Theory Kildall

(*  Title:      JinjaThreads/DFA/Kildall.thy
    Author:     Tobias Nipkow, Gerwin Klein, Andreas Lochbihler
    Copyright   2000 TUM, 2010 KIT

Kildall's algorithm.
*)

section ‹Kildall's Algorithm \label{sec:Kildall}›

theory Kildall
imports SemilatAlg "../Basic/Auxiliary"
begin

locale Kildall_base =
  fixes s_α :: "'w  nat set"
  and s_empty :: "'w"
  and s_is_empty :: "'w  bool"
  and s_choose :: "'w  nat" 
  and s_remove :: "nat  'w  'w"
  and s_insert :: "nat  'w  'w"
begin

primrec propa :: "'s binop  (nat × 's) list  's list  'w  's list * 'w"
where
  "propa f []      τs w = (τs,w)"
| "propa f (q'#qs) τs w = (let (q,τ) = q';
                             u = τ ⊔⇘fτs!q;
                             w' = (if u = τs!q then w else s_insert q w)
                         in propa f qs (τs[q := u]) w')"

definition iter :: "'s binop  's step_type  's list  'w  's list × 'w"
where
  "iter f step τs w =
  while (λ(τs,w). ¬ s_is_empty w)
        (λ(τs,w). let p = s_choose w in propa f (step p (τs!p)) τs (s_remove p w))
        (τs,w)"

definition unstables :: "'s ord  's step_type  's list  'w"
where
  "unstables r step τs = foldr s_insert (filter (λp. ¬stable r step τs p) [0..<size τs]) s_empty"

definition kildall :: "'s ord  's binop  's step_type  's list  's list"
where "kildall r f step τs  fst(iter f step τs (unstables r step τs))"

primrec t_α :: "'s list × 'w  's list × nat set"
where "t_α (τs, w) = (τs, s_α w)"

end

primrec merges :: "'s binop  (nat × 's) list  's list  's list"
where
  "merges f []      τs = τs"
| "merges f (p'#ps) τs = (let (p,τ) = p' in merges f ps (τs[p := τ ⊔⇘fτs!p]))"


locale Kildall =
  Kildall_base +
  assumes empty_spec [simp]: "s_α s_empty = {}"
  and is_empty_spec [simp]: "s_is_empty A  s_α A = {}"
  and choose_spec: "s_α A  {}  s_choose A  s_α A"
  and remove_spec [simp]: "s_α (s_remove n A) = s_α A - {n}"
  and insert_spec [simp]: "s_α (s_insert n A) = insert n (s_α A)"
begin

lemma s_α_foldr_s_insert:
  "s_α (foldr s_insert xs A) = foldr insert xs (s_α A)"
by(induct xs arbitrary: A) simp_all

lemma unstables_spec [simp]: "s_α (unstables r step τs) = {p. p < size τs  ¬stable r step τs p}"
proof -
  have "{p. p < size τs  ¬stable r step τs p} = foldr insert (filter (λp. ¬stable r step τs p) [0..<size τs]) {}"
    unfolding foldr_insert_conv_set by auto
  thus ?thesis by(simp add: unstables_def s_α_foldr_s_insert)
qed

end

lemmas [simp] = Let_def Semilat.le_iff_plus_unchanged [OF Semilat.intro, symmetric]

lemma (in Semilat) nth_merges:
 "ss. p < length ss; ss  list n A; (p,t)set ps. p<n  tA  
  (merges f ps ss)!p = map snd [(p',t')  ps. p'=p] ⨆⇘fss!p"
  (is "ss. _; _; ?steptype ps  ?P ss ps")
(*<*)
proof (induct ps)
  show "ss. ?P ss []" by simp

  fix ss p' ps'
  assume ss: "ss  list n A"
  assume l:  "p < length ss"
  assume "?steptype (p'#ps')"
  then obtain a b where
    p': "p'=(a,b)" and ab: "a<n" "bA" and ps': "?steptype ps'"
    by (cases p') auto
  assume "ss. p< length ss  ss  list n A  ?steptype ps'  ?P ss ps'"
  hence IH: "ss. ss  list n A  p < length ss  ?P ss ps'" using ps' by iprover

  from ss ab
  have "ss[a := b ⊔⇘fss!a]  list n A" by (simp add: closedD)
  moreover
  with l have "p < length (ss[a := b ⊔⇘fss!a])" by simp
  ultimately
  have "?P (ss[a := b ⊔⇘fss!a]) ps'" by (rule IH)
  with p' l
  show "?P ss (p'#ps')" by simp
qed
(*>*)


(** merges **)

lemma length_merges [simp]:
  "ss. size(merges f ps ss) = size ss"
(*<*) by (induct ps, auto) (*>*)

lemma (in Semilat) merges_preserves_type_lemma:
shows "xs. xs  list n A  ((p,x)  set ps. p<n  xA)
          merges f ps xs  list n A"
(*<*)
apply (insert closedI)
apply (unfold Semilat.closed_def)
apply (induct ps)
 apply simp
apply clarsimp
done
(*>*)

lemma (in Semilat) merges_preserves_type [simp]:
 " xs  list n A; (p,x)  set ps. p<n  xA 
   merges f ps xs  list n A"
by (simp add: merges_preserves_type_lemma)

lemma (in Semilat) merges_incr_lemma:
 "xs. xs  list n A  ((p,x)set ps. p<size xs  x  A)  xs [⊑⇘r⇙] merges f ps xs"
(*<*)
apply (induct ps)
 apply simp
apply simp
apply clarify
apply (rule order_trans)
  apply simp
 apply (erule list_update_incr)
  apply simp
 apply simp
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
done
(*>*)

lemma (in Semilat) merges_incr:
 " xs  list n A; (p,x)set ps. p<size xs  x  A  
   xs [⊑⇘r⇙] merges f ps xs"
  by (simp add: merges_incr_lemma)


lemma (in Semilat) merges_same_conv [rule_format]:
 "(xs. xs  list n A  ((p,x)set ps. p<size xs  xA)  
     (merges f ps xs = xs) = ((p,x)set ps. x ⊑⇘rxs!p))"
(*<*)
  apply (induct_tac ps)
   apply simp
  apply clarsimp
  apply (rename_tac p x ps xs)
  apply (rule iffI)
   apply (rule context_conjI)
    apply (subgoal_tac "xs[p := x ⊔⇘fxs!p] [⊑⇘r⇙] xs")
     apply (force dest!: le_listD simp add: nth_list_update)
    apply (erule subst, rule merges_incr)
       apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
      apply clarify
      apply (rule conjI)
       apply simp
       apply (blast dest: boundedD)
      apply blast
   apply clarify
   apply (erule allE)
   apply (erule impE)
    apply assumption
   apply (drule bspec)
    apply assumption
   apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
   apply blast
  apply clarify 
  apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
  done
(*>*)


lemma (in Semilat) list_update_le_listI [rule_format]:
  "set xs  A  set ys  A  xs [⊑⇘r⇙] ys  p < size xs   
   x ⊑⇘rys!p  xA  xs[p := x ⊔⇘fxs!p] [⊑⇘r⇙] ys"
(*<*)
  apply(insert semilat)
  apply (simp only: Listn.le_def lesub_def semilat_def)
  apply (simp add: list_all2_conv_all_nth nth_list_update)
  done
(*>*)

lemma (in Semilat) merges_pres_le_ub:
  assumes "set ts  A"  "set ss  A"
    "(p,t)set ps. t ⊑⇘rts!p  t  A  p < size ts"  "ss [⊑⇘r⇙] ts"
  shows "merges f ps ss [⊑⇘r⇙] ts"
(*<*)
proof -
  { fix t ts ps
    have
    "qs. set ts  A; (p,t)set ps. t ⊑⇘rts!p  t  A  p< size ts  
    set qs  set ps   
    (ss. set ss  A  ss [⊑⇘r⇙] ts  merges f qs ss [⊑⇘r⇙] ts)"
    apply (induct_tac qs)
     apply simp
    apply (simp (no_asm_simp))
    apply clarify
    apply simp
    apply (erule allE, erule impE, erule_tac [2] mp)
     apply (drule bspec, assumption)
     apply (simp add: closedD)
    apply (drule bspec, assumption)
    apply (simp add: list_update_le_listI)
    done 
  } note this [dest]  
  from assms show ?thesis by blast
qed
(*>*)

context Kildall begin

subsection @{term propa}

lemma decomp_propa:
  "ss w. ((q,t)set qs. q < size ss)  
   t_α (propa f qs ss w) = 
   (merges f qs ss, {q. t.(q,t)set qs  t ⊔⇘fss!q  ss!q}  s_α w)"
  apply (induct qs)
   apply simp   
  apply (simp (no_asm))
  apply clarify  
  apply simp
  apply (rule conjI) 
   apply blast
  apply (simp add: nth_list_update)
  apply blast
  done 

end

lemma (in Semilat) stable_pres_lemma:
shows "pres_type step n A; bounded step n; 
     ss  list n A; p  w; qw. q < n; 
     q. q < n  q  w  stable r step ss q; q < n; 
     s'. (q,s')  set (step p (ss!p))  s' ⊔⇘fss!q = ss!q; 
     q  w  q = p  
   stable r step (merges f (step p (ss!p)) ss) q"
(*<*)
  apply (unfold stable_def)
  apply (subgoal_tac "s'. (q,s')  set (step p (ss!p))  s' : A")
   prefer 2
   apply clarify
   apply (erule pres_typeD)
    prefer 3 apply assumption
    apply (rule listE_nth_in)
     apply assumption
    apply simp
   apply simp
  apply simp
  apply clarify
  apply (subst nth_merges)
       apply simp
       apply (blast dest: boundedD)
      apply assumption
     apply clarify
     apply (rule conjI)
      apply (blast dest: boundedD)
     apply (erule pres_typeD)
       prefer 3 apply assumption
      apply simp
     apply simp
apply(subgoal_tac "q < length ss")
prefer 2 apply simp
  apply (frule nth_merges [of q _ _ "step p (ss!p)"]) (* fixme: why does method subst not work?? *)
apply assumption
  apply clarify
  apply (rule conjI)
   apply (blast dest: boundedD)
  apply (erule pres_typeD)
     prefer 3 apply assumption
    apply simp
   apply simp
  apply (drule_tac P = "λx. (a, b)  set (step q x)" in subst)
   apply assumption

 apply (simp add: plusplus_empty)
 apply (cases "q  w")
  apply simp
  apply (rule ub1')
     apply (rule Semilat.intro)
     apply (rule semilat)
    apply clarify
    apply (rule pres_typeD)
       apply assumption
      prefer 3 apply assumption
     apply (blast intro: listE_nth_in dest: boundedD)
    apply (blast intro: pres_typeD dest: boundedD)
   apply (blast intro: listE_nth_in dest: boundedD)
  apply assumption

 apply simp
 apply (erule allE, erule impE, assumption, erule impE, assumption)
 apply (rule order_trans)
   apply simp
  defer
 apply (rule pp_ub2)(*
    apply assumption*)
   apply simp
   apply clarify
   apply simp
   apply (rule pres_typeD)
      apply assumption
     prefer 3 apply assumption
    apply (blast intro: listE_nth_in dest: boundedD)
   apply (blast intro: pres_typeD dest: boundedD)
  apply (blast intro: listE_nth_in dest: boundedD)
 apply blast
 done
(*>*)


lemma (in Semilat) merges_bounded_lemma:
 " mono r step n A; bounded step n; 
    (p',s')  set (step p (ss!p)). s'  A; ss  list n A; ts  list n A; p < n; 
    ss [⊑⇩r] ts; p. p < n  stable r step ts p  
   merges f (step p (ss!p)) ss [⊑⇩r] ts" 
(*<*)
  apply (unfold stable_def)
  apply (rule merges_pres_le_ub)
     apply simp
    apply simp
   prefer 2 apply assumption

  apply clarsimp
  apply (drule boundedD, assumption+)
  apply (erule allE, erule impE, assumption)
  apply (drule bspec, assumption)
  apply simp

  apply (drule monoD [of _ _ _ _ p "ss!p"  "ts!p"])
     apply assumption
    apply simp
   apply (simp add: le_listD)
  
  apply (drule lesub_step_typeD, assumption) 
  apply clarify
  apply (drule bspec, assumption)
  apply simp
  apply (blast intro: order_trans)
  done
(*>*)


lemma termination_lemma: assumes "Semilat A r f"
shows " ss  list n A; (q,t)set qs. q<n  tA; pw   
      ss [⊏⇩r] merges f qs ss  
  merges f qs ss = ss  {q. t. (q,t)set qs  t ⊔⇘fss!q  ss!q}  (w-{p})  w"
(*<*) (is "PROP ?P")
proof -
  interpret Semilat A r f by fact
  show "PROP ?P"
  apply(insert semilat)
    apply (unfold lesssub_def)
    apply (simp (no_asm_simp) add: merges_incr)
    apply (rule impI)
    apply (rule merges_same_conv [THEN iffD1, elim_format]) 
    apply assumption+
      defer
      apply (rule sym, assumption)
     defer apply simp
     apply (subgoal_tac "q t. ¬((q, t)  set qs  t ⊔⇘fss ! q  ss ! q)")
     apply (blast intro!: psubsetI elim: equalityE)
     apply clarsimp
     apply (drule bspec, assumption) 
     apply (drule bspec, assumption)
     apply clarsimp
    done 
qed
(*>*)

context Kildall_base begin

definition s_finite_psubset  :: "('w * 'w) set"
where "s_finite_psubset == {(A,B). s_α A < s_α B & finite (s_α B)}"

lemma s_finite_psubset_inv_image:
  "s_finite_psubset = inv_image finite_psubset s_α"
by(auto simp add: s_finite_psubset_def finite_psubset_def)

lemma wf_s_finite_psubset [simp]: "wf s_finite_psubset"
unfolding s_finite_psubset_inv_image by simp

end

context Kildall begin

subsection @{term iter}

lemma iter_properties[rule_format]: assumes "Semilat A r f"
shows " acc A r; pres_type step n A; mono r step n A;
     bounded step n; ps_α w0. p < n; ss0  list n A;
     p<n. p  s_α w0  stable r step ss0 p  
   t_α (iter f step ss0 w0) = (ss',w')
   
   ss'  list n A  stables r step ss'  ss0 [⊑⇩r] ss' 
   (tslist n A. ss0 [⊑⇩r] ts  stables r step ts  ss' [⊑⇩r] ts)"
(*<*) (is "PROP ?P")
proof -
  interpret Semilat A r f by fact
  show "PROP ?P"
  apply(insert semilat)
  apply (unfold iter_def stables_def)
  apply(unfold is_empty_spec)
  apply (rule_tac P = "λ(ss,w).
   ss  list n A  (p<n. p  s_α w  stable r step ss p)  ss0 [⊑⇩r] ss 
   (tslist n A. ss0 [⊑⇩r] ts  stables r step ts  ss [⊑⇩r] ts) 
   (p s_α w. p < n)" and
   r = "{(ss',ss) . ss  list n A  ss'  list n A  ss [⊏⇩r] ss'} <*lex*> s_finite_psubset"
         in while_rule)

  ― ‹Invariant holds initially:›
  apply (simp add:stables_def)

  ― ‹Invariant is preserved:›
  apply(simp add: stables_def split_paired_all)
  apply(rename_tac ss w)
  apply(subgoal_tac "s_choose w  s_α w")
   prefer 2 apply(erule choose_spec)
  apply(subgoal_tac "(q,t)  set (step (s_choose w) (ss ! (s_choose w))). q < length ss  t  A")
   prefer 2
   apply clarify
   apply (rule conjI)
    apply(clarsimp, blast dest!: boundedD)
   apply (erule pres_typeD)
    prefer 3
    apply assumption
    apply (erule listE_nth_in)
    apply blast
   apply blast
  apply(subgoal_tac "(λ(ss, w).
              ss  list n A 
              (p<n. p  w  stable r step ss p) 
              ss0 [⊑⇘r⇙] ss 
              (tslist n A.
                  ss0 [⊑⇘r⇙] ts  (p<n. stable r step ts p)  ss [⊑⇘r⇙] ts) 
              (pw. p < n))
           (t_α (propa f (step (s_choose w) (ss ! s_choose w)) ss
             (s_remove (s_choose w) w)))")
   apply(case_tac "propa f (step (s_choose w) (ss ! s_choose w)) ss (s_remove (s_choose w) w)")
   apply(simp)  
  apply (subst decomp_propa)
   apply blast
  apply simp
  apply (rule conjI)
   apply (rule merges_preserves_type)
   apply blast
   apply clarify
   apply (rule conjI)
    apply(clarsimp, blast dest!: boundedD)
   apply (erule pres_typeD)
    prefer 3
    apply assumption
    apply (erule listE_nth_in)
    apply blast
   apply blast
  apply (rule conjI)
   apply clarify
   apply (blast intro!: stable_pres_lemma)
  apply (rule conjI)
   apply (blast intro!: merges_incr intro: le_list_trans)
  apply (rule conjI)
   apply clarsimp
   apply (blast intro!: merges_bounded_lemma)
  apply (blast dest!: boundedD)


  ― ‹Postcondition holds upon termination:›
  apply(clarsimp simp add: stables_def split_paired_all)

  ― ‹Well-foundedness of the termination relation:›
  apply (rule wf_lex_prod)
   apply (insert orderI [THEN acc_le_listI])
   apply (simp only: acc_def lesssub_def)
  apply (rule wf_s_finite_psubset) 

  ― ‹Loop decreases along termination relation:›
  apply(simp add: stables_def split_paired_all)
  apply(rename_tac ss w)
  apply(subgoal_tac "s_choose w  s_α w")
   prefer 2 apply (erule choose_spec)
  apply(subgoal_tac "(q,t)  set (step (s_choose w) (ss ! (s_choose w))). q < length ss  t  A")
   prefer 2
   apply clarify
   apply (rule conjI)
    apply(clarsimp, blast dest!: boundedD)
   apply (erule pres_typeD)
    prefer 3
    apply assumption
    apply (erule listE_nth_in)
    apply blast
   apply blast
  apply(subgoal_tac "(t_α (propa f (step (s_choose w) (ss ! s_choose w)) ss
            (s_remove (s_choose w) w)),
           ss, s_α w)
           {(ss', ss). ss  list n A  ss'  list n A  ss [⊏⇘r⇙] ss'} <*lex*> finite_psubset")
   prefer 2
   apply (subst decomp_propa)
    apply blast
   apply clarify
   apply (simp del: listE_length
               add: lex_prod_def finite_psubset_def bounded_nat_set_is_finite)
   apply(subgoal_tac "merges f (step (s_choose w) (ss ! s_choose w)) ss  list n A")
    apply simp
    apply (rule termination_lemma)
    apply (rule assms)
    apply assumption+
   apply clarsimp
  apply(case_tac "propa f (step (s_choose w) (ss ! s_choose w)) ss
               (s_remove (s_choose w) w)")
  apply(simp add: s_finite_psubset_inv_image)
  done
qed
(*>*)

lemma kildall_properties: assumes "Semilat A r f"
shows " acc A r; pres_type step n A; mono r step n A;
     bounded step n; ss0  list n A  
  kildall r f step ss0  list n A 
  stables r step (kildall r f step ss0) 
  ss0 [⊑⇩r] kildall r f step ss0 
  (tslist n A. ss0 [⊑⇩r] ts  stables r step ts 
                 kildall r f step ss0 [⊑⇩r] ts)"
(*<*) (is "PROP ?P")
proof -
  interpret Semilat A r f by fact
  show "PROP ?P"
  apply (unfold kildall_def)
  apply(case_tac "iter f step ss0 (unstables r step ss0)")
  apply(simp)
  apply (rule iter_properties[where ?w0.0="unstables r step ss0"])
  apply(rule assms)
  apply (simp_all add: unstables_def stable_def s_α_foldr_s_insert foldr_insert_conv_set)
  done
qed

lemma is_bcv_kildall: assumes "Semilat A r f"
shows " acc A r; top r T; pres_type step n A; bounded step n; mono r step n A 
   is_bcv r T step n A (kildall r f step)" (is "PROP ?P")
proof -
  interpret Semilat A r f by fact
  show "PROP ?P"
  apply(unfold is_bcv_def wt_step_def)
  apply(insert Semilat A r f semilat kildall_properties[of A])
  apply(simp add:stables_def)
  apply clarify
  apply(subgoal_tac "kildall r f step τs0  list n A")
   prefer 2 apply (simp(no_asm_simp))
  apply (rule iffI)
   apply (rule_tac x = "kildall r f step τs0" in bexI) 
    apply (rule conjI)
     apply (blast)
    apply (simp  (no_asm_simp))
   apply(assumption)
  apply clarify
  apply(subgoal_tac "kildall r f step τs0!p <=_r τs!p")
   apply simp
  apply (blast intro!: le_listD less_lengthI)
  done
qed
(*>*)

end

interpretation Kildall "set" "[]" "λxs. xs = []" "hd" "removeAll" "Cons"
by(unfold_locales) auto

lemmas kildall_code [code] = 
  kildall_def
  Kildall_base.propa.simps 
  Kildall_base.iter_def 
  Kildall_base.unstables_def
  Kildall_base.kildall_def

end