Theory Big_StepT_Partial
subsection "Big step Semantics on partial states"
theory Big_StepT_Partial
imports Partial_Evaluation Big_StepT "SepLogAdd/Sep_Algebra_Add"
"HOL-Eisbach.Eisbach"
begin
type_synonym lvname = string
type_synonym pstate_t = "partstate * nat"
type_synonym assnp = "partstate ⇒ bool"
type_synonym assn2 = "pstate_t ⇒ bool"
subsubsection ‹helper functions›
paragraph ‹restrict›
definition restrict where "restrict S s = (%x. if x:S then Some (s x) else None)"
lemma restrictI: "∀x∈S. s1 x = s2 x ⟹ restrict S s1 = restrict S s2"
unfolding restrict_def by fastforce
lemma restrictE: "restrict S s1 = restrict S s2 ⟹ s1 = s2 on S"
unfolding restrict_def by (meson option.inject)
lemma dom_restrict[simp]: "dom (restrict S s) = S"
unfolding restrict_def
using domIff by fastforce
lemma restrict_less_part: "restrict S t ≼ part t"
unfolding restrict_def map_le_substate_conv[symmetric] map_le_def part_def apply auto
by (metis option.simps(3))
paragraph ‹Heap helper functions›
fun lmaps_to_expr :: "aexp ⇒ val ⇒ assn2" where
"lmaps_to_expr a v = (%(s,c). dom s = vars a ∧ paval a s = v ∧ c = 0)"
fun lmaps_to_expr_x :: "vname ⇒ aexp ⇒ val ⇒ assn2" where
"lmaps_to_expr_x x a v = (%(s,c). dom s = vars a ∪ {x} ∧ paval a s = v ∧ c = 0)"
lemma subState: "x ≼ y ⟹ v ∈ dom x ⟹ x v = y v" unfolding map_le_substate_conv[symmetric] map_le_def
by blast
lemma fixes ps:: partstate
and s::state
assumes "vars a ⊆ dom ps" "ps ≼ part s"
shows emb_update: "emb [x ↦ paval a ps] s = (emb ps s) (x := aval a (emb ps s))"
using assms
unfolding emb_def apply auto apply (rule ext)
apply(case_tac "v=x")
apply(simp add: paval_aval)
apply(simp) unfolding part_def apply(case_tac "v ∈ dom ps")
using subState apply fastforce
by (simp add: domIff)
lemma paval_aval2: "vars a ⊆ dom ps ⟹ ps ≼ part s ⟹ paval a ps = aval a s"
apply(induct a) using subState unfolding part_def apply auto
by fastforce
lemma fixes ps:: partstate
and s::state
assumes "vars a ⊆ dom ps" "ps ≼ part s"
shows emb_update2: "emb (ps(x ↦ paval a ps)) s = (emb ps s)(x := aval a (emb ps s))"
using assms
unfolding emb_def apply auto apply (rule ext)
apply(case_tac "v=x")
apply(simp add: paval_aval)
by (simp)
subsubsection "Big step Semantics on partial states"
inductive
big_step_t_part :: "com × partstate ⇒ nat ⇒ partstate ⇒ bool" (‹_ ⇒⇩A _ ⇓ _› 55)
where
Skip: "(SKIP,s) ⇒⇩A Suc 0 ⇓ s" |
Assign: "⟦ vars a ∪ {x} ⊆ dom ps; paval a ps = v ; ps' = ps(x ↦ v) ⟧ ⟹ (x ::= a,ps) ⇒⇩A Suc 0 ⇓ ps'" |
Seq: "⟦ (c1,s1) ⇒⇩A x ⇓ s2; (c2,s2) ⇒⇩A y ⇓ s3 ; z=x+y ⟧ ⟹ (c1;;c2, s1) ⇒⇩A z ⇓ s3" |
IfTrue: "⟦ vars b ⊆ dom ps ; dom ps' = dom ps ; pbval b ps; (c1,ps) ⇒⇩A x ⇓ ps'; y=x+1 ⟧ ⟹ (IF b THEN c1 ELSE c2, ps) ⇒⇩A y ⇓ ps'" |
IfFalse: "⟦ vars b ⊆ dom ps ; dom ps' = dom ps ; ¬ pbval b ps; (c2,ps) ⇒⇩A x ⇓ ps'; y=x+1 ⟧ ⟹ (IF b THEN c1 ELSE c2, ps) ⇒⇩A y ⇓ ps'" |
WhileFalse: "⟦ vars b ⊆ dom s; ¬ pbval b s ⟧ ⟹ (WHILE b DO c,s) ⇒⇩A Suc 0 ⇓ s" |
WhileTrue: "⟦ pbval b s1; vars b ⊆ dom s1; (c,s1) ⇒⇩A x ⇓ s2; (WHILE b DO c, s2) ⇒⇩A y ⇓ s3; 1+x+y=z ⟧
⟹ (WHILE b DO c, s1) ⇒⇩A z ⇓ s3"
declare big_step_t_part.intros [intro]
inductive_cases Skip_tE3[elim!]: "(SKIP,s) ⇒⇩A x ⇓ t"
thm Skip_tE3
inductive_cases Assign_tE3[elim!]: "(x ::= a,s) ⇒⇩A p ⇓ t"
thm Assign_tE3
inductive_cases Seq_tE3[elim!]: "(c1;;c2,s1) ⇒⇩A p ⇓ s3"
thm Seq_tE3
inductive_cases If_tE3[elim!]: "(IF b THEN c1 ELSE c2,s) ⇒⇩A x ⇓ t"
thm If_tE3
inductive_cases While_tE3[elim]: "(WHILE b DO c,s) ⇒⇩A x ⇓ t"
thm While_tE3
lemmas big_step_t_part_induct = big_step_t_part.induct[split_format(complete)]
lemma big_step_t3_post_dom_conv: "(c,ps) ⇒⇩A t ⇓ ps' ⟹ dom ps' = dom ps"
apply(induct rule: big_step_t_part_induct) apply (auto simp: sep_disj_fun_def plus_fun_def)
apply metis done
lemma add_update_distrib: "ps1 x1 = Some y ⟹ ps1 ## ps2 ⟹ vars x2 ⊆ dom ps1 ⟹ ps1(x1 ↦ paval x2 ps1) + ps2 = (ps1 + ps2)(x1 ↦ paval x2 ps1)"
apply (rule ext)
apply (auto simp: sep_disj_fun_def plus_fun_def)
by (metis disjoint_iff_not_equal domI domain_conv)
lemma paval_extend: "ps1 ## ps2 ⟹ vars a ⊆ dom ps1 ⟹ paval a (ps1 + ps2) = paval a ps1"
apply(induct a) apply (auto simp: sep_disj_fun_def domain_conv)
by (metis domI map_add_comm map_add_dom_app_simps(1) option.sel plus_fun_conv)
lemma pbval_extend: "ps1 ## ps2 ⟹ vars b ⊆ dom ps1 ⟹ pbval b (ps1 + ps2) = pbval b ps1"
apply(induct b) by (auto simp: paval_extend)
lemma Framer: "(C, ps1) ⇒⇩A m ⇓ ps1' ⟹ ps1 ## ps2 ⟹ (C, ps1 + ps2) ⇒⇩A m ⇓ ps1'+ps2"
proof (induct rule: big_step_t_part_induct)
case (Skip s)
then show ?case by (auto simp: big_step_t_part.Skip)
next
case (Assign a x ps v ps')
show ?case apply(rule big_step_t_part.Assign)
using Assign
apply (auto simp: plus_fun_def)
apply(rule ext)
apply(case_tac "xa=x")
subgoal apply auto subgoal using paval_extend[unfolded plus_fun_def] by auto
unfolding sep_disj_fun_def
by (metis disjoint_iff_not_equal domI domain_conv)
subgoal by auto
done
next
case (IfTrue b ps ps' c1 x y c2)
then show ?case apply (auto ) apply(subst big_step_t_part.IfTrue)
apply (auto simp: pbval_extend)
subgoal by (auto simp: plus_fun_def)
subgoal by (auto simp: plus_fun_def)
subgoal by (auto simp: plus_fun_def)
done
next
case (IfFalse b ps ps' c2 x y c1)
then show ?case apply (auto ) apply(subst big_step_t_part.IfFalse)
apply (auto simp: pbval_extend)
subgoal by (auto simp: plus_fun_def)
subgoal by (auto simp: plus_fun_def)
subgoal by (auto simp: plus_fun_def)
done
next
case (WhileFalse b s c)
then show ?case apply(subst big_step_t_part.WhileFalse)
subgoal by (auto simp: plus_fun_def)
subgoal by (auto simp: pbval_extend)
by auto
next
case (WhileTrue b s1 c x s2 y s3 z)
from big_step_t3_post_dom_conv[OF WhileTrue(3)] have "dom s2 = dom s1" by auto
with WhileTrue(8) have "s2 ## ps2" unfolding sep_disj_fun_def domain_conv by auto
with WhileTrue show ?case apply auto apply(subst big_step_t_part.WhileTrue)
subgoal by (auto simp: pbval_extend)
subgoal by (auto simp: plus_fun_def)
apply (auto) done
next
case (Seq c1 s1 x s2 c2 y s3 z)
from big_step_t3_post_dom_conv[OF Seq(1)] have "dom s2 = dom s1" by auto
with Seq(6) have "s2 ## ps2" unfolding sep_disj_fun_def domain_conv by auto
with Seq show ?case apply (subst big_step_t_part.Seq)
by auto
qed
lemma Framer2: "(C, ps1) ⇒⇩A m ⇓ ps1' ⟹ ps1 ## ps2 ⟹ ps = ps1 + ps2 ⟹ ps' = ps1'+ps2 ⟹ (C, ps) ⇒⇩A m ⇓ ps' "
using Framer by auto
subsubsection ‹Relation to BigStep Semantic on full states›
lemma paval_aval_part: "paval a (part s) = aval a s"
apply(induct a) by (auto simp: part_def)
lemma pbval_bval_part: "pbval b (part s) = bval b s"
apply(induct b) by (auto simp: paval_aval_part)
lemma part_paval_aval: "part (s(x := aval a s)) = (part s)(x ↦ paval a (part s))"
apply(rule ext)
apply(case_tac "xa=x")
unfolding part_def apply auto by (metis (full_types) domIff map_le_def map_le_substate_conv option.distinct(1) part_def paval_aval2 subsetI)
lemma full_to_part: "(C, s) ⇒ m ⇓ s' ⟹ (C, part s) ⇒⇩A m ⇓ part s' "
apply(induct rule: big_step_t_induct)
using Skip apply simp
apply (subst Assign)
using part_paval_aval apply(simp_all add: )
apply(rule Seq) apply auto
apply(rule IfTrue) apply (auto simp: pbval_bval_part)
apply(rule IfFalse) apply (auto simp: pbval_bval_part)
apply(rule WhileFalse) apply (auto simp: pbval_bval_part)
apply(rule WhileTrue) apply (auto simp: pbval_bval_part)
done
lemma part_to_full': "(C, ps) ⇒⇩A m ⇓ ps' ⟹ (C, emb ps s) ⇒ m ⇓ emb ps' s"
proof (induct rule: big_step_t_part_induct)
case (Assign a x ps v ps')
have z: "paval a ps = aval a (emb ps s)"
apply(rule paval_aval_vars) using Assign(1) by auto
have g :"emb ps' s = (emb ps s)(x:=aval a (emb ps s) )"
apply(simp only: Assign z[symmetric])
unfolding emb_def by auto
show ?case apply(simp only: g) by(rule big_step_t.Assign)
qed (auto simp: pbval_bval_vars[symmetric])
lemma part_to_full: "(C, part s) ⇒⇩A m ⇓ part s' ⟹ (C, s) ⇒ m ⇓ s'"
proof -
assume "(C, part s) ⇒⇩A m ⇓ part s'"
then have "(C, emb (part s) s) ⇒ m ⇓ emb (part s') s" by (rule part_to_full')
then show "(C, s) ⇒ m ⇓ s'" by auto
qed
lemma part_full_equiv: "(C, s) ⇒ m ⇓ s' ⟷ (C, part s) ⇒⇩A m ⇓ part s'"
using part_to_full full_to_part by metis
subsubsection ‹more properties›
lemma big_step_t3_gt0: "(C, ps) ⇒⇩A x ⇓ ps' ⟹ x > 0"
apply(induct rule: big_step_t_part_induct) apply auto done
lemma big_step_t3_same: "(C, ps) ⇒⇩A m ⇓ ps' ==> ps = ps' on UNIV - lvars C"
apply(induct rule: big_step_t_part_induct) by (auto simp: sep_disj_fun_def plus_fun_def)
lemma avalDirekt3_correct: " (x ::= N v, ps) ⇒⇩A m ⇓ ps' ⟹ paval' a ps = Some v ⟹ (x ::= a, ps) ⇒⇩A m ⇓ ps'"
apply(auto) apply(subst Assign) by (auto simp: paval_paval' paval'dom)
subsection ‹Partial State›
lemma
fixes h :: "(vname ⇒ val option) * nat"
shows "(P ** Q ** H) h = (Q ** H ** P) h"
by (simp add: sep_conj_ac)
lemma separate_othogonal_commuted': assumes
"⋀ps n. P (ps,n) ⟹ ps = 0"
"⋀ps n. Q (ps,n) ⟹ n = 0"
shows "(P ** Q) s ⟷ P (0,snd s) ∧ Q (fst s,0)"
using assms unfolding sep_conj_def by force
lemma separate_othogonal_commuted: assumes
"⋀ps n. P (ps,n) ⟹ ps = 0"
"⋀ps n. Q (ps,n) ⟹ n = 0"
shows "(P ** Q) (ps,n) ⟷ P (0,n) ∧ Q (ps,0)"
using assms unfolding sep_conj_def by force
lemma separate_othogonal: assumes
"⋀ps n. P (ps,n) ⟹ n = 0"
"⋀ps n. Q (ps,n) ⟹ ps = 0"
shows "(P ** Q) (ps,n) ⟷ P (ps,0) ∧ Q (0,n)"
using assms unfolding sep_conj_def by force
lemma assumes " ((λ(s, n). P (s, n) ∧ vars b ⊆ dom s) ∧* (λ(s, c). s = 0 ∧ c = Suc 0)) (ps, n)"
shows "∃ n'. P (ps, n') ∧ vars b ⊆ dom ps ∧ n = Suc n'"
proof -
from assms obtain x y where " x ## y" and "(ps, n) = x + y"
and 2: "(case x of (s, n) ⇒ P (s, n) ∧ vars b ⊆ dom s)"
and "(case y of (s, c) ⇒ s = 0 ∧ c = Suc 0)"
unfolding sep_conj_def by blast
then have "y = (0, Suc 0)" and f: "fst x = ps" and n: "n = snd x + Suc 0" by auto
with 2 have "P (ps, snd x) ∧ vars b ⊆ dom ps ∧ n = Suc (snd x)"
by auto
then show ?thesis by simp
qed
subsection ‹Dollar and Pointsto›
definition dollar :: "nat ⇒ assn2" (‹$›) where
"dollar q = (%(s,c). s = 0 ∧ c=q)"
lemma sep_reorder_dollar_aux:
"NO_MATCH ($X) A ⟹ ($B ** A) = (A ** $B)"
"($X ** $Y) = $(X+Y)"
apply (auto simp: sep_simplify)
unfolding dollar_def sep_conj_def sep_disj_prod_def sep_disj_nat_def by auto
lemmas sep_reorder_dollar = sep_conj_assoc sep_reorder_dollar_aux
lemma stardiff: assumes "(P ∧* $m) (ps, n)"
shows P: "P (ps, n - m)" and "m≤n" using assms unfolding sep_conj_def dollar_def by auto
lemma [simp]: "(Q ** $0) = Q" unfolding dollar_def sep_conj_def sep_disj_prod_def sep_disj_nat_def
by auto
definition embP :: "(partstate ⇒ bool) ⇒ partstate × nat ⇒ bool" where "embP P = (%(s,n). P s ∧ n = 0)"
lemma orthogonal_split: assumes "(embP Q ∧* $ n) = (embP P ∧* $ m)"
shows "(Q = P ∧ n = m) ∨ Q = (λs. False) ∧ P = (λs. False)"
using assms unfolding embP_def dollar_def apply (auto intro!: ext)
unfolding sep_conj_def apply auto unfolding sep_disj_prod_def plus_prod_def
apply (metis fst_conv snd_conv)+ done
lemma F: assumes "(embP Q ∧* $ n) = (embP P ∧* $ m)"
obtains (blub) "Q = P" and "n = m" |
(da) "Q = (λs. False)" and "P = (λs. False)"
using assms orthogonal_split by auto
lemma T: assumes "(embP Q ∧* $ n) = (embP P ∧* $ m)"
obtains (blub) x::nat where "Q = P" and "n = m" and "x=x" |
(da) "Q = (λs. False)" and "P = (λs. False)"
using assms orthogonal_split by auto
definition pointsto :: "vname ⇒ val ⇒ assn2" (‹_ ↪ _› [56,51] 56) where
"v ↪ n = (%(s,c). s = [v ↦ n] ∧ c=0)"
notation pred_ex (binder ‹∃› 10)
definition maps_to_ex :: "vname ⇒ assn2" (‹_ ↪ -› [56] 56)
where "x ↪ - ≡ ∃y. x ↪ y"
fun lmaps_to_ex :: "vname set ⇒ assn2" where
"lmaps_to_ex xs = (%(s,c). dom s = xs ∧ c = 0)"
lemma "(x ↪ -) (s,n) ⟹ x ∈ dom s"
unfolding maps_to_ex_def pointsto_def by auto
fun lmaps_to_axpr :: "bexp ⇒ bool ⇒ assnp" where
"lmaps_to_axpr b bv = (%ps. vars b ⊆ dom ps ∧ pbval b ps = bv )"
definition lmaps_to_axpr' :: "bexp ⇒ bool ⇒ assnp" where
"lmaps_to_axpr' b bv = lmaps_to_axpr b bv"
subsection ‹Frame Inference›
definition Frame where "Frame P Q F ≡ ∀s. (P imp (Q ** F)) s"
definition Frame' where "Frame' P P' Q F ≡ ∀s. (( P' ** P) imp (Q ** F)) s"
definition cnv where "cnv x y == x = y"
lemma cnv_I: "cnv x x"
unfolding cnv_def by simp
lemma Frame'_conv: "Frame P Q F = Frame' (P ** □) □ (Q ** □) F"
unfolding Frame_def Frame'_def apply auto done
lemma Frame'I: "Frame' (P ** □) □ (Q ** □) F ⟹ cnv F F' ⟹ Frame P Q F'"
unfolding Frame_def Frame'_def cnv_def apply auto done
lemma FrameD: assumes "Frame P Q F" " P s "
shows "(F ** Q) s"
using assms unfolding Frame_def by (auto simp: sep_conj_commute)
lemma Frame'_match: "Frame' (P ** P') □ Q F ⟹ Frame' (x ↪ v ** P) P' (x ↪ v ** Q) F"
unfolding Frame_def Frame'_def apply (auto simp: sep_conj_ac)
by (metis (no_types, opaque_lifting) prod.collapse sep.mult_assoc sep_conj_impl1)
lemma R: assumes "⋀s. (A imp B) s" shows "((A ** $n) imp (B ** $n)) s"
proof (safe)
assume "(A ∧* $ n) s"
then obtain h1 h2 where A: "A h1" and n: "$n h2" and disj: "h1 ## h2" "s = h1+h2" unfolding sep_conj_def by blast
from assms A have B: "B h1" by auto
show "(B ** $n) s" using B n disj unfolding sep_conj_def by blast
qed
lemma Frame'_matchdollar: assumes "Frame' (P ** P' ** $(n-m)) □ Q F" and nm: "n≥m"
shows "Frame' ($n ** P) P' ($m ** Q) F"
using assms(1) unfolding Frame_def Frame'_def apply (auto simp: sep_conj_ac)
proof (goal_cases)
case (1 a b)
have g: "((P ∧* P' ∧* $ n) imp (F ∧* Q ∧* $ m)) (a, b)
⟷ (((P ∧* P' ∧* $(n-m)) ** $m) imp ((F ∧* Q) ∧* $ m)) (a, b)"
by(simp add: nm sep_reorder_dollar)
have "((P ∧* P' ∧* $ n) imp (F ∧* Q ∧* $ m)) (a, b)"
apply(subst g)
apply(rule R) using 1(1) by auto
then have "(P ∧* P' ∧* $ n) (a, b) ⟶ (F ∧* Q ∧* $ m) (a, b)"
by blast
then show ?case using 1(2) by auto
qed
lemma Frame'_nomatch: " Frame' P (p ** P') (x ↪ v ** Q) F⟹ Frame' (p ** P) P' (x ↪ v ** Q) F"
unfolding Frame'_def by (auto simp: sep_conj_ac)
lemma Frame'_nomatchempty: " Frame' P P' (x ↪ v ** Q) F⟹ Frame' (□ ** P) P' (x ↪ v ** Q) F"
unfolding Frame'_def by (auto simp: sep_conj_ac)
lemma Frame'_end: " Frame' P □ □ P"
unfolding Frame'_def by (auto simp: sep_conj_ac)
schematic_goal "Frame (x ↪ v1 ∧* y ↪ v2) (x ↪ ?v) ?F"
apply(rule Frame'I) apply(simp only: sep_conj_assoc)
apply(rule Frame'_match)
apply(rule Frame'_end) apply(simp only: sep_conj_ac sep_conj_empty' sep_conj_empty) apply(rule cnv_I) done
schematic_goal "Frame (x ↪ v1 ∧* y ↪ v2) (y ↪ ?v) ?F"
apply(rule Frame'I) apply(simp only: sep_conj_assoc)
apply(rule Frame'_end Frame'_match Frame'_nomatchempty Frame'_nomatch; (simp only: sep_conj_assoc)?)+
apply(simp only: sep_conj_ac sep_conj_empty' sep_conj_empty) apply(rule cnv_I)
done
method frame_inference_init = (rule Frame'I, (simp only: sep_conj_assoc)?)
method frame_inference_solve = (rule Frame'_matchdollar Frame'_end Frame'_match Frame'_nomatchempty Frame'_nomatch; (simp only: sep_conj_assoc)?)+
method frame_inference_cleanup = ( (simp only: sep_conj_ac sep_conj_empty' sep_conj_empty)?; rule cnv_I)
method frame_inference = (frame_inference_init, (frame_inference_solve; fail), (frame_inference_cleanup; fail))
method frame_inference_debug = (frame_inference_init, frame_inference_solve)
subsubsection ‹tests›
schematic_goal "Frame (x ↪ v1 ∧* y ↪ v2) (y ↪ ?v) ?F"
by frame_inference
schematic_goal "Frame (x ↪ v1 ** P ** □ ** y ↪ v2 ∧* z ↪ v2 ** Q) (z ↪ ?v ** y ↪ ?v2) ?F"
by frame_inference
schematic_goal " 1 ≤ v ⟹ Frame ($ (2 * v) ∧* ''x'' ↪ int v) ($ 1 ∧* ''x'' ↪ ?d) ?F"
apply(rule Frame'I) apply(simp only: sep_conj_assoc)
apply(rule Frame'_matchdollar Frame'_end Frame'_match Frame'_nomatchempty Frame'_nomatch; (simp only: sep_conj_assoc)?)+
apply (simp only: sep_conj_ac sep_conj_empty' sep_conj_empty)?
apply (rule cnv_I) done
schematic_goal " 0 < v ⟹ Frame ($ (2 * v) ∧* ''x'' ↪ int v) ($ 1 ∧* ''x'' ↪ ?d) ?F"
apply frame_inference done
subsection ‹Expression evaluation›
definition symeval where "symeval P e v ≡ (∀s n. P (s,n) ⟶ paval' e s = Some v)"
definition symevalb where "symevalb P e v ≡ (∀s n. P (s,n) ⟶ pbval' e s = Some v)"
lemma symeval_c: "symeval P (N v) v"
unfolding symeval_def apply auto done
lemma symeval_v: assumes "Frame P (x ↪ v) F"
shows "symeval P (V x) v"
unfolding symeval_def apply auto
apply (drule FrameD[OF assms]) unfolding sep_conj_def pointsto_def
apply (auto simp: plus_fun_conv) done
lemma symeval_plus: assumes "symeval P e1 v1" "symeval P e2 v2"
shows "symeval P (Plus e1 e2) (v1+v2)"
using assms unfolding symeval_def by auto
lemma symevalb_c: "symevalb P (Bc v) v"
unfolding symevalb_def apply auto done
lemma symevalb_and: assumes "symevalb P e1 v1" "symevalb P e2 v2"
shows "symevalb P (And e1 e2) (v1 ∧ v2)"
using assms unfolding symevalb_def by auto
lemma symevalb_not: assumes "symevalb P e v"
shows "symevalb P (Not e) (¬ v)"
using assms unfolding symevalb_def by auto
lemma symevalb_less: assumes "symeval P e1 v1" "symeval P e2 v2"
shows "symevalb P (Less e1 e2) (v1 < v2)"
using assms unfolding symevalb_def symeval_def by auto
lemmas symeval = symeval_c symeval_v symeval_plus symevalb_c symevalb_and symevalb_not symevalb_less
schematic_goal "symevalb ( (x ↪ v1) ** (y ↪ v2) ) (Less (Plus (V x) (V y)) (N 5)) ?g"
apply(rule symeval | frame_inference)+ done
end