Theory Universal_Hash_Families.Universal_Hash_Families_More_Product_PMF
section ‹Indexed Products of Probability Mass Functions›
theory Universal_Hash_Families_More_Product_PMF
imports
Concentration_Inequalities.Concentration_Inequalities_Preliminary
Finite_Fields.Finite_Fields_More_Bijections
Universal_Hash_Families_More_Independent_Families
begin
hide_const (open) Isolated.discrete
text ‹This section introduces a restricted version of @{term "Pi_pmf"} where the default value is @{term "undefined"}
and contains some additional results about that case in addition to @{theory "HOL-Probability.Product_PMF"}›
abbreviation prod_pmf where "prod_pmf I M ≡ Pi_pmf I undefined M"
lemma measure_pmf_cong:
assumes "⋀x. x ∈ set_pmf p ⟹ x ∈ P ⟷ x ∈ Q"
shows "measure (measure_pmf p) P = measure (measure_pmf p) Q"
using assms
by (intro finite_measure.finite_measure_eq_AE AE_pmfI) auto
lemma pmf_mono:
assumes "⋀x. x ∈ set_pmf p ⟹ x ∈ P ⟹ x ∈ Q"
shows "measure (measure_pmf p) P ≤ measure (measure_pmf p) Q"
proof -
have "measure (measure_pmf p) P = measure (measure_pmf p) (P ∩ (set_pmf p))"
by (intro measure_pmf_cong) auto
also have "... ≤ measure (measure_pmf p) Q"
using assms by (intro finite_measure.finite_measure_mono) auto
finally show ?thesis by simp
qed
lemma pmf_add:
assumes "⋀x. x ∈ P ⟹ x ∈ set_pmf p ⟹ x ∈ Q ∨ x ∈ R"
shows "measure p P ≤ measure p Q + measure p R"
proof -
have "measure p P ≤ measure p (Q ∪ R)"
using assms by (intro pmf_mono) blast
also have "... ≤ measure p Q + measure p R"
by (rule measure_subadditive, auto)
finally show ?thesis by simp
qed
lemma pmf_prod_pmf:
assumes "finite I"
shows "pmf (prod_pmf I M) x = (if x ∈ extensional I then ∏i ∈ I. (pmf (M i)) (x i) else 0)"
by (simp add: pmf_Pi[OF assms(1)] extensional_def)
lemma PiE_defaut_undefined_eq: "PiE_dflt I undefined M = PiE I M"
by (simp add:PiE_dflt_def PiE_def extensional_def Pi_def set_eq_iff) blast
lemma set_prod_pmf:
assumes "finite I"
shows "set_pmf (prod_pmf I M) = PiE I (set_pmf ∘ M)"
by (simp add:set_Pi_pmf[OF assms] PiE_defaut_undefined_eq)
text ‹A more general version of @{thm [source] "measure_Pi_pmf_Pi"}.›
lemma prob_prod_pmf':
assumes "finite I"
assumes "J ⊆ I"
shows "measure (measure_pmf (Pi_pmf I d M)) (Pi J A) = (∏ i ∈ J. measure (M i) (A i))"
proof -
have a:"Pi J A = Pi I (λi. if i ∈ J then A i else UNIV)"
using assms by (simp add:Pi_def set_eq_iff, blast)
show ?thesis
using assms
by (simp add:if_distrib a measure_Pi_pmf_Pi[OF assms(1)] prod.If_cases[OF assms(1)] Int_absorb1)
qed
lemma prob_prod_pmf_slice:
assumes "finite I"
assumes "i ∈ I"
shows "measure (measure_pmf (prod_pmf I M)) {ω. P (ω i)} = measure (M i) {ω. P ω}"
using prob_prod_pmf'[OF assms(1), where J="{i}" and M="M" and A="λ_. Collect P"]
by (simp add:assms Pi_def)
definition restrict_dfl where "restrict_dfl f A d = (λx. if x ∈ A then f x else d)"
lemma pi_pmf_decompose:
assumes "finite I"
shows "Pi_pmf I d M = map_pmf (λω. restrict_dfl (λi. ω (f i) i) I d) (Pi_pmf (f ` I) (λ_. d) (λj. Pi_pmf (f -` {j} ∩ I) d M))"
proof -
have fin_F_I:"finite (f ` I)" using assms by blast
have "finite I ⟹ ?thesis"
using fin_F_I
proof (induction "f ` I" arbitrary: I rule:finite_induct)
case empty
then show ?case by (simp add:restrict_dfl_def)
next
case (insert x F)
have a: "(f -` {x} ∩ I) ∪ (f -` F ∩ I) = I"
using insert(4) by blast
have b: "F = f ` (f -` F ∩ I) " using insert(2,4)
by (auto simp add:set_eq_iff image_def vimage_def)
have c: "finite (f -` F ∩ I)" using insert by blast
have d: "⋀j. j ∈ F ⟹ (f -` {j} ∩ (f -` F ∩ I)) = (f -` {j} ∩ I)"
using insert(4) by blast
have " Pi_pmf I d M = Pi_pmf ((f -` {x} ∩ I) ∪ (f -` F ∩ I)) d M"
by (simp add:a)
also have "... = map_pmf (λ(g, h) i. if i ∈ f -` {x} ∩ I then g i else h i)
(pair_pmf (Pi_pmf (f -` {x} ∩ I) d M) (Pi_pmf (f -` F ∩ I) d M))"
using insert by (subst Pi_pmf_union) auto
also have "... = map_pmf (λ(g,h) i. if f i = x ∧ i ∈ I then g i else if f i ∈ F ∧ i ∈ I then h (f i) i else d)
(pair_pmf (Pi_pmf (f -` {x} ∩ I) d M) (Pi_pmf F (λ_. d) (λj. Pi_pmf (f -` {j} ∩ (f -` F ∩ I)) d M)))"
by (simp add:insert(3)[OF b c] map_pmf_comp case_prod_beta' apsnd_def map_prod_def
pair_map_pmf2 b[symmetric] restrict_dfl_def) (metis fst_conv snd_conv)
also have "... = map_pmf (λ(g,h) i. if i ∈ I then (h(x := g)) (f i) i else d)
(pair_pmf (Pi_pmf (f -` {x} ∩ I) d M) (Pi_pmf F (λ_. d) (λj. Pi_pmf (f -` {j} ∩ I) d M)))"
using insert(4) d
by (intro arg_cong2[where f="map_pmf"] ext) (auto simp add:case_prod_beta' cong:Pi_pmf_cong)
also have "... = map_pmf (λω i. if i ∈ I then ω (f i) i else d) (Pi_pmf (insert x F) (λ_. d) (λj. Pi_pmf (f -` {j} ∩ I) d M))"
by (simp add:Pi_pmf_insert[OF insert(1,2)] map_pmf_comp case_prod_beta')
finally show ?case by (simp add:insert(4) restrict_dfl_def)
qed
thus ?thesis using assms by blast
qed
lemma restrict_dfl_iter: "restrict_dfl (restrict_dfl f I d) J d = restrict_dfl f (I ∩ J) d"
by (rule ext, simp add:restrict_dfl_def)
lemma indep_vars_restrict':
assumes "finite I"
shows "prob_space.indep_vars (Pi_pmf I d M) (λ_. discrete) (λi ω. restrict_dfl ω (f -` {i} ∩ I) d) (f ` I)"
proof -
let ?Q = "(Pi_pmf (f ` I) (λ_. d) (λi. Pi_pmf (I ∩ f -` {i}) d M))"
have a:"prob_space.indep_vars ?Q (λ_. discrete) (λi ω. ω i) (f ` I)"
using assms by (intro indep_vars_Pi_pmf, blast)
have b: "AE x in measure_pmf ?Q. ∀i∈f ` I. x i = restrict_dfl (λi. x (f i) i) (I ∩ f -` {i}) d"
using assms
by (auto simp add:PiE_dflt_def restrict_dfl_def AE_measure_pmf_iff set_Pi_pmf comp_def Int_commute)
have "prob_space.indep_vars ?Q (λ_. discrete) (λi x. restrict_dfl (λi. x (f i) i) (I ∩ f -` {i}) d) (f ` I)"
by (rule prob_space.indep_vars_cong_AE[OF prob_space_measure_pmf b a], simp)
thus ?thesis
using prob_space_measure_pmf
by (auto intro!:prob_space.indep_vars_distr simp:pi_pmf_decompose[OF assms, where f="f"]
map_pmf_rep_eq comp_def restrict_dfl_iter Int_commute)
qed
lemma indep_vars_restrict_intro':
assumes "finite I"
assumes "⋀i ω. i ∈ J ⟹ X' i ω = X' i (restrict_dfl ω (f -` {i} ∩ I) d)"
assumes "J = f ` I"
assumes "⋀ω i. i ∈ J ⟹ X' i ω ∈ space (M' i)"
shows "prob_space.indep_vars (measure_pmf (Pi_pmf I d p)) M' (λi ω. X' i ω) J"
proof -
define M where "M ≡ measure_pmf (Pi_pmf I d p)"
interpret prob_space "M"
using M_def prob_space_measure_pmf by blast
have "indep_vars (λ_. discrete) (λi x. restrict_dfl x (f -` {i} ∩ I) d) (f ` I)"
unfolding M_def by (rule indep_vars_restrict'[OF assms(1)])
hence "indep_vars M' (λi ω. X' i (restrict_dfl ω ( f -` {i} ∩ I) d)) (f ` I)"
using assms(4)
by (intro indep_vars_compose2[where Y="X'" and N="M'" and M'="λ_. discrete"]) (auto simp:assms(3))
hence "indep_vars M' (λi ω. X' i ω) (f ` I)"
using assms(2)[symmetric]
by (simp add:assms(3) cong:indep_vars_cong)
thus ?thesis
unfolding M_def using assms(3) by simp
qed
lemma
fixes f :: "'b ⇒ ('c :: {second_countable_topology,banach,real_normed_field})"
assumes "finite I"
assumes "i ∈ I"
assumes "integrable (measure_pmf (M i)) f"
shows integrable_Pi_pmf_slice: "integrable (Pi_pmf I d M) (λx. f (x i))"
and expectation_Pi_pmf_slice: "integral⇧L (Pi_pmf I d M) (λx. f (x i)) = integral⇧L (M i) f"
proof -
have a:"distr (Pi_pmf I d M) (M i) (λω. ω i) = distr (Pi_pmf I d M) discrete (λω. ω i)"
by (rule distr_cong, auto)
have b: "measure_pmf.random_variable (M i) borel f"
using assms(3) by simp
have c:"integrable (distr (Pi_pmf I d M) (M i) (λω. ω i)) f"
using assms(1,2,3)
by (subst a, subst map_pmf_rep_eq[symmetric], subst Pi_pmf_component, auto)
show "integrable (Pi_pmf I d M) (λx. f (x i))"
by (rule integrable_distr[where f="f" and M'="M i"]) (auto intro: c)
have "integral⇧L (Pi_pmf I d M) (λx. f (x i)) = integral⇧L (distr (Pi_pmf I d M) (M i) (λω. ω i)) f"
using b by (intro integral_distr[symmetric], auto)
also have "... = integral⇧L (map_pmf (λω. ω i) (Pi_pmf I d M)) f"
by (subst a, subst map_pmf_rep_eq[symmetric], simp)
also have "... = integral⇧L (M i) f"
using assms(1,2) by (simp add: Pi_pmf_component)
finally show "integral⇧L (Pi_pmf I d M) (λx. f (x i)) = integral⇧L (M i) f" by simp
qed
text ‹This is an improved version of @{thm [source] "expectation_prod_Pi_pmf"}.
It works for general normed fields instead of non-negative real functions .›
lemma expectation_prod_Pi_pmf:
fixes f :: "'a ⇒ 'b ⇒ ('c :: {second_countable_topology,banach,real_normed_field})"
assumes "finite I"
assumes "⋀i. i ∈ I ⟹ integrable (measure_pmf (M i)) (f i)"
shows "integral⇧L (Pi_pmf I d M) (λx. (∏i ∈ I. f i (x i))) = (∏ i ∈ I. integral⇧L (M i) (f i))"
proof -
have a: "prob_space.indep_vars (measure_pmf (Pi_pmf I d M)) (λ_. borel) (λi ω. f i (ω i)) I"
by (intro prob_space.indep_vars_compose2[where Y="f" and M'="λ_. discrete"]
prob_space_measure_pmf indep_vars_Pi_pmf assms(1)) auto
have "integral⇧L (Pi_pmf I d M) (λx. (∏i ∈ I. f i (x i))) = (∏ i ∈ I. integral⇧L (Pi_pmf I d M) (λx. f i (x i)))"
by (intro prob_space.indep_vars_lebesgue_integral prob_space_measure_pmf assms(1,2)
a integrable_Pi_pmf_slice) auto
also have "... = (∏ i ∈ I. integral⇧L (M i) (f i))"
by (intro prod.cong expectation_Pi_pmf_slice assms(1,2)) auto
finally show ?thesis by simp
qed
lemma variance_prod_pmf_slice:
fixes f :: "'a ⇒ real"
assumes "i ∈ I" "finite I"
assumes "integrable (measure_pmf (M i)) (λω. f ω^2)"
shows "prob_space.variance (Pi_pmf I d M) (λω. f (ω i)) = prob_space.variance (M i) f"
proof -
have a:"integrable (measure_pmf (M i)) f"
using assms(3) measure_pmf.square_integrable_imp_integrable by auto
have b:" integrable (measure_pmf (Pi_pmf I d M)) (λx. (f (x i))⇧2)"
by (rule integrable_Pi_pmf_slice[OF assms(2) assms(1)], metis assms(3))
have c:" integrable (measure_pmf (Pi_pmf I d M)) (λx. (f (x i)))"
by (rule integrable_Pi_pmf_slice[OF assms(2) assms(1)], metis a)
have "measure_pmf.expectation (Pi_pmf I d M) (λx. (f (x i))⇧2) - (measure_pmf.expectation (Pi_pmf I d M) (λx. f (x i)))⇧2 =
measure_pmf.expectation (M i) (λx. (f x)⇧2) - (measure_pmf.expectation (M i) f)⇧2"
using assms a b c by ((subst expectation_Pi_pmf_slice[OF assms(2,1)])?, simp)+
thus ?thesis
using assms a b c by (simp add: measure_pmf.variance_eq)
qed
lemma Pi_pmf_bind_return:
assumes "finite I"
shows "Pi_pmf I d (λi. M i ⤜ (λx. return_pmf (f i x))) = Pi_pmf I d' M ⤜ (λx. return_pmf (λi. if i ∈ I then f i (x i) else d))"
using assms by (simp add: Pi_pmf_bind[where d'="d'"])
lemma pmf_of_set_prod_eq:
assumes "A ≠ {}" "finite A"
assumes "B ≠ {}" "finite B"
shows "pmf_of_set (A × B) = pair_pmf (pmf_of_set A) (pmf_of_set B)"
proof -
have "indicat_real (A × B) (i, j) = indicat_real A i * indicat_real B j" for i j
by (cases "i ∈ A"; cases "j ∈ B") auto
hence "pmf (pmf_of_set (A × B)) (i,j) = pmf (pair_pmf (pmf_of_set A) (pmf_of_set B)) (i,j)"
for i j using assms by (simp add:pmf_pair)
thus ?thesis
by (intro pmf_eqI) auto
qed
lemma split_pmf_mod_div':
assumes "a > (0::nat)"
assumes "b > 0"
shows "map_pmf (λx. (x mod a, x div a)) (pmf_of_set {..<a * b}) = pmf_of_set ({..<a} × {..<b})"
using assms by (intro map_pmf_of_set_bij_betw bij_betw_prod finite_lessThan)
(simp add: lessThan_empty_iff)
lemma split_pmf_mod_div:
assumes "a > (0::nat)"
assumes "b > 0"
shows "map_pmf (λx. (x mod a, x div a)) (pmf_of_set {..<a * b}) =
pair_pmf (pmf_of_set {..<a}) (pmf_of_set {..<b})"
using assms by (auto intro!: pmf_of_set_prod_eq simp add:split_pmf_mod_div')
end