Theory HS_VC_PT

(*  Title:       Verification components with predicate transformers
    Author:      Jonathan Julián Huerta y Munive, 2020
    Maintainer:  Jonathan Julián Huerta y Munive <jonjulian23@gmail.com>
*)

section ‹ Verification components with Predicate Transformers ›

text ‹ We use the categorical forward box operator @{text fb} to compute weakest liberal 
preconditions (wlps) of hybrid programs. Then we repeat the three methods for verifying 
correctness specifications of the continuous dynamics of a HS. ›

theory HS_VC_PT
  imports 
    "Transformer_Semantics.Kleisli_Quantaloid"
    "../HS_ODEs" 
                        
begin

no_notation bres (infixr  60)
        and dagger (‹_ [101] 100)
        and "Relation.relcomp" (infixl ; 75) 
        and eta (η)
        and kcomp (infixl K 75)

type_synonym 'a pred = "'a  bool"

notation eta (skip)
     and kcomp (infixl ; 75)
     and g_orbital ((1x´=_ & _ on _ _ @ _))


subsection ‹Verification of regular programs›

text ‹Properties of the forward box operator. ›

lemma "fb F S = (  𝒫 (- opK F)) (- S)"
  unfolding ffb_def map_dual_def dual_set_def klift_def by simp

lemma "fb F S = {s. F s  S}"
  by (auto simp: ffb_def kop_def klift_def map_dual_def dual_set_def f2r_def r2f_def)

lemma ffb_eq: "fb F S = {s. s'. s'  F s  s'  S}"
  by (auto simp: ffb_def kop_def klift_def map_dual_def dual_set_def f2r_def r2f_def)

lemma ffb_iso: "P  Q  fb F P  fb F Q"
  unfolding ffb_eq by auto

lemma ffb_invariants: 
  assumes "{s. I s}  fb F {s. I s}" and "{s. J s}  fb F {s. J s}"
  shows "{s. I s  J s}  fb F {s. I s  J s}"
    and "{s. I s  J s}  fb F {s. I s  J s}"
  using assms unfolding ffb_eq by auto

― ‹ Skip ›

lemma ffb_skip[simp]: "fb skip S = S"
  unfolding ffb_def by(simp add: kop_def klift_def map_dual_def)

― ‹ Tests ›

definition test :: "'a pred  'a  'a set" ((1¿_?))
  where "¿P? = (λs. {x. x = s  P x})"

lemma ffb_test[simp]: "fb ¿P? Q = {s. P s  s  Q}"
  unfolding ffb_eq test_def by simp

― ‹ Assignments ›

definition assign :: "'n  ('a^'n  'a)  ('a^'n)  ('a^'n) set" ((2_ ::= _) [70, 65] 61) 
  where "(x ::= e) = (λs. {vec_upd s x (e s)})" 

lemma ffb_assign[simp]: "fb (x ::= e) Q = {s. (χ j. ((($) s)(x := (e s))) j)  Q}"
  unfolding vec_upd_def assign_def by (subst ffb_eq) simp

― ‹ Nondeterministic assignments ›

definition nondet_assign :: "'n  'a^'n  ('a^'n) set" ((2_ ::= ? ) [70] 61)
  where "(x ::= ?) = (λs. {(vec_upd s x k)|k. True})"

lemma fbox_nondet_assign[simp]: "fb (x ::= ?) P = {s. k. (χ j. if j = x then k else s$j)  P}"
  unfolding ffb_eq nondet_assign_def vec_upd_eq apply(simp add: fun_eq_iff, safe)
  by (erule_tac x="(χ j. if j = x then k else _ $ j)" in allE, auto)

― ‹ Nondeterministic choice ›

lemma ffb_choice: "fb (λs. F s  G s) P = fb F P  fb G P"
  unfolding ffb_eq by auto

lemma le_ffb_choice_iff: "P  fb (λs. F s  G s) Q  P  fb F Q  P  fb G Q"
  unfolding ffb_eq by auto

― ‹ Sequential composition ›

lemma ffb_kcomp[simp]: "fb (G ; F) P = fb G (fb F P)"
  unfolding ffb_eq by (auto simp: kcomp_def)

lemma hoare_kcomp:
  assumes "P  fb F R" "R  fb G Q"
  shows "P  fb (F ; G) Q"
  apply(subst ffb_kcomp) 
  by (rule order.trans[OF assms(1)]) (rule ffb_iso[OF assms(2)])

― ‹ Conditional statement ›

definition ifthenelse :: "'a pred  ('a  'b set)  ('a  'b set)  ('a  'b set)"
  (IF _ THEN _ ELSE _› [64,64,64] 63) where 
  "IF P THEN X ELSE Y = (λ x. if P x then X x else Y x)"

lemma ffb_if_then_else[simp]:
  "fb (IF T THEN X ELSE Y) Q = {s. T s  s  fb X Q}  {s. ¬ T s  s  fb Y Q}"
  unfolding ffb_eq ifthenelse_def by auto

lemma hoare_if_then_else:
  assumes "P  {s. T s}  fb X Q"
    and "P  {s. ¬ T s}  fb Y Q"
  shows "P  fb (IF T THEN X ELSE Y) Q"
  using assms 
  apply(subst ffb_eq)
  apply(subst (asm) ffb_eq)+
  unfolding ifthenelse_def by auto

― ‹ Finite iteration ›

lemma kpower_inv: "I  {s. y. y  F s  y  I}  I  {s. y. y  (kpower F n s)  y  I}"
  apply(induct n, simp)
  apply simp
  by(auto simp: kcomp_prop) 

lemma kstar_inv: "I  fb F I  I  fb (kstar F) I"
  unfolding kstar_def ffb_eq apply clarsimp
  using kpower_inv by blast

lemma ffb_kstarI:
  assumes "P  I" and "I  Q" and "I  fb F I"
  shows "P  fb (kstar F) Q"
proof-
  have "I  fb (kstar F) I"
    using assms(3) kstar_inv by blast
  hence "P  fb (kstar F) I"
    using assms(1) by auto
  also have "fb (kstar F) I  fb (kstar F) Q"
    by (rule ffb_iso[OF assms(2)])
  finally show ?thesis .
qed

definition loopi :: "('a  'a set)  'a pred  ('a  'a set)" (LOOP _ INV _ › [64,64] 63)
  where "LOOP F INV I  (kstar F)"

lemma change_loopI: "LOOP X INV G = LOOP X INV I"
  unfolding loopi_def by simp

lemma ffb_loopI: "P  {s. I s}   {s. I s}  Q  {s. I s}  fb F {s. I s}  P  fb (LOOP F INV I) Q"
  unfolding loopi_def using ffb_kstarI[of "P"] by simp

lemma ffb_loopI_break: 
  "P  fb Y {s. I s}  {s. I s}  fb X {s. I s}  {s. I s}  Q  P  fb (Y ; (LOOP X INV I)) Q"
  by (rule hoare_kcomp, force) (rule ffb_loopI, auto)


subsection ‹Verification of hybrid programs›

text ‹Verification by providing evolution›

definition g_evol :: "(('a::ord)  'b  'b)  'b pred  ('b  'a set)  ('b  'b set)" (EVOL)
  where "EVOL φ G U = (λs. g_orbit (λt. φ t s) G (U s))"

lemma fbox_g_evol[simp]: 
  fixes φ :: "('a::preorder)  'b  'b"
  shows "fb (EVOL φ G U) Q = {s. (tU s. (τdown (U s) t. G (φ τ s))  (φ t s)  Q)}"
  unfolding g_evol_def g_orbit_eq ffb_eq by auto

text ‹Verification by providing solutions›

lemma ffb_g_orbital: "fb (x´= f & G on U S @ t0) Q = 
  {s. XSols f U S t0 s. tU s. (τdown (U s) t. G (X τ))  (X t)  Q}"
  unfolding ffb_eq g_orbital_eq by (auto simp: fun_eq_iff)

context local_flow
begin

lemma ffb_g_ode_subset:
  assumes "s. s  S  0  U s  is_interval (U s)  U s  T"
  shows "fb (x´= (λt. f) & G on U S @ 0) Q = 
  {s. s  S  (t(U s). (τdown (U s) t. G (φ τ s))  (φ t s)  Q)}"
  apply(unfold ffb_g_orbital set_eq_iff)
  apply(clarify, rule iffI; clarify)
   apply(force simp: in_ivp_sols assms)
  apply(frule ivp_solsD(2), frule ivp_solsD(3), frule ivp_solsD(4))
  apply(subgoal_tac "τdown (U x) t. X τ = φ τ x")
   apply(clarsimp, fastforce, rule ballI)
  apply(rule ivp_unique_solution[OF _ _ _ _ _ in_ivp_sols])
  using assms by auto

lemma ffb_g_ode: "fb (x´= (λt. f) & G on (λs. T) S @ 0) Q = 
  {s. s  S  (tT. (τdown T t. G (φ τ s))  (φ t s)  Q)}" (is "_ = ?wlp")
  by (subst ffb_g_ode_subset, simp_all add: init_time interval_time)

lemma ffb_g_ode_ivl: "t  0  t  T  fb (x´=(λt. f) & G on (λs. {0..t}) S @ 0) Q = 
  {s. s  S  (t{0..t}. (τ{0..t}. G (φ τ s))  (φ t s)  Q)}"
  apply(subst ffb_g_ode_subset, simp_all add: subintervalI init_time real_Icc_closed_segment)
  by (auto simp: closed_segment_eq_real_ivl)

lemma ffb_orbit: "fb γφ Q = {s. s  S  ( t  T. φ t s  Q)}"
  unfolding orbit_def ffb_g_ode by simp

end

text ‹ Verification with differential invariants ›

definition g_ode_inv :: "(real  ('a::banach)'a)  'a pred  ('a  real set)  'a set  
  real  'a pred  ('a  'a set)" ((1x´=_ & _ on _ _ @ _ DINV _ )) 
  where "(x´= f & G on U S @ t0 DINV I) = (x´= f & G on U S @ t0)"

lemma ffb_g_orbital_guard: 
  assumes "H = (λs. G s  Q s)"
  shows "fb (x´= f & G on U S @ t0) {s. Q s} = fb (x´= f & G on U S @ t0) {s. H s}"
  unfolding ffb_g_orbital using assms by auto

lemma ffb_g_orbital_inv:
  assumes "P  I" and "I  fb (x´= f & G on U S @ t0) I" and "I  Q"
  shows "P  fb (x´= f & G on U S @ t0) Q"
  using assms(1) 
  apply(rule order.trans)
  using assms(2) 
  apply(rule order.trans)
  by (rule ffb_iso[OF assms(3)])

lemma ffb_diff_inv[simp]: 
  "({s. I s}  fb (x´= f & G on U S @ t0) {s. I s}) = diff_invariant I f U S t0 G"
  by (auto simp: diff_invariant_def ivp_sols_def ffb_eq g_orbital_eq)

lemma bdf_diff_inv:
  "diff_invariant I f U S t0 G = (bd (x´= f & G on U S @ t0) {s. I s}  {s. I s})"
  unfolding ffb_fbd_galois_var by (auto simp: diff_invariant_def ivp_sols_def ffb_eq g_orbital_eq)

lemma diff_inv_guard_ignore:
  assumes "{s. I s}  fb (x´= f & (λs. True) on U S @ t0) {s. I s}"
  shows "{s. I s}  fb (x´= f & G on U S @ t0) {s. I s}"
  using assms unfolding ffb_diff_inv diff_invariant_eq image_le_pred by auto

context local_flow
begin

lemma ffb_diff_inv_eq: 
  assumes "s. s  S  0  U s  is_interval (U s)  U s  T"
  shows "diff_invariant I (λt. f) U S 0 (λs. True) = 
  ({s. s  S  I s} = fb (x´= (λt. f) & (λs. True) on U S @ 0) {s. s  S  I s})"
 unfolding ffb_diff_inv[symmetric] 
  apply(subst ffb_g_ode_subset[OF assms], simp)+
  apply(clarsimp simp: set_eq_iff, safe, force)
   apply(erule_tac x=0 in ballE)
  using init_time in_domain ivp(2) assms apply(force, force)
  apply(erule_tac x=x in allE, clarsimp, erule_tac x=t in ballE)
  using in_domain ivp(2) assms by force+

lemma diff_inv_eq_inv_set:
  "diff_invariant I (λt. f) (λs. T) S 0 (λs. True) = (s. I s  γφ s  {s. I s})"
  unfolding diff_inv_eq_inv_set orbit_def by simp

end

lemma ffb_g_odei: "P  {s. I s}  {s. I s}  fb (x´= f & G on U S @ t0) {s. I s}  
  {s. I s  G s}  Q  P  fb (x´= f & G on U S @ t0 DINV I) Q"
  unfolding g_ode_inv_def 
  apply(rule_tac b="fb (x´= f & G on U S @ t0) {s. I s}" in order.trans)
   apply(rule_tac I="{s. I s}" in ffb_g_orbital_inv, simp_all)
  apply(subst ffb_g_orbital_guard, simp)
  by (rule ffb_iso, force)

subsection ‹ Derivation of the rules of dL ›

text‹ We derive domain specific rules of differential dynamic logic (dL). First we present a 
generalised version, then we show the rules as instances of the general ones.›

abbreviation g_dl_orbit ::"(('a::banach)'a)  'a pred  'a  'a set" ((1x´=_ & _)) 
  where "(x´=f & G)  (x´=(λt. f) & G on (λs. {t. t  0}) UNIV @ 0)"

abbreviation g_dl_ode_inv ::"(('a::banach)'a)  'a pred  'a pred  'a  'a set" ((1x´=_ & _ DINV _)) 
  where "(x´=f & G DINV I)  (x´=(λt. f) & G on (λs. {t. t  0}) UNIV @ 0 DINV I)"

lemma diff_solve_axiom1: 
  assumes "local_flow f UNIV UNIV φ"
  shows "fb (x´= f & G) Q = 
  {s. t0. (τ{0..t}. G (φ τ s))  (φ t s)  Q}"
  by (subst local_flow.ffb_g_ode_subset[OF assms], auto)

lemma diff_solve_axiom2: 
  fixes c::"'a::{heine_borel, banach}"
  shows "fb (x´=(λs. c) & G) Q = 
  {s. t0. (τ{0..t}. G (s + τ *R c))  (s + t *R c)  Q}"
  apply(subst local_flow.ffb_g_ode_subset[where φ="(λt s. s + t *R c)" and T=UNIV])
  by (rule line_is_local_flow, auto)

lemma diff_solve_rule:
  assumes "local_flow f UNIV UNIV φ"
    and "s. s  P  (t0. (τ{0..t}. G (φ τ s))  (φ t s)  Q)"
  shows "P  fb (x´= f & G) Q"
  using assms by(subst local_flow.ffb_g_ode_subset[OF assms(1)]) auto

lemma diff_weak_axiom1: "s  (fb (x´= f & G on U S @ t0) {s. G s})"
  unfolding ffb_eq g_orbital_eq by auto

lemma diff_weak_axiom2: "fb (x´= f & G on T S @ t0) Q = fb (x´= f & G on T S @ t0) {s. G s  s  Q}"
  unfolding ffb_g_orbital image_def by force
    
lemma diff_weak_rule: "{s. G s}  Q  P  fb (x´= f & G on T S @ t0) Q"
  by(auto intro: g_orbitalD simp: le_fun_def g_orbital_eq ffb_eq)

lemma ffb_g_orbital_eq_univD:
  assumes "fb (x´= f & G on U S @ t0) {s. C s} = UNIV" 
    and "τ(down (U s) t). x τ  (x´= f & G on U S @ t0) s"
  shows "τ(down (U s) t). C (x τ)"
proof
  fix τ assume "τ  (down (U s) t)"
  hence "x τ  (x´= f & G on U S @ t0) s" 
    using assms(2) by blast
  also have "y. y  (x´= f & G on U S @ t0) s  C y" 
    using assms(1) unfolding ffb_eq by fastforce
  ultimately show "C (x τ)" by blast
qed

lemma diff_cut_axiom:
  assumes "fb (x´= f & G on U S @ t0) {s. C s} = UNIV"
  shows "fb (x´= f & G on U S @ t0) Q = fb (x´= f & (λs. G s  C s) on U S @ t0) Q"
proof(rule_tac f="λ x. fb x Q" in HOL.arg_cong, rule ext, rule subset_antisym)
  fix s 
  {fix s' assume "s'  (x´= f & G on U S @ t0) s"
    then obtain τ::real and X where x_ivp: "X  Sols f U S t0 s" 
      and "X τ = s'" and "τ  (U s)" and guard_x:"𝒫 X (down (U s) τ)  {s. G s}"
      using g_orbitalD[of s' "f" G _ S t0 s]  by blast
    have "t(down (U s) τ). 𝒫 X (down (U s) t)  {s. G s}"
      using guard_x by (force simp: image_def)
    also have "t(down (U s) τ). t  (U s)"
      using τ  (U s) closed_segment_subset_interval by auto
    ultimately have "t(down (U s) τ). X t  (x´= f & G on U S @ t0) s"
      using g_orbitalI[OF x_ivp] by (metis (mono_tags, lifting))
    hence "t(down (U s) τ). C (X t)" 
      using assms unfolding ffb_eq by fastforce
    hence "s'  (x´= f & (λs. G s  C s) on U S @ t0) s"
      using g_orbitalI[OF x_ivp τ  (U s)] guard_x X τ = s' 
      unfolding image_le_pred by fastforce}
  thus "(x´= f & G on U S @ t0) s  (x´= f & (λs. G s  C s) on U S @ t0) s"
    by blast
next show "s. (x´= f & (λs. G s  C s) on U S @ t0) s  (x´= f & G on U S @ t0) s" 
    by (auto simp: g_orbital_eq)
qed

lemma diff_cut_rule:
  assumes ffb_C: "P  fb (x´= f & G on U S @ t0) {s. C s}"
    and ffb_Q: "P  fb (x´= f & (λs. G s  C s) on U S @ t0) Q"
  shows "P  fb (x´= f & G on U S @ t0) Q"
proof(subst ffb_eq, subst g_orbital_eq, clarsimp)
  fix t::real and X::"real  'a" and s assume "s  P" and "t  (U s)"
    and x_ivp:"X  Sols f U S t0 s" 
    and guard_x:"τ. τ  (U s)  τ  t  G (X τ)"
  have "τ(down (U s) t). X τ  (x´= f & G on U S @ t0) s"
    using g_orbitalI[OF x_ivp] guard_x unfolding image_le_pred by auto
  hence "τ(down (U s) t). C (X τ)" 
    using ffb_C s  P by (subst (asm) ffb_eq, auto)
  hence "X t  (x´= f & (λs. G s  C s) on U S @ t0) s"
    using guard_x t  (U s) by (auto intro!: g_orbitalI x_ivp)
  thus "(X t)  Q"
    using s  P ffb_Q by (subst (asm) ffb_eq) auto
qed

lemma diff_inv_axiom1:
  assumes "G s  I s" and "diff_invariant I (λt. f) (λs. {t. t  0}) UNIV 0 G"
  shows "s  (fb (x´= f & G) {s. I s})"
  using assms unfolding ffb_g_orbital diff_invariant_eq apply clarsimp
  by (erule_tac x=s in allE, frule ivp_solsD(2), clarsimp)

lemma diff_inv_axiom2:
  assumes "picard_lindeloef (λt. f) UNIV UNIV 0"
    and "s. {t::real. t  0}  picard_lindeloef.ex_ivl (λt. f) UNIV UNIV 0 s"
    and "diff_invariant I (λt. f) (λs. {t::real. t  0}) UNIV 0 G"
  shows "fb (x´= f & G) {s. I s} = fb (λs. {x. s = x  G s}) {s. I s}"
proof(unfold ffb_g_orbital, subst ffb_eq, clarsimp simp: set_eq_iff)
  fix s
  let "?ex_ivl s" = "picard_lindeloef.ex_ivl (λt. f) UNIV UNIV 0 s"
  let "?lhs s" = 
    "XSols (λt. f) (λs. {t. t  0}) UNIV 0 s. t0. (τ. 0  τ  τ  t  G (X τ))  I (X t)"
  obtain X where xivp1: "X  Sols (λt. f) (λs. ?ex_ivl s) UNIV 0 s"
    using picard_lindeloef.flow_in_ivp_sols_ex_ivl[OF assms(1)] by auto
  have xivp2: "X  Sols (λt. f) (λs. Collect ((≤) 0)) UNIV 0 s"
    by (rule in_ivp_sols_subset[OF _ _ xivp1], simp_all add: assms(2))
  hence shyp: "X 0 = s"
    using ivp_solsD by auto
  have dinv: "s. I s  ?lhs s"
    using assms(3) unfolding diff_invariant_eq by auto
  {assume "?lhs s" and "G s"
    hence "I s"
      by (erule_tac x=X in ballE, erule_tac x=0 in allE, auto simp: shyp xivp2)}
  hence "?lhs s  (G s  I s)" 
    by blast
  moreover
  {assume "G s  I s"
    hence "?lhs s"
      apply(clarify, subgoal_tac "τ. 0  τ  τ  t  G (X τ)")
       apply(erule_tac x=0 in allE, frule ivp_solsD(2), simp)
      using dinv by blast+}
  ultimately show "?lhs s = (G s  I s)"
    by blast
qed

lemma diff_inv_rule:
  assumes "P  {s. I s}" and "diff_invariant I f U S t0 G" and "{s. I s}  Q"
  shows "P  fb (x´= f & G on U S @ t0) Q"
  apply(rule ffb_g_orbital_inv[OF assms(1) _ assms(3)])
  unfolding ffb_diff_inv using assms(2) .

end