Theory Fun2_secure
subsection "Proof"
theory Fun2_secure
imports Fun2
begin
definition "PC ≡ {0..6}"
definition "same_xx cfg3 cfgs3 cfg4 cfgs4 ≡
vstore (getVstore (stateOf cfg3)) xx = vstore (getVstore (stateOf cfg4)) xx ∧
(∀cfg3'∈set cfgs3. vstore (getVstore (stateOf cfg3')) xx = vstore (getVstore (stateOf cfg3)) xx) ∧
(∀cfg4'∈set cfgs4. vstore (getVstore (stateOf cfg4')) xx = vstore (getVstore (stateOf cfg4)) xx)"
definition "beforeInput = {0,1}"
definition "afterInput = {2,3,4,5,6}"
definition "inThenBranch = {4,5,6}"
definition "startOfThenBranch = 4"
definition "elseBranch = 6"
definition common :: "stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool"
where
"common = (λ
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(pstate3 = pstate4 ∧
cfg1 = cfg3 ∧ cfg2 = cfg4 ∧
pcOf cfg3 = pcOf cfg4 ∧ map pcOf cfgs3 = map pcOf cfgs4 ∧
pcOf cfg3 ∈ PC ∧ pcOf ` (set cfgs3) ⊆ PC ∧
array_base aa1 (getAvstore (stateOf cfg3)) = array_base aa1 (getAvstore (stateOf cfg4)) ∧
(∀cfg3'∈set cfgs3. array_base aa1 (getAvstore (stateOf cfg3')) = array_base aa1 (getAvstore (stateOf cfg3))) ∧
(∀cfg4'∈set cfgs4. array_base aa1 (getAvstore (stateOf cfg4')) = array_base aa1 (getAvstore (stateOf cfg4))) ∧
array_base aa2 (getAvstore (stateOf cfg3)) = array_base aa2 (getAvstore (stateOf cfg4)) ∧
(∀cfg3'∈set cfgs3. array_base aa2 (getAvstore (stateOf cfg3')) = array_base aa2 (getAvstore (stateOf cfg3))) ∧
(∀cfg4'∈set cfgs4. array_base aa2 (getAvstore (stateOf cfg4')) = array_base aa2 (getAvstore (stateOf cfg4))) ∧
(statA = Diff ⟶ statO = Diff)))"
lemma common_implies: "common (pstate3,cfg3,cfgs3,ibT, ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT, ibUT4,ls4)
statA
(cfg1,ibT, ibUT1,ls1)
(cfg2,ibT, ibUT2,ls2)
statO ⟹
pcOf cfg1 < 8 ∧ pcOf cfg2 = pcOf cfg1"
unfolding common_def PC_def
by (auto simp: image_def subset_eq)
definition Δ0 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ0 = (λ num
(pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)
statA
(cfg1,ibT1, ibUT1,ls1)
(cfg2,ibT2, ibUT2,ls2)
statO.
(common (pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)
statA
(cfg1,ibT1, ibUT1,ls1)
(cfg2,ibT2, ibUT2,ls2)
statO ∧
ibUT1 = ibUT3 ∧ ibUT2 = ibUT4 ∧
(pcOf cfg3 > 1 ⟶ same_xx cfg3 cfgs3 cfg4 cfgs4) ∧
(pcOf cfg3 < 2 ⟶ ibUT1≠LNil ∧ ibUT2≠LNil ∧ ibUT3≠LNil ∧ ibUT4≠LNil) ∧
ls1 = ls3 ∧ ls2 = ls4 ∧
pcOf cfg3 ∈ beforeInput ∧
noMisSpec cfgs3
))"
lemmas Δ0_defs = Δ0_def common_def PC_def
beforeInput_def
same_xx_def noMisSpec_def
lemma Δ0_implies: "Δ0 num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
(pcOf cfg3 = 1 ⟶ ibUT3 ≠ LNil) ∧
(pcOf cfg4 = 1 ⟶ ibUT4 ≠ LNil) ∧
pcOf cfg1 < 7 ∧ pcOf cfg2 = pcOf cfg1 ∧
cfgs3 = [] ∧ pcOf cfg3 < 7 ∧
cfgs4 = [] ∧ pcOf cfg4 < 7"
unfolding Δ0_defs
apply(intro conjI)
apply simp_all
by (metis map_is_Nil_conv)
definition Δ1 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ1 = (λ num
(pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)
statA
(cfg1,ibT1, ibUT1,ls1)
(cfg2,ibT2, ibUT2,ls2)
statO.
(common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
ls1 = ls3 ∧ ls2 = ls4 ∧
same_xx cfg3 cfgs3 cfg4 cfgs4 ∧
pcOf cfg3 ∈ afterInput ∧
noMisSpec cfgs3
))"
lemmas Δ1_defs = Δ1_def common_def PC_def afterInput_def noMisSpec_def same_xx_def
lemma Δ1_implies: "Δ1 num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
pcOf cfg1 < 7 ∧
cfgs3 = [] ∧ pcOf cfg3 ≠ 1 ∧ pcOf cfg3 < 7 ∧
cfgs4 = [] ∧ pcOf cfg4 ≠ 1 ∧ pcOf cfg4 < 7"
unfolding Δ1_defs
apply(intro conjI) apply simp_all
apply linarith
apply (metis list.map_disc_iff)
using semiring_norm(83,84)
by linarith
definition Δ2 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ2 = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
ls1 = ls3 ∧ ls2 = ls4 ∧
same_xx cfg3 cfgs3 cfg4 cfgs4 ∧
pcOf cfg3 = startOfThenBranch ∧
pcOf (last cfgs3) = elseBranch ∧
misSpecL1 cfgs3
))"
lemmas Δ2_defs = Δ2_def common_def PC_def same_xx_def inThenBranch_def
elseBranch_def startOfThenBranch_def misSpecL1_def same_xx_def
lemma Δ2_implies: "Δ2 num (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ⟹
pcOf (last cfgs3) = 6 ∧ pcOf cfg3 = 4 ∧
pcOf (last cfgs4) = pcOf (last cfgs3) ∧
pcOf cfg3 = pcOf cfg4 ∧
length cfgs3 = Suc 0 ∧
length cfgs3 = length cfgs4"
apply(intro conjI)
unfolding Δ2_defs apply simp_all
apply (simp add: image_subset_iff)
apply (metis last_map list.map_disc_iff)
by (metis length_map)
definition Δ3 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ3 = (λ num
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO ∧
ls1 = ls3 ∧ ls2 = ls4 ∧
pcOf cfg3 = elseBranch ∧
pcOf (last cfgs3) = startOfThenBranch ∧
same_xx cfg3 cfgs3 cfg4 cfgs4 ∧
misSpecL1 cfgs3
))"
lemmas Δ3_defs = Δ3_def common_def PC_def same_xx_def elseBranch_def startOfThenBranch_def
misSpecL1_def same_xx_def
lemma Δ3_implies: "Δ3 num
(pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)
statA
(cfg1,ibT1, ibUT1,ls1)
(cfg2,ibT2, ibUT2,ls2)
statO ⟹
pcOf (last cfgs3) = 4 ∧ pcOf cfg3 = 6 ∧
pcOf (last cfgs4) = pcOf (last cfgs3) ∧
pcOf cfg3 = pcOf cfg4 ∧
array_base aa1 (getAvstore (stateOf (last cfgs3))) = array_base aa1 (getAvstore (stateOf cfg3)) ∧
array_base aa1 (getAvstore (stateOf (last cfgs4))) = array_base aa1 (getAvstore (stateOf cfg4)) ∧
length cfgs3 = Suc 0 ∧
length cfgs3 = length cfgs4"
apply(intro conjI)
unfolding Δ3_defs apply simp_all
apply (simp add: image_subset_iff)
apply (metis last_map map_is_Nil_conv)
apply (metis last_in_set list.size(3) n_not_Suc_n)
apply (metis One_nat_def last_in_set length_0_conv length_map zero_neq_one)
by (metis length_map)
definition Δ4 :: "enat ⇒ stateO ⇒ stateO ⇒ status ⇒ stateV ⇒ stateV ⇒ status ⇒ bool" where
"Δ4 = (λnum
(pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3)
(pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)
statA
(cfg1,ibT1,ibUT1,ls1)
(cfg2,ibT2,ibUT2,ls2)
statO.
(pcOf cfg3 = endPC ∧ pcOf cfg4 = endPC ∧ cfgs3 = [] ∧ cfgs4 = [] ∧
pcOf cfg1 = endPC ∧ pcOf cfg2 = endPC))"
lemmas Δ4_defs = Δ4_def common_def endPC_def
lemma init: "initCond Δ0"
unfolding initCond_def
unfolding initCond_def apply(intro allI)
subgoal for s3 s4 apply(cases s3, cases s4)
subgoal for pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 apply clarsimp
apply(cases "getAvstore (stateOf cfg3)", cases "getAvstore (stateOf cfg4)")
unfolding Δ0_defs
unfolding array_base_def by auto . .
lemma step0: "unwindIntoCond Δ0 (oor Δ0 Δ1)"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ0: "Δ0 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg3 cfg4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
have f1:"¬finalN ss1"
using Δ0 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ0_defs
by simp
have f2:"¬finalN ss2"
using Δ0 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ0_defs
by simp
have f3:"¬finalS ss3"
using Δ0 unfolding ss apply-apply(frule Δ0_implies)
using finalS_cond by simp
have f4:"¬finalS ss4"
using Δ0 unfolding ss apply-apply(frule Δ0_implies)
using finalS_cond by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_defs)
show "match2 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_defs)
show "match12 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI2, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg3 cfg4
show "eqSec ss1 ss3"
using v sa Δ0 unfolding ss
by (simp add: Δ0_defs eqSec_def)
show "eqSec ss2 ss4"
using v sa Δ0 unfolding ss
apply (simp add: Δ0_defs eqSec_def)
by (metis length_0_conv length_map)
show "Van.eqAct ss1 ss2"
using v sa Δ0 unfolding ss
unfolding Opt.eqAct_def Van.eqAct_def
apply(simp_all add: Δ0_defs)
by (metis f3 map_is_Nil_conv ss3)
show "match12_12 (oor Δ0 Δ1) ss3' ss4' statA' ss1 ss2 statO"
unfolding match12_12_def
proof(rule exI[of _ "nextN ss1"], rule exI[of _ "nextN ss2"], unfold Let_def, intro conjI impI)
show "validTransV (ss1, nextN ss1)"
by (simp add: f1 nextN_stepN)
show "validTransV (ss2, nextN ss2)"
by (simp add: f2 nextN_stepN)
{assume sstat: "statA' = Diff"
show "sstatO' statO ss1 ss2 = Diff"
using v sa Δ0 sstat unfolding ss cfg statA' apply simp
apply(simp add: Δ0_defs sstatO'_def sstatA'_def finalS_def final_def)
using cases_6[of pc3] apply(elim disjE)
apply simp_all apply(cases statO, simp_all) apply(cases statA, simp_all)
apply(cases statO, simp_all) apply (cases statA, simp_all)
apply (fastforce)
using newStat.simps status.exhaust status.distinct by (smt(z3))
} note stat = this
show "oor Δ0 Δ1 ∞ ss3' ss4' statA' (nextN ss1) (nextN ss2) (sstatO' statO ss1 ss2)"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case spec_normal
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case spec_mispred
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case spec_Fence
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case spec_resolve
then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
next
case nonspec_mispred
then show ?thesis using sa Δ0 stat unfolding ss apply (simp add: Δ0_defs)
by (metis is_If_pc less_Suc_eq nat_less_le numeral_1_eq_Suc_0 numeral_3_eq_3
one_eq_numeral_iff semiring_norm(83) zero_less_numeral zero_neq_numeral)
next
case nonspec_normal note nn3 = nonspec_normal
show ?thesis
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_mispred
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_normal
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_mispred
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_Fence
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case spec_resolve
then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
next
case nonspec_normal note nn4=nonspec_normal
show ?thesis using sa stat Δ0 v3 v4 nn3 nn4 f4 unfolding ss cfg hh Opt.eqAct_def
apply clarsimp
using cases_6[of pc3] apply(elim disjE)
subgoal apply(rule oorI1) by (simp add: Δ0_defs)
subgoal apply(rule oorI2) apply (simp add: Δ0_defs,auto)
unfolding Δ1_defs
subgoal by (simp add: Δ0_defs)
subgoal by (simp add: Δ0_defs) .
by (simp add: Δ0_defs)+
qed
qed
qed
qed
qed
qed
lemma step1: "unwindIntoCond Δ1 (oor4 Δ1 Δ2 Δ3 Δ4)"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ1: "Δ1 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc1 vs1 avst1 h1 p1 where
cfg1: "cfg1 = Config pc1 (State (Vstore vs1) avst1 h1 p1)"
by (cases cfg1) (metis state.collapse vstore.collapse)
obtain pc2 vs2 avst2 h2 p2 where
cfg2: "cfg2 = Config pc2 (State (Vstore vs2) avst2 h2 p2)"
by (cases cfg2) (metis state.collapse vstore.collapse)
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg1 cfg2 cfg3 cfg4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
have f1:"¬finalN ss1"
using Δ1 finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1_defs
by simp linarith
have f2:"¬finalN ss2"
using Δ1 finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1_defs
by simp linarith
have f3:"¬finalS ss3"
using Δ1 unfolding ss apply-apply(frule Δ1_implies)
using finalS_cond by simp
have f4:"¬finalS ss4"
using Δ1 unfolding ss apply-apply(frule Δ1_implies)
using finalS_cond by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI2, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
show "eqSec ss1 ss3"
using v sa Δ1 unfolding ss
by (simp add: Δ1_defs eqSec_def)
show "eqSec ss2 ss4"
using v sa Δ1 unfolding ss
apply (simp add: Δ1_defs eqSec_def)
by (metis length_0_conv length_map)
show "Van.eqAct ss1 ss2"
using v sa Δ1 unfolding ss Van.eqAct_def
apply (simp_all add: Δ1_defs)
by linarith
show "match12_12 (oor4 Δ1 Δ2 Δ3 Δ4) ss3' ss4' statA' ss1 ss2 statO"
unfolding match12_12_def
proof(rule exI[of _ "nextN ss1"], rule exI[of _ "nextN ss2"], unfold Let_def, intro conjI impI)
show "validTransV (ss1, nextN ss1)"
by (simp add: f1 nextN_stepN)
show "validTransV (ss2, nextN ss2)"
by (simp add: f2 nextN_stepN)
{assume sstat: "statA' = Diff"
show "sstatO' statO ss1 ss2 = Diff"
using v sa Δ1 sstat unfolding ss cfg statA'
apply(simp add: Δ1_defs sstatO'_def sstatA'_def)
using cases_6[of pc3] apply(elim disjE)
defer 1 defer 1
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
using cfg finals ss status.distinct(1) newStat.simps by auto
by simp+
} note stat = this
show "(oor4 Δ1 Δ2 Δ3 Δ4) ∞ ss3' ss4' statA' (nextN ss1) (nextN ss2) (sstatO' statO ss1 ss2)"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case spec_normal
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case spec_mispred
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case spec_Fence
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case spec_resolve
then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)
next
case nonspec_mispred note nm3 = nonspec_mispred
show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_normal
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_mispred
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_Fence
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case spec_resolve
then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs)
next
case nonspec_mispred note nm4 = nonspec_mispred
then show ?thesis
using sa Δ1 stat v3 v4 nm3 nm4 unfolding ss cfg hh apply clarsimp
using cases_6[of pc3] apply(elim disjE)
subgoal by simp
subgoal by simp
subgoal by simp
subgoal using xx_NN_cases[of vs3] apply(elim disjE)
subgoal apply(rule oor4I2) by (simp add: Δ1_defs Δ2_defs)
subgoal apply(rule oor4I3) by (simp add: Δ1_defs Δ3_defs) .
by (simp add: Δ1_defs)+
qed
next
case nonspec_normal note nn3 = nonspec_normal
show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_mispred
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_normal
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_mispred
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_Fence
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case spec_resolve
then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs)
next
case nonspec_normal
then show ?thesis using sa Δ1 stat v3 v4 nn3 unfolding ss cfg hh apply clarsimp
using cases_6[of pc3] apply(elim disjE)
subgoal by (simp add: Δ1_defs)
subgoal by (simp add: Δ1_defs)
subgoal apply(rule oor4I1) by(simp add:Δ1_defs)
subgoal using xx_NN_cases[of vs3] apply(elim disjE)
subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
subgoal apply(rule oor4I1) by (simp add: Δ1_defs) .
subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
subgoal apply(rule oor4I4) by (simp add: Δ1_defs Δ4_defs)
subgoal apply(rule oor4I4) by (simp add: Δ1_defs Δ4_defs) .
qed
qed
qed
qed
qed
qed
lemma step2: "unwindIntoCond Δ2 Δ1"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ2: "Δ2 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
lcfgs3: "last cfgs3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases "last cfgs3") (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
lcfgs4: "last cfgs4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases "last cfgs4") (metis state.collapse vstore.collapse)
note lcfgs = lcfgs3 lcfgs4
have f1:"¬finalN ss1"
using Δ2 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ2_defs
by auto
have f2:"¬finalN ss2"
using Δ2 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ2_defs
by auto
have f3:"¬finalS ss3"
using Δ2 unfolding ss apply-apply(frule Δ2_implies)
using finalS_cond_spec by simp
have f4:"¬finalS ss4"
using Δ2 unfolding ss apply-apply(frule Δ2_implies)
using finalS_cond_spec by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react Δ1 ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 Δ1 ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 Δ1 ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 Δ1 ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI1, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
show "¬ isSecO ss3"
using v sa Δ2 unfolding ss by (simp add: Δ2_defs)
show "¬ isSecO ss4"
using v sa Δ2 unfolding ss by (simp add: Δ2_defs)
show stat: "statA = statA' ∨ statO = Diff"
using v sa Δ2
apply (cases ss3, cases ss4, cases ss1, cases ss2)
apply (cases ss3', cases ss4', clarsimp)
using v sa Δ2 unfolding ss statA' apply clarsimp
apply(simp_all add: Δ2_defs sstatA'_def)
apply(cases statO, simp_all)
apply(cases statA, simp_all)
unfolding finalS_def final_def
by (smt (verit, ccfv_SIG) newStat.simps(1))
show "Δ1 ∞ ss3' ss4' statA' ss1 ss2 statO"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ2 unfolding ss by (simp add: Δ2_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ2 unfolding ss by (simp add: Δ2_defs)
next
case spec_normal
then show ?thesis using sa stat Δ2 v3 unfolding ss apply-
apply(frule Δ2_implies) by(simp add: Δ2_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ2 unfolding ss apply-
apply(frule Δ2_implies) by (simp add: Δ2_defs)
next
case spec_Fence
then show ?thesis using sa stat Δ2 unfolding ss apply-
apply(frule Δ2_implies) by (simp add: Δ2_defs)
next
case spec_resolve note sr3 = spec_resolve
show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_normal
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_Fence
then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
next
case spec_resolve note sr4 = spec_resolve
show ?thesis using sa stat Δ2 v3 v4 sr3 sr4
unfolding ss lcfgs hh apply-
apply(frule Δ2_implies) by (simp add: Δ2_defs Δ1_defs, metis)
qed
qed
qed
qed
qed
lemma step3: "unwindIntoCond Δ3 (oor Δ3 Δ1)"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ3: "Δ3 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
lcfgs3: "last cfgs3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases "last cfgs3") (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
lcfgs4: "last cfgs4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases "last cfgs4") (metis state.collapse vstore.collapse)
note lcfgs = lcfgs3 lcfgs4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
have f1:"¬finalN ss1"
using Δ3 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ3_defs
by auto
have f2:"¬finalN ss2"
using Δ3 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ3_defs
by auto
have f3:"¬finalS ss3"
using Δ3 unfolding ss apply-apply(frule Δ3_implies)
using finalS_cond_spec by simp
have f4:"¬finalS ss4"
using Δ3 unfolding ss apply-apply(frule Δ3_implies)
using finalS_cond_spec by simp
note finals = f1 f2 f3 f4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using finals by auto
then show "isIntO ss3 = isIntO ss4" by simp
show "react (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
proof(rule match12_simpleI, rule disjI1, intro conjI)
fix ss3' ss4' statA'
assume statA': "statA' = sstatA' statA ss3 ss4"
and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')"
and sa: "Opt.eqAct ss3 ss4"
note v3 = v(1) note v4 = v(2)
obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
by (cases ss3', auto)
obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
by (cases ss4', auto)
note ss = ss ss3' ss4'
show "¬ isSecO ss3"
using v sa Δ3 unfolding ss by (simp add: Δ3_defs)
show "¬ isSecO ss4"
using v sa Δ3 unfolding ss by (simp add: Δ3_defs)
show stat: "statA = statA' ∨ statO = Diff"
using v sa Δ3
apply (cases ss3, cases ss4, cases ss1, cases ss2)
apply (cases ss3', cases ss4', clarsimp)
using v sa Δ3 unfolding ss statA' apply clarsimp
apply(simp_all add: Δ3_defs sstatA'_def)
apply(cases statO, simp_all) apply(cases statA, simp_all)
unfolding finalS_defs
by (smt (z3) Zero_neq_Suc list.size(3)
map_eq_imp_length_eq status.exhaust newStat.simps)
show "oor Δ3 Δ1 ∞ ss3' ss4' statA' ss1 ss2 statO"
using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ3 lcfgs unfolding ss by (simp_all add: Δ3_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ3 lcfgs unfolding ss by (simp_all add: Δ3_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ3 lcfgs unfolding ss apply-
apply(frule Δ3_implies) by (simp_all add: Δ3_defs)
next
case spec_normal
then show ?thesis using sa stat Δ3 lcfgs unfolding ss apply-
apply(frule Δ3_implies) by (simp_all add: Δ3_defs)
next
case spec_Fence
then show ?thesis using sa stat Δ3 lcfgs unfolding ss
apply (simp add: Δ3_defs)
by (metis cfgs_map config.sel(1) empty_set list.set_map list.simps(15))
next
case spec_resolve note sr3 = spec_resolve
show ?thesis
using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
case nonspec_normal
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case nonspec_mispred
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_mispred
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_normal
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_Fence
then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss
by (simp add: Δ3_defs)
next
case spec_resolve note sr4 = spec_resolve
show ?thesis
apply(intro oorI2)
using sa stat Δ3 lcfgs v3 v4 sr3 sr4 unfolding ss hh
apply(simp add: Δ3_defs Δ1_defs)
by (metis empty_iff empty_set length_1_butlast map_eq_imp_length_eq)
qed
qed
qed
qed
qed
lemma stepe: "unwindIntoCond Δ4 Δ4"
proof(rule unwindIntoCond_simpleI)
fix n ss3 ss4 statA ss1 ss2 statO
assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
and Δ4: "Δ4 n ss3 ss4 statA ss1 ss2 statO"
obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
by (cases ss3, auto)
obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
by (cases ss4, auto)
obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
by (cases ss1, auto)
obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
by (cases ss2, auto)
note ss = ss3 ss4 ss1 ss2
obtain pc3 vs3 avst3 h3 p3 where
cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
by (cases cfg3) (metis state.collapse vstore.collapse)
obtain pc4 vs4 avst4 h4 p4 where
cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
by (cases cfg4) (metis state.collapse vstore.collapse)
note cfg = cfg3 cfg4
obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
note hh = h3 h4
show "finalS ss3 = finalS ss4 ∧ finalN ss1 = finalS ss3 ∧ finalN ss2 = finalS ss4"
using Δ4 Opt.final_def Prog.endPC_def finalS_def stepS_endPC
unfolding Δ4_defs ss apply clarify
by (metis Prog.finalN_defs(1) Prog.finalN_endPC Prog_axioms stepS_endPC)
then show "isIntO ss3 = isIntO ss4" by simp
show "react Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding react_def proof(intro conjI)
show "match1 Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding match1_def by (simp add: finalS_def final_def)
show "match2 Δ4 ss3 ss4 statA ss1 ss2 statO"
unfolding match2_def by (simp add: finalS_def final_def)
show "match12 Δ4 ss3 ss4 statA ss1 ss2 statO"
apply(rule match12_simpleI) using Δ4 unfolding ss apply (simp add: Δ4_defs)
by (simp add: stepS_endPC)
qed
qed
lemmas theConds = step0 step1 step2 step3 stepe
proposition "rsecure"
proof-
define m where m: "m ≡ (5::nat)"
define Δs where Δs: "Δs ≡ λi::nat.
if i = 0 then Δ0
else if i = 1 then Δ1
else if i = 2 then Δ2
else if i = 3 then Δ3
else Δ4"
define nxt where nxt: "nxt ≡ λi::nat.
if i = 0 then {0,1::nat}
else if i = 1 then {1,2,3,4}
else if i = 2 then {1}
else if i = 3 then {3,1}
else {4}"
show ?thesis apply(rule distrib_unwind_rsecure[of m nxt Δs])
subgoal unfolding m by auto
subgoal unfolding nxt m by auto
subgoal using init unfolding Δs by auto
subgoal
unfolding m nxt Δs apply (simp split: if_splits)
using theConds
unfolding oor_def oor3_def oor4_def by auto .
qed
end