Theory Intermediate_Frameworks

section ‹Intermediate Frameworks›

text ‹This theory provides partial applications of the H, SPY, and Pair-Frameworks.›

theory Intermediate_Frameworks
imports Intermediate_Implementations Test_Suite_Representations "../OFSM_Tables_Refined" Simple_Convergence_Graph Empty_Convergence_Graph
begin

subsection ‹Partial Applications of the SPY-Framework›

definition spy_framework_static_with_simple_graph :: "('a::linorder,'b::linorder,'c::linorder) fsm  
                              (nat  'a  ('b×'c) prefix_tree) 
                              nat 
                              ('b×'c) prefix_tree" 
  where
  "spy_framework_static_with_simple_graph M1
                         dist_fun 
                         m 
    = spy_framework M1
                  get_state_cover_assignment 
                  (handle_state_cover_static dist_fun)
                  (λ M V ts . ts)
                  (establish_convergence_static dist_fun)
                  (handle_io_pair False True)
                  simple_cg_initial
                  simple_cg_insert
                  simple_cg_lookup_with_conv
                  simple_cg_merge
                  m"


lemma spy_framework_static_with_simple_graph_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('d,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " q1 q2 . q1  states M1  q2  states M1  q1  q2   io .  k1 k2 . io  set (dist_fun k1 q1)  set (dist_fun k2 q2)  distinguishes M1 q1 q2 io"
  and     " q k . q  states M1  finite_tree (dist_fun k q)"
shows "(L M1 = L M2)  ((L M1  set (spy_framework_static_with_simple_graph M1 dist_fun m)) = (L M2  set (spy_framework_static_with_simple_graph M1 dist_fun m)))"
and "finite_tree (spy_framework_static_with_simple_graph M1 dist_fun m)"  
  using spy_framework_completeness_and_finiteness[OF assms(1-8), 
                                                   of get_state_cover_assignment, OF get_state_cover_assignment_is_state_cover_assignment,
                                                   of "(λ M V ts . ts)", 
                                                   OF _ simple_cg_initial_invar_with_conv[OF assms(1,2)],
                                                   OF _ simple_cg_insert_invar_with_conv[OF assms(1,2)],
                                                   OF _ simple_cg_merge_invar_with_conv[OF assms(1,2)],
                                                   of "handle_state_cover_static dist_fun" 
                                                      "establish_convergence_static dist_fun" 
                                                      "handle_io_pair False True"
                                                   ]
  using handle_state_cover_static_separates_state_cover[OF assms(9,10)]
  using establish_convergence_static_verifies_transition[of M1 dist_fun M2 "get_state_cover_assignment M1" simple_cg_initial simple_cg_insert simple_cg_lookup_with_conv, OF assms(9,10)]
  using handle_io_pair_verifies_io_pair[of False True M1 M2 simple_cg_insert simple_cg_lookup_with_conv]
  unfolding spy_framework_static_with_simple_graph_def
  by blast+





definition spy_framework_static_with_empty_graph :: "('a::linorder,'b::linorder,'c::linorder) fsm  
                              (nat  'a  ('b×'c) prefix_tree) 
                              nat 
                              ('b×'c) prefix_tree" 
  where
  "spy_framework_static_with_empty_graph M1
                 dist_fun 
                 m 
    = spy_framework M1
                     get_state_cover_assignment 
                     (handle_state_cover_static dist_fun)
                     (λ M V ts . ts)
                     (establish_convergence_static dist_fun)
                     (handle_io_pair False True)
                     empty_cg_initial
                     empty_cg_insert
                     empty_cg_lookup
                     empty_cg_merge
                     m"

lemma spy_framework_static_with_empty_graph_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('d,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " q1 q2 . q1  states M1  q2  states M1  q1  q2   io .  k1 k2 . io  set (dist_fun k1 q1)  set (dist_fun k2 q2)  distinguishes M1 q1 q2 io"
  and     " q k . q  states M1  finite_tree (dist_fun k q)"
shows "(L M1 = L M2)  ((L M1  set (spy_framework_static_with_empty_graph M1 dist_fun m)) = (L M2  set (spy_framework_static_with_empty_graph M1 dist_fun m)))"
and "finite_tree (spy_framework_static_with_empty_graph M1 dist_fun m)"  
  using spy_framework_completeness_and_finiteness[OF assms(1-8), 
                                                   of get_state_cover_assignment, OF get_state_cover_assignment_is_state_cover_assignment,
                                                   of "(λ M V ts . ts)", 
                                                   OF _ empty_graph_initial_invar,
                                                   OF _ empty_graph_insert_invar,
                                                   OF _ empty_graph_merge_invar,
                                                   of "handle_state_cover_static dist_fun" 
                                                      "establish_convergence_static dist_fun" 
                                                      "handle_io_pair False True"
                                                   ]
  using handle_state_cover_static_separates_state_cover[OF assms(9,10)]
  using establish_convergence_static_verifies_transition[of M1 dist_fun M2 "get_state_cover_assignment M1" empty_cg_initial empty_cg_insert empty_cg_lookup, OF assms(9,10)]
  using handle_io_pair_verifies_io_pair[of False True M1 M2 empty_cg_insert empty_cg_lookup]
  unfolding spy_framework_static_with_empty_graph_def
  by blast+



subsection ‹Partial Applications of the H-Framework›


definition h_framework_static_with_simple_graph :: "('a::linorder,'b::linorder,'c::linorder) fsm  
                                        (nat  'a  ('b×'c) prefix_tree) 
                                        nat 
                                        ('b×'c) prefix_tree" 
  where
  "h_framework_static_with_simple_graph M1 dist_fun m = 
    h_framework M1
                   get_state_cover_assignment 
                   (handle_state_cover_static dist_fun)
                   (λ M V ts . ts)
                   (handleUT_static dist_fun)
                   (handle_io_pair False False)
                   simple_cg_initial
                   simple_cg_insert
                   simple_cg_lookup_with_conv
                   simple_cg_merge
                   m"

lemma h_framework_static_with_simple_graph_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('e,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " q1 q2 . q1  states M1  q2  states M1  q1  q2   io .  k1 k2 . io  set (dist_fun k1 q1)  set (dist_fun k2 q2)  distinguishes M1 q1 q2 io"
  and     " q k . q  states M1  finite_tree (dist_fun k q)"
shows "(L M1 = L M2)  ((L M1  set (h_framework_static_with_simple_graph  M1 dist_fun m)) = (L M2  set (h_framework_static_with_simple_graph  M1 dist_fun m)))"
and "finite_tree (h_framework_static_with_simple_graph  M1 dist_fun m)"
  using h_framework_completeness_and_finiteness[OF assms(1-8),
                                             of get_state_cover_assignment 
                                                "(λ M V ts . ts)" ,
                                             OF get_state_cover_assignment_is_state_cover_assignment
                                                _
                                                simple_cg_initial_invar_with_conv[OF assms(1,2)]
                                                simple_cg_insert_invar_with_conv[OF assms(1,2)]
                                                simple_cg_merge_invar_with_conv[OF assms(1,2)]
                                                handle_state_cover_static_separates_state_cover[OF assms(9,10)]
                                                handleUT_static_handles_transition[OF assms(9,10)]
                                                verifies_io_pair_handled[OF handle_io_pair_verifies_io_pair[of False False M1 M2 simple_cg_insert simple_cg_lookup_with_conv]]
                                             ]
  unfolding h_framework_static_with_simple_graph_def[symmetric]
  by presburger+

definition h_framework_static_with_simple_graph_lists :: "('a::linorder,'b::linorder,'c::linorder) fsm  (nat  'a  ('b×'c) prefix_tree)  nat  (('b×'c) × bool) list list" where
  "h_framework_static_with_simple_graph_lists M dist_fun m = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (h_framework_static_with_simple_graph M dist_fun m))"

lemma h_framework_static_with_simple_graph_lists_completeness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('d,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " q1 q2 . q1  states M1  q2  states M1  q1  q2   io .  k1 k2 . io  set (dist_fun k1 q1)  set (dist_fun k2 q2)  distinguishes M1 q1 q2 io"
  and     " q k . q  states M1  finite_tree (dist_fun k q)"
shows "(L M1 = L M2)  list_all (passes_test_case M2 (initial M2)) (h_framework_static_with_simple_graph_lists M1 dist_fun m)"
  unfolding h_framework_static_with_simple_graph_lists_def
  using h_framework_static_with_simple_graph_completeness_and_finiteness(1)[OF assms(1,2,3,4,5,6,7,8,9,10)]
  using passes_test_cases_from_io_tree[OF assms(1,2) fsm_initial fsm_initial h_framework_static_with_simple_graph_completeness_and_finiteness(2)[OF assms]]
  by blast


definition h_framework_static_with_empty_graph :: "('a::linorder,'b::linorder,'c::linorder) fsm  
                                        (nat  'a  ('b×'c) prefix_tree) 
                                        nat 
                                        ('b×'c) prefix_tree" 
  where
  "h_framework_static_with_empty_graph M1 dist_fun m = 
    h_framework M1
                   get_state_cover_assignment 
                   (handle_state_cover_static dist_fun)
                   (λ M V ts . ts)
                   (handleUT_static dist_fun)
                   (handle_io_pair False False)
                   empty_cg_initial
                   empty_cg_insert
                   empty_cg_lookup
                   empty_cg_merge
                   m"

lemma h_framework_static_with_empty_graph_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('e,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " q1 q2 . q1  states M1  q2  states M1  q1  q2   io .  k1 k2 . io  set (dist_fun k1 q1)  set (dist_fun k2 q2)  distinguishes M1 q1 q2 io"
  and     " q k . q  states M1  finite_tree (dist_fun k q)"
shows "(L M1 = L M2)  ((L M1  set (h_framework_static_with_empty_graph  M1 dist_fun m)) = (L M2  set (h_framework_static_with_empty_graph  M1 dist_fun m)))"
and "finite_tree (h_framework_static_with_empty_graph  M1 dist_fun m)"
  using h_framework_completeness_and_finiteness[OF assms(1-8),
                                             of get_state_cover_assignment 
                                                "(λ M V ts . ts)" ,
                                             OF get_state_cover_assignment_is_state_cover_assignment
                                                _
                                                empty_graph_initial_invar
                                                empty_graph_insert_invar
                                                empty_graph_merge_invar
                                                handle_state_cover_static_separates_state_cover[OF assms(9,10)]
                                                handleUT_static_handles_transition[OF assms(9,10)]
                                                verifies_io_pair_handled[OF handle_io_pair_verifies_io_pair[of False False M1 M2 empty_cg_insert empty_cg_lookup]]
                                             ]
  unfolding h_framework_static_with_empty_graph_def[symmetric]
  by presburger+

definition h_framework_static_with_empty_graph_lists :: "('a::linorder,'b::linorder,'c::linorder) fsm  (nat  'a  ('b×'c) prefix_tree)  nat  (('b×'c) × bool) list list" where
  "h_framework_static_with_empty_graph_lists M dist_fun m = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (h_framework_static_with_empty_graph M dist_fun m))"

lemma h_framework_static_with_empty_graph_lists_completeness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('d,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " q1 q2 . q1  states M1  q2  states M1  q1  q2   io .  k1 k2 . io  set (dist_fun k1 q1)  set (dist_fun k2 q2)  distinguishes M1 q1 q2 io"
  and     " q k . q  states M1  finite_tree (dist_fun k q)"
shows "(L M1 = L M2)  list_all (passes_test_case M2 (initial M2)) (h_framework_static_with_empty_graph_lists M1 dist_fun m)"
  unfolding h_framework_static_with_empty_graph_lists_def
  using h_framework_static_with_empty_graph_completeness_and_finiteness(1)[OF assms(1,2,3,4,5,6,7,8,9,10)]
  using passes_test_cases_from_io_tree[OF assms(1,2) fsm_initial fsm_initial h_framework_static_with_empty_graph_completeness_and_finiteness(2)[OF assms]]
  by blast


definition h_framework_dynamic :: "
              (('a,'b,'c) fsm  ('a,'b,'c) state_cover_assignment  ('a,'b,'c) transition  ('a,'b,'c) transition list  nat  bool) 
              ('a::linorder,'b::linorder,'c::linorder) fsm  
              nat  
              bool  
              bool  
              ('b×'c) prefix_tree" 
  where
  "h_framework_dynamic convergence_decisision M1 m completeInputTraces useInputHeuristic = 
    h_framework M1
                   get_state_cover_assignment 
                   (handle_state_cover_dynamic completeInputTraces useInputHeuristic (get_distinguishing_sequence_from_ofsm_tables M1))
                   sort_unverified_transitions_by_state_cover_length
                   (handleUT_dynamic completeInputTraces useInputHeuristic (get_distinguishing_sequence_from_ofsm_tables M1) convergence_decisision)
                   (handle_io_pair completeInputTraces useInputHeuristic)
                   simple_cg_initial
                   simple_cg_insert
                   simple_cg_lookup_with_conv
                   simple_cg_merge
                   m"


lemma h_framework_dynamic_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('e,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
shows "(L M1 = L M2)  ((L M1  set (h_framework_dynamic convergenceDecision M1 m completeInputTraces useInputHeuristic)) = (L M2  set (h_framework_dynamic convergenceDecision M1 m completeInputTraces useInputHeuristic)))"
and "finite_tree (h_framework_dynamic convergenceDecision M1 m completeInputTraces useInputHeuristic)"
  using h_framework_completeness_and_finiteness[OF assms,
                                             of get_state_cover_assignment 
                                                sort_unverified_transitions_by_state_cover_length ,
                                             OF get_state_cover_assignment_is_state_cover_assignment
                                                sort_unverified_transitions_by_state_cover_length_retains_set[of _ M1 get_state_cover_assignment]
                                                simple_cg_initial_invar_with_conv[OF assms(1,2)]
                                                simple_cg_insert_invar_with_conv[OF assms(1,2)]
                                                simple_cg_merge_invar_with_conv[OF assms(1,2)]
                                                handle_state_cover_dynamic_separates_state_cover[OF get_distinguishing_sequence_from_ofsm_tables_distinguishes[OF assms(1,3)], of completeInputTraces useInputHeuristic M2 simple_cg_initial simple_cg_insert simple_cg_lookup_with_conv]
                                                handleUT_dynamic_handles_transition[of M1 "(get_distinguishing_sequence_from_ofsm_tables M1)" completeInputTraces useInputHeuristic convergenceDecision M2 _ _ simple_cg_insert simple_cg_lookup_with_conv simple_cg_merge, OF get_distinguishing_sequence_from_ofsm_tables_distinguishes[OF assms(1,3)]]
                                                verifies_io_pair_handled[OF handle_io_pair_verifies_io_pair[of completeInputTraces useInputHeuristic M1 M2 simple_cg_insert simple_cg_lookup_with_conv]]
                                             ]
  unfolding h_framework_dynamic_def[symmetric]
  by presburger+


definition h_framework_dynamic_lists :: "(('a,'b,'c) fsm  ('a,'b,'c) state_cover_assignment  ('a,'b,'c) transition  ('a,'b,'c) transition list  nat  bool)  ('a::linorder,'b::linorder,'c::linorder) fsm  nat  bool  bool  (('b×'c) × bool) list list" where
  "h_framework_dynamic_lists convergenceDecision M m completeInputTraces useInputHeuristic = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (h_framework_dynamic convergenceDecision M m completeInputTraces useInputHeuristic))"

lemma h_framework_dynamic_lists_completeness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('d,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
shows "(L M1 = L M2)  list_all (passes_test_case M2 (initial M2)) (h_framework_dynamic_lists convergenceDecision M1 m completeInputTraces useInputHeuristic)"
  unfolding h_framework_dynamic_lists_def
            h_framework_dynamic_completeness_and_finiteness(1)[OF assms, of convergenceDecision completeInputTraces useInputHeuristic]
            passes_test_cases_from_io_tree[OF assms(1,2) fsm_initial fsm_initial h_framework_dynamic_completeness_and_finiteness(2)[OF assms]]
  by blast



subsection ‹Partial Applications of the Pair-Framework›

definition pair_framework_h_components :: "('a::linorder,'b::linorder,'c::linorder) fsm  nat 
                                           (('a,'b,'c) fsm  (('b × 'c) list × 'a) × ('b × 'c) list × 'a  ('b × 'c) prefix_tree  ('b × 'c) prefix_tree) 
                                           ('b×'c) prefix_tree" 
where
  "pair_framework_h_components M m get_separating_traces = (let 
    V = get_state_cover_assignment M
  in pair_framework M m (get_initial_test_suite_H V) (get_pairs_H V) get_separating_traces)"



lemma pair_framework_h_components_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('e,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " α β t . α  L M1  β  L M1  after_initial M1 α  after_initial M1 β   io  set (get_separating_traces M1 ((α,after_initial M1 α),(β,after_initial M1 β)) t)  (set (after t α)  set (after t β)) . distinguishes M1 (after_initial M1 α) (after_initial M1 β) io"
  and     " α β t . α  L M1  β  L M1  after_initial M1 α  after_initial M1 β  finite_tree (get_separating_traces M1 ((α,after_initial M1 α),(β,after_initial M1 β)) t)"
shows "(L M1 = L M2)  ((L M1  set (pair_framework_h_components M1 m get_separating_traces)) = (L M2  set (pair_framework_h_components M1 m get_separating_traces)))"
and "finite_tree (pair_framework_h_components M1 m get_separating_traces)"
proof -
  show "(L M1 = L M2)  ((L M1  set (pair_framework_h_components M1 m get_separating_traces)) = (L M2  set (pair_framework_h_components M1 m get_separating_traces)))"
    using pair_framework_completeness[ OF assms(1,2,3,5,4,6,7) get_state_cover_assignment_is_state_cover_assignment
                                     , of "get_initial_test_suite_H (get_state_cover_assignment M1)" "get_pairs_H (get_state_cover_assignment M1)" get_separating_traces
                                     , OF get_initial_test_suite_H_set_and_finite(1)[of "get_state_cover_assignment M1" M1 m]
                                     , OF get_pairs_H_set(1)[OF assms(1) get_state_cover_assignment_is_state_cover_assignment, where m=m] assms(8)
                                     ]
    unfolding pair_framework_h_components_def Let_def 
    using get_pairs_H_set(1)[OF assms(1) get_state_cover_assignment_is_state_cover_assignment, where m=m]
    using assms(8) 
    unfolding pair_framework_h_components_def Let_def
    by presburger 


  show "finite_tree (pair_framework_h_components M1 m get_separating_traces)"
    using pair_framework_finiteness[of M1 get_separating_traces "get_initial_test_suite_H (get_state_cover_assignment M1)" m "get_pairs_H (get_state_cover_assignment M1)",
                                    OF assms(9) get_initial_test_suite_H_set_and_finite(2)[of "get_state_cover_assignment M1" M1 m] get_pairs_H_set(2)[OF assms(1) get_state_cover_assignment_is_state_cover_assignment] ]
    unfolding pair_framework_h_components_def Let_def
    by auto
qed


definition pair_framework_h_components_2 :: "('a::linorder,'b::linorder,'c::linorder) fsm  nat 
                                           (('a,'b,'c) fsm  (('b × 'c) list × 'a) × ('b × 'c) list × 'a  ('b × 'c) prefix_tree  ('b × 'c) prefix_tree) 
                                            bool 
                                           ('b×'c) prefix_tree" 
where
  "pair_framework_h_components_2 M m get_separating_traces c = (let 
    V = get_state_cover_assignment M
  in pair_framework M m (get_initial_test_suite_H_2 c V) (get_pairs_H V) get_separating_traces)"


lemma pair_framework_h_components_2_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('e,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
  and     " α β t . α  L M1  β  L M1  after_initial M1 α  after_initial M1 β   io  set (get_separating_traces M1 ((α,after_initial M1 α),(β,after_initial M1 β)) t)  (set (after t α)  set (after t β)) . distinguishes M1 (after_initial M1 α) (after_initial M1 β) io"
  and     " α β t . α  L M1  β  L M1  after_initial M1 α  after_initial M1 β  finite_tree (get_separating_traces M1 ((α,after_initial M1 α),(β,after_initial M1 β)) t)"
shows "(L M1 = L M2)  ((L M1  set (pair_framework_h_components_2 M1 m get_separating_traces c)) = (L M2  set (pair_framework_h_components_2 M1 m get_separating_traces c)))"
and "finite_tree (pair_framework_h_components_2 M1 m get_separating_traces c)"
proof -
  show "(L M1 = L M2)  ((L M1  set (pair_framework_h_components_2 M1 m get_separating_traces c)) = (L M2  set (pair_framework_h_components_2 M1 m get_separating_traces c)))"
    using pair_framework_completeness[ OF assms(1,2,3,5,4,6,7) get_state_cover_assignment_is_state_cover_assignment
                                     , of "get_initial_test_suite_H_2 c (get_state_cover_assignment M1)" "get_pairs_H (get_state_cover_assignment M1)" get_separating_traces
                                     , OF get_initial_test_suite_H_2_set_and_finite(1)[of "get_state_cover_assignment M1" M1 m]
                                     , OF get_pairs_H_set(1)[OF assms(1) get_state_cover_assignment_is_state_cover_assignment, where m=m] assms(8)
                                     ]
    unfolding pair_framework_h_components_2_def Let_def 
    using get_pairs_H_set(1)[OF assms(1) get_state_cover_assignment_is_state_cover_assignment, where m=m]
    using assms(8) 
    unfolding pair_framework_h_components_def Let_def
    by presburger 


  show "finite_tree (pair_framework_h_components_2 M1 m get_separating_traces c)"
    using pair_framework_finiteness[of M1 get_separating_traces "get_initial_test_suite_H_2 c (get_state_cover_assignment M1)" m "get_pairs_H (get_state_cover_assignment M1)",
                                    OF assms(9) get_initial_test_suite_H_2_set_and_finite(2)[of c "get_state_cover_assignment M1" M1 m] get_pairs_H_set(2)[OF assms(1) get_state_cover_assignment_is_state_cover_assignment] ]
    unfolding pair_framework_h_components_2_def Let_def
    by auto
qed

subsection ‹Code Generation›


(* one-time pre-computation of OFSM tables *)
lemma h_framework_dynamic_code[code] :
  "h_framework_dynamic convergence_decisision M1 m completeInputTraces useInputHeuristic = (let 
      tables = (compute_ofsm_tables M1 (size M1 - 1));
      distMap = mapping_of (map (λ (q1,q2) . ((q1,q2), get_distinguishing_sequence_from_ofsm_tables_with_provided_tables tables M1 q1 q2))
                        (filter (λ qq . fst qq  snd qq) (List.product (states_as_list M1) (states_as_list M1))));
      distHelper = (λ q1 q2 . if q1  states M1  q2  states M1  q1  q2 then the (Mapping.lookup distMap (q1,q2)) else get_distinguishing_sequence_from_ofsm_tables M1 q1 q2)
    in
      h_framework  M1
                   get_state_cover_assignment 
                   (handle_state_cover_dynamic completeInputTraces useInputHeuristic distHelper)
                   sort_unverified_transitions_by_state_cover_length
                   (handleUT_dynamic completeInputTraces useInputHeuristic distHelper convergence_decisision)
                   (handle_io_pair completeInputTraces useInputHeuristic)
                   simple_cg_initial
                   simple_cg_insert
                   simple_cg_lookup_with_conv
                   simple_cg_merge
                   m)"
  unfolding h_framework_dynamic_def
  apply (subst (1 2) get_distinguishing_sequence_from_ofsm_tables_precomputed[of M1])
  unfolding Let_def 
  by presburger

end