Theory BVSpec

(*  Title:      JinjaThreads/BV/BVSpec.thy
    Author:     Cornelia Pusch, Gerwin Klein, Andreas Lochbihler

    Based on the theory Jinja/BV/BVSpec
*)

section ‹The Bytecode Verifier \label{sec:BVSpec}›

theory BVSpec
imports
  Effect
begin

text ‹
  This theory contains a specification of the BV. The specification
  describes correct typings of method bodies; it corresponds 
  to type \emph{checking}.
›

― ‹The method type only contains declared classes:›
definition check_types :: "'m prog  nat  nat  tyi' err list  bool"
where  
  "check_types P mxs mxl τs  set τs  states P mxs mxl"

― ‹An instruction is welltyped if it is applicable and its effect›
― ‹is compatible with the type at all successor instructions:›
definition wt_instr :: "['m prog,ty,nat,pc,ex_table,'addr instr,pc,tym]  bool"
  (‹_,_,_,_,_  _,_ :: _› [60,0,0,0,0,0,0,61] 60)
where
  "P,T,mxs,mpc,xt  i,pc :: τs 
  app i P mxs T pc mpc xt (τs!pc)  
  ((pc',τ')  set (eff i P pc xt (τs!pc)). P  τ' ≤' τs!pc')"

― ‹The type at @{text "pc=0"} conforms to the method calling convention:›
definition wt_start :: "['m prog,cname,ty list,nat,tym]  bool"
where
  "wt_start P C Ts mxl0 τs 
  P  Some ([],OK (Class C)#map OK Ts@replicate mxl0 Err) ≤' τs!0"

― ‹A method is welltyped if the body is not empty,›
― ‹if the method type covers all instructions and mentions›
― ‹declared classes only, if the method calling convention is respected, and›
― ‹if all instructions are welltyped.›
definition wt_method :: "['m prog,cname,ty list,ty,nat,nat,'addr instr list, ex_table,tym]  bool"
where
  "wt_method P C Ts Tr mxs mxl0 is xt τs 
  0 < size is  size τs = size is 
  check_types P mxs (1+size Ts+mxl0) (map OK τs) 
  wt_start P C Ts mxl0 τs 
  (pc < size is. P,Tr,mxs,size is,xt  is!pc,pc :: τs)"

― ‹A program is welltyped if it is wellformed and all methods are welltyped›
definition wf_jvm_prog_phi :: "tyP  'addr jvm_prog  bool" (wf'_jvm'_prog⇘_)
where
  "wf_jvm_prog⇘Φ
    wf_prog (λP C (M,Ts,Tr,(mxs,mxl0,is,xt)). 
      wt_method P C Ts Tr mxs mxl0 is xt (Φ C M))"

definition wf_jvm_prog :: "'addr jvm_prog  bool"
where
  "wf_jvm_prog P  Φ. wf_jvm_prog⇘ΦP"

lemma wt_jvm_progD:
  "wf_jvm_prog⇘ΦP  wt. wf_prog wt P"
(*<*) by (unfold wf_jvm_prog_phi_def, blast) (*>*)

lemma wt_jvm_prog_impl_wt_instr:
  " wf_jvm_prog⇘ΦP; 
      P  C sees M:Ts  T = (mxs,mxl0,ins,xt) in C; pc < size ins  
   P,T,mxs,size ins,xt  ins!pc,pc :: Φ C M"
(*<*)
  apply (unfold wf_jvm_prog_phi_def)
  apply (drule (1) sees_wf_mdecl)
  apply (simp add: wf_mdecl_def wt_method_def)
  done
(*>*)

lemma wt_jvm_prog_impl_wt_start:
  " wf_jvm_prog⇘ΦP; 
     P  C sees M:Ts  T = (mxs,mxl0,ins,xt) in C   
  0 < size ins  wt_start P C Ts mxl0 (Φ C M)"
(*<*)
  apply (unfold wf_jvm_prog_phi_def)
  apply (drule (1) sees_wf_mdecl)
  apply (simp add: wf_mdecl_def wt_method_def)
  done
(*>*)

end