Theory HS_ODEs
section ‹ Ordinary Differential Equations ›
text ‹Vector fields @{text "f::real ⇒ 'a ⇒ ('a::real_normed_vector)"} represent systems
of ordinary differential equations (ODEs). Picard-Lindeloef's theorem guarantees existence
and uniqueness of local solutions to initial value problems involving Lipschitz continuous
vector fields. A (local) flow @{text "φ::real ⇒ 'a ⇒ ('a::real_normed_vector)"} for such
a system is the function that maps initial conditions to their unique solutions. In dynamical
systems, the set of all points @{text "φ t s::'a"} for a fixed @{text "s::'a"} is the flow's
orbit. If the orbit of each @{text "s ∈ I"} is conatined in @{text I}, then @{text I} is an
invariant set of this system. This section formalises these concepts with a focus on hybrid
systems (HS) verification.›
theory HS_ODEs
imports "HS_Preliminaries"
begin
subsection ‹ Initial value problems and orbits ›
notation image (‹𝒫›)
lemma image_le_pred[simp]: "(𝒫 f A ⊆ {s. G s}) = (∀x∈A. G (f x))"
unfolding image_def by force
definition ivp_sols :: "(real ⇒ 'a ⇒ ('a::real_normed_vector)) ⇒ ('a ⇒ real set) ⇒ 'a set ⇒
real ⇒ 'a ⇒ (real ⇒ 'a) set" (‹Sols›)
where "Sols f U S t⇩0 s = {X ∈ U s → S. (D X = (λt. f t (X t)) on U s) ∧ X t⇩0 = s ∧ t⇩0 ∈ U s}"
lemma ivp_solsI:
assumes "D X = (λt. f t (X t)) on U s" and "X t⇩0 = s"
and "X ∈ U s → S" and "t⇩0 ∈ U s"
shows "X ∈ Sols f U S t⇩0 s"
using assms unfolding ivp_sols_def by blast
lemma ivp_solsD:
assumes "X ∈ Sols f U S t⇩0 s"
shows "D X = (λt. f t (X t)) on U s" and "X t⇩0 = s"
and "X ∈ U s → S" and "t⇩0 ∈ U s"
using assms unfolding ivp_sols_def by auto
lemma in_ivp_sols_subset:
"t⇩0 ∈ (U s) ⟹ (U s) ⊆ (T s) ⟹ X ∈ Sols f T S t⇩0 s ⟹ X ∈ Sols f U S t⇩0 s "
apply(rule ivp_solsI)
using ivp_solsD(1,2) has_vderiv_on_subset
apply blast+
by (drule ivp_solsD(3)) auto
abbreviation "down U t ≡ {τ ∈ U. τ ≤ t}"
definition g_orbit :: "(('a::ord) ⇒ 'b) ⇒ ('b ⇒ bool) ⇒ 'a set ⇒ 'b set" (‹γ›)
where "γ X G U = ⋃{𝒫 X (down U t) |t. 𝒫 X (down U t) ⊆ {s. G s}}"
lemma g_orbit_eq:
fixes X::"('a::preorder) ⇒ 'b"
shows "γ X G U = {X t |t. t ∈ U ∧ (∀τ∈down U t. G (X τ))}"
unfolding g_orbit_def using order_trans by auto blast
definition g_orbital :: "(real ⇒ 'a ⇒ 'a) ⇒ ('a ⇒ bool) ⇒ ('a ⇒ real set) ⇒ 'a set ⇒ real ⇒
('a::real_normed_vector) ⇒ 'a set"
where "g_orbital f G U S t⇩0 s = ⋃{γ X G (U s) |X. X ∈ ivp_sols f U S t⇩0 s}"
lemma g_orbital_eq: "g_orbital f G U S t⇩0 s =
{X t |t X. t ∈ U s ∧ 𝒫 X (down (U s) t) ⊆ {s. G s} ∧ X ∈ Sols f U S t⇩0 s }"
unfolding g_orbital_def ivp_sols_def g_orbit_eq by auto
lemma g_orbitalI:
assumes "X ∈ Sols f U S t⇩0 s"
and "t ∈ U s" and "(𝒫 X (down (U s) t) ⊆ {s. G s})"
shows "X t ∈ g_orbital f G U S t⇩0 s"
using assms unfolding g_orbital_eq(1) by auto
lemma g_orbitalD:
assumes "s' ∈ g_orbital f G U S t⇩0 s"
obtains X and t where "X ∈ Sols f U S t⇩0 s"
and "X t = s'" and "t ∈ U s" and "(𝒫 X (down (U s) t) ⊆ {s. G s})"
using assms unfolding g_orbital_def g_orbit_eq by auto
lemma "g_orbital f G U S t⇩0 s = {X t |t X. X t ∈ γ X G (U s) ∧ X ∈ Sols f U S t⇩0 s}"
unfolding g_orbital_eq g_orbit_eq by auto
lemma "X ∈ Sols f U S t⇩0 s ⟹ γ X G (U s) ⊆ g_orbital f G U S t⇩0 s"
unfolding g_orbital_eq g_orbit_eq by auto
lemma "g_orbital f G U S t⇩0 s ⊆ g_orbital f (λs. True) U S t⇩0 s"
unfolding g_orbital_eq by auto
no_notation g_orbit (‹γ›)
subsection ‹ Differential Invariants ›
definition diff_invariant :: "('a ⇒ bool) ⇒ (real ⇒ ('a::real_normed_vector) ⇒ 'a) ⇒
('a ⇒ real set) ⇒ 'a set ⇒ real ⇒ ('a ⇒ bool) ⇒ bool"
where "diff_invariant I f U S t⇩0 G ≡ (⋃ ∘ (𝒫 (g_orbital f G U S t⇩0))) {s. I s} ⊆ {s. I s}"
lemma diff_invariant_eq: "diff_invariant I f U S t⇩0 G =
(∀s. I s ⟶ (∀X∈Sols f U S t⇩0 s. (∀t∈U s.(∀τ∈(down (U s) t). G (X τ)) ⟶ I (X t))))"
unfolding diff_invariant_def g_orbital_eq image_le_pred by auto
lemma diff_inv_eq_inv_set:
"diff_invariant I f U S t⇩0 G = (∀s. I s ⟶ (g_orbital f G U S t⇩0 s) ⊆ {s. I s})"
unfolding diff_invariant_eq g_orbital_eq image_le_pred by auto
lemma "diff_invariant I f U S t⇩0 (λs. True) ⟹ diff_invariant I f U S t⇩0 G"
unfolding diff_invariant_eq by auto
named_theorems diff_invariant_rules "rules for certifying differential invariants."
lemma diff_invariant_eq_rule [diff_invariant_rules]:
assumes Uhyp: "⋀s. s ∈ S ⟹ is_interval (U s)"
and dX: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ (D (λτ. μ(X τ)-ν(X τ)) = ((*⇩R) 0) on U(X t⇩0))"
shows "diff_invariant (λs. μ s = ν s) f U S t⇩0 G"
proof(simp add: diff_invariant_eq ivp_sols_def, clarsimp)
fix X t
assume xivp:"D X = (λτ. f τ (X τ)) on U (X t⇩0)" "μ (X t⇩0) = ν (X t⇩0)" "X ∈ U (X t⇩0) → S"
and tHyp:"t ∈ U (X t⇩0)" and t0Hyp: "t⇩0 ∈ U (X t⇩0)"
hence "{t⇩0--t} ⊆ U (X t⇩0)"
using closed_segment_subset_interval[OF Uhyp t0Hyp tHyp] by blast
hence "D (λτ. μ (X τ) - ν (X τ)) = (λτ. τ *⇩R 0) on {t⇩0--t}"
using has_vderiv_on_subset[OF dX[OF xivp(1)]] by auto
then obtain τ where "μ (X t) - ν (X t) - (μ (X t⇩0) - ν (X t⇩0)) = (t - t⇩0) * τ *⇩R 0"
using mvt_very_simple_closed_segmentE by blast
thus "μ (X t) = ν (X t)"
by (simp add: xivp(2))
qed
lemma diff_invariant_leq_rule [diff_invariant_rules]:
fixes μ::"'a::banach ⇒ real"
assumes Uhyp: "⋀s. s ∈ S ⟹ is_interval (U s)"
and Gg: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ (∀τ∈U(X t⇩0). τ > t⇩0 ⟶ G (X τ) ⟶ μ' (X τ) ≥ ν' (X τ))"
and Gl: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ (∀τ∈U(X t⇩0). τ < t⇩0 ⟶ μ' (X τ) ≤ ν' (X τ))"
and dX: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ D (λτ. μ(X τ)-ν(X τ)) = (λτ. μ'(X τ)-ν'(X τ)) on U(X t⇩0)"
shows "diff_invariant (λs. ν s ≤ μ s) f U S t⇩0 G"
proof(simp_all add: diff_invariant_eq ivp_sols_def, safe)
fix X t assume Ghyp: "∀τ. τ ∈ U (X t⇩0) ∧ τ ≤ t ⟶ G (X τ)"
assume xivp: "D X = (λx. f x (X x)) on U (X t⇩0)" "ν (X t⇩0) ≤ μ (X t⇩0)" "X ∈ U (X t⇩0) → S"
assume tHyp: "t ∈ U (X t⇩0)" and t0Hyp: "t⇩0 ∈ U (X t⇩0)"
hence obs1: "{t⇩0--t} ⊆ U (X t⇩0)" "{t⇩0<--<t} ⊆ U (X t⇩0)"
using closed_segment_subset_interval[OF Uhyp t0Hyp tHyp] xivp(3) segment_open_subset_closed
by (force, metis PiE ‹X t⇩0 ∈ S ⟹ {t⇩0--t} ⊆ U (X t⇩0)› dual_order.trans)
hence obs2: "D (λτ. μ (X τ) - ν (X τ)) = (λτ. μ' (X τ) - ν' (X τ)) on {t⇩0--t}"
using has_vderiv_on_subset[OF dX[OF xivp(1)]] by auto
{assume "t ≠ t⇩0"
then obtain r where rHyp: "r ∈ {t⇩0<--<t}"
and "(μ(X t)-ν(X t)) - (μ(X t⇩0)-ν(X t⇩0)) = (λτ. τ*(μ'(X r)-ν'(X r))) (t - t⇩0)"
using mvt_simple_closed_segmentE obs2 by blast
hence mvt: "μ(X t)-ν(X t) = (t - t⇩0)*(μ'(X r)-ν'(X r)) + (μ(X t⇩0)-ν(X t⇩0))"
by force
have primed: "⋀τ. τ ∈ U (X t⇩0) ⟹ τ > t⇩0 ⟹ G (X τ) ⟹ μ' (X τ) ≥ ν' (X τ)"
"⋀τ. τ ∈ U (X t⇩0) ⟹ τ < t⇩0 ⟹ μ' (X τ) ≤ ν' (X τ)"
using Gg[OF xivp(1)] Gl[OF xivp(1)] by auto
have "t > t⇩0 ⟹ r > t⇩0 ∧ G (X r)" "¬ t⇩0 ≤ t ⟹ r < t⇩0" "r ∈ U (X t⇩0)"
using ‹r ∈ {t⇩0<--<t}› obs1 Ghyp
unfolding open_segment_eq_real_ivl closed_segment_eq_real_ivl by auto
moreover have "r > t⇩0 ⟹ G (X r) ⟹ (μ'(X r)- ν'(X r)) ≥ 0" "r < t⇩0 ⟹ (μ'(X r)-ν'(X r)) ≤ 0"
using primed(1,2)[OF ‹r ∈ U (X t⇩0)›] by auto
ultimately have "(t - t⇩0) * (μ'(X r)-ν'(X r)) ≥ 0"
by (case_tac "t ≥ t⇩0", force, auto simp: split_mult_pos_le)
hence "(t - t⇩0) * (μ'(X r)-ν'(X r)) + (μ(X t⇩0)-ν(X t⇩0)) ≥ 0"
using xivp(2) by auto
hence "ν (X t) ≤ μ (X t)"
using mvt by simp}
thus "ν (X t) ≤ μ (X t)"
using xivp by blast
qed
lemma diff_invariant_less_rule [diff_invariant_rules]:
fixes μ::"'a::banach ⇒ real"
assumes Uhyp: "⋀s. s ∈ S ⟹ is_interval (U s)"
and Gg: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ (∀τ∈U(X t⇩0). τ > t⇩0 ⟶ G (X τ) ⟶ μ' (X τ) ≥ ν' (X τ))"
and Gl: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ (∀τ∈U(X t⇩0). τ < t⇩0 ⟶ μ' (X τ) ≤ ν' (X τ))"
and dX: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ D (λτ. μ(X τ)-ν(X τ)) = (λτ. μ'(X τ)-ν'(X τ)) on U(X t⇩0)"
shows "diff_invariant (λs. ν s < μ s) f U S t⇩0 G"
proof(simp_all add: diff_invariant_eq ivp_sols_def, safe)
fix X t assume Ghyp: "∀τ. τ ∈ U (X t⇩0) ∧ τ ≤ t ⟶ G (X τ)"
assume xivp: "D X = (λx. f x (X x)) on U (X t⇩0)" "ν (X t⇩0) < μ (X t⇩0)" "X ∈ U (X t⇩0) → S"
assume tHyp: "t ∈ U (X t⇩0)" and t0Hyp: "t⇩0 ∈ U (X t⇩0)"
hence obs1: "{t⇩0--t} ⊆ U (X t⇩0)" "{t⇩0<--<t} ⊆ U (X t⇩0)"
using closed_segment_subset_interval[OF Uhyp t0Hyp tHyp] xivp(3) segment_open_subset_closed
by (force, metis PiE ‹X t⇩0 ∈ S ⟹ {t⇩0--t} ⊆ U (X t⇩0)› dual_order.trans)
hence obs2: "D (λτ. μ (X τ) - ν (X τ)) = (λτ. μ' (X τ) - ν' (X τ)) on {t⇩0--t}"
using has_vderiv_on_subset[OF dX[OF xivp(1)]] by auto
{assume "t ≠ t⇩0"
then obtain r where rHyp: "r ∈ {t⇩0<--<t}"
and "(μ(X t)-ν(X t)) - (μ(X t⇩0)-ν(X t⇩0)) = (λτ. τ*(μ'(X r)-ν'(X r))) (t - t⇩0)"
using mvt_simple_closed_segmentE obs2 by blast
hence mvt: "μ(X t)-ν(X t) = (t - t⇩0)*(μ'(X r)-ν'(X r)) + (μ(X t⇩0)-ν(X t⇩0))"
by force
have primed: "⋀τ. τ ∈ U (X t⇩0) ⟹ τ > t⇩0 ⟹ G (X τ) ⟹ μ' (X τ) ≥ ν' (X τ)"
"⋀τ. τ ∈ U (X t⇩0) ⟹ τ < t⇩0 ⟹ μ' (X τ) ≤ ν' (X τ)"
using Gg[OF xivp(1)] Gl[OF xivp(1)] by auto
have "t > t⇩0 ⟹ r > t⇩0 ∧ G (X r)" "¬ t⇩0 ≤ t ⟹ r < t⇩0" "r ∈ U (X t⇩0)"
using ‹r ∈ {t⇩0<--<t}› obs1 Ghyp
unfolding open_segment_eq_real_ivl closed_segment_eq_real_ivl by auto
moreover have "r > t⇩0 ⟹ G (X r) ⟹ (μ'(X r)- ν'(X r)) ≥ 0" "r < t⇩0 ⟹ (μ'(X r)-ν'(X r)) ≤ 0"
using primed(1,2)[OF ‹r ∈ U (X t⇩0)›] by auto
ultimately have "(t - t⇩0) * (μ'(X r)-ν'(X r)) ≥ 0"
by (case_tac "t ≥ t⇩0", force, auto simp: split_mult_pos_le)
hence "(t - t⇩0) * (μ'(X r)-ν'(X r)) + (μ(X t⇩0)-ν(X t⇩0)) > 0"
using xivp(2) by auto
hence "ν (X t) < μ (X t)"
using mvt by simp}
thus "ν (X t) < μ (X t)"
using xivp by blast
qed
lemma diff_invariant_nleq_rule:
fixes μ::"'a::banach ⇒ real"
shows "diff_invariant (λs. ¬ ν s ≤ μ s) f U S t⇩0 G ⟷ diff_invariant (λs. ν s > μ s) f U S t⇩0 G"
unfolding diff_invariant_eq apply safe
by (clarsimp, erule_tac x=s in allE, simp, erule_tac x=X in ballE, force, force)+
lemma diff_invariant_neq_rule [diff_invariant_rules]:
fixes μ::"'a::banach ⇒ real"
assumes "diff_invariant (λs. ν s < μ s) f U S t⇩0 G"
and "diff_invariant (λs. ν s > μ s) f U S t⇩0 G"
shows "diff_invariant (λs. ν s ≠ μ s) f U S t⇩0 G"
proof(unfold diff_invariant_eq, clarsimp)
fix s::'a and X::"real ⇒ 'a" and t::real
assume "ν s ≠ μ s" and Xhyp: "X ∈ Sols f U S t⇩0 s"
and thyp: "t ∈ U s" and Ghyp: "∀τ. τ ∈ U s ∧ τ ≤ t ⟶ G (X τ)"
hence "ν s < μ s ∨ ν s > μ s"
by linarith
moreover have "ν s < μ s ⟹ ν (X t) < μ (X t)"
using assms(1) Xhyp thyp Ghyp unfolding diff_invariant_eq by auto
moreover have "ν s > μ s ⟹ ν (X t) > μ (X t)"
using assms(2) Xhyp thyp Ghyp unfolding diff_invariant_eq by auto
ultimately show "ν (X t) = μ (X t) ⟹ False"
by auto
qed
lemma diff_invariant_neq_rule_converse:
fixes μ::"'a::banach ⇒ real"
assumes Uhyp: "⋀s. s ∈ S ⟹ is_interval (U s)" "⋀s t. s ∈ S ⟹ t ∈ U s ⟹ t⇩0 ≤ t"
and conts: "⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ continuous_on (𝒫 X (U (X t⇩0))) ν"
"⋀X. (D X = (λτ. f τ (X τ)) on U(X t⇩0)) ⟹ continuous_on (𝒫 X (U (X t⇩0))) μ"
and dI:"diff_invariant (λs. ν s ≠ μ s) f U S t⇩0 G"
shows "diff_invariant (λs. ν s < μ s) f U S t⇩0 G"
proof(unfold diff_invariant_eq ivp_sols_def, clarsimp)
fix X t assume Ghyp: "∀τ. τ ∈ U (X t⇩0) ∧ τ ≤ t ⟶ G (X τ)"
assume xivp: "D X = (λx. f x (X x)) on U (X t⇩0)" "ν (X t⇩0) < μ (X t⇩0)" "X ∈ U (X t⇩0) → S"
assume tHyp: "t ∈ U (X t⇩0)" and t0Hyp: "t⇩0 ∈ U (X t⇩0)"
hence "t⇩0 ≤ t" and "μ (X t) ≠ ν (X t)"
using xivp(3) Uhyp(2) apply force
using dI tHyp xivp(2) Ghyp ivp_solsI[of X f U "X t⇩0", OF xivp(1) _ xivp(3) t0Hyp]
unfolding diff_invariant_eq by force
moreover
{assume ineq2:"ν (X t) > μ (X t)"
note continuous_on_compose[OF vderiv_on_continuous_on[OF xivp(1)]]
hence "continuous_on (U (X t⇩0)) (ν ∘ X)" and "continuous_on (U (X t⇩0)) (μ ∘ X)"
using xivp(1) conts by blast+
also have "{t⇩0--t} ⊆ U (X t⇩0)"
using closed_segment_subset_interval[OF Uhyp(1) t0Hyp tHyp] xivp(3) t0Hyp by auto
ultimately have "continuous_on {t⇩0--t} (λτ. ν (X τ))"
and "continuous_on {t⇩0--t} (λτ. μ (X τ))"
using continuous_on_subset by auto
then obtain τ where "τ ∈ {t⇩0--t}" "μ (X τ) = ν (X τ)"
using IVT_two_functions_real_ivl[OF _ _ xivp(2) ineq2] by force
hence "∀r∈down (U (X t⇩0)) τ. G (X r)" and "τ ∈ U (X t⇩0)"
using Ghyp ‹τ ∈ {t⇩0--t}› ‹t⇩0 ≤ t› ‹{t⇩0--t} ⊆ U (X t⇩0)›
by (auto simp: closed_segment_eq_real_ivl)
hence "μ (X τ) ≠ ν (X τ)"
using dI tHyp xivp(2) ivp_solsI[of X f U "X t⇩0", OF xivp(1) _ xivp(3) t0Hyp]
unfolding diff_invariant_eq by force
hence "False"
using ‹μ (X τ) = ν (X τ)› by blast}
ultimately show "ν (X t) < μ (X t)"
by fastforce
qed
lemma diff_invariant_conj_rule [diff_invariant_rules]:
assumes "diff_invariant I⇩1 f U S t⇩0 G"
and "diff_invariant I⇩2 f U S t⇩0 G"
shows "diff_invariant (λs. I⇩1 s ∧ I⇩2 s) f U S t⇩0 G"
using assms unfolding diff_invariant_def by auto
lemma diff_invariant_disj_rule [diff_invariant_rules]:
assumes "diff_invariant I⇩1 f U S t⇩0 G"
and "diff_invariant I⇩2 f U S t⇩0 G"
shows "diff_invariant (λs. I⇩1 s ∨ I⇩2 s) f U S t⇩0 G"
using assms unfolding diff_invariant_def by auto
subsection ‹ Picard-Lindeloef ›
text‹ A locale with the assumptions of Picard-Lindeloef's theorem. It extends
@{term "ll_on_open_it"} by providing an initial time @{term "t⇩0 ∈ T"}.›
locale picard_lindeloef =
fixes f::"real ⇒ ('a::{heine_borel,banach}) ⇒ 'a" and T::"real set" and S::"'a set" and t⇩0::real
assumes open_domain: "open T" "open S"
and interval_time: "is_interval T"
and init_time: "t⇩0 ∈ T"
and cont_vec_field: "∀s ∈ S. continuous_on T (λt. f t s)"
and lipschitz_vec_field: "local_lipschitz T S f"
begin
sublocale ll_on_open_it T f S t⇩0
by (unfold_locales) (auto simp: cont_vec_field lipschitz_vec_field interval_time open_domain)
lemma ll_on_open: "ll_on_open T f S"
using local.general.ll_on_open_axioms .
lemmas subintervalI = closed_segment_subset_domain
and init_time_ex_ivl = existence_ivl_initial_time[OF init_time]
and flow_at_init[simp] = general.flow_initial_time[OF init_time]
abbreviation "ex_ivl s ≡ existence_ivl t⇩0 s"
lemma flow_has_vderiv_on_ex_ivl:
assumes "s ∈ S"
shows "D flow t⇩0 s = (λt. f t (flow t⇩0 s t)) on ex_ivl s"
using flow_usolves_ode[OF init_time ‹s ∈ S›]
unfolding usolves_ode_from_def solves_ode_def by blast
lemma flow_funcset_ex_ivl:
assumes "s ∈ S"
shows "flow t⇩0 s ∈ ex_ivl s → S"
using flow_usolves_ode[OF init_time ‹s ∈ S›]
unfolding usolves_ode_from_def solves_ode_def by blast
lemma flow_in_ivp_sols_ex_ivl:
assumes "s ∈ S"
shows "flow t⇩0 s ∈ Sols f (λs. ex_ivl s) S t⇩0 s"
using flow_has_vderiv_on_ex_ivl[OF assms] apply(rule ivp_solsI)
apply(simp_all add: init_time assms)
by (rule flow_funcset_ex_ivl[OF assms])
lemma csols_eq: "csols t⇩0 s = {(x, t). t ∈ T ∧ x ∈ Sols f (λs. {t⇩0--t}) S t⇩0 s}"
unfolding ivp_sols_def csols_def solves_ode_def
using closed_segment_subset_domain init_time by auto
lemma subset_ex_ivlI:
"Y⇩1 ∈ Sols f (λs. T) S t⇩0 s ⟹ {t⇩0--t} ⊆ T ⟹ A ⊆ {t⇩0--t} ⟹ A ⊆ ex_ivl s"
apply(clarsimp simp: existence_ivl_def)
apply(subgoal_tac "t⇩0 ∈ T", clarsimp simp: csols_eq)
apply(rule_tac x=Y⇩1 in exI, rule_tac x=t in exI, safe, force)
by (rule in_ivp_sols_subset[where T="λs. T"], auto)
lemma unique_solution:
assumes "s ∈ S" and "t⇩0 ∈ U" and "t ∈ U"
and "is_interval U" and "U ⊆ ex_ivl s"
and xivp: "D Y⇩1 = (λt. f t (Y⇩1 t)) on U" "Y⇩1 t⇩0 = s" "Y⇩1 ∈ U → S"
and yivp: "D Y⇩2 = (λt. f t (Y⇩2 t)) on U" "Y⇩2 t⇩0 = s" "Y⇩2 ∈ U → S"
shows "Y⇩1 t = Y⇩2 t"
proof-
have "t⇩0 ∈ T"
using assms existence_ivl_subset by auto
have key: "(flow t⇩0 s usolves_ode f from t⇩0) (ex_ivl s) S"
using flow_usolves_ode[OF ‹t⇩0 ∈ T› ‹s ∈ S›] .
hence "∀t∈U. Y⇩1 t = flow t⇩0 s t"
unfolding usolves_ode_from_def solves_ode_def apply safe
by (erule_tac x=Y⇩1 in allE, erule_tac x=U in allE, auto simp: assms)
also have "∀t∈U. Y⇩2 t = flow t⇩0 s t"
using key unfolding usolves_ode_from_def solves_ode_def apply safe
by (erule_tac x=Y⇩2 in allE, erule_tac x=U in allE, auto simp: assms)
ultimately show "Y⇩1 t = Y⇩2 t"
using assms by auto
qed
text ‹Applications of lemma @{text "unique_solution"}: ›
lemma unique_solution_closed_ivl:
assumes xivp: "D X = (λt. f t (X t)) on {t⇩0--t}" "X t⇩0 = s" "X ∈ {t⇩0--t} → S" and "t ∈ T"
and yivp: "D Y = (λt. f t (Y t)) on {t⇩0--t}" "Y t⇩0 = s" "Y ∈ {t⇩0--t} → S" and "s ∈ S"
shows "X t = Y t"
apply(rule unique_solution[OF ‹s ∈ S›, of "{t⇩0--t}"], simp_all add: assms)
apply(unfold existence_ivl_def csols_eq ivp_sols_def, clarsimp)
using xivp ‹t ∈ T› by blast
lemma solution_eq_flow:
assumes xivp: "D X = (λt. f t (X t)) on ex_ivl s" "X t⇩0 = s" "X ∈ ex_ivl s → S"
and "t ∈ ex_ivl s" and "s ∈ S"
shows "X t = flow t⇩0 s t"
apply(rule unique_solution[OF ‹s ∈ S› init_time_ex_ivl ‹t ∈ ex_ivl s›])
using flow_has_vderiv_on_ex_ivl flow_funcset_ex_ivl ‹s ∈ S› by (auto simp: assms)
lemma ivp_unique_solution:
assumes "s ∈ S" and ivl: "is_interval (U s)" and "U s ⊆ T" and "t ∈ U s"
and ivp1: "Y⇩1 ∈ Sols f U S t⇩0 s" and ivp2: "Y⇩2 ∈ Sols f U S t⇩0 s"
shows "Y⇩1 t = Y⇩2 t"
proof(rule unique_solution[OF ‹s ∈ S›, of "{t⇩0--t}"], simp_all)
have "t⇩0 ∈ U s"
using ivp_solsD[OF ivp1] by auto
hence obs0: "{t⇩0--t} ⊆ U s"
using closed_segment_subset_interval[OF ivl] ‹t ∈ U s› by blast
moreover have obs1: "Y⇩1 ∈ Sols f (λs. {t⇩0--t}) S t⇩0 s"
by (rule in_ivp_sols_subset[OF _ calculation(1) ivp1], simp)
moreover have obs2: "Y⇩2 ∈ Sols f (λs. {t⇩0--t}) S t⇩0 s"
by (rule in_ivp_sols_subset[OF _ calculation(1) ivp2], simp)
ultimately show "{t⇩0--t} ⊆ ex_ivl s"
apply(unfold existence_ivl_def csols_eq, clarsimp)
apply(rule_tac x=Y⇩1 in exI, rule_tac x=t in exI)
using ‹t ∈ U s› and ‹U s ⊆ T› by force
show "D Y⇩1 = (λt. f t (Y⇩1 t)) on {t⇩0--t}"
by (rule ivp_solsD[OF in_ivp_sols_subset[OF _ _ ivp1]], simp_all add: obs0)
show "D Y⇩2 = (λt. f t (Y⇩2 t)) on {t⇩0--t}"
by (rule ivp_solsD[OF in_ivp_sols_subset[OF _ _ ivp2]], simp_all add: obs0)
show "Y⇩1 t⇩0 = s" and "Y⇩2 t⇩0 = s"
using ivp_solsD[OF ivp1] ivp_solsD[OF ivp2] by auto
show "Y⇩1 ∈ {t⇩0--t} → S" and "Y⇩2 ∈ {t⇩0--t} → S"
using ivp_solsD[OF obs1] ivp_solsD[OF obs2] by auto
qed
lemma g_orbital_orbit:
assumes "s ∈ S" and ivl: "is_interval (U s)" and "U s ⊆ T"
and ivp: "Y ∈ Sols f U S t⇩0 s"
shows "g_orbital f G U S t⇩0 s = g_orbit Y G (U s)"
proof-
have eq1: "∀Z ∈ Sols f U S t⇩0 s. ∀t∈U s. Z t = Y t"
by (clarsimp, rule ivp_unique_solution[OF assms(1,2,3) _ _ ivp], auto)
have "g_orbital f G U S t⇩0 s ⊆ g_orbit (λt. Y t) G (U s)"
proof
fix x assume "x ∈ g_orbital f G U S t⇩0 s"
then obtain Z and t
where z_def: "x = Z t ∧ t ∈ U s ∧ (∀τ∈down (U s) t. G (Z τ)) ∧ Z ∈ Sols f U S t⇩0 s"
unfolding g_orbital_eq by auto
hence "{t⇩0--t} ⊆ U s"
using closed_segment_subset_interval[OF ivl ivp_solsD(4)[OF ivp]] by blast
hence "∀τ∈{t⇩0--t}. Z τ = Y τ"
using z_def apply clarsimp
by (rule ivp_unique_solution[OF assms(1,2,3) _ _ ivp], auto)
thus "x ∈ g_orbit Y G (U s)"
using z_def eq1 unfolding g_orbit_eq by simp metis
qed
moreover have "g_orbit Y G (U s) ⊆ g_orbital f G U S t⇩0 s"
apply(unfold g_orbital_eq g_orbit_eq ivp_sols_def, clarsimp)
apply(rule_tac x=t in exI, rule_tac x=Y in exI)
using ivp_solsD[OF ivp] by auto
ultimately show ?thesis
by blast
qed
end
lemma local_lipschitz_add:
fixes f1 f2 :: "real ⇒ 'a::banach ⇒ 'a"
assumes "local_lipschitz T S f1"
and "local_lipschitz T S f2"
shows "local_lipschitz T S (λt s. f1 t s + f2 t s)"
proof(unfold local_lipschitz_def, clarsimp)
fix s and t assume "s ∈ S" and "t ∈ T"
obtain ε⇩1 L1 where "ε⇩1 > 0" and L1: "⋀τ. τ∈cball t ε⇩1 ∩ T ⟹ L1-lipschitz_on (cball s ε⇩1 ∩ S) (f1 τ)"
using local_lipschitzE[OF assms(1) ‹t ∈ T› ‹s ∈ S›] by blast
obtain ε⇩2 L2 where "ε⇩2 > 0" and L2: "⋀τ. τ∈cball t ε⇩2 ∩ T ⟹ L2-lipschitz_on (cball s ε⇩2 ∩ S) (f2 τ)"
using local_lipschitzE[OF assms(2) ‹t ∈ T› ‹s ∈ S›] by blast
have ballH: "cball s (min ε⇩1 ε⇩2) ∩ S ⊆ cball s ε⇩1 ∩ S" "cball s (min ε⇩1 ε⇩2) ∩ S ⊆ cball s ε⇩2 ∩ S"
by auto
have obs1: "∀τ∈cball t ε⇩1 ∩ T. L1-lipschitz_on (cball s (min ε⇩1 ε⇩2) ∩ S) (f1 τ)"
using lipschitz_on_subset[OF L1 ballH(1)] by blast
also have obs2: "∀τ∈cball t ε⇩2 ∩ T. L2-lipschitz_on (cball s (min ε⇩1 ε⇩2) ∩ S) (f2 τ)"
using lipschitz_on_subset[OF L2 ballH(2)] by blast
ultimately have "∀τ∈cball t (min ε⇩1 ε⇩2) ∩ T.
(L1 + L2)-lipschitz_on (cball s (min ε⇩1 ε⇩2) ∩ S) (λs. f1 τ s + f2 τ s)"
using lipschitz_on_add by fastforce
thus "∃u>0. ∃L. ∀t∈cball t u ∩ T. L-lipschitz_on (cball s u ∩ S) (λs. f1 t s + f2 t s)"
apply(rule_tac x="min ε⇩1 ε⇩2" in exI)
using ‹ε⇩1 > 0› ‹ε⇩2 > 0› by force
qed
lemma picard_lindeloef_add: "picard_lindeloef f1 T S t⇩0 ⟹ picard_lindeloef f2 T S t⇩0 ⟹
picard_lindeloef (λt s. f1 t s + f2 t s) T S t⇩0"
unfolding picard_lindeloef_def apply(clarsimp, rule conjI)
using continuous_on_add apply fastforce
using local_lipschitz_add by blast
lemma picard_lindeloef_constant: "picard_lindeloef (λt s. c) UNIV UNIV t⇩0"
apply(unfold_locales, simp_all add: local_lipschitz_def lipschitz_on_def, clarsimp)
by (rule_tac x=1 in exI, clarsimp, rule_tac x="1/2" in exI, simp)
subsection ‹ Flows for ODEs ›
text‹ A locale designed for verification of hybrid systems. The user can select the interval
of existence and the defining flow equation via the variables @{term "T"} and @{term "φ"}.›
locale local_flow = picard_lindeloef "(λ t. f)" T S 0
for f::"'a::{heine_borel,banach} ⇒ 'a" and T S L +
fixes φ :: "real ⇒ 'a ⇒ 'a"
assumes ivp:
"⋀ t s. t ∈ T ⟹ s ∈ S ⟹ D (λt. φ t s) = (λt. f (φ t s)) on {0--t}"
"⋀ s. s ∈ S ⟹ φ 0 s = s"
"⋀ t s. t ∈ T ⟹ s ∈ S ⟹ (λt. φ t s) ∈ {0--t} → S"
begin
lemma in_ivp_sols_ivl:
assumes "t ∈ T" "s ∈ S"
shows "(λt. φ t s) ∈ Sols (λt. f) (λs. {0--t}) S 0 s"
apply(rule ivp_solsI)
using ivp assms by auto
lemma eq_solution_ivl:
assumes xivp: "D X = (λt. f (X t)) on {0--t}" "X 0 = s" "X ∈ {0--t} → S"
and indom: "t ∈ T" "s ∈ S"
shows "X t = φ t s"
apply(rule unique_solution_closed_ivl[OF xivp ‹t ∈ T›])
using ‹s ∈ S› ivp indom by auto
lemma ex_ivl_eq:
assumes "s ∈ S"
shows "ex_ivl s = T"
using existence_ivl_subset[of s] apply safe
unfolding existence_ivl_def csols_eq
using in_ivp_sols_ivl[OF _ assms] by blast
lemma has_derivative_on_open1:
assumes "t > 0" "t ∈ T" "s ∈ S"
obtains B where "t ∈ B" and "open B" and "B ⊆ T"
and "D (λτ. φ τ s) ↦ (λτ. τ *⇩R f (φ t s)) at t within B"
proof-
obtain r::real where rHyp: "r > 0" "ball t r ⊆ T"
using open_contains_ball_eq open_domain(1) ‹t ∈ T› by blast
moreover have "t + r/2 > 0"
using ‹r > 0› ‹t > 0› by auto
moreover have "{0--t} ⊆ T"
using subintervalI[OF init_time ‹t ∈ T›] .
ultimately have subs: "{0<--<t + r/2} ⊆ T"
unfolding abs_le_eq abs_le_eq real_ivl_eqs[OF ‹t > 0›] real_ivl_eqs[OF ‹t + r/2 > 0›]
by clarify (case_tac "t < x", simp_all add: cball_def ball_def dist_norm subset_eq field_simps)
have "t + r/2 ∈ T"
using rHyp unfolding real_ivl_eqs[OF rHyp(1)] by (simp add: subset_eq)
hence "{0--t + r/2} ⊆ T"
using subintervalI[OF init_time] by blast
hence "(D (λt. φ t s) = (λt. f (φ t s)) on {0--(t + r/2)})"
using ivp(1)[OF _ ‹s ∈ S›] by auto
hence vderiv: "(D (λt. φ t s) = (λt. f (φ t s)) on {0<--<t + r/2})"
apply(rule has_vderiv_on_subset)
unfolding real_ivl_eqs[OF ‹t + r/2 > 0›] by auto
have "t ∈ {0<--<t + r/2}"
unfolding real_ivl_eqs[OF ‹t + r/2 > 0›] using rHyp ‹t > 0› by simp
moreover have "D (λτ. φ τ s) ↦ (λτ. τ *⇩R f (φ t s)) (at t within {0<--<t + r/2})"
using vderiv calculation unfolding has_vderiv_on_def has_vector_derivative_def by blast
moreover have "open {0<--<t + r/2}"
unfolding real_ivl_eqs[OF ‹t + r/2 > 0›] by simp
ultimately show ?thesis
using subs that by blast
qed
lemma has_derivative_on_open2:
assumes "t < 0" "t ∈ T" "s ∈ S"
obtains B where "t ∈ B" and "open B" and "B ⊆ T"
and "D (λτ. φ τ s) ↦ (λτ. τ *⇩R f (φ t s)) at t within B"
proof-
obtain r::real where rHyp: "r > 0" "ball t r ⊆ T"
using open_contains_ball_eq open_domain(1) ‹t ∈ T› by blast
moreover have "t - r/2 < 0"
using ‹r > 0› ‹t < 0› by auto
moreover have "{0--t} ⊆ T"
using subintervalI[OF init_time ‹t ∈ T›] .
ultimately have subs: "{0<--<t - r/2} ⊆ T"
unfolding open_segment_eq_real_ivl closed_segment_eq_real_ivl
real_ivl_eqs[OF rHyp(1)] by(auto simp: subset_eq)
have "t - r/2 ∈ T"
using rHyp unfolding real_ivl_eqs by (simp add: subset_eq)
hence "{0--t - r/2} ⊆ T"
using subintervalI[OF init_time] by blast
hence "(D (λt. φ t s) = (λt. f (φ t s)) on {0--(t - r/2)})"
using ivp(1)[OF _ ‹s ∈ S›] by auto
hence vderiv: "(D (λt. φ t s) = (λt. f (φ t s)) on {0<--<t - r/2})"
apply(rule has_vderiv_on_subset)
unfolding open_segment_eq_real_ivl closed_segment_eq_real_ivl by auto
have "t ∈ {0<--<t - r/2}"
unfolding open_segment_eq_real_ivl using rHyp ‹t < 0› by simp
moreover have "D (λτ. φ τ s) ↦ (λτ. τ *⇩R f (φ t s)) (at t within {0<--<t - r/2})"
using vderiv calculation unfolding has_vderiv_on_def has_vector_derivative_def by blast
moreover have "open {0<--<t - r/2}"
unfolding open_segment_eq_real_ivl by simp
ultimately show ?thesis
using subs that by blast
qed
lemma has_derivative_on_open3:
assumes "s ∈ S"
obtains B where "0 ∈ B" and "open B" and "B ⊆ T"
and "D (λτ. φ τ s) ↦ (λτ. τ *⇩R f (φ 0 s)) at 0 within B"
proof-
obtain r::real where rHyp: "r > 0" "ball 0 r ⊆ T"
using open_contains_ball_eq open_domain(1) init_time by blast
hence "r/2 ∈ T" "-r/2 ∈ T" "r/2 > 0"
unfolding real_ivl_eqs by auto
hence subs: "{0--r/2} ⊆ T" "{0--(-r/2)} ⊆ T"
using subintervalI[OF init_time] by auto
hence "(D (λt. φ t s) = (λt. f (φ t s)) on {0--r/2})"
"(D (λt. φ t s) = (λt. f (φ t s)) on {0--(-r/2)})"
using ivp(1)[OF _ ‹s ∈ S›] by auto
also have "{0--r/2} = {0--r/2} ∪ closure {0--r/2} ∩ closure {0--(-r/2)}"
"{0--(-r/2)} = {0--(-r/2)} ∪ closure {0--r/2} ∩ closure {0--(-r/2)}"
unfolding closed_segment_eq_real_ivl ‹r/2 > 0› by auto
ultimately have vderivs:
"(D (λt. φ t s) = (λt. f (φ t s)) on {0--r/2} ∪ closure {0--r/2} ∩ closure {0--(-r/2)})"
"(D (λt. φ t s) = (λt. f (φ t s)) on {0--(-r/2)} ∪ closure {0--r/2} ∩ closure {0--(-r/2)})"
unfolding closed_segment_eq_real_ivl ‹r/2 > 0› by auto
have obs: "0 ∈ {-r/2<--<r/2}"
unfolding open_segment_eq_real_ivl using ‹r/2 > 0› by auto
have union: "{-r/2--r/2} = {0--r/2} ∪ {0--(-r/2)}"
unfolding closed_segment_eq_real_ivl by auto
hence "(D (λt. φ t s) = (λt. f (φ t s)) on {-r/2--r/2})"
using has_vderiv_on_union[OF vderivs] by simp
hence "(D (λt. φ t s) = (λt. f (φ t s)) on {-r/2<--<r/2})"
using has_vderiv_on_subset[OF _ segment_open_subset_closed[of "-r/2" "r/2"]] by auto
hence "D (λτ. φ τ s) ↦ (λτ. τ *⇩R f (φ 0 s)) (at 0 within {-r/2<--<r/2})"
unfolding has_vderiv_on_def has_vector_derivative_def using obs by blast
moreover have "open {-r/2<--<r/2}"
unfolding open_segment_eq_real_ivl by simp
moreover have "{-r/2<--<r/2} ⊆ T"
using subs union segment_open_subset_closed by blast
ultimately show ?thesis
using obs that by blast
qed
lemma has_derivative_on_open:
assumes "t ∈ T" "s ∈ S"
obtains B where "t ∈ B" and "open B" and "B ⊆ T"
and "D (λτ. φ τ s) ↦ (λτ. τ *⇩R f (φ t s)) at t within B"
apply(subgoal_tac "t < 0 ∨ t = 0 ∨ t > 0")
using has_derivative_on_open1[OF _ assms] has_derivative_on_open2[OF _ assms]
has_derivative_on_open3[OF ‹s ∈ S›] by blast force
lemma in_domain:
assumes "s ∈ S"
shows "(λt. φ t s) ∈ T → S"
using ivp(3)[OF _ assms] by blast
lemma has_vderiv_on_domain:
assumes "s ∈ S"
shows "D (λt. φ t s) = (λt. f (φ t s)) on T"
proof(unfold has_vderiv_on_def has_vector_derivative_def, clarsimp)
fix t assume "t ∈ T"
then obtain B where "t ∈ B" and "open B" and "B ⊆ T"
and Dhyp: "D (λt. φ t s) ↦ (λτ. τ *⇩R f (φ t s)) at t within B"
using assms has_derivative_on_open[OF ‹t ∈ T›] by blast
hence "t ∈ interior B"
using interior_eq by auto
thus "D (λt. φ t s) ↦ (λτ. τ *⇩R f (φ t s)) at t within T"
using has_derivative_at_within_mono[OF _ ‹B ⊆ T› Dhyp] by blast
qed
lemma in_ivp_sols:
assumes "s ∈ S" and "0 ∈ U s" and "U s ⊆ T"
shows "(λt. φ t s) ∈ Sols (λt. f) U S 0 s"
apply(rule in_ivp_sols_subset[OF _ _ ivp_solsI, of _ _ _ "λs. T"])
using ivp(2)[OF ‹s ∈ S›] has_vderiv_on_domain[OF ‹s ∈ S›]
in_domain[OF ‹s ∈ S›] assms by auto
lemma eq_solution:
assumes "s ∈ S" and "is_interval (U s)" and "U s ⊆ T" and "t ∈ U s"
and xivp: "X ∈ Sols (λt. f) U S 0 s"
shows "X t = φ t s"
apply(rule ivp_unique_solution[OF assms], rule in_ivp_sols)
by (simp_all add: ivp_solsD(4)[OF xivp] assms)
lemma ivp_sols_collapse:
assumes "T = UNIV" and "s ∈ S"
shows "Sols (λt. f) (λs. T) S 0 s = {(λt. φ t s)}"
apply (safe, simp_all add: fun_eq_iff, clarsimp)
apply(rule eq_solution[of _ "λs. T"]; simp add: assms)
by (rule in_ivp_sols; simp add: assms)
lemma additive_in_ivp_sols:
assumes "s ∈ S" and "𝒫 (λτ. τ + t) T ⊆ T"
shows "(λτ. φ (τ + t) s) ∈ Sols (λt. f) (λs. T) S 0 (φ (0 + t) s)"
apply(rule ivp_solsI[OF vderiv_on_composeI])
apply(rule has_vderiv_on_subset[OF has_vderiv_on_domain])
using in_domain assms init_time by (auto intro!: poly_derivatives)
lemma is_monoid_action:
assumes "s ∈ S" and "T = UNIV"
shows "φ 0 s = s" and "φ (t⇩1 + t⇩2) s = φ t⇩1 (φ t⇩2 s)"
proof-
show "φ 0 s = s"
using ivp assms by simp
have "φ (0 + t⇩2) s = φ t⇩2 s"
by simp
also have "φ (0 + t⇩2) s ∈ S"
using in_domain assms by auto
ultimately show "φ (t⇩1 + t⇩2) s = φ t⇩1 (φ t⇩2 s)"
using eq_solution[OF _ _ _ _ additive_in_ivp_sols] assms by auto
qed
lemma g_orbital_collapses:
assumes "s ∈ S" and "is_interval (U s)" and "U s ⊆ T" and "0 ∈ U s"
shows "g_orbital (λt. f) G U S 0 s = {φ t s| t. t ∈ U s ∧ (∀τ∈down (U s) t. G (φ τ s))}"
apply (subst g_orbital_orbit[of _ _ "λt. φ t s"], simp_all add: assms g_orbit_eq)
by (rule in_ivp_sols, simp_all add: assms)
definition orbit :: "'a ⇒ 'a set" (‹γ⇧φ›)
where "γ⇧φ s = g_orbital (λt. f) (λs. True) (λs. T) S 0 s"
lemma orbit_eq:
assumes "s ∈ S"
shows "γ⇧φ s = {φ t s| t. t ∈ T}"
apply(unfold orbit_def, subst g_orbital_collapses)
by (simp_all add: assms init_time interval_time)
lemma true_g_orbit_eq:
assumes "s ∈ S"
shows "g_orbit (λt. φ t s) (λs. True) T = γ⇧φ s"
unfolding g_orbit_eq orbit_eq[OF assms] by simp
end
lemma line_is_local_flow:
"0 ∈ T ⟹ is_interval T ⟹ open T ⟹ local_flow (λ s. c) T UNIV (λ t s. s + t *⇩R c)"
apply(unfold_locales, simp_all add: local_lipschitz_def lipschitz_on_def, clarsimp)
apply(rule_tac x=1 in exI, clarsimp, rule_tac x="1/2" in exI, simp)
apply(rule_tac f'1="λ s. 0" and g'1="λ s. c" in has_vderiv_on_add[THEN has_vderiv_on_eq_rhs])
apply(rule derivative_intros, simp)+
by simp_all
end