Theory W_Method_Implementations
section ‹Implementations of the W-Method›
theory W_Method_Implementations
imports Intermediate_Frameworks Pair_Framework "../Distinguishability" Test_Suite_Representations "../OFSM_Tables_Refined" "HOL-Library.List_Lexorder"
begin
subsection ‹Using the H-Framework›
definition w_method_via_h_framework :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ ('b×'c) prefix_tree" where
"w_method_via_h_framework M m = h_framework_static_with_empty_graph M (λ k q . distinguishing_set M) m"
definition w_method_via_h_framework_lists :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ (('b×'c) × bool) list list" where
"w_method_via_h_framework_lists M m = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (w_method_via_h_framework M m))"
lemma w_method_via_h_framework_completeness_and_finiteness :
fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
fixes M2 :: "('e,'b,'c) fsm"
assumes "observable M1"
and "observable M2"
and "minimal M1"
and "minimal M2"
and "size_r M1 ≤ m"
and "size M2 ≤ m"
and "inputs M2 = inputs M1"
and "outputs M2 = outputs M1"
shows "(L M1 = L M2) ⟷ ((L M1 ∩ set (w_method_via_h_framework M1 m)) = (L M2 ∩ set (w_method_via_h_framework M1 m)))"
and "finite_tree (w_method_via_h_framework M1 m)"
using h_framework_static_with_empty_graph_completeness_and_finiteness[OF assms, where dist_fun="(λ k q . distinguishing_set M1)"]
using distinguishing_set_distinguishes[OF assms(1,3)]
using distinguishing_set_finite
unfolding w_method_via_h_framework_def
by blast+
lemma w_method_via_h_framework_lists_completeness :
fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
fixes M2 :: "('d,'b,'c) fsm"
assumes "observable M1"
and "observable M2"
and "minimal M1"
and "minimal M2"
and "size_r M1 ≤ m"
and "size M2 ≤ m"
and "inputs M2 = inputs M1"
and "outputs M2 = outputs M1"
shows "(L M1 = L M2) ⟷ list_all (passes_test_case M2 (initial M2)) (w_method_via_h_framework_lists M1 m)"
using h_framework_static_with_empty_graph_lists_completeness[OF assms, where dist_fun="(λ k q . distinguishing_set M1)", OF _ distinguishing_set_finite]
using distinguishing_set_distinguishes[OF assms(1,3)]
unfolding w_method_via_h_framework_lists_def h_framework_static_with_empty_graph_lists_def w_method_via_h_framework_def
by blast
definition w_method_via_h_framework_2 :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ ('b×'c) prefix_tree" where
"w_method_via_h_framework_2 M m = h_framework_static_with_empty_graph M (λ k q . distinguishing_set_reduced M) m"
definition w_method_via_h_framework_2_lists :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ (('b×'c) × bool) list list" where
"w_method_via_h_framework_2_lists M m = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (w_method_via_h_framework_2 M m))"
lemma w_method_via_h_framework_2_completeness_and_finiteness :
fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
fixes M2 :: "('e,'b,'c) fsm"
assumes "observable M1"
and "observable M2"
and "minimal M1"
and "minimal M2"
and "size_r M1 ≤ m"
and "size M2 ≤ m"
and "inputs M2 = inputs M1"
and "outputs M2 = outputs M1"
shows "(L M1 = L M2) ⟷ ((L M1 ∩ set (w_method_via_h_framework_2 M1 m)) = (L M2 ∩ set (w_method_via_h_framework_2 M1 m)))"
and "finite_tree (w_method_via_h_framework_2 M1 m)"
using h_framework_static_with_empty_graph_completeness_and_finiteness[OF assms, where dist_fun="(λ k q . distinguishing_set_reduced M1)"]
using distinguishing_set_reduced_distinguishes[OF assms(1,3)]
using distinguishing_set_reduced_finite
unfolding w_method_via_h_framework_2_def
by blast+
lemma w_method_via_h_framework_lists_2_completeness :
fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
fixes M2 :: "('d,'b,'c) fsm"
assumes "observable M1"
and "observable M2"
and "minimal M1"
and "minimal M2"
and "size_r M1 ≤ m"
and "size M2 ≤ m"
and "inputs M2 = inputs M1"
and "outputs M2 = outputs M1"
shows "(L M1 = L M2) ⟷ list_all (passes_test_case M2 (initial M2)) (w_method_via_h_framework_2_lists M1 m)"
using h_framework_static_with_empty_graph_lists_completeness[OF assms, where dist_fun="(λ k q . distinguishing_set_reduced M1)", OF _ distinguishing_set_reduced_finite]
using distinguishing_set_reduced_distinguishes[OF assms(1,3)]
unfolding w_method_via_h_framework_2_lists_def h_framework_static_with_empty_graph_lists_def w_method_via_h_framework_2_def
by blast
subsection ‹Using the SPY-Framework›
definition w_method_via_spy_framework :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ ('b×'c) prefix_tree" where
"w_method_via_spy_framework M m = spy_framework_static_with_empty_graph M (λ k q . distinguishing_set M) m"
lemma w_method_via_spy_framework_completeness_and_finiteness :
fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
fixes M2 :: "('d,'b,'c) fsm"
assumes "observable M1"
and "observable M2"
and "minimal M1"
and "minimal M2"
and "size_r M1 ≤ m"
and "size M2 ≤ m"
and "inputs M2 = inputs M1"
and "outputs M2 = outputs M1"
shows "(L M1 = L M2) ⟷ ((L M1 ∩ set (w_method_via_spy_framework M1 m)) = (L M2 ∩ set (w_method_via_spy_framework M1 m)))"
and "finite_tree (w_method_via_spy_framework M1 m)"
unfolding w_method_via_spy_framework_def
using spy_framework_static_with_empty_graph_completeness_and_finiteness[OF assms, of "(λ k q . distinguishing_set M1)"]
using distinguishing_set_distinguishes[OF assms(1,3)]
using distinguishing_set_finite[of M1]
by (metis IntI)+
definition w_method_via_spy_framework_lists :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ (('b×'c) × bool) list list" where
"w_method_via_spy_framework_lists M m = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (w_method_via_spy_framework M m))"
lemma w_method_via_spy_framework_lists_completeness :
fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
fixes M2 :: "('d,'b,'c) fsm"
assumes "observable M1"
and "observable M2"
and "minimal M1"
and "minimal M2"
and "size_r M1 ≤ m"
and "size M2 ≤ m"
and "inputs M2 = inputs M1"
and "outputs M2 = outputs M1"
shows "(L M1 = L M2) ⟷ list_all (passes_test_case M2 (initial M2)) (w_method_via_spy_framework_lists M1 m)"
unfolding w_method_via_spy_framework_lists_def
w_method_via_spy_framework_completeness_and_finiteness(1)[OF assms]
passes_test_cases_from_io_tree[OF assms(1,2) fsm_initial fsm_initial w_method_via_spy_framework_completeness_and_finiteness(2)[OF assms]]
by blast
subsection ‹Using the Pair-Framework›
definition w_method_via_pair_framework :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ ('b×'c) prefix_tree" where
"w_method_via_pair_framework M m = pair_framework_h_components M m add_distinguishing_set"
lemma w_method_via_pair_framework_completeness_and_finiteness :
assumes "observable M"
and "observable I"
and "minimal M"
and "size I ≤ m"
and "m ≥ size_r M"
and "inputs I = inputs M"
and "outputs I = outputs M"
shows "(L M = L I) ⟷ (L M ∩ set (w_method_via_pair_framework M m) = L I ∩ set (w_method_via_pair_framework M m))"
and "finite_tree (w_method_via_pair_framework M m)"
using pair_framework_h_components_completeness_and_finiteness[OF assms(1,2,3,5,4,6,7), where get_separating_traces="add_distinguishing_set", OF add_distinguishing_set_distinguishes[OF assms(1,3)] add_distinguishing_set_finite]
using get_distinguishing_sequence_from_ofsm_tables_distinguishes[OF assms(1,3)]
unfolding w_method_via_pair_framework_def[symmetric]
by blast+
definition w_method_via_pair_framework_lists :: "('a::linorder,'b::linorder,'c::linorder) fsm ⇒ nat ⇒ (('b×'c) × bool) list list" where
"w_method_via_pair_framework_lists M m = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (w_method_via_pair_framework M m))"
lemma w_method_implementation_lists_completeness :
assumes "observable M"
and "observable I"
and "minimal M"
and "size I ≤ m"
and "m ≥ size_r M"
and "inputs I = inputs M"
and "outputs I = outputs M"
shows "(L M = L I) ⟷ list_all (passes_test_case I (initial I)) (w_method_via_pair_framework_lists M m)"
unfolding w_method_via_pair_framework_lists_def
w_method_via_pair_framework_completeness_and_finiteness(1)[OF assms]
passes_test_cases_from_io_tree[OF assms(1,2) fsm_initial fsm_initial w_method_via_pair_framework_completeness_and_finiteness(2)[OF assms]]
by blast
subsection ‹Code Generation›
lemma w_method_via_pair_framework_code[code] :
"w_method_via_pair_framework M m = (let
tables = (compute_ofsm_tables M (size M - 1));
distMap = mapping_of (map (λ (q1,q2) . ((q1,q2), get_distinguishing_sequence_from_ofsm_tables_with_provided_tables tables M q1 q2))
(filter (λ qq . fst qq ≠ snd qq) (List.product (states_as_list M) (states_as_list M))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 ≠ q2 then the (Mapping.lookup distMap (q1,q2)) else get_distinguishing_sequence_from_ofsm_tables M q1 q2);
pairs = filter (λ (x,y) . x ≠ y) (list_ordered_pairs (states_as_list M));
distSet = from_list (map (case_prod distHelper) pairs);
distFun = (λ M x t . distSet)
in pair_framework_h_components M m distFun)"
unfolding w_method_via_pair_framework_def pair_framework_h_components_def pair_framework_def
unfolding add_distinguishing_set.simps
unfolding distinguishing_set.simps
apply (subst get_distinguishing_sequence_from_ofsm_tables_precomputed[of M])
unfolding Let_def
by presburger
lemma w_method_via_spy_framework_code[code] :
"w_method_via_spy_framework M m = (let
tables = (compute_ofsm_tables M (size M - 1));
distMap = mapping_of (map (λ (q1,q2) . ((q1,q2), get_distinguishing_sequence_from_ofsm_tables_with_provided_tables tables M q1 q2))
(filter (λ qq . fst qq ≠ snd qq) (List.product (states_as_list M) (states_as_list M))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 ≠ q2 then the (Mapping.lookup distMap (q1,q2)) else get_distinguishing_sequence_from_ofsm_tables M q1 q2);
pairs = filter (λ (x,y) . x ≠ y) (list_ordered_pairs (states_as_list M));
distSet = from_list (map (case_prod distHelper) pairs);
distFun = (λ k q . distSet)
in spy_framework_static_with_empty_graph M distFun m)"
unfolding w_method_via_spy_framework_def
unfolding add_distinguishing_set.simps
unfolding distinguishing_set.simps
apply (subst get_distinguishing_sequence_from_ofsm_tables_precomputed[of M])
unfolding Let_def
by presburger
lemma w_method_via_h_framework_code[code] :
"w_method_via_h_framework M m = (let
tables = (compute_ofsm_tables M (size M - 1));
distMap = mapping_of (map (λ (q1,q2) . ((q1,q2), get_distinguishing_sequence_from_ofsm_tables_with_provided_tables tables M q1 q2))
(filter (λ qq . fst qq ≠ snd qq) (List.product (states_as_list M) (states_as_list M))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 ≠ q2 then the (Mapping.lookup distMap (q1,q2)) else get_distinguishing_sequence_from_ofsm_tables M q1 q2);
pairs = filter (λ (x,y) . x ≠ y) (list_ordered_pairs (states_as_list M));
distSet = from_list (map (case_prod distHelper) pairs);
distFun = (λ k q . distSet)
in h_framework_static_with_empty_graph M distFun m)"
unfolding w_method_via_h_framework_def
unfolding distinguishing_set.simps
apply (subst get_distinguishing_sequence_from_ofsm_tables_precomputed[of M])
unfolding Let_def
by presburger
lemma w_method_via_h_framework_2_code[code] :
"w_method_via_h_framework_2 M m = (let
tables = (compute_ofsm_tables M (size M - 1));
distMap = mapping_of (map (λ (q1,q2) . ((q1,q2), get_distinguishing_sequence_from_ofsm_tables_with_provided_tables tables M q1 q2))
(filter (λ qq . fst qq ≠ snd qq) (List.product (states_as_list M) (states_as_list M))));
distHelper = (λ q1 q2 . if q1 ∈ states M ∧ q2 ∈ states M ∧ q1 ≠ q2 then the (Mapping.lookup distMap (q1,q2)) else get_distinguishing_sequence_from_ofsm_tables M q1 q2);
pairs = filter (λ (x,y) . x ≠ y) (list_ordered_pairs (states_as_list M));
handlePair = (λ W (q,q') . if contains_distinguishing_trace M W q q'
then W
else insert W (distHelper q q'));
distSet = foldl handlePair empty pairs;
distFun = (λ k q . distSet)
in h_framework_static_with_empty_graph M distFun m)"
unfolding w_method_via_h_framework_2_def
unfolding distinguishing_set_reduced.simps
apply (subst get_distinguishing_sequence_from_ofsm_tables_precomputed[of M])
unfolding Let_def
by presburger
end