*>*)

lemma (in start_context) start_in_A [intro?]:
  "0 < size is  start  list (size is) A"
  using Ts C
(*<*)
  apply (simp add: JVM_states_unfold) 
  apply (force intro!: listI list_appendI dest!: in_set_replicate)
  done   
(*>*)


theorem (in start_context) wt_kil_correct:
  assumes wtk: "wt_kildall P C Ts Tr mxs mxl0 is xt"
  shows "τs. wt_method P C Ts Tr mxs mxl0 is xt τs"
(*<*)
proof -
  from wtk obtain res where    
    result:   "res = kiljvm P mxs mxl Tr is xt start" and
    success:  "n < size is. res!n  Err" and
    instrs:   "0 < size is" 
    by (unfold wt_kildall_def) simp
      
  have bcv: "is_bcv r Err step (size is) A (kiljvm P mxs mxl Tr is xt)"
    by (rule is_bcv_kiljvm)
    
  from instrs have "start  list (size is) A" ..
  with bcv success result have 
    "tslist (size is) A. start [⊑⇩r] ts  wt_step r Err step ts"
    by (unfold is_bcv_def) blast
  then obtain τs' where
    in_A: "τs'  list (size is) A" and
    s:    "start [⊑⇩r] τs'" and
    w:    "wt_step r Err step τs'"
    by blast
  hence wt_err_step: "wt_err_step (sup_state_opt P) step τs'"
    by (simp add: wt_err_step_def JVM_le_Err_conv)

  from in_A have l: "size τs' = size is" by simp  
  moreover {
    from in_A  have "check_types P mxs mxl τs'" by (simp add: check_types_def)
    also from w have "x  set τs'. x  Err" 
      by (auto simp add: wt_step_def all_set_conv_all_nth)
    hence [symmetric]: "map OK (map ok_val τs') = τs'" 
      by (auto intro!: map_idI simp add: wt_step_def)
    finally  have "check_types P mxs mxl (map OK (map ok_val τs'))" .
  } 
  moreover {  
    from s have "start!0 ⊑⇩r τs'!0" by (rule le_listD) simp
    moreover
    from instrs w l 
    have "τs'!0  Err" by (unfold wt_step_def) simp
    then obtain τs0 where "τs'!0 = OK τs0" by auto
    ultimately
    have "wt_start P C Ts mxl0 (map ok_val τs')" using l instrs
      by (unfold wt_start_def) 
         (simp add: lesub_def JVM_le_Err_conv Err.le_def)
  }
  moreover 
  from in_A have "set τs'  A" by simp  
  with wt_err_step bounded_step
  have "wt_app_eff (sup_state_opt P) app eff (map ok_val τs')"
    by (auto intro: wt_err_imp_wt_app_eff simp add: l)
  ultimately
  have "wt_method P C Ts Tr mxs mxl0 is xt (map ok_val τs')"
    using instrs by (simp add: wt_method_def2 check_types_def del: map_map)
  thus ?thesis by blast
qed
(*>*)


theorem (in start_context) wt_kil_complete:
  assumes wtm: "wt_method P C Ts Tr mxs mxl0 is xt τs"
  shows "wt_kildall P C Ts Tr mxs mxl0 is xt"
(*<*)
proof -
  from wtm obtain
    instrs:   "0 < size is" and
    length:   "length τs = length is" and 
    ck_type:  "check_types P mxs mxl (map OK τs)" and
    wt_start: "wt_start P C Ts mxl0 τs" and
    app_eff:  "wt_app_eff (sup_state_opt P) app eff τs"
    by (simp add: wt_method_def2 check_types_def)

  from ck_type
  have in_A: "set (map OK τs)  A" 
    by (simp add: check_types_def)  
  with app_eff in_A bounded_step
  have "wt_err_step (sup_state_opt P) (err_step (size τs) app eff) (map OK τs)"
    by - (erule wt_app_eff_imp_wt_err,
          auto simp add: exec_def length states_def)
  hence wt_err: "wt_err_step (sup_state_opt P) step (map OK τs)" 
    by (simp add: length)
  have is_bcv: "is_bcv r Err step (size is) A (kiljvm P mxs mxl Tr is xt)"
    by (rule is_bcv_kiljvm)
  moreover from instrs have "start  list (size is) A" ..
  moreover
  let ?τs = "map OK τs"  
  have less_τs: "start [⊑⇩r] ?τs"
  proof (rule le_listI)
    from length instrs
    show "length start = length (map OK τs)" by simp
  next
    fix n
    from wt_start have "P  ok_val (start!0) ≤' τs!0" 
      by (simp add: wt_start_def)
    moreover from instrs length have "0 < length τs" by simp
    ultimately have "start!0 ⊑⇩r ?τs!0" 
      by (simp add: JVM_le_Err_conv lesub_def)
    moreover {
      fix n'
      have "OK None ⊑⇩r ?τs!n"
        by (auto simp add: JVM_le_Err_conv Err.le_def lesub_def 
                 split: err.splits)
      hence "n = Suc n'; n < size start  start!n ⊑⇩r ?τs!n" by simp
    }
    ultimately
    show "n < size start  start!n ⊑⇩r ?τs!n" by (cases n, blast+)   
  qed
  moreover
  from ck_type length
  have "?τs  list (size is) A"
    by (auto intro!: listI simp add: check_types_def)
  moreover
  from wt_err have "wt_step r Err step ?τs" 
    by (simp add: wt_err_step_def JVM_le_Err_conv)
  ultimately
  have "p. p < size is  kiljvm P  mxs mxl Tr is xt start ! p  Err" 
    by (unfold is_bcv_def) blast
  with instrs 
  show "wt_kildall P C Ts Tr mxs mxl0 is xt" by (unfold wt_kildall_def) simp
qed
(*>*)


theorem jvm_kildall_correct:
  "wf_jvm_progk P = wf_jvm_prog P"
(*<*)
proof 
  let  = "λC M. let (C,Ts,Tr,meth) = method P C M; (mxs,mxl0,is,xt) = the meth in 
              SOME τs. wt_method P C Ts Tr mxs mxl0 is xt τs"

  ― ‹soundness›
  assume wt: "wf_jvm_progk P"
  hence "wf_jvm_prog⇘P"
    apply (unfold wf_jvm_prog_phi_def wf_jvm_progk_def)
    apply (erule wf_prog_lift)
    apply (auto intro: someI_ex[OF start_context.wt_kil_correct [OF start_context.intro]])
    done
  thus "wf_jvm_prog P" by (unfold wf_jvm_prog_def) fast
next
  ― ‹completeness›
  assume wt: "wf_jvm_prog P"
  thus "wf_jvm_progk P"
    apply (unfold wf_jvm_prog_def wf_jvm_prog_phi_def wf_jvm_progk_def)
    apply (clarify)
    apply (erule wf_prog_lift)
    apply (auto intro!: start_context.wt_kil_complete start_context.intro)
    done
qed
(*>*)

end