Theory Partial_S_Method_Implementations

section ‹Implementations of the Partial-S-Method›

theory Partial_S_Method_Implementations
imports Intermediate_Frameworks
begin

subsection ‹Using the H-Framework›

(* check whether q2 can be reached from q1 in up to a given number steps *)
fun distance_at_most :: "('a::linorder,'b::linorder,'c::linorder) fsm  'a  'a  nat  bool" where
  "distance_at_most M q1 q2 0 = (q1 = q2)" |
  "distance_at_most M q1 q2 (Suc k) = ((q1 = q2)  ( x  inputs M .  (y,q1')  h M (q1,x) . distance_at_most M q1' q2 k))"

(* check whether X (unverified transitions) contains some t' such that the source of t' is reachable from the target of t in at most l steps *)
definition do_establish_convergence :: "('a::linorder,'b::linorder,'c::linorder) fsm  ('a,'b,'c) state_cover_assignment  ('a,'b,'c) transition  ('a,'b,'c) transition list  nat  bool" where
  "do_establish_convergence M V t X l = (find (λ t' . distance_at_most M (t_target t) (t_source t') l) X  None)"      

definition partial_s_method_via_h_framework :: "('a::linorder,'b::linorder,'c::linorder) fsm  nat  bool  bool  ('b×'c) prefix_tree" where
  "partial_s_method_via_h_framework = h_framework_dynamic do_establish_convergence"

definition partial_s_method_via_h_framework_lists :: "('a::linorder,'b::linorder,'c::linorder) fsm  nat  bool  bool  (('b×'c) × bool) list list" where
  "partial_s_method_via_h_framework_lists M m completeInputTraces useInputHeuristic = sorted_list_of_maximal_sequences_in_tree (test_suite_from_io_tree M (initial M) (partial_s_method_via_h_framework M m completeInputTraces useInputHeuristic))"

lemma partial_s_method_via_h_framework_completeness_and_finiteness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('e,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
shows "(L M1 = L M2)  ((L M1  set (partial_s_method_via_h_framework M1 m completeInputTraces useInputHeuristic)) = (L M2  set (partial_s_method_via_h_framework M1 m completeInputTraces useInputHeuristic)))"
and "finite_tree (partial_s_method_via_h_framework M1 m completeInputTraces useInputHeuristic)"
  using h_framework_dynamic_completeness_and_finiteness[OF assms]
  unfolding partial_s_method_via_h_framework_def 
  by blast+

lemma partial_s_method_via_h_framework_lists_completeness :
  fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm"
  fixes M2 :: "('d,'b,'c) fsm"
  assumes "observable M1"
  and     "observable M2"
  and     "minimal M1"
  and     "minimal M2"
  and     "size_r M1  m"
  and     "size M2  m"
  and     "inputs M2 = inputs M1"
  and     "outputs M2 = outputs M1"
shows "(L M1 = L M2)  list_all (passes_test_case M2 (initial M2)) (partial_s_method_via_h_framework_lists M1 m completeInputTraces useInputHeuristic)"
  using h_framework_dynamic_lists_completeness[OF assms]
  unfolding partial_s_method_via_h_framework_lists_def h_framework_dynamic_lists_def partial_s_method_via_h_framework_def
  by blast


end