Theory Sep_Algebra_Add

theory Sep_Algebra_Add
  imports "Separation_Algebra.Separation_Algebra" "Separation_Algebra.Sep_Heap_Instance"
    Product_Separation_Algebra
begin

definition puree :: "bool  'h::sep_algebra  bool" () where "puree P  λh. h=0  P"

lemma puree_alt: "Φ = (Φ and )"
  by (auto simp: puree_def sep_empty_def)

lemma pure_alt: "Φ = (Φ ** sep_true)"
  apply (clarsimp simp: puree_def)
proof -
  { fix aa :: 'a
    obtain aaa :: "('a  bool)  ('a  bool)  'a" where
      ff1: "p pa a pb pc aa. (¬ (p ∧* pa) a  p (aaa p pb)  (pb ∧*
pa) a)  (¬ pb (aaa p pb)  ¬ (p ∧* pc) aa  (pb ∧* pc) aa)"
      by (metis (no_types) sep_globalise)
    then have "p. ((λa. a = 0) ∧* p) aa"
      by (metis (full_types) sep_conj_commuteI sep_conj_sep_emptyE
sep_empty_def)
    then have "¬ Φ  Φ  ((λa. a = 0) ∧* (λa. True)) aa"
      using ff1 by (metis (no_types) sep_conj_commuteI) }
  then show "(λa. Φ) = (λa. Φ  ((λa. (a::'a) = 0) ∧* (λa. True)) a)"
    by blast
qed
  
abbreviation NO_PURE :: "bool  ('h::sep_algebra  bool)  bool" 
  where "NO_PURE X Q  (NO_MATCH (X::'hbool) Q  NO_MATCH ((X)::'hbool) Q)"

named_theorems sep_simplify ‹Assertion simplifications›

lemma sep_reorder[sep_simplify]:  
  "((a ∧* b) ∧* c) = (a ∧* b ∧* c)"
  "(NO_PURE X a)  (a ** b) = (b ** a)"
  "(NO_PURE X b)  (b ∧* a ∧* c) = (a ∧* b ∧* c)"
  "(Q ** P) = (P ** Q)"
  "(Q ** P) = (P ** Q)"
  "NO_PURE X Q  (Q ** P ** F) = (P ** Q ** F)"
  "NO_PURE X Q  (Q ** P ** F) = (P ** Q ** F)"
  by (simp_all add: sep.add_ac)

lemma sep_combine1[simp]:
  "(P ** Q) = (PQ)"
  "(P ** Q) = PQ"
  "(P ** Q) = PQ"
  "(P ** Q) = PQ"
  apply (auto simp add: sep_conj_def puree_def intro!: ext)
  apply (rule_tac x=0 in exI)
  apply simp
  done

lemma sep_combine2[simp]:
  "(P ** Q ** F) = ((PQ) ** F)"
  "(P ** Q ** F) = (PQ ** F)"
  "(P ** Q ** F) = (PQ ** F)"
  "(P ** Q ** F) = (PQ ** F)"
  apply (subst sep.add_assoc[symmetric]; simp)+
  done

lemma sep_extract_pure[simp]:
  "NO_MATCH True P  (P ** Q) h = (P  (sep_true ** Q) h)"
  "(P ** Q) h = (P  Q h)"
  "True = "
  "False = sep_false"
  using sep_conj_sep_true_right apply fastforce
  by (auto simp: puree_def sep_empty_def[symmetric])

lemma sep_pure_front2[simp]: 
  "(P ** A ** Q ** F) = ((P  Q) ** F ** A)"
  apply (simp add: sep_reorder)
  done

lemma ex_h_simps[simp]: 
  "Ex (Φ)  Φ"
  "Ex (Φ ** P)  (Φ  Ex P)"
  apply (cases Φ; auto)
  apply auto
  done
  
lemma
  fixes h :: "('a  'b option) * nat"
  shows "(P ** Q ** H) h = (Q ** H ** P) h"
  by (simp add: sep_conj_ac)
    
(* map_le *)
lemma map_le_substate_conv: "map_le = sep_substate"
  unfolding map_le_def sep_substate_def sep_disj_fun_def plus_fun_def domain_def dom_def none_def apply (auto intro!: ext)
  subgoal for m1 m2 apply(rule exI[where x="%x. if (y. m1 x = Some y) then None else m2 x"])
    by auto
  by blast


end