Theory Fun2_secure

subsection "Proof"
theory Fun2_secure
  imports Fun2                             
begin 

(* THE PROOF OF SECURITY *)

definition "PC  {0..6}"

definition "same_xx cfg3 cfgs3 cfg4 cfgs4  
 vstore (getVstore (stateOf cfg3)) xx = vstore (getVstore (stateOf cfg4)) xx 
 (cfg3'set cfgs3. vstore (getVstore (stateOf cfg3')) xx = vstore (getVstore (stateOf cfg3)) xx)  
 (cfg4'set cfgs4. vstore (getVstore (stateOf cfg4')) xx = vstore (getVstore (stateOf cfg4)) xx)"


(* we read "before" as "before or at" *)
definition "beforeInput = {0,1}"
definition "afterInput = {2,3,4,5,6}"
definition "inThenBranch = {4,5,6}"
definition "startOfThenBranch = 4"
definition "elseBranch = 6"

(* Common to all the unwinding relations in this proof: *)
definition common :: "stateO  stateO  status  stateV  stateV  status  bool" 
where 
"common = (λ
   (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
   (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
   statA 
   (cfg1,ibT1,ibUT1,ls1) 
   (cfg2,ibT2,ibUT2,ls2) 
   statO.
(pstate3 = pstate4  
 cfg1 = cfg3  cfg2 = cfg4  
 pcOf cfg3 = pcOf cfg4  map pcOf cfgs3 = map pcOf cfgs4  
 pcOf cfg3  PC  pcOf ` (set cfgs3)  PC 
 ⌦‹   ›
 array_base aa1 (getAvstore (stateOf cfg3)) = array_base aa1 (getAvstore (stateOf cfg4))  
 (cfg3'set cfgs3. array_base aa1 (getAvstore (stateOf cfg3')) = array_base aa1 (getAvstore (stateOf cfg3)))  
 (cfg4'set cfgs4. array_base aa1 (getAvstore (stateOf cfg4')) = array_base aa1 (getAvstore (stateOf cfg4)))  
 array_base aa2 (getAvstore (stateOf cfg3)) = array_base aa2 (getAvstore (stateOf cfg4))  
 (cfg3'set cfgs3. array_base aa2 (getAvstore (stateOf cfg3')) = array_base aa2 (getAvstore (stateOf cfg3)))  
 (cfg4'set cfgs4. array_base aa2 (getAvstore (stateOf cfg4')) = array_base aa2 (getAvstore (stateOf cfg4)))  
 ⌦‹   ›
 (statA = Diff  statO = Diff)))"

lemma common_implies: "common (pstate3,cfg3,cfgs3,ibT, ibUT3,ls3) 
   (pstate4,cfg4,cfgs4,ibT, ibUT4,ls4)  
   statA 
   (cfg1,ibT, ibUT1,ls1) 
   (cfg2,ibT, ibUT2,ls2) 
   statO  
 pcOf cfg1 < 8  pcOf cfg2 = pcOf cfg1"
  unfolding common_def PC_def
  by (auto simp: image_def subset_eq)

(* Before input is inserted *)
definition Δ0 :: "enat  stateO  stateO   status  stateV  stateV  status  bool" where 
"Δ0 = (λ num 
     (pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3) 
     (pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)  
     statA 
     (cfg1,ibT1, ibUT1,ls1) 
     (cfg2,ibT2, ibUT2,ls2) 
     statO.
 (common (pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3) 
         (pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)  
     statA 
     (cfg1,ibT1, ibUT1,ls1) 
     (cfg2,ibT2, ibUT2,ls2) 
     statO   
  ibUT1 = ibUT3  ibUT2 = ibUT4      
  (pcOf cfg3 > 1  same_xx cfg3 cfgs3 cfg4 cfgs4)  
  (pcOf cfg3 < 2  ibUT1LNil  ibUT2LNil  ibUT3LNil  ibUT4LNil) 
  ls1 = ls3  ls2 = ls4 
  pcOf cfg3  beforeInput  
  noMisSpec cfgs3 
 ))"

lemmas Δ0_defs = Δ0_def common_def PC_def 
                  beforeInput_def 
                  same_xx_def noMisSpec_def

lemma Δ0_implies: "Δ0 num 
   (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
   (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
   statA 
   (cfg1,ibT1,ibUT1,ls1) 
   (cfg2,ibT2,ibUT2,ls2) 
   statO  
   (pcOf cfg3 = 1  ibUT3  LNil) 
   (pcOf cfg4 = 1  ibUT4  LNil) 
   pcOf cfg1 < 7  pcOf cfg2 = pcOf cfg1  
   cfgs3 = []  pcOf cfg3 < 7 
   cfgs4 = []  pcOf cfg4 < 7"
  unfolding Δ0_defs 
  apply(intro conjI)
  apply simp_all
  by (metis map_is_Nil_conv)                  

(* After input is inserted, no mis-speculation *)
definition Δ1 :: "enat  stateO  stateO  status  stateV  stateV  status  bool" where 
"Δ1 = (λ num 
     (pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3) 
     (pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)  
     statA 
     (cfg1,ibT1, ibUT1,ls1) 
     (cfg2,ibT2, ibUT2,ls2) 
     statO.
 (common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
     (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
     statA 
     (cfg1,ibT1,ibUT1,ls1) 
     (cfg2,ibT2,ibUT2,ls2) 
     statO    
  ls1 = ls3  ls2 = ls4 
  same_xx cfg3 cfgs3 cfg4 cfgs4 
  pcOf cfg3  afterInput  
  noMisSpec cfgs3 
 ))"

lemmas Δ1_defs = Δ1_def common_def PC_def afterInput_def noMisSpec_def same_xx_def

lemma Δ1_implies: "Δ1 num 
   (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
   (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
   statA 
   (cfg1,ibT1,ibUT1,ls1) 
   (cfg2,ibT2,ibUT2,ls2) 
   statO  
   pcOf cfg1 < 7 
   cfgs3 = []  pcOf cfg3  1  pcOf cfg3 < 7 
   cfgs4 = []  pcOf cfg4  1  pcOf cfg4 < 7"
  unfolding Δ1_defs 
  apply(intro conjI) apply simp_all
  apply linarith
  apply (metis list.map_disc_iff)
  using semiring_norm(83,84) 
  by linarith

(* Left mis-speculation: *)
definition Δ2 :: "enat  stateO  stateO   status  stateV  stateV  status  bool" where 
"Δ2 = (λnum
    (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
    (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
    statA 
    (cfg1,ibT1,ibUT1,ls1) 
    (cfg2,ibT2,ibUT2,ls2) 
    statO.
 (common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
     (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
     statA 
     (cfg1,ibT1,ibUT1,ls1) 
     (cfg2,ibT2,ibUT2,ls2) 
     statO    
  ls1 = ls3  ls2 = ls4 
  same_xx cfg3 cfgs3 cfg4 cfgs4 
  pcOf cfg3 = startOfThenBranch  
  pcOf (last cfgs3) = elseBranch  
  misSpecL1 cfgs3
 ))"

lemmas Δ2_defs = Δ2_def common_def PC_def same_xx_def inThenBranch_def 
      elseBranch_def startOfThenBranch_def misSpecL1_def same_xx_def

lemma Δ2_implies: "Δ2 num (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
   (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
   statA 
   (cfg1,ibT1,ibUT1,ls1) 
   (cfg2,ibT2,ibUT2,ls2) 
   statO  
   pcOf (last cfgs3) = 6  pcOf cfg3 = 4  
   pcOf (last cfgs4) = pcOf (last cfgs3) 
   pcOf cfg3 = pcOf cfg4 
   length cfgs3 = Suc 0 
   length cfgs3 = length cfgs4"
  apply(intro conjI)
  unfolding Δ2_defs apply simp_all
  apply (simp add: image_subset_iff) 
  apply (metis last_map list.map_disc_iff)
  by (metis length_map)


(* Right mis-speculation: *)
definition Δ3 :: "enat  stateO  stateO   status  stateV  stateV  status  bool" where 
"Δ3 = (λ num 
    (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
    (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
    statA 
    (cfg1,ibT1,ibUT1,ls1) 
    (cfg2,ibT2,ibUT2,ls2) 
    statO. 
 (common (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
     (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
     statA 
     (cfg1,ibT1,ibUT1,ls1) 
     (cfg2,ibT2,ibUT2,ls2) 
     statO  
  ls1 = ls3  ls2 = ls4 
  pcOf cfg3 = elseBranch  
  pcOf (last cfgs3) = startOfThenBranch  
  same_xx cfg3 cfgs3 cfg4 cfgs4 
  misSpecL1 cfgs3 
 ))"

lemmas Δ3_defs = Δ3_def common_def PC_def same_xx_def elseBranch_def startOfThenBranch_def
            misSpecL1_def same_xx_def

lemma Δ3_implies: "Δ3 num
   (pstate3,cfg3,cfgs3,ibT3, ibUT3,ls3) 
   (pstate4,cfg4,cfgs4,ibT4, ibUT4,ls4)  
   statA 
   (cfg1,ibT1, ibUT1,ls1) 
   (cfg2,ibT2, ibUT2,ls2) 
   statO  
   pcOf (last cfgs3) = 4  pcOf cfg3 = 6  
   pcOf (last cfgs4) = pcOf (last cfgs3) 
   pcOf cfg3 = pcOf cfg4 
   array_base aa1 (getAvstore (stateOf (last cfgs3))) = array_base aa1 (getAvstore (stateOf cfg3))  
   array_base aa1 (getAvstore (stateOf (last cfgs4))) = array_base aa1 (getAvstore (stateOf cfg4)) 
   length cfgs3 = Suc 0 
   length cfgs3 = length cfgs4"
apply(intro conjI)
  unfolding Δ3_defs apply simp_all
  apply (simp add: image_subset_iff) 
  apply (metis last_map map_is_Nil_conv)
  apply (metis last_in_set list.size(3) n_not_Suc_n)
  apply (metis One_nat_def last_in_set length_0_conv length_map zero_neq_one)
  by (metis length_map)
(* *)

(* End: *)
definition Δ4 :: "enat  stateO  stateO   status  stateV  stateV  status  bool" where 
"Δ4 = (λnum 
    (pstate3,cfg3,cfgs3,ibT3,ibUT3,ls3) 
    (pstate4,cfg4,cfgs4,ibT4,ibUT4,ls4)  
    statA 
    (cfg1,ibT1,ibUT1,ls1) 
    (cfg2,ibT2,ibUT2,ls2) 
    statO.
   (pcOf cfg3 = endPC  pcOf cfg4 = endPC  cfgs3 = []  cfgs4 = [] 
    pcOf cfg1 = endPC  pcOf cfg2 = endPC))"

lemmas Δ4_defs = Δ4_def common_def endPC_def  

(* *)

lemma init: "initCond Δ0" 
  unfolding initCond_def 
  unfolding initCond_def apply(intro allI) 
  subgoal for s3 s4 apply(cases s3, cases s4) 
subgoal for pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4  apply clarsimp
apply(cases "getAvstore (stateOf cfg3)", cases "getAvstore (stateOf cfg4)")
unfolding Δ0_defs  
unfolding array_base_def by auto . .
(* *)
 
lemma step0: "unwindIntoCond Δ0 (oor Δ0 Δ1)"
proof(rule unwindIntoCond_simpleI)  
  fix n ss3 ss4 statA ss1 ss2 statO
  assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
  and Δ0: "Δ0 n ss3 ss4 statA ss1 ss2 statO"

  obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
  by (cases ss3, auto) 
  obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
  by (cases ss4, auto)
  obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
  by (cases ss1, auto) 
  obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
  by (cases ss2, auto) 
  note ss = ss3 ss4 ss1 ss2 


  obtain pc3 vs3 avst3 h3 p3 where 
  cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
  by (cases cfg3) (metis state.collapse vstore.collapse)
  obtain pc4 vs4 avst4 h4 p4 where 
  cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
  by (cases cfg4) (metis state.collapse vstore.collapse)
  note cfg = cfg3 cfg4

  obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
  obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
  note hh = h3 h4

  have f1:"¬finalN ss1" 
    using Δ0 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ0_defs
    by simp

  have f2:"¬finalN ss2" 
    using Δ0 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ0_defs
    by simp

  have f3:"¬finalS ss3" 
    using Δ0 unfolding ss apply-apply(frule Δ0_implies)
    using finalS_cond by simp

  have f4:"¬finalS ss4" 
    using Δ0 unfolding ss apply-apply(frule Δ0_implies)
    using finalS_cond by simp


  note finals = f1 f2 f3 f4
  show "finalS ss3 = finalS ss4  finalN ss1 = finalS ss3  finalN ss2 = finalS ss4"
    using finals by auto

  then show "isIntO ss3 = isIntO ss4" by simp


  show "react (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
  unfolding react_def proof(intro conjI)
    (* match1 and match2 are imposibT, ibUTle case since isIntO always holds *)
    show "match1 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
    unfolding match1_def by (simp add: finalS_defs)
    show "match2 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
    unfolding match2_def by (simp add: finalS_defs)
    show "match12 (oor Δ0 Δ1) ss3 ss4 statA ss1 ss2 statO"
    (* Choose the match12_12 case (since we have no mis-speculation yet) *)
    proof(rule match12_simpleI, rule disjI2, intro conjI)
      fix ss3' ss4' statA'
      assume statA': "statA' = sstatA' statA ss3 ss4"
      and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')" 
      and sa: "Opt.eqAct ss3 ss4"
      note v3 = v(1) note v4 = v(2)
 
      obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
      by (cases ss3', auto) 
      obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
      by (cases ss4', auto)
      note ss = ss ss3' ss4'

      obtain pc3 vs3 avst3 h3 p3 where 
      cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
      by (cases cfg3) (metis state.collapse vstore.collapse)
      obtain pc4 vs4 avst4 h4 p4 where 
      cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
      by (cases cfg4) (metis state.collapse vstore.collapse)
      note cfg = cfg3 cfg4
 
      show "eqSec ss1 ss3"
      using v sa Δ0 unfolding ss 
      by (simp add: Δ0_defs eqSec_def)

      show "eqSec ss2 ss4"
      using v sa Δ0 unfolding ss 
      apply (simp add: Δ0_defs eqSec_def) 
      by (metis length_0_conv length_map) 

      show "Van.eqAct ss1 ss2"
      using v sa Δ0 unfolding ss   
      unfolding Opt.eqAct_def Van.eqAct_def
      apply(simp_all add: Δ0_defs)  
      by (metis f3 map_is_Nil_conv ss3)

      show "match12_12 (oor Δ0 Δ1) ss3' ss4' statA' ss1 ss2 statO"
      unfolding match12_12_def
      proof(rule exI[of _ "nextN ss1"], rule exI[of _ "nextN ss2"], unfold Let_def, intro conjI impI)
        show "validTransV (ss1, nextN ss1)" 
          by (simp add: f1 nextN_stepN)

        show "validTransV (ss2, nextN ss2)" 
          by (simp add: f2 nextN_stepN)

        {assume sstat: "statA' = Diff"
         show "sstatO' statO ss1 ss2 = Diff"
         using v sa Δ0 sstat unfolding ss cfg statA' apply simp
         apply(simp add: Δ0_defs sstatO'_def sstatA'_def finalS_def final_def) 
         using cases_6[of pc3] apply(elim disjE)
         apply simp_all apply(cases statO, simp_all) apply(cases statA, simp_all)
         apply(cases statO, simp_all) apply (cases statA, simp_all)
          apply (fastforce) 
         using newStat.simps status.exhaust status.distinct by (smt(z3))
        } note stat = this

        show "oor Δ0 Δ1  ss3' ss4' statA' (nextN ss1) (nextN ss2) (sstatO' statO ss1 ss2)"
        (* the cmbination of nonspec_normal and nonspec_normal is the only nontrivial possibT, ibUTility, deferred to the end *)
          using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
            case spec_normal
            then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
          next
            case spec_mispred
            then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
          next
            case spec_Fence
            then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
          next
            case spec_resolve
            then show ?thesis using sa Δ0 stat unfolding ss by (simp add: Δ0_defs)
          next
            case nonspec_mispred 
            then show ?thesis using sa Δ0 stat unfolding ss apply (simp add: Δ0_defs) 
              by (metis is_If_pc less_Suc_eq nat_less_le numeral_1_eq_Suc_0 numeral_3_eq_3 
                  one_eq_numeral_iff semiring_norm(83) zero_less_numeral zero_neq_numeral)  
        next
          case nonspec_normal note nn3 = nonspec_normal
          show ?thesis 
          using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
            case nonspec_mispred
            then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
          next
            case spec_normal
            then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
          next
            case spec_mispred
            then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
          next
            case spec_Fence
            then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
          next
            case spec_resolve
            then show ?thesis using sa Δ0 stat nn3 unfolding ss by (simp add: Δ0_defs)
          next
            case nonspec_normal note nn4=nonspec_normal
            show ?thesis  using sa stat Δ0 v3 v4 nn3 nn4 f4 unfolding ss cfg hh Opt.eqAct_def
            apply clarsimp
            using cases_6[of pc3] apply(elim disjE)
            subgoal apply(rule oorI1) by (simp add: Δ0_defs)
            subgoal apply(rule oorI2) apply (simp add: Δ0_defs,auto) 
              unfolding Δ1_defs 
              subgoal by (simp add: Δ0_defs) 
              subgoal by (simp add: Δ0_defs) .  
            by (simp add: Δ0_defs)+ 
          qed
        qed
      qed
    qed  
  qed
qed

lemma step1: "unwindIntoCond Δ1 (oor4 Δ1 Δ2 Δ3 Δ4)" 
proof(rule unwindIntoCond_simpleI) 
  fix n ss3 ss4 statA ss1 ss2 statO
  assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
  and Δ1: "Δ1 n ss3 ss4 statA ss1 ss2 statO"

  obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
  by (cases ss3, auto) 
  obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
  by (cases ss4, auto)
  obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
  by (cases ss1, auto) 
  obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
  by (cases ss2, auto) 
  note ss = ss3 ss4 ss1 ss2 


  obtain pc1 vs1 avst1 h1 p1 where 
  cfg1: "cfg1 = Config pc1 (State (Vstore vs1) avst1 h1 p1)"
  by (cases cfg1) (metis state.collapse vstore.collapse)
  obtain pc2 vs2 avst2 h2 p2 where 
  cfg2: "cfg2 = Config pc2 (State (Vstore vs2) avst2 h2 p2)"
  by (cases cfg2) (metis state.collapse vstore.collapse) 
  obtain pc3 vs3 avst3 h3 p3 where 
  cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
  by (cases cfg3) (metis state.collapse vstore.collapse)
  obtain pc4 vs4 avst4 h4 p4 where 
  cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
  by (cases cfg4) (metis state.collapse vstore.collapse)
  note cfg = cfg1 cfg2 cfg3 cfg4

  obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
  obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
  note hh = h3 h4

  have f1:"¬finalN ss1" 
    using Δ1 finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1_defs
    by simp linarith

  have f2:"¬finalN ss2" 
    using Δ1 finalB_pc_iff' unfolding ss cfg finalN_iff_finalB Δ1_defs
    by simp linarith


  have f3:"¬finalS ss3" 
    using Δ1 unfolding ss apply-apply(frule Δ1_implies)
    using finalS_cond by simp

  have f4:"¬finalS ss4" 
    using Δ1 unfolding ss apply-apply(frule Δ1_implies)
    using finalS_cond by simp

  note finals = f1 f2 f3 f4

  show "finalS ss3 = finalS ss4  finalN ss1 = finalS ss3  finalN ss2 = finalS ss4"
    using finals by auto

  then show "isIntO ss3 = isIntO ss4" by simp

  show "react (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
  unfolding react_def proof(intro conjI)
    (* match1 and match2 are imposibT, ibUTle case since isIntO always holds *)
    show "match1 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
    unfolding match1_def by (simp add: finalS_def final_def)
    show "match2 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
    unfolding match2_def by (simp add: finalS_def final_def)
    show "match12 (oor4 Δ1 Δ2 Δ3 Δ4) ss3 ss4 statA ss1 ss2 statO"
    (* Choose the match12_12 case (since we have no mis-speculation yet) *)
    proof(rule match12_simpleI, rule disjI2, intro conjI)
      fix ss3' ss4' statA'
      assume statA': "statA' = sstatA' statA ss3 ss4"
      and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')" 
      and sa: "Opt.eqAct ss3 ss4"
      note v3 = v(1) note v4 = v(2)

      obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
      by (cases ss3', auto) 
      obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
      by (cases ss4', auto)
      note ss = ss ss3' ss4'

      show "eqSec ss1 ss3"
      using v sa Δ1 unfolding ss
      by (simp add: Δ1_defs eqSec_def)

      show "eqSec ss2 ss4"
      using v sa Δ1 unfolding ss 
      apply (simp add: Δ1_defs eqSec_def) 
      by (metis length_0_conv length_map)
      
      show "Van.eqAct ss1 ss2"
      using v sa Δ1 unfolding ss Van.eqAct_def
      apply (simp_all add: Δ1_defs)  
      by linarith

      show "match12_12 (oor4 Δ1 Δ2 Δ3 Δ4) ss3' ss4' statA' ss1 ss2 statO"
      unfolding match12_12_def 
      proof(rule exI[of _ "nextN ss1"], rule exI[of _ "nextN ss2"], unfold Let_def, intro conjI impI)
        show "validTransV (ss1, nextN ss1)" 
          by (simp add: f1 nextN_stepN)

        show "validTransV (ss2, nextN ss2)" 
          by (simp add: f2 nextN_stepN)


        {assume sstat: "statA' = Diff"
         show "sstatO' statO ss1 ss2 = Diff"
         using v sa Δ1 sstat unfolding ss cfg statA'
         apply(simp add: Δ1_defs sstatO'_def sstatA'_def) 
         using cases_6[of pc3] apply(elim disjE)
         defer 1 defer 1 
           subgoal apply(cases statO, simp_all) apply(cases statA, simp_all) 
             using cfg finals ss status.distinct(1) newStat.simps by auto
           subgoal apply(cases statO, simp_all) apply(cases statA, simp_all) 
             using cfg finals ss status.distinct(1) newStat.simps by auto
           subgoal apply(cases statO, simp_all) apply(cases statA, simp_all)
             using cfg finals ss status.distinct(1) newStat.simps by auto
           subgoal apply(cases statO, simp_all) apply(cases statA, simp_all) 
             using cfg finals ss status.distinct(1) newStat.simps by auto
           subgoal apply(cases statO, simp_all) apply(cases statA, simp_all) 
             using cfg finals ss status.distinct(1) newStat.simps by auto
           by simp+
        } note stat = this

        show "(oor4 Δ1 Δ2 Δ3 Δ4)  ss3' ss4' statA' (nextN ss1) (nextN ss2) (sstatO' statO ss1 ss2)"
        (* nonspec_normal and nonspec_mispred are the only nontrivial possibT, ibUTility, deferred to the end *)
        using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
          case spec_normal
          then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs)  
        next
          case spec_mispred
          then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs) 
        next
          case spec_Fence
          then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs) 
        next
          case spec_resolve
          then show ?thesis using sa Δ1 stat unfolding ss by (simp add: Δ1_defs) 
        next
          case nonspec_mispred note nm3 = nonspec_mispred
          show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
            (* trace 4 can only have the same case as trace 3 as nontrivial case, here nonspec_mispred -- deferred *)
              case nonspec_normal
              then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs) 
            next
              case spec_normal
              then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs) 
            next
              case spec_mispred
              then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs) 
            next
              case spec_Fence
              then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs) 
            next
              case spec_resolve
              then show ?thesis using sa Δ1 stat nm3 unfolding ss by (simp add: Δ1_defs) 
            next
              case nonspec_mispred note nm4 = nonspec_mispred
              then show ?thesis
              using sa Δ1 stat v3 v4 nm3 nm4 unfolding ss cfg hh apply clarsimp
              using cases_6[of pc3] apply(elim disjE)
                subgoal by simp
                subgoal by simp
                subgoal by simp
                subgoal using xx_NN_cases[of vs3] apply(elim disjE)
                  subgoal apply(rule oor4I2) by (simp add: Δ1_defs Δ2_defs)
                  subgoal apply(rule oor4I3) by (simp add: Δ1_defs Δ3_defs) .
                by (simp add: Δ1_defs)+ 
          qed
        next
          case nonspec_normal note nn3 = nonspec_normal
          show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
          (* trace 4 can only have the same case as trace 3 as nontrivial case, here nonspec_normal -- deferred *)
            case nonspec_mispred
            then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs) 
          next
            case spec_normal
            then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs) 
          next
            case spec_mispred
            then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs) 
          next
            case spec_Fence
            then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs) 
          next
            case spec_resolve
            then show ?thesis using sa Δ1 stat nn3 unfolding ss by (simp add: Δ1_defs) 
          next
            case nonspec_normal
            then show ?thesis using sa Δ1 stat v3 v4 nn3 unfolding ss cfg hh apply clarsimp
            using cases_6[of pc3] apply(elim disjE)
              subgoal by (simp add: Δ1_defs)
              subgoal by (simp add: Δ1_defs)
              subgoal apply(rule oor4I1) by(simp add:Δ1_defs) 
              subgoal using xx_NN_cases[of vs3] apply(elim disjE)
                 subgoal apply(rule oor4I1) by (simp add: Δ1_defs)
                 subgoal apply(rule oor4I1) by (simp add: Δ1_defs) .
              subgoal apply(rule oor4I1) by (simp add: Δ1_defs) 
              subgoal apply(rule oor4I1) by (simp add: Δ1_defs) 
              subgoal apply(rule oor4I4) by (simp add: Δ1_defs Δ4_defs)
              subgoal apply(rule oor4I4) by (simp add: Δ1_defs Δ4_defs) .
          qed
        qed
      qed
    qed
  qed
qed

(* *)

lemma step2: "unwindIntoCond Δ2 Δ1" 
proof(rule unwindIntoCond_simpleI)
  fix n ss3 ss4 statA ss1 ss2 statO
  assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
  and Δ2: "Δ2 n ss3 ss4 statA ss1 ss2 statO"

  obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
  by (cases ss3, auto) 
  obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
  by (cases ss4, auto)
  obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
  by (cases ss1, auto) 
  obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
  by (cases ss2, auto) 
  note ss = ss3 ss4 ss1 ss2 
 
  obtain pc3 vs3 avst3 h3 p3 where 
  lcfgs3: "last cfgs3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
  by (cases "last cfgs3") (metis state.collapse vstore.collapse)
  obtain pc4 vs4 avst4 h4 p4 where 
  lcfgs4: "last cfgs4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
  by (cases "last cfgs4") (metis state.collapse vstore.collapse)
  note lcfgs = lcfgs3 lcfgs4

  have f1:"¬finalN ss1" 
    using Δ2 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ2_defs
    by auto

  have f2:"¬finalN ss2" 
    using Δ2 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ2_defs
    by auto

  have f3:"¬finalS ss3" 
    using Δ2 unfolding ss apply-apply(frule Δ2_implies)
    using finalS_cond_spec by simp

  have f4:"¬finalS ss4" 
    using Δ2 unfolding ss apply-apply(frule Δ2_implies)
    using finalS_cond_spec by simp


  note finals = f1 f2 f3 f4
  show "finalS ss3 = finalS ss4  finalN ss1 = finalS ss3  finalN ss2 = finalS ss4"
    using finals by auto

  then show "isIntO ss3 = isIntO ss4" by simp

  show "react Δ1 ss3 ss4 statA ss1 ss2 statO"
  unfolding react_def proof(intro conjI)
    (* match1 and match2 are imposibT, ibUTle case since isIntO always holds *)
    show "match1 Δ1 ss3 ss4 statA ss1 ss2 statO"
    unfolding match1_def by (simp add: finalS_def final_def)
    show "match2 Δ1 ss3 ss4 statA ss1 ss2 statO"
    unfolding match2_def by (simp add: finalS_def final_def)
    show "match12 Δ1 ss3 ss4 statA ss1 ss2 statO"
    (* Choose the ignore case (since traces 3 and 4 do speculation) *)
    proof(rule match12_simpleI, rule disjI1, intro conjI)
      fix ss3' ss4' statA'
      assume statA': "statA' = sstatA' statA ss3 ss4"
      and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')" 
      and sa: "Opt.eqAct ss3 ss4"
      note v3 = v(1)  note v4 = v(2)

      obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
      by (cases ss3', auto) 
      obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
      by (cases ss4', auto)
      note ss = ss ss3' ss4'

      obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
      obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
      note hh = h3 h4

      show "¬ isSecO ss3"
      using v sa Δ2 unfolding ss by (simp add: Δ2_defs) 

      show "¬ isSecO ss4"
      using v sa Δ2 unfolding ss by (simp add: Δ2_defs) 

      show stat: "statA = statA'  statO = Diff"
      using v sa Δ2
      apply (cases ss3, cases ss4, cases ss1, cases ss2)
      apply (cases ss3', cases ss4', clarsimp)
      using v sa Δ2 unfolding ss statA' apply clarsimp        
      apply(simp_all add: Δ2_defs sstatA'_def) 
      apply(cases statO, simp_all) 
      apply(cases statA, simp_all)
      unfolding finalS_def final_def 
      by (smt (verit, ccfv_SIG) newStat.simps(1))


      show "Δ1  ss3' ss4' statA' ss1 ss2 statO"
      (* the only nontrivial combination of cases will be spec_resolve and spec_resolve *)
      using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
        case nonspec_normal
        then show ?thesis using sa stat Δ2 unfolding ss by (simp add: Δ2_defs)
      next
        case nonspec_mispred
        then show ?thesis using sa stat Δ2 unfolding ss by (simp add: Δ2_defs)
      next
        case spec_normal
        then show ?thesis using sa stat Δ2 v3 unfolding ss apply- 
        apply(frule Δ2_implies) by(simp add: Δ2_defs) 
      next
        case spec_mispred
        then show ?thesis using sa stat Δ2 unfolding ss apply-  
        apply(frule Δ2_implies) by (simp add: Δ2_defs)
      next
        case spec_Fence 
        then show ?thesis using sa stat Δ2 unfolding ss apply-  
        apply(frule Δ2_implies) by (simp add: Δ2_defs)
      next
        case spec_resolve note sr3 = spec_resolve
        show ?thesis using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
          case nonspec_normal
          then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
        next
          case nonspec_mispred
          then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
        next
          case spec_normal
          then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs) 
        next
          case spec_mispred
          then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
        next
          case spec_Fence 
          then show ?thesis using sa stat Δ2 sr3 unfolding ss by (simp add: Δ2_defs)
        next
          case spec_resolve note sr4 = spec_resolve
          show ?thesis using sa stat Δ2 v3 v4 sr3 sr4 
          unfolding ss lcfgs hh apply-
          apply(frule Δ2_implies) by (simp add: Δ2_defs Δ1_defs, metis)
        qed 
      qed 
    qed
  qed  
qed 

(* *)

lemma step3: "unwindIntoCond Δ3 (oor Δ3 Δ1)" 
proof(rule unwindIntoCond_simpleI) 
  fix n ss3 ss4 statA ss1 ss2 statO
  assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
  and Δ3: "Δ3 n ss3 ss4 statA ss1 ss2 statO"

  obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
  by (cases ss3, auto) 
  obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
  by (cases ss4, auto)
  obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
  by (cases ss1, auto) 
  obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
  by (cases ss2, auto) 
  note ss = ss3 ss4 ss1 ss2  

  obtain pc3 vs3 avst3 h3 p3 where 
  lcfgs3: "last cfgs3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
  by (cases "last cfgs3") (metis state.collapse vstore.collapse)
  obtain pc4 vs4 avst4 h4 p4 where 
  lcfgs4: "last cfgs4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
  by (cases "last cfgs4") (metis state.collapse vstore.collapse)
  note lcfgs = lcfgs3 lcfgs4

  obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
  obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
  note hh = h3 h4


  have f1:"¬finalN ss1" 
    using Δ3 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ3_defs
    by auto

  have f2:"¬finalN ss2" 
    using Δ3 finalB_pc_iff' unfolding ss finalN_iff_finalB Δ3_defs
    by auto

  have f3:"¬finalS ss3" 
    using Δ3 unfolding ss apply-apply(frule Δ3_implies)
    using finalS_cond_spec by simp

  have f4:"¬finalS ss4" 
    using Δ3 unfolding ss apply-apply(frule Δ3_implies)
    using finalS_cond_spec by simp


  note finals = f1 f2 f3 f4
  show "finalS ss3 = finalS ss4  finalN ss1 = finalS ss3  finalN ss2 = finalS ss4"
    using finals by auto



  then show "isIntO ss3 = isIntO ss4" by simp

  show "react (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
  unfolding react_def proof(intro conjI)
    (* match1 and match2 are imposibT, ibUTle case since isIntO always holds *)
    show "match1 (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
    unfolding match1_def by (simp add: finalS_def final_def)
    show "match2 (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
    unfolding match2_def by (simp add: finalS_def final_def) 
    show "match12 (oor Δ3 Δ1) ss3 ss4 statA ss1 ss2 statO"
    proof(rule match12_simpleI, rule disjI1, intro conjI) 
      fix ss3' ss4' statA'
      assume statA': "statA' = sstatA' statA ss3 ss4"
      and v: "validTransO (ss3, ss3')" "validTransO (ss4, ss4')" 
      and sa: "Opt.eqAct ss3 ss4"
      note v3 = v(1) note v4 = v(2)

      obtain pstate3' cfg3' cfgs3' ibT3' ibUT3' ls3' where ss3': "ss3' = (pstate3', cfg3', cfgs3', ibT3', ibUT3', ls3')"
      by (cases ss3', auto) 
      obtain pstate4' cfg4' cfgs4' ibT4' ibUT4' ls4' where ss4': "ss4' = (pstate4', cfg4', cfgs4', ibT4', ibUT4', ls4')"
      by (cases ss4', auto)
      note ss = ss ss3' ss4'

      show "¬ isSecO ss3"
      using v sa Δ3 unfolding ss by (simp add: Δ3_defs) 

      show "¬ isSecO ss4"
      using v sa Δ3 unfolding ss  by (simp add: Δ3_defs)  

      show stat: "statA = statA'  statO = Diff"
      using v sa Δ3 
      apply (cases ss3, cases ss4, cases ss1, cases ss2)
      apply (cases ss3', cases ss4', clarsimp)
      using v sa Δ3 unfolding ss statA' apply clarsimp        
      apply(simp_all add: Δ3_defs sstatA'_def) 
      apply(cases statO, simp_all) apply(cases statA, simp_all)
      unfolding finalS_defs
      by (smt (z3) Zero_neq_Suc list.size(3) 
          map_eq_imp_length_eq status.exhaust newStat.simps)

      show "oor Δ3 Δ1  ss3' ss4' statA' ss1 ss2 statO"
      using v3[unfolded ss, simplified] proof(cases rule: stepS_cases)
        case nonspec_normal
        then show ?thesis using sa stat Δ3 lcfgs unfolding ss by (simp_all add: Δ3_defs)  
      next
        case nonspec_mispred
        then show ?thesis using sa stat Δ3 lcfgs unfolding ss by (simp_all add: Δ3_defs) 
      next
        case spec_mispred
        then show ?thesis using sa stat Δ3 lcfgs  unfolding ss apply-         
        apply(frule Δ3_implies) by (simp_all add: Δ3_defs) 
      next (* the nontrivial cases deferred to the end: *)
        case spec_normal 
        then show ?thesis using sa stat Δ3 lcfgs  unfolding ss apply-         
        apply(frule Δ3_implies) by (simp_all add: Δ3_defs) 
      next
        case spec_Fence 
        then show ?thesis using sa stat Δ3 lcfgs unfolding ss 
          apply (simp add: Δ3_defs) 
          by (metis cfgs_map config.sel(1) empty_set list.set_map list.simps(15))
        next
          case spec_resolve note sr3 = spec_resolve
          show ?thesis
          using v4[unfolded ss, simplified] proof(cases rule: stepS_cases)
            case nonspec_normal
            then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss 
            by (simp add: Δ3_defs)
          next
            case nonspec_mispred
            then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss 
            by (simp add: Δ3_defs)
          next
            case spec_mispred
            then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss 
            by (simp add: Δ3_defs)   
          next
            case spec_normal
            then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss 
            by (simp add: Δ3_defs) 
          next 
            case spec_Fence  
            then show ?thesis using sa stat Δ3 lcfgs sr3 unfolding ss 
            by (simp add: Δ3_defs)    
          next (* the nontrivial case deferred to the end: *)
            case spec_resolve note sr4 = spec_resolve
            show ?thesis
            apply(intro oorI2)
            using sa stat Δ3 lcfgs v3 v4 sr3 sr4 unfolding ss hh
            apply(simp add: Δ3_defs Δ1_defs) 
            by (metis empty_iff empty_set length_1_butlast map_eq_imp_length_eq)
          qed 
        qed
    qed
  qed  
qed 
(* *)

lemma stepe: "unwindIntoCond Δ4 Δ4" 
proof(rule unwindIntoCond_simpleI) 
  fix n ss3 ss4 statA ss1 ss2 statO
  assume r: "reachO ss3" "reachO ss4" "reachV ss1" "reachV ss2"
  and Δ4: "Δ4 n ss3 ss4 statA ss1 ss2 statO"

  obtain pstate3 cfg3 cfgs3 ibT3 ibUT3 ls3 where ss3: "ss3 = (pstate3, cfg3, cfgs3, ibT3, ibUT3, ls3)"
  by (cases ss3, auto) 
  obtain pstate4 cfg4 cfgs4 ibT4 ibUT4 ls4 where ss4: "ss4 = (pstate4, cfg4, cfgs4, ibT4, ibUT4, ls4)"
  by (cases ss4, auto)
  obtain cfg1 ibT1 ibUT1 ls1 where ss1: "ss1 = (cfg1, ibT1, ibUT1, ls1)"
  by (cases ss1, auto) 
  obtain cfg2 ibT2 ibUT2 ls2 where ss2: "ss2 = (cfg2, ibT2, ibUT2, ls2)"
  by (cases ss2, auto) 
  note ss = ss3 ss4 ss1 ss2 
 
  obtain pc3 vs3 avst3 h3 p3 where 
  cfg3: "cfg3 = Config pc3 (State (Vstore vs3) avst3 h3 p3)"
  by (cases cfg3) (metis state.collapse vstore.collapse)
  obtain pc4 vs4 avst4 h4 p4 where 
  cfg4: "cfg4 = Config pc4 (State (Vstore vs4) avst4 h4 p4)"
  by (cases cfg4) (metis state.collapse vstore.collapse)
  note cfg = cfg3 cfg4

  obtain hh3 where h3: "h3 = Heap hh3" by(cases h3, auto)
  obtain hh4 where h4: "h4 = Heap hh4" by(cases h4, auto)
  note hh = h3 h4

  show "finalS ss3 = finalS ss4  finalN ss1 = finalS ss3  finalN ss2 = finalS ss4"
    using Δ4 Opt.final_def Prog.endPC_def finalS_def stepS_endPC
    unfolding Δ4_defs ss apply clarify 
    by (metis Prog.finalN_defs(1) Prog.finalN_endPC Prog_axioms stepS_endPC)

  then show "isIntO ss3 = isIntO ss4" by simp

  show "react Δ4 ss3 ss4 statA ss1 ss2 statO"
  unfolding react_def proof(intro conjI)
    (* match1 and match2 are imposibT, ibUTle case since isIntO always holds *)
    show "match1 Δ4 ss3 ss4 statA ss1 ss2 statO"
    unfolding match1_def by (simp add: finalS_def final_def)
    show "match2 Δ4 ss3 ss4 statA ss1 ss2 statO"
    unfolding match2_def by (simp add: finalS_def final_def)
    show "match12 Δ4 ss3 ss4 statA ss1 ss2 statO"
    apply(rule match12_simpleI) using Δ4 unfolding ss apply (simp add: Δ4_defs)
    by (simp add: stepS_endPC)
  qed
qed
 
(* *)

lemmas theConds = step0 step1 step2 step3 stepe 

proposition "rsecure" 
proof-
  define m where m: "m  (5::nat)"
  define Δs where Δs: "Δs  λi::nat. 
  if i = 0 then Δ0
  else if i = 1 then Δ1 
  else if i = 2 then Δ2
  else if i = 3 then Δ3  
  else Δ4" 
  define nxt where nxt: "nxt  λi::nat. 
  if i = 0 then {0,1::nat}
  else if i = 1 then {1,2,3,4}  
  else if i = 2 then {1} 
  else if i = 3 then {3,1}  
  else {4}"
  show ?thesis apply(rule distrib_unwind_rsecure[of m nxt Δs])
    subgoal unfolding m by auto
    subgoal unfolding nxt m by auto
    subgoal using init unfolding Δs by auto
    subgoal 
      unfolding m nxt Δs apply (simp split: if_splits)
      using theConds
      unfolding oor_def oor3_def oor4_def by auto . 
qed

end